DESIGN AND OPTIMIZATION OF DATA ACQUISITION SYSTEM USING

WIRELESS UNDERGROUND SENSOR NETWORKS

by

Raghu Krishnappa, M.Tech

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment
of the requirements for the degree of
Master of Science
with a Major in Engineering
December 2017

Committee Members:
Semih Aslan
Harold Stern
Karl Stephan
George Koutitas

Bahram Asiabanpour

COPYRIGHT

by

Raghu Krishnappa

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work, I, Raghu Krishnappa, authorize duplication of this

work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

To my family,

for their endless love and support

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisor Dr. Semih Aslan for
giving me the opportunity to work with him, and for his guidance, support, and
encouragement during my entire MS program. | am grateful to him for his trust,
patience, and constructive criticisms, which helped me improve the quality of my
research. Dr. Aslan not only trained me to be a good student, but he has also taught

me in many other ways that could lead me to success in my future career.

| wish to express my gratitude to all the faculty members of the Ingram School
of Engineering at Texas State University for their excellent advice, constructive
criticism, and helpful and critical reviews throughout my MS program. A special
thank, goes to Harold Stern, Karl Stephan, Bahram Asiabanpour, and George Koutitas,
who kindly agreed to serve in my thesis defense committee. Their valuable comments
and enlightening suggestions have helped me to achieve a stable research path towards
this thesis.

I would also like to thank all my friends for creating a wonderful family-like
atmosphere and giving me a warm memory during my MS student life. Finally, 1 would
like to express my sincere gratitude to my parents, for their patience, continuous
support and encouragement throughout this thesis. Special thanks to my friend
Mahima Sajan Varghese for her constant support and valuable suggestions throughout

my research.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt v
LIST OF TABLES. ...t e viil
LIST OF FIGURES ...ttt ettt IX
LIST OF ABBREVIATIONSo xii
ABSTRACT e Xiii
CHAPTER
1. INTRODUCTION ..ottt et snee s 1
1.1, BACKGIOUNG.....c.viiiiiiiiitiiiieeee et 1
1.2. EM Wave Based WUSNS in Soil Medium..........cccooviininininiiiiieicee, 5
1.3. Research Objectives and SOIULIONS...........ccccuviriiiiieiee e, 6
1.4, TheSIS OULIINE.......ocuiiiiiieeee e 7
2. LITERATURE REVIEW ..ottt 8
2.1. Previous Work Related t0 WUSN ... 8
2.2. Frequency Band SeleCtionccooveiiiiiiieie e 9
2.3, ANENNA DESION ..ot 10
3. PROPOSED SYSTEM ...ttt 12
3.1, SubSUrface SUDSYSIEMccuiiiieiiiciee e 14
3.2, SUIMACE SYSEIM ...ttt 16
3.3 SBINISOIS ittt 17
3.4. Analog to Digital CONVEITEcccueiiiiiiiiieee e 18
3.5, RASPDEITY Pl oot 20
3.6, HACK RF ONE ... 20
3.7. Power Usage and Batterycccocivereiiieieeriesieeseesiesie e esie e seesae e sneas 22

Vi

4. DESIGN AND DEVELOPMENT OF WIRELESS UNDERGROUND SENSOR
NETWORK FOR PIPELINE MONITORING........coooiiiiiieee e 25
4.1, GNU RAIO ..o 26
4.2, Modulation SChEME ..ot 27
4.3. Antenna Design Parameters..........coceviiiieiininieiieieeeeesee e 30
4.4, ANtenNa fOr 450 MHZ.........cccooiiiiece s 34
4.5. ANtenna for 900 MHZ.........cccooiiiiii s 35
4.6. Channel MO ..o 38
4.7. Demodulation SChEME..........cccciiiiiiiei e 41
4.8. Data Display USINg HTMLoooviiiiiiic e 41
5. EXPERIMENT RESULTSo 43
9.1, SENSOI DALA.....ccviiiiiiiieiiiie i 43
5.2, GNU Radio Programcccoiiiiiiieiie et 44
5.3. Transmitted and Received Signal AnalysiS.........ccccceeveiieveiiieiiccecieenn, 48
5.4, HTML AISPIAY ..ottt 58
6. CONCLUSION ...ttt be e e 59
APPENDIIX .ottt ae e 60
REFERENQ E ... oottt ettt sbe e ree e 101

vii

LIST OF TABLES

TABLE PAGE
Table I: Raspberry Pi power CONSUMPLION..........ccoviiiiiieiiciie e 24
Table 11: Radiating field of different antennas.............cccoceevevieve v, 33
Table 11: Antenna design SPECIfiCAtiONSccccveviiiieii e 33
Table 1V: 450MHz receiver antenna specifications............cccoovevviie i, 34
Table V: 450MHz transmitter antenna Specificationscccccvvvevveviciciicce e, 35
Table VI: 900MHz receiver antenna SPecifiCations............c.covverererincneneseseeeeen, 36
Table VII: 900MHz transmitter antenna SPecifications...........ccocevvreieicneniscee, 37
Table VIII: Data transmisSion @analYSIS........ccccviiiiiiirininisiseeeee e 56

viii

LIST OF FIGURES

FIGURE PAGE
Figure 1: Block diagram of Wireless Underground Sensor Network............c.ccccoveuen. 3
Figure 2: Experimental Setup of proposed SYSteMcccevvveveiiieiiiiie e 13
Figure 3: Subsurface system block diagramcccooeviiiiiic i 15
Figure 4: Soil, Clay and sand arrangement in CONtaiNer..........c.cccevevvieseeriesieeseeriene 15
Figure 5: Subsurface experimental SELUPc.coevveiiiiieiieese e 16
Figure 6: SUrface SUDSYSTEMooviiiiiiiiiiee e 17
Figure 7: Raspberry Pi 3 to MCP 3008 wiring diagramccccceoererenenennnieennenns 18
Figure 8: Analog to Digital Converter (ADC) MCP 3008 pin details............ccccevenee. 19
Figure 9: Hack RF One hardware (SDR)........cccooeiiririiiiinieeeese e 21
Figure 10: Power usage measuremMent SETUDoceruererirerieieiesie e 24
Figure 11: Signal processing and Data AcquiSition SYStemMcccoocvveverininneninennn, 25
Figure 12: Software Defined Radio (SDR) block diagram............ccceeevveviniiinnicnnnnnn, 26
Figure 13: GNU Radio COMPONENTSeiiiiiiiiieie ettt 27
Figure 14: QPSK MOUUIALONc..oviiiiiiiiiiiiiieiee s 29
Figure 15: Constellation diagram of QPSK ..o 29
Figure 16: Radiation pattern of iSOtropiC antenna...........ccceeveveieerecie s 31
Figure 17: Radiation pattern of directional antennaccoccevveviinnienc s 31

Figure 18: Radiation patterns of antennas in the proposed system.............ccccccevvernenne. 32

Figure 19: Radiation pattern of 900-MHz parabolic antenna...........cccccccoevveieiienen, 37
Figure 20: Radiation pattern of 900MHz ceiling mount antenna............c..ccccccevvennne. 38
Figure 21: Path loss with respect to diStanCecccveveveeiecie i 40
Figure 22: QPSK demOdUIAtOr...........ccviieiieieiie e 41
Figure 23: HTML display of Sensor data...........c.cccuevveiieiieiiiie e 42
Figure 24: Raw sensor data read by a terminal python program.ccccccceevvenenne. 43
Figure 25: Raw sensor data saved in .CSV fOrmat...........cocoovvrivieiinenciesesceeeeeees 44
Figure 26: GNU Radio program for modulation and transmissionccccceceevenee. 46
Figure 27: GNU Radio program at reception and demodulation...............c.cccceeevenennn. 47
Figure 28: FFT plot of transmitted signal at 450MHz...........cccccoreiiiiiieiiiiee, 48
Figure 29: Spectrum analyser output of received signal at 450MHz..............ccccevnee. 49
Figure 30: Constellation plot of transmitted signal at 450 MHzccocooviiienen, 50
Figure 31: Constellation plot of received signal at 450 MHz.............ccccooiiiiiiiienn, 50
Figure 32: Waterfall diagram of transmitted signal at 450MHz..............ccccoovvivennnnn. 51
Figure 33: Waterfall diagram of received signal at 450MHzcccociiiiiiininnnn, 51
Figure 34: Waterfall diagram of transmitted signal at 900MHz...............ccccooviinnnnn, 52
Figure 35: Waterfall diagram of received signal at 900MHzcccceviiiniiiinnn 52
Figure 36: Signal scope of transmitted signal @ 900 MHz...........ccccooeiieiiiiniienenn 53

Figure 37: Signal scope of received signal at 900 MHZc.ccccoocvvieieeie e 53

Figure 38: Signal scope of received Signalccovvveiieiiiie s 54
Figure 39: Experimental testbed for calculating data rate and SNR..............cccccoeneeee. 55
Figure 40: Displaying the received data in HTML pagecccovveveeieieevie e 58

Xi

LIST OF ABBREVIATIONS

Abbreviation

Description

ADC Analog to Digital Converter

ASK Amplitude Shift Keying

DAQ Data Acquisition System

EM Electro-Magnetic

FSK Frequency Shift Keying

HMTL Hypertext Markup Language

PSK Phase Shift Modulation

QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RF Radio Frequency

SDR Software Defined Radio

SPI Serial Peripheral Interface

TTE Through-The-Earth

WSN Wireless Sensor Network

WUSN Wireless Underground Sensor Network

Xii

ABSTRACT

The growth of Wireless Underground Sensor Networks (WUSN) will lead to
numerous emerging applications, such as underground pipelines, oil reservoir
monitoring, intelligent agriculture, earthquake and landslide forecasting, border patrol,
underground mine disaster prevention, and rescue. Underground environments prevent
the use of most current wireless communication and networking systems, due to its
extremely high attenuation to the propogation of signals, small communication range,
and high dynamics of electromagnetic (EM) waves when penetrating through soil, rock,
sand, water, crude oil medium and other underground environments. The objective of
this research is to address these unique and significant challenges for the realization of
wireless sensor networks in underground data monitoring systems. Research also
focuses on developing a general framework using underground wireless sensor

networks to provide continuous monitoring of pipeline to detect water leakage.

xiii

1. INTRODUCTION

1.1.Background

The application of Wireless Sensor Network (WSN) for remote data acquisition and
monitoring is not limited to terrestrial applications. WSN technology can be extended
underground where applications include agriculture, security, and infrastructure
monitoring. Wireless Underground Sensor Networks (WUSN) has the most favorable
applications in the recent development of Wireless Network Sensor technology. WUSN is
a special WSN that concentrate on burying the Data Acquisition System(DAQ) along with
sensors in the subsurface of the soil at depths that can range from few a meters to hundreds
of meters from the top surface of soil usually targeting agriculture, structural health
monitoring, border patrol, sports field maintenance, environment monitoring, and
improving the performance of various distribution infrastructures to reduce the waste of
resources [1-10].

The main difference between WSNs and WUSNSs is the communication channel.
The difference between wave propagation of Electromagnetic(EM) waves in air and soil is
so significant that the empherical model of the wireless channel in soil has only been
available in recent years. Despite its advantages, many problems exist that makes it difficult
to build a WUSN system. The challenge is the realization of reliable and efficient
underground wireless communication between the buried system and surface Data
Acquisition System (DAQ). Many factors such as temperature, soil moisture, weather, soil

composition, and homogeneity impact the communication and connectivity. In addition to

these factors, the operating frequency of the electromagnetic (EM) wave and the burial
depth have a substantial effect on the communication.

