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1. INTRODUCTION

In this thesis we use the Weak Walk Theorem for oriented hypergraphs [3, 6] to

unify and generalize Sachs’ Coe�cient Theorem [4] and the All Minors Matrix Tree

Theorem [2] for graphs and signed graphs. Oriented hypergraphs are an incidence-

centric generalization of graphs and signed graphs; Sachs’ Coe�cient Theorem pro-

vides expressions for the coe�cients of the characteristic polynomial of the adja-

cency matrix for graphs; the All Minors Matrix Tree Theorem relates the number

of forests in graphs to a specific minor of the Laplacian matrix.

Applying the Weak Walk Theorem for oriented hypergraphs from [3, 6], we

relate the entries of the Laplacian and adjacency matrices. This allows for a single

combinatorial approach to examine both determinant and permanent versions of

Sachs’ Coe�cient Theorem and the All Minors Matrix Tree Theorem when applied

to the Laplacian and adjacency matrices. To unify these theorems, we construct

incidence preserving maps from a disjoint union of paths of length 1 into a given

oriented hypergraph and examine the signed counts of these functions with vary-

ing parameters. These functions, called contributors, are in one-to-one correspon-

dence with an oriented version of the basic figures in [4] which allows us to provide

a meaningful explanation of the coe�cients of the characteristic polynomial of the

Laplacian matrix; the contributors that represent cycle covers are counted in the

characteristic polynomial of the adjacency matrix. We then use these contributors

to create and prove a general All Minors Matrix Tree Theorem by classifying which

objects are to be counted in correspondence with particular minors of the Laplacian

or adjacency matrix.
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1.1 Oriented Hypergraphs

The definition of oriented hypergraph used for this paper is an adaptation of the

definition introduced in [6] and expanded on in [7]. An oriented hypergraph is a

graphical structure that includes orientations on each incidence (where an edge

meets a vertex) and allows for loops, multiple edges between a single pair of ver-

tices, and hyperedges, or edges that are incident to more than one vertex. Exact

definitions for these terms will be given in section 2.1, but an example is given in

figure 1 where the oriented hypergraph G
1

has three vertices indicated by points in

the plane and three edges where edges connecting two vertices are lines and edges

connecting three vertices are indicated by shaded regions. There are multiple edges

between v
1

and v
2

, namely e
1

and e
2

. Also, e
2

is a hyperedge connecting all three

vertices and e
3

is a loop. The arrows represent the orientation of each incidence: an

arrow entrant to a vertex has sign +1 and an arrow salient to a vertex has sign −1.
v
1

v
2

v
3

e
1

e
2

e
3

i
1

i
2

i
4

i
5

i
3

i
6

i
7

i
8

Figure 1: An oriented hypergraph, G
1

.

We work with oriented hypergraphs in order to allow the most generality

in our conclusions. Thus, all of the theorems in this paper can easily be applied

to both graphs, and signed graphs. Minor modifications to the theorems will even

allow applications to directed graphs.
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1.2 Weak Walks

A large emphasis of this paper is on the reinterpretation of theorems using weak

walks to combinatorially describe what is being counted. A weak walk is an inci-

dence sequence that alternates between vertices/edges and incidences in a graph.

The main focus of this paper is on weak walks of length 1 that are of the form:

vertex, incidence, edge, incidence, vertex

This term is related to the more strict and common term, walk, where an inci-

dence cannot be repeated before reaching a new vertex. An example of a length

1 weak walk in the oriented hypergraph G
1

is v
1

, i
1

, e
2

, i
2

, v
2

where i
1

is the inci-

dence between v
1

and e
2

, and i
2

is the incidence between e
2

and v
2

. Notice that

v
1

, i
1

, e
2

, i
1

, v
1

is also a weak walk and, in fact, our first example is also a walk.

1.3 Oriented Hypergraphic Matrices

We organize information from our graphs into matrices that are definied in section

2.3. The four major matrices we will use are the degree matrix, the adjacency ma-

trix, the incidence matrix, and the Laplacian matrix, the last of which is formed by

either subtracting the adjacency matrix from the degree matrix or multiplying the

incidence matrix by its transpose.

We also discuss an important theorem introduced in [7] and refined in [3]

that states that the ij−entry of the Laplacian matrix for an oriented hypergraph

is the negative of the sum of the signs of the weak walks from vertex i to vertex

j. This connection between weak walks and the entries in the Laplacian matrix is

the driving force behind the creation of the single combinatorial approach that uni-

versally proves both the All Minors Matrix Tree Theorem and Sachs’ Coe�cient

Theorem for oriented hypergraphs.
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1.4 Sachs’ Theorem

Sachs’ Theorem, sometimes called the “coe�cients theorem for digraphs,” appears

in [4] and is one of the major building blocks for the research in this thesis. Sachs’

Theorem enumerates the coe�cients of the characteristic polynomial of the adja-

cency matrix of arbitrary directed multigraphs. Although Sachs specifically applies

this theorem to directed and undirected multigraphs, our version is easily applied

to oriented hypergraphs. In [4], two versions of this theorem are introduced: one by

using a determinant calculation and the other using a permanent calculation. These

theorems along with extensions to the Laplacian matrix are proved in section 5.1.

In section 5.2, we show that Sachs’ Theorem is a direct result of the theorem we

prove in the previous section.

4



2. BACKGROUND

The majority of the following definitions come from [3, 6] and [7] and have been

modified to fit this particular paper. In section 2.1 we formally define the graphical

structures that were introduced in section 1.1. In section 2.2 we introduce weak

walks which enumerate the entries of the oriented hypergraphic matrices in section

2.3. We introduce Sachs’ Theorem in section 2.4, and introduce the Matrix Tree

Theorem for simple graphs in section 2.5.

2.1 Oriented Hypergraphs

Let V , E, and I denote disjoint sets of vertices, edges, and incidences, respectively.

Consider I ◆�→ V × E, where ◆ is the incidence function, and we say v and e are in-

cident along i if ◆(i) = (v, e) (alternatively, i is between v and e). Two incidences

i and j are said to be parallel if ◆(i) = ◆(j). This provides an equivalence class of

parallel incidences, and the size of each equivalence class is called the multiplicity

of incidence i (for some i in the class). An incidence orientation function is a func-

tion � ∶ I → {+1,−1}, we say �(i) = +1 for an incidence i entrant to a vertex and

�(j) = −1 for an incidence j salient to a vertex. An oriented hypergraph is a quintu-

ple (V,E,I, ◆,�).
The degree of vertex v is deg(v) ∶= �{i ∈ I � (⇡V ○ ◆)(i) = v}�, while the size

of an edge e is size(e) ∶= �{i ∈ I � (⇡E ○ ◆)(i) = e}�. Vertices v and w are said to be

adjacent with respect to edge e if there are incidences i ≠ j such that ◆(i) = (v, e),
and ◆(j) = (w, e). A directed adjacency is a quintuple (v, i, e, j,w) where v and w

are adjacent with respect to edge e using incidences i and j and i ≠ j. Observe

that if the directed adjacency (v, i, e, j,w) exists, then the opposite directed adja-

cency (w, j, e, i, v) also exists. An adjacency is the set associated to a directed ad-

jacency. The directedness condition can easily be modified to “directed” oriented

5



hypergraphs. The sign of the adjacency (v, i, e, j,w) is

sgn(v, i, e, j,w) = −�(i)�(j),

and sgn(v, i, e, j,w) = 0 if v and w are not adjacent. Figure 2 depicts the three

possibilites for the signing of adjacencies.

Negative Adjacency (Introverted)

Negative Adjacency(Extroverted)

Positive Adjacency

Figure 2: Positive and Negative Signed Adjacencies

Example 1. We now refer back to the oriented hypergraph G
1

in figure 1 which

we will continue to do for the majority of this paper. This example is intended to

increase understanding of the definitions in this section.

For the oriented hypergraph G
1

in figure 1, we have:

V = {v
1

, v
2

, v
3

}, E = {e
1

, e
2

, e
3

}, I = {i
1

, i
2

, ..., i
8

}

Notice that ◆(i
4

) = ◆(i
5

) = (v
2

, e
2

), and ◆(i
7

) = ◆(i
8

) = (v
3

, e
3

). Also
deg(v

2

) = 3, and size(e
2

) = 4. Notice that v
1

is adjacent to v
2

by the three adja-

cencies (v
1

, i
2

, e
2

, i
4

, v
2

), (v
1

, i
2

, e
2

, i
5

, v
2

), and (v
1

, i
1

, e
1

, i
3

, v
2

) of which the first is

negative and the other two are positive. In addition, v
3

is adjacent to v
3

by the neg-

ative adjacency (v
3

, i
7

, e
3

, i
8

, v
3

).
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2.2 Weak Walks

A (directed) weak walk is a sequence W = (a
0

, i
1

, a
1

, i
2

, a
2

, i
3

, a
3

, ..., an−1, in, an) of
vertices, edges and incidences, where {a`} is an alternating sequence of vertices and

edges, and ih is an incidence between ah−1 and ah. Specifically we have:

{(projV ○ ◆)(ih), (projE ○ ◆)(ih)} = {ah−1, ah}.

As with directed adjacencies, a weak walk is the set associated to a directed weak

walk. The prefix vertex/edge/cross is used when the end points of a weak walk are

vertices/edges/one edge and one vertex. The length of a weak walk is half the num-

ber of incidences in the weak walk.

A vertex walk is a weak walk where a
0

, an ∈ V , and i
2h−1 ≠ i

2h — this for-

bids the weak walk from entering an edge and immediately returning to the same

vertex along the same incidence. Clearly, an adjacency is a vertex walk of length 1.

A vertex backstep is a weak walk of length 1 of the form (v, i, e, i, v), while a loop is

a vertex walk of the form (v, i, e, j, v) where i ≠ j. A vertex path is a vertex walk

where no vertex or edge is repeated, while a circle is a vertex-path except a
0

= an.
Analogous edge-centric definitions exist for the incidence dual and the results are

inherited. A connected graph is a graph in which there exists a path from each ver-

tex to every other vertex. Throughout this paper, all graphs are connected graphs.

The sign of a weak walk W is

sgn(W ) = (−1)�n�2� n�
h=1

�(ih),

which is equivalent to taking the product of the signed adjacencies if W is a vertex-

walk. Observe that vertex-backsteps are always negative. Throughout this paper,

all walks and weak walks begin and end at a vertex and are of length 1. For this

7



reason, we can refer to them as simply either backsteps, or adjacencies (some of

which are loops).

Example 2. The walks below are from the oriented hypergraph G
1

in figure 1.

• Vertex Weak Walk of length 2: W = v
1

, i
2

, e
2

, i
2

, v
1

, i
1

, e
1

, i
3

, v
2

, sgn(W ) = −1.
• Edge Walk of length 2: e

2

, i
6

, i
7

, e
3

, i
8

, v
3

, i
6

, e
2

.

• Backstep: v
2

, i
4

, e
2

, i
4

, v
2

.

• Loop: v
3

, i
8

, e
3

, i
7

, v
3

.

• Adjacency: v
2

, i
5

, e
2

, i
6

, v
3

.

2.3 Oriented Hypergraphic Matrices

In this section, we define five graphic matrices and provide examples of the matri-

ces corresponding to the oriented hypergraph G
1

in Figure 1. We also discuss what

the entries in certain matrices represent in the graph. This is important because

the link between weak walks and the Laplacian matrix is the key idea to the follow-

ing proof of what is being counted in the coe�ceints of the characteristic polyno-

mial. The following definitions and theorems are adapted from [6].

The incidence matrix HG of an oriented hypergraph G is the V × E matrix

in which the (v, e) entry is ∑�(i), where the sum is taken over all incidences i such

that ◆(i) = (v, e). From [6] we know that the matrix HT
G = HG∗ where G∗ is the

incidence-dual of G.

The adjacency matrix AG of an oriented hypergraph G is the V × V ma-

trix whose (v,w)-entry is the sum of all signed adjacencies of the form (v, i, e, j,w).
Clearly, sgn(v, i, e, j,w) = sgn(w, j, e, i, v) so AG is a symmetric matrix.

The degree matrix of an oriented hypergraph G is the V × V diagonal matrix

DG ∶= diag(deg(v
1

), . . . ,deg(vn)). The Laplacian matrix of G is defined as LG ∶=
8



HGHT
G =DG −AG for all oriented hypergraphs.