In this research, a detailed analysis of WUSNs was done, and a robust model that
can operate at high frequencies was developed, which can perform better than the existing
models that operate at low operating frequency. The block diagram of the system is shown
in Figure 1. The sensors along with the signal processing unit and the antenna were buried
at a distance of 2-6 meters from the soil surface. The measurement system includes
parameters like temperature, humidity, soil sensor output, and moisture content. The
measurements were then processed and transmitted through the soil to the surface antenna.
This type of transmission is called “Through-The-Earth (TTE) communication.” The
measurements were stored and processed in the surface subsystem to make necessary
decisions. With each new generation of electronics, sensors have become smaller, less
expensive, lower power and more sophisticated, giving them the capability to produce
more and more data, which in turn allows more comprehensive assessment of an
ecosystem, more advanced warning of environmental threats, and more accurate (and
earlier) sensing of infrastructure problems. Buried sensors, however, have one common
problem —the difficulty of transmitting the sensed information to the surface. Typical radio
frequency data transmission systems (Bluetooth, WI-Fi, Cellular, etc.) do not work well
due to the difficulty of propagating Radio Frequency (RF), signal through the soil. A
system that could accurately and reliably transmit digital data from sensors buried 2 — 6
meters below ground to an above-ground receiver, at high speed and with low transmitter

power, would enable many new ecologically-based applications involving buried sensors.

"
1 1
1 r — 1
1 Dam&; stem 1
1 & 1
1 1
1 1
1 1
-

Surface DAQ Module

Y

Su rfac €@ 2 000000 e === -
Underground
2- 6 Meters

(e - - - l _____ -

1 1

1 1

]]

1 la—— Temperature 1

] Signal Processing a——Humidity]

1 Unit lt——Soil Sensor]

1 lt——L eak Detecton 1

1 1

] ? T 1

! Battery Buried Sensor Modu Ie_!
C PVC PIPE - FLOW (

Figure 1: Block diagram of Wireless Underground Sensor Network

Wireless Underground Sensor Networks (WUSNS) [11] are networks of wireless
sensor nodes operating below the earth surface. As an extension to the established wireless
sensor networks (WSNSs) [12], WUSNSs are used to provide real-time monitoring abilities
in two types of underground situations: tunnels and soil media. Constructed on the
monitored situations, the WUSNs can be further divided into two categories: the WUSNSs
in underground mines and tunnels and the WUSNSs in a soil medium. Related to current
underground monitoring strategies, WUSNSs provide benefits in ease of deployment and
data collection, timeliness of data, coverage density, concealment, and reliability [11] A
wide variety of novel and needed applications are empowered by WUSNSs [2, 8, 11]

including:

Border Patrol and Intruder Detection: Border patrol is vital for national safety. The
conventional border patrol methods suffer from rigorous human participation. WUSNSs
deployed alongside the border deliver a low cost, concealed, and reliable way to spot the

intruders crossing theborder.

Landslide and Earthquake Monitoring: Until now, landslides and earthquakes have been
difficult to be precisely forecast. WUSNSs deliver us a unique method to screen the signs of
landslide and earthquake in real time with minor organization and maintenance price tags.
As a result, the property loss and personal injury triggered by those unexpected tragedies
can be reduced.

Underground and Power Grid Monitoring: Pipelines constitute one of the most significant
methods to transport high volumes of liquid (e.g., water and oil) over elongated distances.
Yet, present leakage detection methods do not work well due to the harsh underground
environmental circumstances. Furthermore, in the existing underground power grid,
numerous errors, such as underground power grid fires triggered by overcapacity and cable
breakdown caused by careless tunneling, are hard to be localized, detected, avoided, and
fixed due to the unreachable environments. WUSNSs can deliver real-time monitoring to aid
the proprietors to avoid the possible faults and repair existing errors in those underground
configurations.

Smart Irrigation: With the real-time monitoring of the temperature, soil moisture, and
other soil properties, the WUSNSs can precisely define where and when to irrigate crops.
Assuming that the irrigation consumes more than 70% of fresh water all over the world

[13], the WUSNSs can significantly improve the water sustainability.

Mine Disaster Rescue and Prevention: Existing techniques don’t support localization and
communications after disasters in mines, notably when an RF wireless channel is jammed
due to tunnel breakdowns and wired communication is nonfunctional due to the
breakdown of wires. Since a WUSN will be able to work in close underground locations,
it can significantly improve present mine productivity and safety.

Despite the advantages of WUSNSs, the underground environment is an unfriendly
location for wireless communication and needs existing networking solutions, and
communication protocols for terrestrial WSNs to be reconsidered. Explicitly, the critical
difference between the WSNs and terrestrial WUSNSs is the communication channel. To
deploy WUSN:Ss in the underground, the propagation channel is no longer air but rock, soil,
metals, concrete, and water.

Even though the well-defined terrestrial signal propagation methods based on EM
waves may still work in the soil medium, the sole channel characteristicsof EM waves in
this environment need to be remodeled. For the WUSNSs installed in subway tunnels and
underground mines, the EM waves are appropriate for wireless signal transmission since
the radio signal propagates in air. However, the propagation properties of EM waves are
considerably different from the terrestrial wireless channels due to the limititations caused
by the ceilings and walls in mines and tunnels.
1.2.EM Wave Based WUSNSs in Soil Medium

In the underground environment, the well-defined wireless communication systems
using electromagnetic waves do not work as expected [4]. EM waves experience
considerable propagation loss due to the absorption of rock, soil, and water in the

underground environment. Underground systems have limited power due to energy

restrictions; the transmission range is minimal. In addition, the path loss of EM waves in
the underground environment is dependent on many soil properties such as water content,
soil textures (clay, silt, or sand), and density. The soil properties can alter with time due to
surface weather and location. The transmission range of the underground communication
systems also differs dramatically in different locations and times.

In the proposed system of WUSNSs in an underground environment, the underground
DAQ is expected to transmit sensed data to the surface subsystem. Hence, the connectivity
between buried subsurface system and the surface subsystem is essential for the system
functionalities. Due to the complex channel properties, the connectivity analysis in the
WUSNSs is more complicated than that of the surface wireless sensor networks. The number
of underground sensors is limited due to the high installation and maintenance cost.
However, a very high-density underground sensor, is essential to reserve the full
connectivity of WUSNSs due to harsh underground environment conditions.
1.3.Research Objectives and Solutions

The objective of the thesis is to investigate the distinctive characteristics of WUSNSs
in underground environments and to discover the keys to realize efficient and reliable
communication in WUSNSs. To evaluate WUSNS in the soil medium, we developed an
environment which imitates the soil transmission medium. To make it more realistic, a
Data Acquisition System (DAQ) along with transmitter was buried underground, and a
receiver and a laptop were used at the subsurface to read the sensor values and realize
underground water leakage detection and localization using WUSN. In this research, the
channel properties of EM waves in a soil environment are investigated specifically in the

400-900 MHz band which is better for the efficient communication compared to the 2.4

GHz or higher range. Antenna design and implementation of Quadrature Phase Shift
Keying (QPSK) in WUSN’s is an essential takeaway of this research.
1.4.Thesis Outline

This thesis is organized as follows. In Chapter 2, a detailed literature review based on
previous work related to WUSN is explained. In Chapter 3, the experimental setup and
hardware used in the subsurface subsystem and the surface subsystem is explained in detail.
In Chapter 4, detailed design and purpose of each device and software are explained. In
Chapter 5, results and analysis of results are explained. Finally, Chapter 6 summarizes the

overall research contributions and possible future research are mentioned.

2. LITERATURE REVIEW
2.1.Previous Work Related to WUSN

The concept of Wireless Underground Sensor Network’s was first presented in 2007
[4], after which many applications have been developed based on WUSNSs. In [4], the
WUSN is used to acquire critical data in underground tunnels to provide a safe
environmental conditions in mines. In [5], the WUSNSs are deployed during the fracturing
process in crude oil extraction, that measures many critical information about the
environment inside oil reservoirs. In [6, 7] the WUSNSs are utilized to detect leakage in the
pipeline where Magnetic Induction (MI) communications were used for communication.
But [6, 7] have no limitation on power consumption which is critical in WUSNSs. In a few
applications of WUSNSs, to charge the battery of buried sensor system, a moveable charging
vehicle with enhanced charging parameters is used [14]. However, several applications of
WUSNSs where the sensors buried in places that are remote environments, and vehicles may
not be able to reach close enough to charge the buried system’s battery. Environments like
in mines and oil reservoirs have tunnels which may not be suitable for the vehicles to move
around freely [6]. The buried module will become useless if it runs out of power from the
battery, so the research concentrates on lowering the power usage.

Most existing WUSNs work at low frequency and are narrowband [11], which may
result in reduced data rate throughput. Low-frequency transmission requires excessively
large antennas, which will make the deployment of buried subsystems difficult and more
expensive. To alleviate these drawbacks, working in high frequency is proposed. The high-
frequency WUSN implementation is difficult due to the impact of soil characterization on

losses in transmitting the signals and on radiating device parameters, especially antenna

design parameters. Soil humidity, moisture, and texture will have a significant impact on
the buried antenna performance. The burial depth will have an adverse effect on the
communication as well, and the operational frequency band is another critical parameter.
In [15], the effect of soil moisture on a high-frequency antenna is analyzed. The analysis
in [15] is carried out in a frequency band from 100MHz to 2 GHz. The results show that
increase in the soil moisture causes a shift of antenna bandwidth toward low frequencies.
Consequently, the buried sensor subsystem antenna may acquire a new operating
bandwidth [16]. The bandwidth shift increases with the increase of soil moisture, and it is
more critical in the case of soils with a high dielectric constant which is coherent with
respect to Deschamps’s expression [16]. Higher soil moisture increases the buried antenna
return loss. Since burying the sensor subsystem antenna permits it to shift its bandwidth
toward low frequencies, constructing small antennas with higher bandwidth low-ends are
suitable for underground sensors, which will permit their miniaturization and hence reduce
their cost and facilitate the WUSN deployment. In this proposed research, we used
relatively high operating frequencies (300MHz — 1GHz) with less power and the benefit of
keeping the antenna size relatively small.
2.2.Frequency Band Selection

Propagation in an underground setting, particularly for use with WUSN is
very challenging and has recently come into attention due to the modern developments in
RF technology and sensors. In this chapter, a summary of the current work in the field of
underground propagation in relation to wireless sensor networks is explained. Papers [5, 6]
deliver a comprehensive description of the underground channel which gives foundations

for successful communication in an underground environment. Mainly, the 300-900 MHz

frequency range, which is appropriate for a Data Acquisition Systems (DAQ) is considered.
The importance of the papers [5, 6] is communication of buried DAQ and the propagation
characteristics of electromagnetic waves in the underground environment are presented.
The paper concludes saying the communication depends on the operating frequency and
the soil properties. The simulations results have shown that in the 300-400 MHz frequency
band, communication can be advantageous due to limited propagation loss. In addition, it
is also shown that the channel properties depend on burial depth of the subsurface system.
For deeper deployments, a single path channel model is appropriate to characterize the
underground communication channel. In addition to analytical proof, a MATLAB
simulation work delivers results that prove that WUSN can function at 433MHz [7, 8]. It
is also shown that burial distance can be extended to 5.5-6 meters with more transmit
power of 30dBm. Paper [8] studies the performance of terrestrial commodity nodes is
studied. It is concluded that communication is possible between sensor nodes only at the
distance of 0.5 meters below the surface at an operating frequency of 2.4 GHz [8].
2.3.Antenna Design

The selection of a suitable antenna for WUSN system, is challenging problem. In
specific, the challenges are:
Variable requirements — Different devices might aid different communication purposes,
and may need antennas with differing features. For instance, devices set up within a few
centimeters from the surface may want special consideration due to the reflection of EM
radiation that will be experienced at the soil-air interface.
Size — Frequencies in the MHz or lower ranges will likely be necessary to achieve

propagation distances of a few meters. It is known that the lower the frequency used, the

10

larger the antenna must be to transmit and receive at that frequency efficiently as size is
indirectly proportional to size of antenna. At a frequency of 100 MHz for example, a
quarter-wavelength antenna would measure 750 mm. This is a challenge for WUSNSs as we
desire to keep sensor devices small.

Directionality — Future research must address whether an omnidirectional antenna or a
group of independent directional antennas is most appropriate for a WUSN device.
Communication with a single omnidirectional antenna will likely be challenging since
WUSN topologies can consist of devices at varying depths, and common omnidirectional
antennas experience nulls in their radiation patterns at each end. This implies that with a
vertically oriented antenna, communication with devices above and below would be
impaired. This issue may be solved by equipping a device with antennas oriented for both

horizontal and vertical communication.

11

3. PROPOSED SYSTEM

In this chapter, the arrangement and the hardware used in the proposed system is
explained in detail. The setup has two subsystems, a subsurface subsystem that is buried
underground at a distance of 1-2 meters from the soil surface and a surface subsystem that
is set up a few meters above the soil surface. Figure 3 describes the subsurface subsystem
that includes hardware like sensors, Analog to Digital Converter (ADC), Raspberry Pi,
Software Defined Radio (SDR), battery, and antenna. Figure 5 describes the surface
subsystem that includes hardware like antenna, SDR, and computer. The experimental set
up is shown in Figure 2. The transmitter was placed in the container that was buried
underground as shown in Figure 5, for the lab experiment purpose the system was kept

outside. A detailed explanation of the system is explained in next section.

12

Receiver Antenna

Transmitter
Antenna

“Surface System

Subsurface System

Figure 2: Experimental Setup of proposed system

13

3.1.Subsurface Subsystem

The subsurface system is buried alongside a water pipeline which ranges from 1-5 meters.
In this experimental setup, the subsurface subsystem is located at the bottom of the
container which was buried in the ground for ease of accessibility. The container was filled
with soil, sand and stones that imitates the underground environment. The block diagram
of the buried subsystem is shown in Figure 3. Sensors that can determine the water leakage
like temperature sensor, humidity sensor, and soil moisture sensor are connected to a 10-
bit Analog to Digital Converter (ADC). The ADC converts analog voltage values from
sensors that vary from 0-5V to digital format and transmits the data to a Raspberry Pi
microprocessor through an SPI serial interface. A Python based program logs the sensor
values and saves them in a .csv (comma-separated values) file format. An application called
GNU Radio which is a Software Defined Radio (SDR) software installed in the Raspberry
Pi will process the .csv file. The .csv file is then encoded, modulated and sent over SDR
hardware called “HackRF One” through a Universal Serial Bus (USB). HackRF One
transmits the modulated signal through a wireless channel using a low gain antenna. The
whole system is powered by a 20,000 mA battery pack. The detailed description and
working of all the components are explained later in this chapter. The container was filled
with sand- 30%, s0il-50%, clay-10%, stones- 5%, and garden soil- 5% as shown in Figure
4. The proposed subsurface subsystem was buried at the bottom of container and the

container was placed 3 feet below the earth surface as shown in Figure 5.

14

SENSORS

ADC - Analog to Digital convertor
SDR - Software Defined Radio

SPI - Serial Peripheral Interface bus
USB - Universal Serial Bus

Figure 3: Subsurface system block diagram

SUBSURFACE SYSTEM

DATA ACQUISITION
SPI SYSTEM

GNU RADIO
(SDR SOFTWARE)

PACKET ENCODER

{

MODULATION

usB

SAND

SUBSURFACE SUBSYSTEM

Figure 4: Soil, Clay and sand arrangement in container

15

ANTENNA

Figure 5: Subsurface experimental setup

3.2.Surface System

The surface subsystem is located a few meters above the ground level and directly
vertical to the subsurface subsystem. The block diagram of the surface system is shown in
Figure 6. The modulated signal sent by the subsurface subsystem is received at the surface
subsystem. The surface subsystem consists of a high gain antenna that captures the weak
signals sent by the low gain antenna through an underground channel. The signal captured
by the high gain antenna is fed to the SDR hardware which amplifies the signal and
transmits to a high-end computer through a USB. The received signal is then processed,
demodulated and decoded using GNU Radio. The decoded data is converted to a .csv file
and displayed on a Hypertext Markup Language (HTML) page. The data displayed on an
HTML page is used to predict the water leakage. The detailed description and working of

surface subsystem components are explained later in this chapter.

16

SURFACE SUBSYSTEM

LINUX OS
ANTENNA

GNU RADIO

HACK RF (SDR SOFTWARE)

ONE
(SDR)

PACKET DECODER

9

DEMODULATION

L

HTML PAGE
TO DISPLAY DATA

Figure 6: Surface subsystem
3.3.Sensors
Sensors that can detect the water leakage like temperature sensor, humidity sensor,
and moisture sensor are connected to an Analog to Digital Converter (ADC). Sensor
outputs vary from 0-5 volts based on the underground environment. Connection details are
shown in Figure 7 [17]. Based on the application requirement different analog sensors can
be connected to the ADC. The maximum numbers of sensors that can be connected to the

ADC is 8, and it can be increased to 16 by using a Chip Select (CS) pin in the ADC.

17

ST

DSI (DISPLAY)

HWN) 1)

>
€
o
o

ETHERNET

Figure 7: Raspberry Pi 3 to MCP 3008 wiring diagram
3.4.Analog to Digital Converter
The analog to digital converter (ADC) used in this experimental model is an MCP
3008 manufactured by Microchip. The wiring diagram for interfacing the ADC to the
Raspberry pi is shown in Figure 7. Serial Peripheral Interface (SPI) protocol is used to
transfer sensor data from the ADC to the Raspberry Pi. The pin details are shown in Figure

8[17].

18

The specifications are as follows:

10-bit resolution

On-chip sample and hold PI serial interface

8 input channels

Input voltage range: 2.7V - 5.5 Volts

500 pA max at 5V

5 nA standby current, 2 HA max.

75 ksps max. sampling rate at VDD = 2.7V

200 ksps max. sampling rate at VDD =5V

Analog inputs programmable as differential pairs

Industrial temp range: -40°C to +85°C

CHOO1 ~ 16
CH1 2 15
CH2O3 = 14
CH3 4 9 13
CH4O5 L 12
CH5 O § 11
CH6 7 10
CH7 8 9

] VDD

1 VREF
1 AGND

1 CLK

1 Doyt

1 Din

1 CS/SHDN

[1 DGND

Figure 8: Analog to Digital Converter (ADC) MCP 3008 pin details [17].

19

3.5.Raspberry Pi

The Raspberry Pi is a credit-card sized computer that plugs into a display and uses a
mouse and keyboard. It is a small computer that enables users to explore computing and
let people to program in languages like Scratch and Python. It has capability of doing many
things that a computer used to do, from browsing, programming, Internet of Things(loT)
applications and playing video, to making documents, and use in applications such as
WSN’s.
Raspberry Pi 3 specifications are as follows:

e SoC: BCM2837 — Broadcom

e CPU: 1.2 GHz - 4x ARM Cortex-A53

e GPU: VideoCore IV Broadcom

e RAM: 900MHz - 1GB LPDDR2

e Networking: 2.4GHz 802.11n wireless with 10/100 ethernet

e Bluetooth: Bluetooth 4.1

e Storage: microSD

e GPIO: 40-pin header

e Ports: 3.5mm analog audio, Camera Serial Interface (CSI), HDMI, 4x USB,

e Ethernet
3.6.Hack RF One

A software-defined radio (SDR) is a software based communication system where
mixers, filters, amplifiers, modulators/demodulators, detectors, and other components are
implemented by means of software using a computer or embedded system. A basic SDR

system consist of a computer equipped with a sound card, or another ADC, preceded by

20

https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Personal_computer

some RF front end. Many signal processing tasks are passed over to a processor, instead of
being done in dedicated hardware. Such a design yields a system that can transmit and
receive different radio protocols based only on the software. Hack RF one hardware is

shown in Figure 9[17].

Figure 9: Hack RF One hardware (SDR) [17]

HackRF One is the present hardware platform of HackRF. It is a SDR that is capable
of transmitting and receiving radio signals up to 6 GHz. It is designed to test and develop
next generation radio technologies. HackRF One is an open source hardware that can be
programmed for stand-alone operations or used as a USB peripheral. Specifications of the
HackRF One are as follows:

e Half duplex transceiver

e Operating frequency: 1 MHz to 6 GHz

e Sample rates: 2 Msps - 20 Msps

e Resolution: 8 bits

21

e Interface: high-speed USB

e USB bus powerered

e Software-controlled antenna port power (10 dBm)

e SMA female antenna connector with 50 ohms impedence

e SMA female for synchronization and clock input

e Pin headers for expansion

e Portable

e Open source
3.7.Power Usage and Battery

The subsurface subsystem is powered by a 20,000 mA battery pack. This is an
experimental set up where we change the radio parameters using a low powered general
purpose computer which consumes a few hundreds milliamp current to operate which is
one of the limitations of this research. In addition, the SDR connected to the computer also
consumes power but that power is not necessarily measured as it is powered by the
computer’s USB port. The experimental setup can be used as a base for many other
applications such as structural monitoring system where supplied power is limited. The
research provides a stable base to engender many underground application-specific
systems, as the communication system utilizes less power. In this research, we have
developed a platform that optimizes the power consumption using a low gain antenna and
the transmission protocol. A low power 0-dB-gain antenna saves much power, since the
antenna is one of the significant power consuming components in a WUSN system. For
this reason, it is proved that a low gain antenna can transmit a signal through the

unfavorable underground transmission channel.

22

It is also proved in the research that QPSK modulation can be used to transmit the
signals from subsurface systems to surface systems. The properties of QPSK are taken as
an advantage to utilize the power efficiently. The power usage of our experimental set up
is shown in Table I. Raspberry Pi operates at 5 Volts and an average of 250 milliamps.
Even with a general purpose computer, and a hardware SDR, the system is capable of
operating for a few days. The power calculation is given below:

P=V=xI
Where, P is power in watts, V is operating voltage, | is current consumed at that instance
in amps. A USB energy meter was used to calculate the power consumption, the setup is
shown in Figure 10. A conventional hardware radio that is built based on the design
parameters and methods specified in this research will use relatively less power as it won’t
be necessary to use a general purpose computer to drive the Software Defined Radio

(SDR).

23

Table I: Raspberry Pi power consumption

Raspberry Pi | Raspberry Pi State Currentin Power Consumption
Model amps
In watts
Model 3 B HDMI off, LEDs off 230 mA 1.15W
Model 3 B HDMI off, LEDs off, | 250 mA 1.25W

onboard Wi-Fi

USB ENERGY METER

Figure 10: Power usage measurement setup

24

4. DESIGN AND DEVELOPMENT OF WIRELESS UNDERGROUND SENSOR
NETWORK FOR PIPELINE MONITORING

The detailed explanation of design and development of system is explained in this
chapter. The overall system working is shown in Figure 11. A python based program in
Raspberry Pi will log the data and create a .csv file. Signal processing, encoding and
modulation is performed using GNU Radio software. GNU radio passes the modulated
signal to a SDR that converts digital data to EM waves and transmits through an antenna.
The transmitted signal is received at surface subsystem SDR through a high gain antenna
which is fed to a computer. GNU radio then demodulates and decodes the received signal
and generates a .csv file. The file is displayed in HTML page by executing a local python

based server. In this chapter, each block of Figure 11 is explained in detail.

.CSV File f . . ' HTML Display
(Sensor Data) Signal Processing and Data Transfer (Sensor Data)
Packet Encoder RASPBERRY Pl Packet Decoder
GNU RADIO
. QPSK
QPSK Modulation Demodulation
HackRF SDR HackRf SDR
Underground
Channel

Figure 11: Signal processing and Data Acquisition System

25

4.1.GNU Radio

The term “Software Defined Radio” (SDR) was presented by Joseph Mitola from
MITRE Corporation in 1991. The first paper on Software Defined Radio was published in
1992 at the IEEE National Telesystems Conference. The SDR has its origins in the defense
sector in the 70’s in both Europe and the U.S.[18]

Software Defined Radio (SDR) is a microprocessor based system where many signal
processing and operations are done in a software platform instead of in a hardware radio
(electronic circuits). In Software Defined Radio, the signal will be processed in software
platform instead of analog domain, unlike traditional radio. The sampling and digitization
work is processed by a device called the Analog to Digital Converter (ADC). Figure 12
shows the block diagram of a Software Defined Radio(SDR). Front end of GNU Radio will
convert the high frequency signal into low frequency signal or Intermediate Frequency
(IF).The digitized signal is fed to the baseband processor for processing, encoding,
modulating, demodulating, decoding, etc. In conventional radio hardware, most of the

processes are done in hardware instead of software.