Example 3. For the graph G
1

in Figure 1, we have

DG1 =
�����������

2 0 0

0 3 0

0 0 3

�����������
AG1 =

�����������

0 1 + 1 − 1 1

1 + 1 − 1 1 + 1 1 − 1
1 1 − 1 −1 − 1

�����������
=
�����������

0 1 1

1 2 0

1 0 −2

�����������

HG1 =
�����������

1 −1 0

−1 1 − 1 0

0 1 1 + 1

�����������
=
�����������

1 −1 0

−1 0 0

0 1 2

�����������

LG1 =
�����������

2 −1 −1
−1 1 0

−1 0 5

�����������
The (vertex) weak walk matrix of length k of an oriented hypergraph G is the

V × V matrix WG,k where the ij- entry is the number of positive weak walks from vi

to vj minus the number of negative weak walks from vi to vj. It was shown in [6],

and improved in [3], that the entries of the Laplacian are the 1-weak-walk counts,

and we collect the necessary relevant results.

Theorem 2.3.1 (See [6]). Let G be an oriented hypergraph.

1. The ij-entry of DG is negative the sum of the signs of the strictly weak walks

of length 1 from vi to vj. That is, the number of backsteps from vi to vj.

2. The ij-entry of AG is the sum of the signs of the (non-weak) walks of length 1

from vi to vj.

3. The ij-entry of LG is negative the sum of the signs of the weak walks of length

1 from vi to vj. That is, LG = −WG,1.

9



Part 3 of theorem 2.3.1 is referred to as the Weak Walk Theorem for ori-

ented hypergraphs. In section 3.1 we find an equivalent statement to the weak walk

theorem that will motivate the major proofs in this paper. It is important to note

that there are corresponding matrices and theorems for edge walks and cross walks.

2.4 Sachs’ Theorem

The following definitions are from [4] and Theorem 2.4.1 was first stated in 1963.

The objects described below are similar to the objects called contributors defined in

this thesis.

An elementary figure is either a K
2

(link graph) or a Cn (a cycle on n ver-

tices) where n ≥ 1. A basic figure U is a graph that is the disjoint union of elemen-

tary figures. Let Ui denote the set of all basic figures that are contained in G and

have exactly i isolated vertices, let p(U) be the number of elementary figures that

make up U and let c(U) be the number of circuits in U .

Theorem 2.4.1 (Sachs’ Theorem). For a multigraph G with n = �V (G)�,

�(AG, x) = n�
i=0
��
U∈Ui

(−1)p(U)(2)c(U)�xi.

2.5 The Matrix Tree Theorem

This section is a special case of a theorem for simple graphs. For more on a Ma-

trix Tree Theorem for oriented simple graphs, see [8]. The following definitions only

hold for graphs and have not been interpreted to include signed graphs and ori-

ented hypergraphs.

A tree is a connected circle-free graph. A spanning tree of G is a tree that

contains all vertices of the graph. It is known from [5] that every connected graph

is a tree if and only if it contains �V � − 1 edges. Thus, a spanning tree of G contains

10



�V � vertices, �V � − 1 edges, and no circles. We give an example of the spanning trees

of a simple graph G
2

in figures 3, and 4.

v
1

v
2

v
3

v
4

e
1

e
2

e
3

e
4

e
5

Figure 3: An oriented simple graph G
2

Figure 4: All 8 spanning trees of G
2

(the removed edges are left as dashed lines).

The following theorem is only for graphs.

Theorem 2.5.1 (Matrix Tree Theorem). The number of spanning trees of a graph

G is the value of any cofactor of the Laplacian matrix.

One proof of this theorem is found in [8] where Tutte uses spanning abores-

cences, darts and the conductances of link-darts to prove this theorem. Another

proof can be found in [2] where Chaiken uses directed arcs and also provides a

count of objects when multiple rows and columns are deleted. This is called the

11



All Minors Matrix Tree Theorem and a version of this theorem is proved in section

6. We will provide an alternate proof method to show that this theorem is true and

extend the results to include oriented hypergraphs.

Example 4. For the graph G
2

in Figure 3, we have

DG2 =

���������������

3 0 0 0

0 2 0 0

0 0 3 0

0 0 0 2

���������������

AG2 =

���������������

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

���������������

HG2 =

���������������

−1 0 0 1 1

1 −1 0 0 0

0 1 −1 0 −1
0 0 1 −1 0

���������������

LG2 =

���������������

3 −1 −1 −1
−1 2 −1 0

−1 −1 3 −1
−1 0 −1 2

���������������

�WG2 =

���������������

−3 1 1 1

1 −2 1 0

1 1 −3 1

1 0 1 −2

���������������

.

We now take the 1,1 cofactor of the Laplacian matrix and see that we get the num-

ber of spanning trees T (G
2

) pictured in figure 4 as follows:

T (G
2

) =
�����������������������

2 −1 0

−1 3 −1
0 −1 2

�����������������������
= 8.
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3. PARTITIONS OF THE SET OF CONTRIBUTORS

In this section, we introduce incidence preserving maps called contributors which

we associate with their image. We sum over these objects to prove the coe�ecient

theorem and Matrix Tree Theorem that follow. In section 3.1 we are able to restate

the Weak Walk Theorem in terms of incidence preserving maps that help to build

these contributors. In section 3.2 we create equivalence classes of these contribu-

tors. In section 3.3 we consider partitions of contributors and relate them to the

basic figures introduced in section 2.4 in order to reclaim Sachs’ coe�cient theorem.

3.1 Contributors

Given hypergraphs H = (VH ,EH ,IH , ◆H), and G = (VG,EG,IG, ◆G), an incidence

preserving map is a function ↵ ∶H → G such that the following diagram commutes:

IH IG

VH ×EH VG ×EG

↵I

◆H

(↵V × ↵E)

◆G

Let
�→
P k be a directed vertex path graph of length k.

Lemma 3.1.1. W is a weak walk of length k in G if, and only if, there is an inci-

dence preserving map ! ∶�→P k → G such that !(�→P k) =W .

Proof. Let W be a vertex weak walk of length k and
�→
P k be a directed vertex path

of length k as follows:

W = (a
0

, i
1

, a
1

, i
2

, a
2

, ..., a
2k−1, i2k, a2k)

13



�→
P k = (v0, j1, e1, j2, v1, j3, e2, ..., ek, j2k, vk).