RF Baseband
Front-End Processing

Figure 12: Software Defined Radio (SDR) block diagram
GNU Radio is a software toolkit that consists of a number of signal processing

blocks. The signal processing operations are coded in C++ where Python link the blocks

26

together. The Figure 13 represents the organization of GNU Radio and Universal Software
Radio Peripheral (USRP) SDR.

The USRP will digitize the data from the wireless channel and passes it to the GNU
Radio through the USB interface. GNU Radio will then process the received signal by
filtering and demodulating the signal then translating it to packets of data. GNU Radio

components are shown in Figure 13 [17]

E Python Flow Graph E
! (Created using the processing blocks) = !
s S |
: , AL (o1t LU- D A ,__—:7‘ m E
E GNU Radio Signal Processing Blocks (C++) z E
s S |
5 Generic RF Font End B
: 7
i -

Figure 13: GNU Radio components [17]

4.2.Modulation Scheme

There are various modulation schemes available, like Amplitude Shift Keying,
Frequency Shift Keying, and Phase Shift Keying. Each modulation scheme is explained
in brief:
Amplitude-shift keying (ASK) is a kind of amplitude modulation that indicates digital data
as differences in the amplitude of a carrier signal. In an ASK system, the representation of
binary symbol 1 is a fixed-amplitude carrier wave and a constant frequency for a duration
of T seconds. The signal amplitude attenuates when the transmission channel is not

favorable like in an underground environment. The attenuation makes the demodulation

27

process difficult, in fact the receiver may not be able to recover the signal at all. So this
method is not suitable for this research.

Frequency-shift keying (FSK) is a frequency modulation scheme where digital information
is transmitted by changing the frequency of a carrier signal. RF propogation in soil induces
high frequency noises. The frequency of the carrier signal may vary a lot due to the
characteristics of soil medium as a communication channel, for this reason it is not suitable
for WUSN application.

Phase-shift keying (PSK) is a digital phase modulation process which sends data by
changing the phase of a carrier signal. The signal is modulated by varying the cosine and
sine function at a known time. It is ideal for wireless Local Area Network (LAN), Radio-
Frequency ldentification (RFID), and Bluetooth communication. It is most suitable for
Wireless Underground Sensor Network, as the phase is not much affected by soil properties
compared to amplitude and frequency. QPSK (Quadrature Phase Shift Keying) is a type of
phase shift keying that sends two bits of digital information at a time. In this research, we
employed different modulation schemes and QPSK gave the best result and it was easy to
recover the data at the receiver which can be seen in next chapter. In the block diagram (
Figure 14) both in-phase (1) and a quadrature (Q) part are used to modulate the signal. The
block diagram and constellation diagram of QPSK modulation are shown in

Figure 14 and Figure 15 respectively.

28

Cos{w)
| haseband

I . 1
Y I

L

T

CszcillatorFc

QP Sk
} Modulated

-
30 S Output
Degree T
2 baseband {}@

~ sin(wst)

Figure 14: QPSK modulator

01 11
® ®
450
® ®
00 10

Figure 15: Constellation diagram of QPSK
In QPSK modulation, a stream of binary input message bits are produced. QPSK
modulated symbols contain 2 bits. The produced binary bits are combination of two bits as
shown Figure 15. The effective illustration of symbols in QPSK is
e 111+ (45 degrees)
o 01=-1+j (135 degrees)
e 00 =-1-j (225 degrees)

e 10=1-j (315 degrees)

29

4.3. Antenna Design Parameters

The antenna is one of the most essential components of a communication system.
Antenna parameters like frequency, gain, radiation pattern, the power of the antenna, and
dimensions are to be considered during the design of any communication system. A
subsurface subsystem’s antenna has to be size constrained due to the availability of space
around 15 cm. The research was focused on transmitting data at high speed with low power
consumption. The proposed system was tested under two frequencies one at 450 MHz and
the other at 900 MHz operating frequency with different antennas.

The radiation pattern of the antenna is an essential factor to be considered during
the design of a communication system. An isotropic antenna is used in Wi-Fi due to the
lack of knowledge about the location of the receiver, radiation pattern is shown in Figure
16[19]. But a satellite communication system requires a directional antenna because the
transmitter antenna is well-known and all the energy is focused in one direction rather than
transmitting the energy in a circular or elliptical path, radiation pattern of directional

antenna is shown in Figure 17[19].

30

5.8 dBi Omni Azimuth Plane Pattern

240

Yagi Antenna Azimuth Plane Pattern

Phi=90

/\\“/\

180 -4
\ /// ,\ A / (68)

150 \./.\/ 30

Phi=270

120 60
92

5.8 dBi Omni Elevation Plane Pattern

0
90!00 10

Omni 3D Radiation Pattern

Figure 16: Radiation pattern of isotropic antenna [19]

270

~7300

120~_1_

90

/30

/ Phi=

270

Yagi Antenna Elevation Plane Pattern

Yagi Antenna 3D Radiation Pattern

Figure 17: Radiation pattern of directional antenna [19]

In this research, we know the location of transmitter, so the directional antenna is used

31

for the receiver. Even though we know the receive antenna’s location, we could not use a
directional antenna for the transmitter because of its size constraint. The radiating field of
directional antenna and isotropic antenna were considered and the radiation pattern of our
system is shown in Figure 18. We can observe that the advantage of directional antenna on
the left side of Figure 18, the EM waves are radiated directly towards the receiver. On the
right of Figure 18 it can be observed that the EM waves are radiated circularly because of
the dipole antenna property. Radiation field of different antennas were also considered and

it is mentioned in Table Il. By considering all the mentioned properties of antennas a low

gain dipole antenna was used for the subsurface subsystem and a high gain Yagi-Uda
antenna was used for the surface subsystem for a frequency of 450 MHz and a low gain
ceiling mount antenna was used for the subsurface subsystem and a high gain parabolic

antenna was used for the surface subsystem for a frequency of 900MHz.

[Surface Antenna — 27p° —‘_— mderground Antenna)
| 2if i
I
I
I Directional Dipole
Antenna Antenna
| sone
|
|
|
I
|
-

B il tmtd] i

Figure 18: Radiation patterns of antennas in the proposed system

32

Table 1I: Radiating field of different antennas

Antenna Near Field | Reactive Near Far Field
(Meters) Field (Meters) (Meters)

450 MHz Dipole Antenna | 0.04412904 0.06754673 >0.06754673

450 MHz Yagi-Uda 0.93677298 3.97024666 >3.97024666

Antenna

900 MHz Dipole Antenna | 0.06240789 0.13509346 >0.13509346

900 MHz Parabolic 1.41212929 8.64598138 > 8.64598138

Antenna

The antennas were selected based on the parameters shown in Table 11l

Table I11: Antenna design specifications

Parameters Underground Antenna Surface Antenna

Antenna Type Isotropic Antenna- Dipole | Directional Antenna — Yagi

uda / Parabolic Antenna

Gain 0 dBi 11.2/15Db
Antenna Length 150 mm ~1000 mm
Frequency 400MHz - 1GHz
Receiver Sensitivity -93dB

33

4.4. Antenna for 450 MHz

i. Receiver antenna for 450 MHz

An example of the directional antenna is a Yagi-Uda antenna which is relatively large

in size compared to an isotropic antenna. For a 450 MHz signal, we used a dipole antenna

and specifications are shown in Table IV.

Table 1V: 450MHz receiver antenna specifications

Type Yagi Uda
Frequency 450 to 470 MHz
Number of elements 8

Gain 11.2 dBi

VSWR <15

F/B ratio >16 dB
Vertical beam width 40°

Horizontal beam width 440

Polarization Vertical or Horizontal
Impedance 50Q

Max. input power 100 watts

Weight 1.7 Ibs (0.8 kg)
Length 42.2" (120 cm)
Connector N Jack-Female

Maximum mast mounting size

1.5"t0 1.9" (40 to 50 mm)

RoHS compliant

Yes

34

ii. Transmitter antenna for 450 MHz

At 450 MHz, a dipole antenna is used and specifications are mentioned in Table V.

Table V: 450MHz transmitter antenna specifications

Type Dipole
Frequency 450 to0 470 MHz
Gain 2.15 dBi
VSWR <2

Polarization Vertical
Impedance 50Q

Max. input power 50 watts
Weight 1.7 0z. (50 g)
Dimensions 8 inches (20.5 cm)
Connector SMA plug-male
RoHS compliant Yes

4.5. Antenna for 900 MHz

i. Receiver antenna for 900 MHz frequency

For a transmission frequency of 900 MHz, a parabolic antenna with high gain was used

and took advantage of its directionality and radiation pattern. The specifications are as

mentioned in Table VI and its radiation pattern is as shown in Figure 19 [17].

35

Table VI: 900MHz receiver antenna specifications

Type

Grid parabolic dish antenna

Frequency range

870-960mhz

Gain

15dbi

Polarization

Vertical or Horizontal

Horizontal Beam Width

21°

Vertical Beam Width 16°

VSWR <1.5

Front to back radio >26db

Input impedance 50 ohm

Input maximum power 200 W

Lightning protection DC Ground

Connector N female

Size 23.62 x 35.43inches
(600 x 900 mm)

Antenna material Aluminum alloy

Radiating electrical material Cu

Antenna structure Two piece design
Operating -40 to 85C
Temperature (-40to 185° F)

Diameter of installation pole

1.2-2.3in. (30-60mm)

Weight

7.7 Ibs. (3.5 kg)

36

900 900

150°

270° 270°

Figure 19: Radiation pattern of 900-MHz parabolic antenna [17]
ii. Transmitter antenna for 900 MHz frequency
For 900 MHz, a ceiling mount antenna was used. Its behavior and specifications are
mentioned in Table VII and its radiation pattern is shown in Figure 20 [17].

Table VII: 900MHz transmitter antenna specifications

Type Ceiling mount antenna
Frequency Range 698-960MHz

Gain 2.5 dBi

VSWR <15

Vertical beam width 115°

Horizontal beam width 360°

Nominal impedance 50 Ohm

Polarization Vertical

Maximum power 50 W

Connector type

N-Style Jack Connector with 12

Dimension

6.77x3.35"

Weight

0.88 Ibs

37

90° —
150° /-

1804,

-

270°
900 MHz E-Plane 900 MHz H-Plane

270°

Figure 20: Radiation pattern of 900MHz ceiling mount antenna [17]

4.6. Channel Model

The properties of signal propagation in soil need a standard derivation of the path loss
considering all the properties of soil like humidity, texture, and dielectric [6]. From the
Friis equation, which was derived for a free space the received signal power is

P.=P+G,+G:— Ly (1)
where P; is the transmit power, G, is gains of the receiver and G, gain of transmitter
transmitter antennas, L, is the path loss,

Lo = 32.4 + 20log(d) + 20log(f))

where d is the distance between stations, f is operating frequency.
The power of received signal in soil is expressed as

P.=P.+G,+ G, — L, 3)

L, = Lo + Lg, L isthe path loss due to the underground environment. The path loss, L is

based on two factors

38

Ly =Lg + Lg 4)
Lg is the attenuation because of difference of the . A of the signal in soil environment
Lg = 154 — 20log(f) + 20log(B), Lo = 8.69ad (5)
The path loss in free space is L, = 20log(4md/4,))and the path loss L,, of an EM wave

in soil is as given as:

L, = 6.4+ 20log(d) + 20log(pB) + 8.69ad (6)

Where d is the distance, o is the attenuation constant and p phase shifting

Using Peplinski’s principle [20], the dielectric properties of soil for a range of 0.3-1.3 GHz

is given by :
e=¢€ —je" (7)
e’ =1.15[1+ %(e;’") + mff’e}v‘;' —m,]"* —0.68 (8)
S
e" = [mglIEf"‘f,]l/a’ (9)

where € is the relative complex dielectric constant of the soil-water mixture, m,, is the
water volume fraction, p, is the bulk density, p; = 2.66g/cm? is the specific density of
the solid soil particles

a' = 0.65 is an empirically determined constant
B'and B"are empirically determined constants, and is given by

B’ =1.2748 — 0.519S — 0.152C (10)

ﬁli

1.33797 — 0.603S — 0.166C (11)

where S is the mass fractions of sand and C is the mass fractions of clay.. The e}w

and e}ivare the real part and imaginary part of the dielectric constant of water. The

39

propagation constant of the Electromagnet(EM) wave in soil is given by y = a + jf

¢ =w %[’1“%)2—1]
B pe’) 6”2)
B=w T[+(?) +1]

1200 T T T T

- 900MHz
i %
M0 450 MHz e

100 /i/ |

90 e .

80 - // * |

70 1

where,

(12)

(13)

i}
i}

Path Loss (dB)

60 | _~ .

50 | s -

0 7+ .

30(1‘{ 1 1 1 1 5 | | 1 1 |
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Distance(m)

Figure 21: Path loss with respect to distance
It can be seen that the path loss increases with increasing distance d, as expected.
Moreover, increasing operating frequency f, also increases path loss, which motivates the
need for lower frequencies for underground communication. From the Figure 21 [6], we
can conclude that communication is possible at frequency range of 450 to 900 MHz up to
three meters depth, as the path loss is less than 90dB and the receiver sensitivity is -90dB.
So we can conclude that the transmission is possible up to 3 meters without adding extra

power to the transmitter antenna.

40

4.7.Demodulation Scheme
The QPSK receiver employs threshold detectors that detect imaginary and real parts.

The block diagram of the QPSK receiver is shown in Figure 22.

LPF —>

| |
| |
| |
modulla1ed ' ={ :>::<:) ! » LPF >
signal | |
: A : I baseband
| | output
recovered S = |
carrier ! o |
| |
l L. |
l 90° |
I |
| |
| |
| l Q baseband
: : output
I |
| |
| |
| |
| |
| |

—

Figure 22: QPSK demodulator

In the demodulator, the received signal is multiplied by a reference frequency sin(wt)
and cos(ot). The multiplied output at each arm is then integrated. A threshold detector
decides on each integrated bit which is based on the threshold. Lastly, the bits on the
quadrature arm (i.e odd bits) and the in-phase arm (i.e even bits) are remapped to form the
detected information stream.
4.8.Data Display using HTML

A local python server is created in the surface subsystem, which in turn displays the
received data in Hypertext Markup Language (HTML). A screenshot of sensor data

displayed in HTML is shown in Figure 23. The values in the table are raw data from the

41

Analog to Digital Converter with time stamp, it can be calibrated according to application
and supply voltage to convert it into International System of units (SI Units). You can
observe that the data are logged every second. The sensor values are displayed in degree
Celsius, the humidity and moisture sensor are displayed as raw data. Other channels were

not connected to any Sensors.

Time Temperat Humidity moisture Sensor 2 Sensor 3 Sensor 4
06:17.8 22 E] 10 o o o
06:18.9 21 2 11 8] o o
06:19.9 22 2 10 [8) o]
06:20.7 22 E] 11 O (s} o]
06:21.7 21 3 10 [8) o o]
06:22.7 21.2 2 10 8] o o
06:22.7 21.2 2 10 [8) [}]
06:24.7 21.1 3 11 [8) o o]
06:25.7 21 3 10 [8) o o]
06:26.7 20.9 2 11 8] o o
06:27.7 20.8 E] 10 O o o
06:28.7 20.7 3 10 [8) o o]
06:29.7 20.6 E] 11 [8) o o]
06:20.7 20.5 2 10 8] o 8]
06:31.7 20.4 3 11 8] o o
06:32.7 20.3 3 11 o) o o]

Figure 23: HTML display of sensor data

42

5. EXPERIMENT RESULTS
5.1.Sensor Data
Sensor data read by the MPC 3008 is transfered to the Raspberry pi through SPI
communication. A screenshot of data acquisition at the Raspberry Pi using a final python
script is shown in Figure 24. You can observe that all 8 channel raw data are displayed, it

was calibrated to view in Sl unit on a HTML page.

Reading MCP3008 values, press Ctrl-C to quit...
I 0 | « S 2 | 3| | 5:1 6 | 7|

I 3 | e | o | o | o | e | o | o |
Water Leakage found
I 3 | 75 | o | o | o | o | o | o |
Water Leakage found
| . Q| 7a | 723] 0 | 0 | 0 | Qo | 0 |
Water Leakage found
| 3 75 | 723 | 4 | 0 | 0 | 0 0 |
Water Leakage found
| 3 | 75 | 723 | 4 | 4 | e | 0 | 0 |
Water Leakage found
| 3 | 5. 723 | 4 | 4 | 2 | 0 | 0 |
Water Leakage found
| 3 | 75 | 723 | 4 | 4 | vl | 1 | 0 |
Water Leakage found
| 3 75 | 723 | 4 | 4 | 2= s S | 0 |

Water Leakage found

Figure 24: Raw sensor data read by a terminal python program.

The raw data is compared with threshold values within the Python script to check
for any warnings or possibilities of water leakage, but this is just for observation and not
the final decision. The Python program then saves the raw sensor data into a .csv file along
with the time stamp. Figure 25 is a screenshot of .csv file generated with a sampling rate
of 1 second, sampling period can be varied as per requirements with a maximum sampling

rate of 200K samples per second. Temperature is displayed in degree Celsius, humidity

43

and moisture values are raw data, and this can be calibrated based on application specific

environment.

Time Temperat Humidity moisture | Sensor 2 | Sensor 3 | Sensor 4
06:17.8 22 3 10 o o o
06:18.9 21 3 11 o o o
06:19.9 22 3 10 o] o] o}
06:20.7 22 3 11 o] o] o}
06:21.7 21 3 10 o] o] [0}
06:22.7 21.3 3 10 0] o] (o}
06:23.7 21.2 3 10 (0] (o] (o}
06:24.7 21.1 3 11 0] (o] (8}
06:25.7 21 3 10 (8] (8] (8}
06:26.7 20.9 3 11 o] o] (o}
06:27.7 20.8 3 10 o] o] (o}
06:28.7 20.7 3 10 o] o] (o}
06:29.7 20.6 3 11 o] o] o
06:30.7 20.5 3 10 o o o
06:31.7 20.4 3 11 o o o
06:32.7 20.3 3 11 o] o] o

Figure 25: Raw sensor data saved in .csv format

5.2.GNU Radio Program

The .csv file generated by the python script is then processed in GNU Radio. The block
generated by GNU radio python script where the .csv file is encoded and then QPSK
modulated is shown in Figure 26. The flow graphs are coded in C++ programming
language where python links the blocks together as shown in Figure 26. In the flowgraph
the .csv file generated by the python script is encoded using 2 bits/symbol and 4 samples/
symbol. The encoded signal is then QPSK modulated and transmitted to HackRF one
module using Open Source Mobile Communication (OSMOCOM) sink at 450 MHz and
900 MHz operating frequency. The GNU Radio receiver top block is shown in Figure 27.
The received signal from the high gain antenna is fed to HackRF one module then
transferred to a computer through a USB. The received data from HACkRF One is

processed in GNU Radio where the signal is demodulated and decoded to generate a .csv

44

file. A GNU Radio program was developed to encode and modulate signal with an option
of varying parameters like Operating frequency, sampling frequency, Receiver/transmitter

gain, modulation schemes, amplitude, samples per symbol, bits per symbol etc,.

45

¥ 1T usistd HID
WE jwr ebawn

X5 ey |equiks

WG SN U e

wEs my

wpg ;baug xep

WE'7G Sy mpueg doa
0L

¥H

15 335 U3 ajsus)
C ey Jweld

_ WZ :3jey 3jdwes
X} J0|d uohe|@sucd ML
YU|S Uope|RIEuLY IND XM

1 :(ap) ujes ag s
¥ :(ap) ujes) i
PHE L LEFE R)

0 :{wdd) 210 ‘baig gy -..‘

WOst ({zH) Asuanbald :0ND
WE :(sds) ajey ajdwes
AU|S WaINUST

180|] HA3HIAULD

G ‘WnWpXe

7 Iwnwju

Z :anjep yneaqg

lequAS s3E :al
J2RIS IND XM

1°T°8'T uojysod MI9

Judy :aweudeps jag basy
F7°T ¥ unysod HID
ST +ed 144

715 13ms 144

g :{dzd) ajeas jay

0 [3A3] NI IY

047 :2fuey Jweuig

0 :baug pueqaseg

_ WE 31y Sydwes

X1 10id |[eHSEM SHUL
JUIS [[BH3IM IND XM

moys :afines moysg
ST i3jey Jaquiny

0 3AF] FMHHIY
0T (£330 |Bw|3ag
T oy

0OT :3njen xey
G- san|ea Ul

WZ :3ed Hdues
SR E3Un

10id JBLUNN UL
JUIS JQWNN IND XM

T°T'F T uDjysod HID

100|4 JI3HIAUDY)

75 LUnNWpep

[EITLTTETT

174 "u-___lﬂb u_l___ﬂ..—ﬂﬂ

i uelt gg il
RIS IND XM

SjUnoD :aq e Sy A
oy :apoy Jaba)
¥°1°5'Z uBysod BID
uQ :dned v

WZ 1379y Sjdweg

%] 10|d 3d03s YL
Nu|s 3935 IND XM

Uy Mueules 335 baiy
PTGy Uy sod IS
doyjel :mapuIm

CT :3ey ysayay

APZOT 4S5 Ldd

1004 aHAUDY
05 wnwpeey
0 wnwjuy
¥L -aniea ynejag
ued 4l

J2RIIS IND XM

1°T°E's uojysod pig

7 :dzd) e jay

0:lap) 12ra Jay

0T :sMa A

R OT Mg dad g

0 :baug pueqaseg

WZ ‘ajey sjdweg

x| 30id 144 UL
AUIS L4 IND XM

53), rapad Amn
WICE png s8I

¥ iloquis/sadueg
ASdbQ adAL
POl NSda

11T umused MID

100|4 JI3HIAUDY)

06 “LUnWpepy

[EITLTTETT

¥1 13| Bp neyag

xurel poia)
J2RIIS IND XM

0 y3Bua] pesied
=3}, 'dH¥SN 10 PRy

¥ lloquidgisadwes
Japaduz 3yed

D) 5333y
W edg
7 lequis/sig

1°T'C ‘I "UHHSd PID
120|] LAHIAUDD)
O ‘wnuwxepy
0 Swnwuy
OF :#n|BA Uneyag
el Y gl

J2RIS INT XM

sa), sjeaday
ASTET GO TOZH0sUS™ SH|d
Ines 2|4

T°T°6 ‘T UHUSTd B9

180|] LI AL

G Wnuwpoey

7 Inwu

¥ :anjep Yneyaqg

s|0quAs sdwes :q|
J2RIIS IND XM

T°T'F € UHUSOd BID
LTINS TERTTE LY
05 ‘wnuwpoey
0 Snwu
#1 :anjep yneyaq
uebgq :qi