We then have that ! ∶�→P k → G where !(vb) = a2b, !(eb) = a2b−1, and !(jb) = ib for all
b ∈ {0,1, ..., k} is an incidence preserving map with !(�→P k) =W.

On the other hand, if
�→
P k is mapped into G via an incidence preserving map

!, then !(�→P k) is determined by a sequence of possibly repeating incidences in G

where the incidence nature of G is preserved. Thus !(�→P k) =W for some weak walk

W of length k in G.

Given ! ∶ �→P k → G such that !(�→P k) = W , we can redefine the sign of a weak

walk as

sgn(W ) = (−1)�k�2� k�
n=1

�(!(in))�(!(jn)).
From here we are able to restate the Weak Walk Theorem for LG from [6, 3]

(for weak walks of length 1) in terms of incidence preserving maps.

Theorem 3.1.2 (Weak Walk Theorem). Let
�→
P

1

= (t, i, e, j, h) and ! ∶�→P
1

→ G. The

vw-entry of LG is �
!

−sgn(!(�→P
1

)). Where the sum is over all incidence preserving

maps ! such that !(t) = v and !(h) = w.
Let
�→
P

1

= (t, i, e, j, h) be the directed path of length 1, a contributor of G is

an incidence preserving map c ∶�
v∈V
�→
P

1

→ G such that c(tv) = v and {c(hv) � v ∈ V } =
V . Let C(G) denote the set of contributors. For a contributor c ∈ C(G) let ec(c)
and oc(c) be the number of even and odd circles in c, respectively. Similarly, let

pc(c) and nc(c) be the number of positive and negative circles in c. Also, let bs(c)
be the number of backsteps in the contributor c.

By definition, each contributor creates a natural bijection from the vertex

set to itself. Note that if for some
�→
P

1

, c(iv) = c(jv), then this path is mapped to a

backstep. If this condition does not hold, the the path is mapped to an adjacency.

We associate each contributor, c, with its image in the codomain. In this way, we

14



will simply refer to these images as contributors. Figure 5 shows an example of four

contributors from each of the two graphs G
1

and G
2

in figures 1 and 3 respectively.

Notice that a 2 in the figure is an indication of the multiplicity of that incidence

and therefore indicates a backstep or a repeated adjacency. Also, the underlying

graphical structure is shown in gray behind every contributor.

2

2

2

2

2

2

2

2

2

2

Figure 5: Examples of contributors of G
1

and G
2

.

3.2 Permutomorphic Contributors

Lemma 3.2.1. Every contributor c is associated to a single permutation ⇡ ∈ SV .

Proof. We consider the permutations on the set SV . Given a contributor of the

graph G, we let the backsteps and loops in the contributor be fixed elements in the

permutation and the directed circles of size 2 or larger and the degenerate 2-circles

be cycles in the permutation. Notice that while loops in a contributor are consid-

ered circles, they will appear as fixed elements in the associated permutation simply

because they are cycles of length 1. A contributor cannot be associated with two

di↵erent permutations because then it would have to contain 2 di↵erent sets of cir-

cles of length greater than 2. Therefore, every contributor c is associated to a single

permutation ⇡ ∈ SV .

15



Two contributors that are associated to the same permutation ⇡ are said

to be ⇡-permutomorphic, let C⇡(G) denote the set of ⇡-permutomorphic contrib-

utors. Figure 6 depicts the contributors in Figure 5 sorted by those that are ⇡-

permutomorphic and their corresponding permutations are listed below the con-

tributors. Notice that for some permutations, C⇡(G) may be empty. This will occur

if the circle associated to some cycle in ⇡ does not exist in the graph G.

2

2

2

2

2

2

2

2

2

(123)

(12)

e
(23)

(1432)

(123)

2

Figure 6: Examples of ⇡-permutomorphic contributors of G
1

and G
2

.

Lemma 3.2.2. The identification of contributors into permutomorphic sets is an

equivalence relation. Furthermore, the sets C⇡(G) form the equivalence classes of

C(G).
Observe that ⇡-permutomorphic contributors need not be isomorphic for if

c(hv) = v the associated algebraic 1-cycle may be a result of either a loop or a back-

step. Similarly, an algebraic 2-cycle may arise from a repeated adjacency or two

distinct adjacencies. However, these are the only obstructions to being isomorphic,

as seen in the following lemma.

When an algebraic 2-cycle in the permutation corresponding contributor

arises from a repeated adjacency, we call this a degenerate 2-circle. This is an im-

portant distinction because while a 2-circle has two possible cycle orientations, a
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degenerate 2-circle has only one orientation.

Lemma 3.2.3. Permutomorphic contributors are graphically-isomorphic on circles

of size 3 or greater. However, they are not isomorphic on cycles of length 1 or 2

because loops and backsteps are indistinguishable in the associated permutation as

are 2-circles and degenerate 2-circles.

An example of Lemma 3.2.3 is seen in figure 6 where the contributors corre-

sponding to the permutation (12) are not isomorphic due to two obstructions: the

loop and backstep at v
3

, and the 2-circle and degenerate 2-circle between v
1

and v
2

.

3.3 Generalized Basic Figures and Cycle Covers

Let C=k(G) be the set of contributors of G with exactly k backsteps, C≥k(G) be
the set of contributors of G with at least k backsteps. Then define Ĉ=k(G) as the
collection of sub-contributors of G formed by the contributors in C=k(G) after re-
moving exactly k backsteps. Similarly, we define Ĉ≥k(G) as the collection of sub-

contributors of G formed by the contributors from C≥k(G) after removing exactly k

backsteps. Notice that more that one subcontributor in Ĉ≥k(G) may come from the

same contributor in C≥k(G).
The following lemmas only hold for multigraphs (simple graphs with multi-

ple adjacencies allowed). Recall that these are the structures on which Sachs’ basic

figures are defined. We will use these lemmas to reclaim Sachs’ theorem in section

5.2.

Lemma 3.3.1. For a graph G, contributors are disjoint unions of backsteps and

adjacencies and these adjacencies are either contained in a degenerate 2-cycle, or a

Cn.

Proof. By definition contributors are disjoint unions of backsteps and adjacencies.