J2RIIS IND XM

T°T°T T UHHSTd PO

180|] LIaH MDD

WOT Wwnupeep

0 Swmwuy

WOT :3mjep yneyaq

X yIpMpUEq Sl
J2RIIS IND XM

TT°L°T ‘uysod M9
1004 HaHIAUDY
WY ‘wnwpepy
0 SNy
WZ iamjep ynejag
e dwes :q|
J2BIS IND XM

T i 1D

I

1904 HapSAUDD
T ‘wnuwpeey
0 Swnwju
0 an) ef Jneag
ued 4 al

J2RIIS IND XM

T°T°T € UHUSOd B9

pLE T ESTERUTE Y

WOT ‘wnuwpeep

0 Swnwuly

0 :anjep yneyaq

X YIpMpUEq i
J2RIIS IND XM

T1°T'9 T ‘udusSd HID
1904 HapaAUD)
07 [unuwpxey
WOOT swnwiuly
WOSE 2| B Yneag
Awmw=nbad :ql

J2RIIS IND XM

IND XM suniydg Sjesauan
X301 do3 il
suopdo

Figure 26: GNU Radio program for modulation and transmission

46

1°7''T uoiused PUD

186 | tIFUIAUST

g AnWXe

7 Wmwpug

7 ranjes Yneyag

sjoquwAs sHdwes :q|
13PII5 IND XM

' ¢ '€ [uejused g
1804 (I3 BAUDY
05 Jwnupxey
0 swnuwu)
OF :anjes ynejag
uielfiTaq sq

J2RIS IND XM

1'7'7' [uojused P9

bR EATERUT. LY

WOT SWnwxep)

[Swnwjuy

WOT :2njeq Jnejaq

XyIpMpUEq 1)
JBp1IS IND XM

1'T'¢'T ‘uoiysed PUD

43RS IND XM

1804 (U BAUDY
9T Jwnuwixep

T swnugu)

T :aNjes Ynejag
loquids s3g al

T'T'%'T usysed MID
100|4 (I3 IAUSY
79 'wnuxey

T'T'Z'T usused FID
1804 I IAUGY
06 wnw|xXep]

T'T'E"T ;uoiysed PUD

1004 [IFIAUSY

¥ T T :ususcd PUD
weg :ywpy efawg

4006 sy [oquids

UG My ujee

wgps my

wgg basd xep

Wg'za YIpmpu eg dea
o1yl

i

Z15 :37]§ usqjeqaysucy
G ey el

WZ :31ey sydwes

XY 10id UOIE|[215Ua) S HL

HU|S UoNLRISEUCT IND XA

0 ‘wnuixep

[Aumwu) g {1 Swmwuy { mwpu)
039 20| ep Jnejaq ¥L -2njeA Jnelsg OF 20| eA Jnejaqg
xi uiefi qq :al xiueb poag x1 uiel i :qg
J2RIS IND XM J2RIS IND XM J2RI1S IND XM
4O mpuisg
=31, :apoy Amn

AUMIEAD 8|y puaddy

MO tp3iaynqun

ASYETRO-LTOZ PoAR™ alld
Au|S 2114

T- (FIeysay L

3P0 55333

J12p039g 193 ded

Wg'7g YIRmpueyg Bupwy

wg'zg NIpMpueg des aseyd

W79 YIpmpueg 114
LUQCE AN SS3Kg
 equ g sadwes
5400 rad L

powag Wsda

=

oY sweuses 195 oy
F'T°T ‘v uoised P9
61 318y Ldd

Z16 375 144

z :idzd) ayeas yay
WEELEL S EYETES

00T eBuey jweuiy

0 ka4 pueqaseg

WZ :3jey spdwes

X 300 (BRI UL
HUIS [|EHEMA IND XM

JUiS J2QunN IND XM

Moys, (abnen moys
c1 :3ey Jaquiny
WEELESIESTETETES]
(1 :sazed |ewj3ag
1 o338y

00T :anjep xey
00T~ 20| B Ul

WZ :a3ey sjdwes
SRS

10id JaqLUNY 4N L

SJunos jaqe spoy &
oy :apop 196611
£°1'5 ‘7 uoiNsod PUD
up :ajdna3 3y

WE 330y aduweg

Xy 1014 3de3s L
uls 2do35 INT XM

09 :{ap)uen g9

0f :lgrlujen 4
¥T:{arluien 4y
|EnuEj :3pop ujen
1O POy 23umeg by

HIpLWENY 9FeW 13540 240

0 :{wdd) 1105 ‘baug
Wost :{zH) Azuanbaly

QY
el]
el]
QY
QY
el]
el]
QY

Wz :{sds) ajey sjdwes

22IM05 WOXOUED

1*1 7€ uOINsSed FID
180|4 :3UIAUDY
1 wnwxep
0 Jwnwuy
@ :anjep ynejag
uieh u g

42115 1ND2 XM

T°T°T°E [us{Nsed P9

pLLTREELTETUT. LY

WOT Jwnuxepy

[RITL T

g :enjea ynejag

*J YIHMpuEg iq)
J2R11S IN3 XM

1797 :usysed pI9
1E0|4 M3 IAUSY
OF WUNWXe R
WOOT ‘wmwu)
WOSY 2N e JYnejaqg
Azanbay)

J2R1IS IND XM

T'1 ' ‘€ {UO{NsSod FlD
JRC|{ U IAUSY
05 Jwnuxe
R LTTTHTTM]
07 :an|ep, Ynejag
uieb y |

J2P1IS IND XM

SUOH HUBLIEA 135 Eu.._m

o1 318 Ysayay

715 1875 144

7 :idzd) ayeag gay

o :(ap) 1337 43y

0T :SMa A

P OT Mg aad)

¢ :baJ4 puegaseg

Wz :a1ey sjdwes

Xy 101d 144 L
YIS Ldd IND XM

T'T'L'T udysed MI9
1004 (I3 IAUSY
WO e

{ snwu)

WE ‘2n|eA Jnejag
e dwes :q|

J3PIIS IND XM

no XM suspdo RI3UY
Mg do il

suopdg

Figure 27: GNU Radio program at reception and demodulation
47

5.3. Transmitted and Received Signal Analysis

The spectrum of the transmitted signal at given frequency can be viewed using Fast
Fourier Transforms (FFT) plot of GNU Radio Figure 28. It can observed in FFT plot that
the signal components are transmitted from 449.6MHz to 450.4MHz .The average signal
power of transmitted signal is about -25dB. The bandwidth of the system is 800 KHz with
a center frequency of 450MHz. The spectrum analyzer was used to capture received signal

and is shown in Figure 29 with a bandwidth of 800 KHz and signal power about -45dB.

FFT Plot_Tx]

_']0 _______

_20 il et bbby

_30 _______

_40 _______

_50 _______

Power (dB)

_60 _____________

-10

-40

-90

-100 : *
449 4452 4494 4496 4498 450 4502 4504 4506 4508 451

Frequency (MHz)

Figure 28: FFT plot of transmitted signal at 450MHz

48

Ref 0.00 dBm

-40dB

-50dB

-60dB

it Wi

-100dB
Start 400.00 MHz Stop 500.00 MHz
Res BW 910 kHz VBW 910 kHz Sweep 1.000 ms (1001 pts)

Figure 29: Spectrum analyser output of received signal at 450MHz

The QPSK modulated signal fits in four quadrants of the constellation as seen in
Figure 30. As explained in the previous chapter, the message signals are represented in four
quadrants. In this experiment, 2 bits/symbols are used which in turn represents 4
samples/symbol. The modulated signal is then transmitted using an OSMOCOM sink,
which programs Hack RF SDR to send the modulated signal with the specified parameters.
A perfect constellation that are in phase with the transmitted signal with only few out of
phase was received at the surface subsystem that can be seen in, which is then demodulated

to regenerate the data that was transmitted.

49

Constellation Plot_tx

2 1
T
1 """" [: """ ': """ TT====== r=====-= [e
R
o OS[reeeoes - S Rt SRR T e
2 : !
£ of------ EEEEEEE —————— n —————— T —————— r------ oo
i-)
= : . .
o ! . .
05| ------r------ R ﬁ'— -----------------
' - : o
1f------ oo R Ammm-e- Tommm - Fommmm e
TR T T T
- ' . . ' .
-2 -1.5 -1 -0.5 o 0.5 1 1.5 2

Inphase

Figure 30: Constellation plot of transmitted signal at 450 MHz

Constellation Plot_Rx

z
15
1
05 ey
Y .
2
£ 0
5
o
-05 s
-
w 3
x
15
-2
-z -1.5 -1 -05 1] 0s 1 15 z
Inphase

Figure 31: Constellation plot of received signal at 450 MHz
The waterfall diagram of the transmitted signal at 450 MHz and 900MHz are shown
in Figure 32 and Figure 34, which has a bandwidth of 800 KHz. It can be seen that
frequency outside the bandwidth has relatively low power (below -100dB). It can be
observed that the transmitted signal has power of -25dB there by decreasing the power

consumption of transmitter that is buried underground. The waterfall diagram of the

50

received signal at 450MHz and 900 MHz are shown in Figure 33 and Figure 35. It can be
observed in received signals noises are of low power compared to the required message
signal.

Waterfall Plot_Tx

1048
16

-2d3
14

-15dB
12

-27de
10

-40de
P -52de
4 -65dB
2 -77dB
4]

-90dB
44 449.2 449 .4 449.6 445.8 45 450.2 450.4 450.6 450.8 45
Frequency (MH2)

Time (s)
]

Figure 32: Waterfall diagram of transmitted signal at 450MHz

Waterfall Plot RXx

-17¢8
-18ce
35 7__ : ;74 : Vf 14 - g ; REET
’ : -z0¢B
-22¢8
23¢n

-zadB

oS 2 oI SR ' -25¢8
0 = s = - S BN : 21eR
439 440.2 4394 4406 44938 450 4502 4504 4506 4508 451

Frequency (MHz)

Figure 33: Waterfall diagram of received signal at 450MHz

51

Waterfall Plot_Tx

10d8

16
-2d8

14
-15d8

12
-27d8

10
-40dB
6 -52dB
a4 -65d8
2 -77dB
0 -90d8

899 899.2 8994 899.6 8998 900 $00.2 9004 S00.6 95008 901
Frequency (MHz)

Time (s)
@

Figure 34: Waterfall diagram of transmitted signal at 900MHz

Waterfall Plot_Rx

-17dB

45
-18dB

4
35 -19d8
3 2068

25
-22dB

2
-23dB

15
-24dB

1
05 -25dB
0 -27dB

890 899.2 890.4 899.6 8998 900.2 000.4 900.6 900.8
Frequency (MHZ)

Time (s)

Figure 35: Waterfall diagram of received signal at 900MHz
The constellation diagram is for understanding the modulated signal. However, the
signal transmitted in real time is shown in Figure 36 , any change in phase represents
change in digital data. A 1 volt amplitude with quadrature phase shift modulated signal is
transmitted at 900MHz over an OSMOCOM source. The received signal is captured in

GNU radio and spectrum analyzer as shown in Figure 37 and Figure 38.

52

Counts
&

Scope Plok_Tx

2a0 31;}0
Thma {us)
Figure 36: Signal scope of transmitted signal a 900 MHz

cope Plot_Rx

T

]

Figure 37: Signal scope of received signal at 900 MHz

53

|

| : i A : i i |
-280ns -4.00ns 300 ns -200ns -L00 ns 40s 100 ns 200ns 300 ns 4400 ns 500 ns

Figure 38: Signal scope of received signal

A dummy file was transmitted continuously with known sequence with specified
frequency, bandwidth, and transmission gain. The modulation schemes used in analysis are
PSK, QPSK and 8-PSK with different burial depths. The main measurements that decide
the performance of communication systems like Signal to Noise Ratio(SNR), data rate was
calculated. The SNR was calculated by using Signal to Noise ratio estimator probe in GNU
Radio. It can be observed from Table VIII, that SNR decreases as the burrial depth
increases. SNR plays an important role in communication, as signal power should be
stronger than the noise power. The flow of experiment is as shown in Figure 39. To
calculate all the important parameters of communication like SNR, and Data rate, a dummy
file of known sequence was sent for a duration of 10 seconds from subsurface transmitter
and received at surface receiver and then checking the size of the received file. The
experiment was carried out at two frequencies 450 MHZ and 900 MHZ keeping the
bandwidth constant at 800MHz.The burial depth was varied from 0.5 meters to 1.5 meters
to understand the effect of burial distance as shown in Figure 39. All the experiment was
carried out for 5 iterations and an average of all are mentioned in Table 6. It can be observed

that the data rate increased as the modulation scheme was changed from PSK to QPSK and

54

It increased more when the modulation scheme was changed from QPSK to 8 PSK.
However, 8 PSK will have more error rate compared to QPSK. Comparing all the
parameters in Table VIII. QPSK at a operating frequency of 900 MHz was best suited for
WUSN as it yields a good data rate of 1.253 Mbps and SNR of 24.265. for the given

underground environment.

Modulat
Dummy File of Known odulate Transmitter
o PSK
Sequence Packet Encoder HackRF
(Send for 10 Seconds) © QPsK
o 8PSK
Underground Environment
) o Varied depth from 0.5, 1, 1.5 Meters
gl R ‘ o * 2.Bandwidth 800KHz
. 7 Signalto Noise Ratio e Operating Frequency 450MHz/
SNR Estimator Probe 900MHz

Demodulate

Dummy File of Known .
Sequence Packet Decoder ¢ PSK Receiver
d ¢ QPSK HackRF

(Receive for 10 Seconds) . 8PSK

Figure 39: Experimental testbed for calculating data rate and SNR

55

Table VIII: Data transmission analysis

Mod TX Rx C.freq BW Depth | Avg Avg | Avg Avg
scheme | gain | gain distin | SNR TX data data
meters time | received | rate per

in in 10 sec | sec

sec

6.45 0.645

BPSK 0dB | 30dB | 450MHz | 0.8MHz | 1.5 24534 | 10 Mbits Mbps
12.53 1.253

QPSK 0dB | 30dB | 450MHz | 0.8MHz | 1.5 24.265 | 10 Mbits Mbps
21.95 2.195

8 PSK 0dB | 30dB | 450MHz | 0.8MHz | 1.5 24452 | 10 Mbits Mbps
12.45 1.245

BPSK 0dB | 30dB | 900MHz | 0.8MHz | 1.5 24.534 | 10 Mbits Mbps
19.53 1.953

QPSK 0dB | 30dB | 900MHz | 0.8MHz | 1.5 24.265 | 10 Mbits Mbps
28.95 2.895

8 PSK 0dB | 30dB | 900MHz | 0.8MHz | 1.5 24.452 | 10 Mbits Mbps
6.59 0.659

BPSK 0dB | 30dB | 450MHz | 0.8MHz | 1 26.776 | 10 Mbits Mbps
11.96 1.196

QPSK 0dB | 30dB | 450MHz | 0.8MHz | 1 26.522 | 10 Mbits Mbps
19.94 1.994

8 PSK 0dB | 30dB | 450MHz 1 26.254 | 10 Mbits Mbps
13.35 1.335

BPSK 0dB | 30dB | 900MHz | 0.8MHz | 1 26.244 | 10 Mbits Mbps
19.86 1.986

QPSK 0dB | 30dB | 900MHz | 0.8MHz | 1 26.244 | 10 Mbits Mbps
29.56 2.956

8 PSK 0dB | 30dB | 900MHz | 0.8MHz | 1 26.344 | 10 Mbits Mbps
9.33 0.933

BPSK 0dB | 30dB | 450MHz | 0.8MHz | 0.5 27.853 | 10 Mbits Mbps
10.96 1.096

QPSK 0dB | 30dB | 450MHz | 0.8MHz | 0.5 27.742 | 10 Mbits Mbps
29.96 2.996

8 PSK 0dB | 30dB | 450MHz | 0.8MHz | 0.5 27.722 | 10 Mbits Mbps
13.86 1.386

BPSK 0dB | 30dB | 900MHz | 0.8MHz | 0.5 27.692 | 10 Mbits Mbps
25.01 2.501

QPSK 0dB | 30dB | 900MHz | 0.8MHz | 0.5 28.124 | 10 Mbits Mbps
31.45 3.145

8 PSK 0dB | 30dB | 900MHz | 0.8MHz | 0.5 27.985 | 10 Mbits Mbps

Note :

Mod Scheme — Modulation scheme

Tx gain — Transmitter gain

56

Rx — Receiver gain

C. freq —Center frequency

BW — Bandwidth

Depth dist in meters — Depth distance in meters

Avg SNR — Average Signal to Noise Ratio (SNR)

Avg Tx time in sec — Average Transmission time in seconds

Avg data received in 10 sec — Average dara rate in 10 seconds
Av(data rate per sec — Average data rate per second
Mbits — Mega bits

Mbps — Mega bits per second

57

5.4.HTML display

The .csv file generated by GNU Radio is then displayed in an HTML page as shown
in Figure 40. A local python server was used to display the csv file generated by GNU

Radio is then displayed in an HTML page as shown in Figure 40.

slalaslolalalalala|alalslalasl=]=
g slal=leslel=laslel=sasl=l=l=l=l=]|=
o
—
S —
=
o
i
~-—— = I - [- I I — - I
o -
- —
s |
7 []
=
E—= _
=g £ <X
BHE =
e
L= £ m
SHER =
= = = =] = = — —
= =] = =] =] = = = =
w
=
(7]
=
=
=
c = Bl Bl Bl Gl Bl G Bl e B Bl Bl e R e B
=
N
—_
a oz
=)
= R
= =
= |5
=
= T
=
==
B
kL
— | = || = £ - ['el] = = = = =
z Leall— = = -~ = B B B L B B B
o5
= =
8 B = n
- 2 =2 = =]
= — W % -<
| L & & | ZE =
=
S EEE =3 &
w = =
s|ls & £ = = oo |l fe = [] (= | = [~ -
gl E=E Bl E =l=|=|=5lsl= 8|2 =5 l== 822 5]
.C\ng:?ﬁ_%g Ble|ls|=2|m|=|E|=|=|=|=]=|E]=]=|=

Figure 40: Displaying the received data in HTML page

58

6. CONCLUSION
A study about the impact of operating frequency, modulation scheme, and signal power
with respect to burial depth, soil characteristics, and antenna design of buried underground
wireless sensor network is investigated. Characterization of wireless sensor network for
detection of water leakage in underground pipes was carried out. The subsurface subsystem
was buried, and the system was able to communicate with the surface subsystem. The
surface subsystem was able to log and process the sensor data. An innovative test-bed was
designed and built to test the capability of the system to establish communication and
transmit the sensor data under lossy environment. The measured data was transmitted
wirelessly to the surface system on a real-time basis for monitoring and further analysis.
The system was capable of working under a subsurface environments and communicate
with the surface module at a frequency range of 450MHz to 900MHz. The results show
WUSN’s ability to communicate successfully and detect water leakages in the pipeline

which was be buried 2 meters from the earth’s surface.

Future work of the research is to replace the Software Defined Radio with a
conventional hardware radio. By doing this a lot of power can be saved which can be used
to operate the subsurface system for a longer duration. Generating power by installing
transducers that can use underground sources like temperature, vibration, flow, etc. can
increase the life of the subsurface subsystem and could be implemented. An alternative to
electromagnetic (EM) propagation can be used like Magnetic-Induction (MI) to increase

the operating frequency.

59

APPENDIX

APPENDIX A

GNU Radio QPSK transmitter code — top_block.py

#!/usr/bin/env python2
—-*- coding: utf-8 —-*-
FHAHH A AR F AR AR H AR
GNU Radio Python Flow Graph
Title: Top Block
Generated: Wed Oct 18 17:49:55 2017
FHAH A A AR AR A H A AR R A
if name == ' main_ ':
import ctypes
import sys
if sys.platform.startswith('linux"'):
try:
x11 = ctypes.cdll.LoadLibrary('libX1ll.s0")
x11.XInitThreads ()
except:
print "Warning: failed to XInitThreads ()"
from gnuradio import blocks
from gnuradio import digital
from gnuradio import eng notation
from gnuradio import gr
from gnuradio import wxgui
from gnuradio.eng option import eng option
from gnuradio.fft import window
from gnuradio.filter import firdes
from gnuradio.wxgui import constsink gl
from gnuradio.wxgui import fftsink2
from gnuradio.wxgui import forms
from gnuradio.wxgui import scopesink2

from grc gnuradio import blksZ as grc blks2

60

from grc gnuradio import wxgui as grc wxguil

from optparse import OptionParser

import osmosdr

import time

import wx

class top block(grc wxgui.top block gui):

def init (self):

grc_wxgui.top block gui. init (self, title="Top Block")
_icon path =

"/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
self.SetIcon(wx.Icon(icon path, wx.BITMAP TYPE ANY))
SRR i
Variables
FHEHHE A H AR

self.samp rate = samp rate = 2e6
self.rf gain rx = rf gain rx = 14
self.no constellation = no constellation = 4

self.lowFerg = lowFerqg = 140e6
self.if gain rx = if gain rx = 40
self.bb gain rx = bb gain rx = 40
self.bandwidth rx = bandwidth rx = 10e6
self.Frequency = Frequency = 450e6
FHHHHHH A A H AR AR AR R A
Blocks
FHAHHH AR AR AR A H A A AR AR AR ARSI
samp rate sizer = wx.BoxSizer (wx.VERTICAL)
self. samp rate text box = forms.text box(
parent=self.GetWin (),
sizer= samp rate sizer,
value=self.samp rate,
callback=self.set samp rate,
label="'samp rate',
converter=forms.float converter(),

proportion=0,

61

)

self. samp rate slider = forms.slider (
parent=self.GetWin (),
sizer= samp rate sizer,
value=self.samp rate,
callback=self.set samp rate,
minimum=0,
maximum=40eo0,
num_ steps=100,
style=wx.SL VERTICAL,
cast=float,
proportion=1,

)

self.GridAdd(samp rate sizer, 1, 3, 1, 1)

_rf gain rx sizer = wx.BoxSizer (wx.VERTICAL)

self. rf gain rx text box = forms.text box(
parent=self.GetWin (),
sizer= rf gain rx sizer,
value=self.rf gain rx,
callback=self.set rf gain rx,
label='rf gain rx',
converter=forms.float converter(),
proportion=0,

)

self. rf gain rx slider = forms.slider (
parent=self.GetWin (),
sizer= rf gain rx sizer,
value=self.rf gain rx,
callback=self.set rf gain rx,
minimum=0,
maximum=50,
num steps=51,
style=wx.SL VERTICAL,

cast=float,

62

proportion=1,
)
self.GridAdd(rf gain rx sizer, 1, 8, 1, 1)
~no_constellation sizer = wx.BoxSizer (wx.VERTICAL)
self. no constellation text box = forms.text box(
parent=self.GetWin (),
sizer= no constellation sizer,
value=self.no constellation,
callback=self.set no constellation,
label="no constellation',
converter=forms.float converter(),
proportion=0,
)
self. no constellation slider = forms.slider (
parent=self.GetWin (),
sizer= no constellation sizer,
value=self.no constellation,
callback=self.set no constellation,
minimum=2,
maximum=12,
num steps=12,
style=wx.SL VERTICAL,
cast=float,
proportion=1,
)
self.GridAdd(no constellation sizer, 1, 2, 1, 1)
_if gain rx sizer = wx.BoxSizer (wx.VERTICAL)
self. if gain rx text box = forms.text box(
parent=self.GetWin (),
sizer= if gain rx sizer,
value=self.if gain rx,
callback=self.set if gain rx,
label='if gain rx',

converter=forms.float converter(),

63

)

proportion=0,

self. if gain rx slider = forms.slider (

)

parent=self.GetWin (),
sizer= if gain rx sizer,
value=self.if gain rx,
callback=self.set if gain rx,
minimum=0,

maximum=40,

num steps=5,

style=wx.SL VERTICAL,
cast=float,

proportion=1,

self.GridAdd(if gain rx sizer, 1, 5, 1, 1)