Now assume there is an adjacency a = (v, i, e, j,w) that is not contained in a degen-
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erate 2-cycle. Thus to, fulfill the conditions of a contributor, there must be another

adjacency from each of the 2 vertices contained in the first adjacency. Since �V � is
finite, at some point, the adjacencies must form a cycle.

Lemma 3.3.2. For a multigraph G, Ĉ=k(G) is the set of oriented basic figures on

�V � − k vertices.

Proof. The set Ĉ=k(G) contains those contributors with exactly k backsteps and

k backsteps deleted. Thus, these contributors are disjoint unions of degenerate 2-

cycles and oriented Cn’s that have exactly �V � − k vertices. We see that degener-

ate 2-cycles are in one-to-one correspondence with K
2

’s. Thus, the contributors in

Ĉ=k(G) are those that are disjoint unions of K
2

’s and Cn’s. Therefore these contrib-

utors are the oriented basic figures on �V � − k vertices.

A cycle cover, sometimes called a vertex cycle cover, of a graph G is a union

of disjoint cycles which are subgraphs of G and contain all of the vertices of G. No-

tice that the cycle covers of a graph are simply the contributors that do not contain

any backsteps. This fact is proved in the following Lemma.

Lemma 3.3.3. For a multigraph G, Ĉ=0(G) is the set of oriented cycle covers.

Proof. By Lemma 3.3.2 with k = 0, we see that Ĉ=0(G) is the set of oriented basic

figures on �V � vertices. Basic figures are disjoint unions of cycles, thus Ĉ=0(G) is the
set of cycle covers of G.
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4. PERMANENTS AND DETERMINANTS

In this section we will see that when we take the permanent and determinant of

the Laplacian and adjacency matrices, our calculations are simplified by using the

fact that the entries in these matrices are characterized through weak walks. The

following subsections show us that these calculations are simply the sums over con-

tributors with specific attributes given a particular signing scheme for the contribu-

tors. Notice that the signing scheme in Sachs’ Theorem in section 2.4.1 is (−1)p(U)
where p(U) is the number of basic figures in U . We will see that p(U) in Sachs’

Theorem is equivalent to the total number of circles in a given contributor. How-

ever, Sachs’ Theorem is specifically for multigraphs, not signed graphs. Thus we

must also discuss the occurrence of negative circles in a contributor. It turns out

that our signing scheme depends on the number of positive circles, negative circles,

even circles, and odd circles in a contributor.

We will now discuss why the number of odd circles, negative circles, and pos-

itive circles in a contributor might be relevant to how that contributor is counted.

A simple graph may be regarded as a signed graph where all edges are positive,

thus making all circles in the graph positive. This has lead to many signed graphic

theorems based on signed graphs where all circles are positive and complementary

theorems where all circles are negative (see [9, 10]). Thus, the number of negative

circles in a graph can be seen as a way to measure how “far away” a signed graph

is from being a graph.

The classical development of hypergraphs in [1] uses a {0,1}-incidence ma-

trix which corresponds to the all-extroverted orientation of the associated hyper-

graph. This orientation causes all adjacencies in the hypergraph to be negative.

This “trick” is used because it is very often impossible to make all of the adjacen-

cies in an oriented hypergraph positive. When all of the adjacencies in the graph
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have the same sign, it becomes much easier to talk about the signs of the circles in

the graph. For instance, when using the classical hypergraphic incidence matrix, a

circle is negative if, and only if, it is odd and a circle is positive if, and only if, it is

even. Thus the parity of the circle size can often be used in place of the sign of the

circle. When referring to the classical hypergraph, we will call its Laplacian matrix

the signless Laplacian matrix

Two other important terms that are used when characterizing signed graphs

and oriented hypergraphs are balance and balanceability. An oriented hypergraph is

balanced if all circles are positive and is balanceable if there are incidences that can

be negated such that the resulting oriented hypergraph is balanced [7]. Thus, the

signs of the circles in an oriented hypergraph directly a↵ect the balance of it and

therefore play an important role in the characterization of the graph itself. While

all graphs are clearly balanced, all signed graphs are balanceable. However, there

are obstructions to oriented hypergraphs being balanceable which can be found in

[7] and [3].

4.1 Permanents and Determinants of the Laplacian and Adjacency

Matrices

The following theorem provides the correlation between the contributors discussed

in section 3.1 and the permanent and determinant of the Laplacian matrices of ori-

ented hypergraphs. It is important to note that these theorems not only apply to

graphs, multigraphs and signed graphs but extend all the way to the generalized

oriented hypergraph. Notice that part 3 and 4 of theorem 4.1.1 are stronger ver-

sions of Sachs’ Theorem introduced in section 2.4.1.

Theorem 4.1.1. Let G be an oriented hypergraph with adjacency matrix AG and

Laplacian matrix LG, then

1. perm(LG) = ∑
c∈C(G)(−1)oc(c)+nc(c)
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2. det(LG) = ∑
c∈C(G)(−1)pc(c)

3. perm(AG) = ∑
c∈C=0(G)

(−1)nc(c)
4. det(AG) = ∑

c∈C=0(G)
(−1)ec(c)+nc(c)

Proof. 1. From the definition of determinant and Theorem 3.1.2 we have

perm(LG) = �
⇡∈SV

�
v∈V�! −sgn(!(

�→
P

1

)),

Where the sum is over all incidence preserving maps ! such that !(t) = v and

!(h) = ⇡(v).
We now want to distribute the inner sums for all v ∈ V and thus have a sum

of products instead of a product of sums. In order to do this we must pass

from the incidence preserving maps ! ∶ �→P
1

→ G with !(t) = v and !(h) = ⇡(v)
to the incidence preserving maps c ∶ �

v∈V
�→
P

1

→ G with !(tv) = v and !(hv) =
⇡(v). Now we collect the permutomorphic contributors and get:

perm(LG) = �
⇡∈SV

�
c∈C⇡(G)

�
v∈V

�(c(iv))�(c(jv)).

For a fixed permutation ⇡, we see that we are unable to distinguish the num-

ber and type of circles in permutomorphic contributors because the algebraic

1-cycles and 2-cycles in the permutation may or may not correspond to cir-

cles in the contributor as seen in Lemma 3.2.3. Thus we calculate the product

∏
v∈V �(c(iv))�(c(jv)) by factoring out −1’s from the adjacencies in the contrib-

utors. First we factor out a −1 for each adjacency in c which is equivalent to

a net factor of (−1)oc(c) because the even cycles will have an even number of

adjacencies. This now causes the negative adjacencies in G to appear as nega-

tive and the positive adjacencies to appear as positive because of the fact that
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LG = DG − AG. Then we factor out a −1 from every adjacency that is nega-

tive which is equivalent to a net factor of (−1)nc(c) because the positive circles

must have an even number of negative adjacencies. Thus the total value fac-

tored out is (−1)oc(c)+nc(c) and no negative signs remain inside the product

(now a product of positive 1’s) so we get:

perm(LG) = �
⇡∈SV

�
c∈C⇡(G)

(−1)oc(c)+nc(c)

Finally from Lemma 3.2.2 we get:

perm(LG) = �
c∈C(G)

(−1)oc(c)+nc(c).

2. The proof of part 2 has a small adaptation from part 1 as now include the

sign of the permutation in the calculation. Thus we have:

det(LG) = �
⇡∈SV

(−1)ec(⇡) �
c∈C⇡(G)

(−1)oc(c)+nc(c)

det(LG) = �
⇡∈SV

�
c∈C⇡(G)

(−1)ec(⇡)+oc(c)+nc(c)

However, all of the even cycles in ⇡ correspond to even circles in all c ∈ C(G).
This is because the only obstruction is the 1-cycles in ⇡ which don’t always

correspond to 1-circles in all c ∈ C(G) (see Lemma 3.2.3). Thus (−1)ec(⇡) =
(−1)ec(c), and we get:

det(LG) = �
⇡∈SV

�
c∈C⇡(G)

(−1)ec(c)+oc(c)+nc(c)
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Finally, since (−1)ec(c)+oc(c)+nc(c) = (−1)tc(c)+nc(c) = (−1)tc(c)−nc(c) = (−1)pc(c):

det(LG) = �
⇡∈SV

�
c∈C⇡(G)

(−1)pc(c)

det(LG) = �
c∈C(G)

(−1)pc(c)

3. The proof of part 3 is also similar to part 1. One di↵erence is that the sum is

now over an adjacency preserving ! we call !′. Also, when we factor out neg-

ative ones, we only need to take one out for every negative adjacency which is

equivalent to a net factor of (−1)nc(c) as before. Thus we get:

perm(AG) = �
⇡∈SV

�
c∈C=0,⇡(G)

(−1)nc(c),

perm(AG) = �
c∈C=0(G)

(−1)nc(c).
4. The proof of part 4 combines part 2 and 3 and we get:

det(AG) = �
⇡∈SV

�
c∈C=0,⇡(G)

(−1)ec(c)+nc(c),

det(AG) = �
c∈C=0(G)

(−1)ec(c)+nc(c).

Example 5. We now provide an example of this proof for the graph G
1

in figure

1. We will only do this example on part 1 of the theorem, perm(LG) In order to

see where the contributors are coming from, we need to write the Laplacian in an

expanded form so that the signs of every adjacency are present. We do this by sub-

tracting the expanded from of the adjacency matrix fro the degree matrix. Referring
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to the matrices in section 2.3, we have:

L(G
1

) =
�����������

(2) − (0) (0) − (1 + 1 − 1) (0) − (1)
(0) − (1 + 1 − 1) (3) − (1 + 1) (0) − (1 − 1)
(0) − (1) (0) − (1 − 1) (3) − (−1 − 1)

�����������
Now consider the permutation ⇡ = (12) and the contributor from figure 6

pictured below:

Figure 7: A contributor from the graph G
1

with permutation ⇡ = (12)
In order to find the sign associated to this contributor in the summation we

take the entries of the Laplacian matrix corresponding to the permutation and we

get:

[(0) − (1 + 1 − 1)] ⋅ [(0) − (1 + 1 − 1)] ⋅ [(3) − (−1 − 1)]
When these sums are distributed, our contributor comes from the numbers in braces

below:

[(0) − (1 + 1 −1�)] ⋅ [(0) − ( 1�+1 − 1)] ⋅ [(3) − (−1�−1)].
Thus, the contribution of our contributor is:

[−(−1)] ⋅ [−(1)] ⋅ [−(−1)].

Factoring out a negative for each adjacency: (−1)3[−1] ⋅ [1] ⋅ [−1].
Factoring out a negative from each negative adjacency: (−1)3+2[1] ⋅ [1] ⋅ [1].
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The net sign on our contributor is (−1)5 = (−1).
Also (−1)oc(c)+nc(c) = (−1)1+2 = (−1).

4.2 Optimizing

The following theorem provides a way to maximize the value of the permanent of

the Laplacian matrix for an oriented hypergraph.

Theorem 4.2.1. For a fixed underlying oriented hypergraph G and varied orienta-

tion function �, the following are equivalent:

1. perm(LG) achieves its max for �,

2. � is the all extroverted or all introverted orientation,

3. LG is the signless Laplacian,

4. perm(LG) = �C(G)�.
Proof. Part 2 and 3 are trivially equivalent. We will now show the equivalence of

parts 1 and 3 using the fact that in the signless Laplacian, a circle in an associated

contributor is negative if, and only if, it is odd. From Theorem 4.1.1, perm(LG) is
maximal when for every contributor c, oc(c) and nc(c) have the same parity.

If oc(c) ≠ nc(c) then there exists a circle in a contributor which is either

odd and not negative or negative and not odd. Refine the corresponding algebraic

cycle into fixed elements thus causing each element in the circle to become a back-

step, thus forming a new contributor c′. Now the parity of oc(c′) and nc(c′) are not

equal, so it must be true that oc(c) = nc(c) for all c ∈ C(G).
It must also be true that when oc(c) = nc(c) they are the same set of circles

by the same argument as above. Thus perm(LG) is maximal if, and only if, LG is

the signless Laplacian.

The equivalence for part 4 is obvious because if perm(LG) is maximal then

by Theorem 4.1.1, perm(LG) is the number of contributors.

25



5. CHARACTERISTIC POLYNOMIALS

We now investigate the coe�cients of the characteristic polynomial of the Laplacian

and adjacency matrices. In this section we will also see the equivalence of Sachs’

Theorem and the version in theorem 5.1.1

Let �D(M,x) = det(xI −M) be the determinant-based characteristic poly-

nomial and �P (M,x) = perm(xI − M) be the permanent-based characteristic

polynomial. It is important to note that sometimes the characteristic polynomial

is formed by the determinant of M − xI which only di↵ers from the version used

above by a factor of (−1)�V �. we chose the version above to parallel Sachs’ approach

to the following theorem.

5.1 Coe�cient Theorems

Theorem 5.1.1. Let G be an oriented hypergraph with adjacency matrix AG and

Laplacian matrix LG, then the characteristic polynomials are as follows:

1. �P (AG, x) = �V �∑
k=0
�
� ∑
c∈Ĉ=k(G)

(−1)oc(c)+nc(c)��xk,

2. �D(AG, x) = �V �∑
k=0
�
� ∑
c∈Ĉ=k(G)

(−1)pc(c)��xk,

3. �P (LG, x) = �V �∑
k=0
�
� ∑
c∈Ĉ≥k(G)

(−1)nc(c)+bs(c)��xk,

4. �D(LG, x) = �V �∑
k=0
�
� ∑
c∈Ĉ≥k(G)

(−1)ec(c)+nc(c)+bs(c)��xk.

Proof. We begin by proving part 1, as it parallels the techniques used in part 1 of

Theorem 4.1.1. Notice that this means the proof of the permanent of the Laplacian

matrix is extremely similar to the proof of the permanent-based characteristic poly-

nomial of the adjacency matrix.
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1. To prove part 1, we evaluate perm(xI −AG). In order to do this, we create a

choice function for a given permutation ⇡ and a vertex v as follows:

↵ ∶ v → �x ⋅ �(v,⇡(v)),�
!′

sgn(!′(�→P
1

))� .

Recall that !′ is an adjacency preserving and incidence preserving map from�→
P

1

→ G such that !′(t) = v and !′(h) = ⇡(v). Observe that if ⇡(v) = v, then
↵ maps v to either ∑

!′
sgn(!′(�→P

1

)) or x. However, if ⇡(v) ≠ v, then ↵ maps v

to either ∑
!′
sgn(!′(�→P

1

)) or 0. Thus, the determinant can be written as:

�P (AG, x) = perm(xI −AG)
= �

⇡∈SV

�
v∈V�↵ ↵(v)

We now define another function � that will allow us to distribute and thus

switch the order of the sum and product.

� ∶ V → �x ⋅ �(v,⇡(v)),�
!′

sgn(!′(�→P
1

))� .

After distributing, we get

�P (AG, x) = �
⇡∈SV

�
�

�
v∈V

�(v).

Notice that if a � maps any non-fixed point v to x ⋅ �(v,⇡(v)), then ∏
v∈V �(v) =

0, so we may ignore them in the sum. We now sum the �’s with exactly k

mapping to x. This produces a term of xk. The remaining �’s are necessarily

closed walk covers of the remaining �V � − k vertices, or elements of Ĉ=k(G),

= �
⇡∈SV

�V ��
k=0
��� �
c∈Ĉ=k,⇡(G)

�
v∈c(V )

�(c(iv)) ⋅ �(c(jv))���x
k.
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Now we reverse the order of the fist two summations because they don’t de-

pend on each other. Proceeding as in the proof of part 1 of Theorem 4.1.1, we

factor out a −1 for each adjacency and a −1 for each negative adjacency to get

= �V ��
k=0 �⇡∈SV

��� �
c∈Ĉ=k,⇡(G)

�
v∈c(V )

�(c(iv)) ⋅ �(c(jv))���x
k,

= �V ��
k=0 �⇡∈SV

��� �
c∈Ĉ=k,⇡(G)

(−1)oc(c)+nc(c)���x
k,

= �V ��
k=0
�
� �
c∈Ĉ=k(G)

(−1)oc(c)+nc(c)��xk.

2. The proof of part 2 mirrors the proof of part 2 in Theorem 4.1.1. Thus we

repeat the proof above with the inclusion of the sign of the permutation and

the last few steps now appear as

�D(AG, x) = �V ��
k=0 �⇡∈SV

(−1)ec(⇡) ��� �
c∈Ĉ=k,⇡(G)

(−1)oc(c)+nc(c)���x
k,

= �V ��
k=0
�
� �
c∈Ĉ=k(G)

(−1)ec(⇡)+oc(c)+nc(c)��xk,

= �V ��
k=0
�
� �
c∈Ĉ=k(G)

(−1)ec(c)+oc(c)+nc(c)��xk,

= �V ��
k=0
�
� �
c∈Ĉ=k(G)

(−1)pc(c)��xk

3. Part 3 is similar to part 1, but we use the incidence preserving map ! as used

in part 1 and 2 of Theorem 4.1.1 so the contributors we are summing over are

now elements of Ĉ≥k(G). Also, there are changes when we begin to factor out

the −1’s. Notice that xI − LG = xI −DG +AG, so the signs of the adjacencies
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are represented truthfully, while the signs of the backsteps are opposite. Thus,

we factor out a −1 for every backstep in the contributor to produce (−1)bs(c).
Next, as usual, we factor out a (-1) for every negative adjacency, producing

(−1)nc(c).
4. Part 4 simply di↵ers by (−1)ec(c) which comes from the sign of the permuta-

tion.

Example 6. To see the objects that Theorem 5.1.1 enumerates, consider G
2

from

figure 3. In figure 8 below, all of the contributors of the graph G
2

are shown.
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Figure 8: All of the contributors of G
2

.

29



Now, using the matrices in example 4 we calculate

�D(AG2 , x) = x4 − 5x2 − 4x.

By theorem 5.1.1, the coe�cient on xk is the signed count of sub-contributors

formed from the contributors with exactly k backsteps after k backsteps have been

removed, where the signing function is (−1)pc(c). The 1 in front of x4 is the set of

isolated vertices. There is a 0 in front of x3 because there are no contributors with

exactly 3 backsteps. The −5 in front of the x2 is represented by one representative

from each permutomorphic-grouping of contributors with exactly 2 backsteps. The

sign of each of these is (−1)1 = −1. The −4 in front of the x is a count of one rep-

resentative from each permutomorphic grouping of contributors with exactly 1 back-

step. The sign of each of these is (−1)1 = −1. Finally, the constant is 0 because of

the 4 contributors that have no backsteps, there are two of sign −1 and two of sign 1

so they add up to 0.

This process can be repeated for the characteristic polynomial

�D(LG2 , x) = x4 − 10x3 − 32x2 − 34x.

5.2 Alternative Proof of Sachs’ Theorem

Recall that Sachs’ Theorem enumerates the coe�cients for the determinant-based

characteristic polynomial of the adjacency matrix for a directed multigraph. Theo-

rem 5.1.1 part 2 can therefore be used to prove Sachs’ Theorem.

Corollary 5.2.1. Sachs’ Theorem is equivalent to Theorem 5.1.1 part 2 if G is a

multigraph and oriented circles are combined.
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Proof. We have

�D(AG, x) = �V ��
k=0
�
� �
c∈Ĉ=k(G)

(−1)pc(c)��xk.

Since G is not a signed graph, all circles are positive, so we can replace

(−1)pc(c) with (−1)tc(c). Now since we are only summing over contributors in

C=k(G), there are no backsteps, so every circle is an elementary figure. Thus we

have (−1)tc(c) = (−1)number of elementary figures in c. Finally, since the circles in basic fig-

ures are unoriented, there are two contributors corresponding to each basic figure.

Thus

�D(AG, x) = n�
i=0
��
U∈Ui

(−1)p(U)(2)c(U)�xi
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6. THE ALL MINORS MATRIX TREE THEOREM

The All Minors Matrix Tree Theorem in [2] enumerates the minors of the Laplacian

Matrix of a directed graph after deleting equal sized sets of rows and columns. In

this section, we provide an alternative statement of this theorem that extends to

oriented hypergraphs. In order to do this, we use similar proof methods to those in

Theorem 4.1.1 and Theorem 5.1.1. Below is the statement of Chaiken’s Theorem

without the exact sum provided. See [2] for further explanation of this version of

the All Minors Matrix Tree Theorem.

Theorem 6.0.1 (The All Minors Matrix Tree Theorem [2]). The determinant of

the matrix that results from deleting sets of k rows W and columns U from the

Laplacian matrix of a digraph G is equal to the number of forests that have:

1. k trees,

2. Each of the trees contains exactly one vertex in each U and W ,

3. Each arc is directed away from the vertex in U of the tree containing the arc.

6.1 The All Minors Matrix Tree Theorem for Oriented Hypergraphs

Before we can state a version of this theorem for oriented hypergraphs, we need to

introduce another set of sub-contributors Ĉ(U,W ) as follows. Given U,W ⊆ V with

�U � = �V �,

Ĉ(U,W ) = �c ∶�
v∈ ¯U
�→
P

1

→ G � c(tv) = v,{c(hv) � v ∈ (Ū)} = W̄� .

This is the set of contributors formed by the incidence preserving maps from

�Ū � disjoint unions of paths of length 1 to the oriented hypergraph G such that the

tails of these paths are mapped to the vertices in Ū and the heads are mapped to
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the vertices in W̄ . Then let

Ĉ⇡�Ū→W̄
(U,W ) = �c ∶�

v∈ ¯U
�→
P

1

→ G � c(tv) = v, c(hv) = ⇡� ¯U→ ¯W (v)� .

We say that two contributors are sub-permutomorphic if they are associated

to the same bijection ⇡�
¯U→ ¯W . Let on(c) be the number of odd nontrivial compo-

nents in the contributor c and let nn(c) be the number of negative nontrivial com-

ponents in the contributor c where a trivial component of a contributor is a compo-

nent that does not contain an adjacency (namely a backstep).

Theorem 6.1.1. Let G be an oriented hypergraph with Laplacian matrix LG. Given

U,W ⊆ V with �U � = �V �, let [LG]UW be the minor of LG formed by deleting the rows

corresponding to the vertices in U and deleting the columns corresponding to the

vertices in W . Then we have,

perm([LG]UW ) = �
c∈Ĉ(U,W )

(−1)on(c)+nn(c).

Proof. Define:

SV � ¯U→ ¯W = {⇡� ¯U→ ¯W � ⇡ ∈ SV }
Now we see that the bijections in the set SV � ¯U→ ¯W are not full permutations,

but represent the permutations of the minors if the rows and columns were rela-

beled after deleting the rows corresponding to the vertices in U and the columns

corresponing to the vertices in W . However, we will not relabel the rows and

columns and will instead just call these functions bijections from Ū to W̄ . Thus

we get,

perm([LG]UW ) = �
⇡�Ū→W̄ ∈SV �Ū→W̄

�
v∈ ¯U
�
!

−sgn(!(�→P
1

)).
Where the sum is over all incidence preserving maps ! such that !(t) = v
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and !(h) = ⇡�
¯U→ ¯W (v). Collecting the permutomorphic contributors, we get

perm([LG]UW ) = �
⇡�Ū→W̄ ∈SV �Ū→W̄

�
c∈Ĉ⇡�Ū→W̄

(U,W )
�
v∈ ¯U

�(c(iv))�(c(jv)).

As before, we factor out a (−1) for every adjacency and then factor out a

(−1) for every negative adjacency. It is clear that this is equivalent to a net factor

of (−1)on(c)+nn(c).

perm([LG]UW ) = �
⇡�Ū→W̄ ∈SV �Ū→W̄

�
c∈Ĉ⇡�Ū→W̄

(U,W )
(−1)on(c)+nn(c).

perm([LG]UW ) = �
c∈Ĉ(U,W )

(−1)on(c)+nn(c)

Theorem 6.1.2 (The All Minors Matrix Tree Theorem for Oriented Hypergraphs).

Let G be an oriented hypergraph with Laplacian matrix LG. Given U,W ⊆ V with

�U � = �V �, let [LG]UW be the minor of LG formed by deleting the rows corresponding

to the vertices in U and deleting the columns corresponding to the vertices in W .

Then we have,

det([LG]UW ) = �
c∈Ĉ(U,W )

✏(⇡�
¯U→ ¯W )(−1)on(c)+nn(c).

Where ✏(⇡�
¯U→ ¯W ) = (−1)n(⇡�Ū→W̄ ), and n(⇡�

¯U→ ¯W ) is the number of inversions

in ⇡�
¯U→ ¯W .
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