_bb gain rx sizer = wx.BoxSizer (wx.VERTICAL)

self. bb gain rx text box = forms.text box(

)

parent=self.GetWin (),

sizer= bb gain rx sizer,
value=self.bb gain rx,
callback=self.set bb gain rx,
label="bb gain rx',
converter=forms.float converter(),

proportion=0,

self. bb gain rx slider = forms.slider (

parent=self.GetWin (),

sizer= bb gain rx sizer,
value=self.bb gain rx,
callback=self.set bb gain rx,
minimum=0,

maximum=62,

num_ steps=31,

style=wx.SL VERTICAL,

64

cast=float,
proportion=1,
)
self.GridAdd(bb gain rx sizer, 1, 6, 1, 1)
_bandwidth rx sizer = wx.BoxSizer (wx.VERTICAL)
self. bandwidth rx text box = forms.text box(
parent=self.GetWin (),
sizer= bandwidth rx sizer,
value=self.bandwidth rx,
callback=self.set bandwidth rx,
label='bandwidth rx',
converter=forms.float converter(),
proportion=0,
)
self. bandwidth rx slider = forms.slider (
parent=self.GetWin (),
sizer= bandwidth rx sizer,
value=self.bandwidth rx,
callback=self.set bandwidth rx,
minimum=0,
maximum=10e6,
num steps=1000,
style=wx.SL HORIZONTAL,
cast=float,
proportion=1,
)
self.GridAdd (bandwidth rx sizer, 1, 7, 1, 1)
_Frequency sizer = wx.BoxSizer (wx.VERTICAL)
self. Frequency text box = forms.text box(
parent=self.GetWin (),
sizer= Frequency sizer,
value=self.Frequency,
callback=self.set Frequency,

label="'Frequency',

65

converter=forms.float converter(),
proportion=0,
)
self. Frequency slider = forms.slider(
parent=self.GetWin (),
sizer= Frequency sizer,
value=self.Frequency,
callback=self.set Frequency,
minimum=100e6,
maximum=2e9,
num steps=1000,
style=wx.SL VERTICAL,
cast=float,
proportion=1,
)
self.GridAdd (Frequency sizer, 1, 4, 1, 1)
self.wxgui scopesink2 0 = scopesink2.scope sink c(
self.GetWin (),
title="Scope Plot",
sample rate=samp rate,
v_scale=0,
v _offset=0,
t scale=0,
ac_couple=False,
xy mode=False,
num_ inputs=1,
trig mode=wxgui.TRIG MODE AUTO,
y_axis label="Counts",
)
self.Add(self.wxgui scopesink2 0O.win)
self.wxgui fftsink2 0 = fftsink2.fft sink c(
self.GetWin (),
baseband freg=0,
y per div=10,

66

y _divs=10,
ref level=0,
ref scale=2.0,
sample rate=samp rate,
fft size=1024,
fft rate=15,
average=False,
avg_ alpha=None,
title="FFT Plot",
peak hold=False,
win=window.blackmanharris,
)
self.Add(self.wxgui fftsink2 0.win)
self.wxgui constellationsink2 0 0 =
constsink gl.const sink c(
self.GetWin (),
title="Constellation Plot rx",
sample rate=samp rate,
frame rate=5,
const size=2048/4,
M=4,
theta=0,
loop bw=6.28/100.0,
fmax=0.06,
mu=0.5,
gain mu=0.005,
symbol rate=samp rate/4.,
omega 1limit=0.005,
)
self.GridAdd (self.wxgui constellationsink2 0 O.win, 2, 1,

self.osmosdr source 0 = osmosdr.source(args="numchan=" +

Str(l) + n n + mn)

self.osmosdr source O.set sample rate (samp rate)

67

self.osmosdr source 0O.set center freqg(Frequency, 0)
self.osmosdr source O.set freq corr (0, 0)
self.osmosdr source O.set dc offset mode (0, 0)
self.osmosdr source O.set iqg balance mode (0, 0)
self.osmosdr source 0O.set gain mode (False, 0)
self.osmosdr source O.set gain(rf gain rx, O0)
self.osmosdr source O.set if gain(if gain rx, 0)
self.osmosdr source O.set bb gain(bb gain rx, 0)
self.osmosdr source 0O.set antenna("", 0)
self.osmosdr source 0.set bandwidth (bandwidth rx, 0)
_lowFerqg sizer = wx.BoxSizer (wx.VERTICAL)
self. lowFerq text box = forms.text box(

parent=self.GetWin (),

sizer= lowFerq sizer,

value=self.lowFerq,

callback=self.set lowFerq,

label="lowFerq',

converter=forms.float converter(),

proportion=0,
)
self. lowFerq slider = forms.slider (

parent=self.GetWin (),

sizer= lowFerq sizer,

value=self.lowFerq,

callback=self.set lowFerq,

minimum=0,

maximum=1e9,

num_ steps=1000,

style=wx.SL VERTICAL,

cast=float,

proportion=1,
)
self.GridAdd(lowFerq sizer, 1, 1, 1, 1)
self.digital psk demod 0 = digital.psk.psk demod(

68

constellation points=no constellation,
differential=True,
samples per symbol=4,
excess bw=0.35,
phase bw=6.28/100.0,
timing bw=6.28/100.0,
mod code="gray",
verbose=False,
log=False,
)
self.blocks file sink 0 =
blocks.file sink(gr.sizeof char*l,
"/home/raghu/Desktop/Server Sensor/received 0926.csv", False)
self.blocks file sink O.set unbuffered(True)
self.blks2 packet decoder 0 =
grc_blks2.packet demod b(grc blks2.packet decoder (
access_code="",
threshold=-1,
callback=lambda ok, payload:
self.blks2 packet decoder O.recv pkt(ok, payload),
),
)
G

Connections

FHAHHH AR H AR A H A A AR AR AR AR A

self.connect ((self.blks2 packet decoder 0, 0),
(self.blocks file sink 0, 0))

self.connect ((self.digital psk demod 0, 0),
(self.blks2 packet decoder 0, 0))

self.connect ((self.osmosdr source 0, 0),
(self.digital psk demod 0, 0))

self.connect ((self.osmosdr source 0, 0),

(self.wxgui constellationsink2 0 0, 0))

69

self.connect ((self.osmosdr source 0, 0),
(self.wxgui fftsink2 0, 0))
self.connect((self.osmosdr source 0, 0),
(self.wxgui scopesink2 0, 0))
def get samp rate(self):
return self.samp rate
def set samp rate(self, samp rate):
self.samp rate = samp rate
self. samp rate slider.set value (self.samp rate)
self. samp rate text box.set value(self.samp rate)

self.osmosdr source 0O.set sample rate(self.samp rate)

self.wxgui constellationsink2 0 O.set sample rate(self.samp_ rate)

self.wxgui fftsink2 O.set sample rate(self.samp rate)
self.wxgui scopesink2 O.set sample rate(self.samp rate)

def get rf gain rx(self):
return self.rf gain rx

def set rf gain rx(self, rf gain rx):
self.rf gain rx = rf gain rx
self. rf gain rx slider.set value(self.rf gain rx)
self. rf gain rx text box.set value(self.rf gain rx)
self.osmosdr source O.set gain(self.rf gain rx, 0)

def get no constellation (self):
return self.no constellation

def set no constellation(self, no constellation):

self.no constellation = no constellation

self. no constellation slider.set value(self.no constellation)

self. no constellation text box.set value(self.no constellation)
def get lowFerqg(self):
return self.lowFerqg
def set lowFerqg(self, lowFerq):

self.lowFerg = lowFerqg

70

def

def

def

def

def

def

def

def

self. lowFerq slider.set value (self.lowFerq)

self. lowFerq text box.set value(self.lowFerq)

get if gain rx(self):

return self.if gain rx

set if gain rx(self, if gain rx):

self.if gain rx = if gain rx

self. if gain rx slider.set value(self.if gain rx)
self. if gain rx text box.set value(self.if gain rx)
self.osmosdr source O.set if gain(self.if gain rx, 0)
get bb gain rx(self):

return self.bb gain rx

set bb gain rx(self, bb gain rx):

self.bb gain rx = bb gain rx

self. bb gain rx slider.set value(self.bb gain rx)
self. bb gain rx text box.set value(self.bb gain rx)
self.osmosdr source 0O.set bb gain(self.bb gain rx, 0)
get bandwidth rx(self):

return self.bandwidth rx

set bandwidth rx(self, bandwidth rx):
self.bandwidth rx = bandwidth rx

self. bandwidth rx slider.set value(self.bandwidth rx)
self. bandwidth rx text box.set value (self.bandwidth rx)
self.osmosdr source 0O.set bandwidth(self.bandwidth rx, O0)
get Frequency (self):

return self.Frequency

set Frequency(self, Frequency):

self.Frequency = Frequency

self. Frequency slider.set value (self.Frequency)

self. Frequency text box.set value(self.Frequency)

self.osmosdr source 0O.set center freqg(self.Frequency, O0)

def main (top block cls=top block, options=None):

tb

top block cls ()

tb.Start (True)

th.Wait ()

71

if name ==

main ()

main

72

APPENDIX B

GNU Radio QPSK receiver code — top_block.py

#!/usr/bin/env python2
—-*- coding: utf-8 —-*-
FHAHF A AR H AR A AR F AR F AR
GNU Radio Python Flow Graph
Title: Top Block
Generated: Sun Oct 22 00:34:55 2017
FHAH A AR A AR A H A AR R A
if name == ' main_ ':
import ctypes
import sys
if sys.platform.startswith('linux'):
try:
x11 = ctypes.cdll.LoadLibrary('libX1l1l.s0"')
x11.XInitThreads ()
except:

print "Warning: failed to XInitThreads ()"

from gnuradio import blocks

from gnuradio import digital

from gnuradio import eng notation

from gnuradio import gr

from gnuradio import wxgui

from gnuradio.eng option import eng option
from gnuradio.fft import window

from gnuradio.filter import firdes

from gnuradio.wxgui import constsink gl
from gnuradio.wxgui import fftsink2
from gnuradio.wxgui import forms

from gnuradio.wxgui import numbersink2

from gnuradio.wxgui import scopesink2

73

from gnuradio.wxgui import waterfallsink?2
from grc gnuradio import blks2 as grc blks2
from grc gnuradio import wxguili as grc wxguil
from optparse import OptionParser

import osmosdr

import time

import wx

class top block(grc wxgui.top block gui):

def init (self):
grc_wxgui.top block gui. init (self, title="Top Block")
_lcon path =
"/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
self.SetIcon(wx.Icon(icon path, wx.BITMAP TYPE ANY))

FHEFAF AR AR AA AR AAAAF RIS RS
Variables

R AR A AR AR RAAAAFRF RIS FAH
self.samp rate = samp rate = 2e6

self.rf gain rx = rf gain rx = 14

self.rf gain = rf gain = 0

30

self.if gain rx = if gain rx
self.if gain = if gain = 20
self.bb gain rx = bb gain rx = 45
self.bb gain = bb gain = 30

0
10e6

self.bandwidth tx = bandwidth tx

self.bandwidth rx = bandwidth rx

self.Samples Symbols = Samples Symbols = 4
self.Frequency = Frequency = 450e6
self.Bits Symbol = Bits Symbol = 2

igaddssadssdsiaaddiasddsaasdiaasdsaadiasadaaaataaddisi

74

Blocks
FHAH A A A H AR A
samp rate sizer = wx.BoxSizer (wx.VERTICAL)
self. samp rate text box = forms.text box(
parent=self.GetWin (),
sizer= samp rate sizer,
value=self.samp rate,
callback=self.set samp rate,
label="'samp rate',
converter=forms.float converter(),
proportion=0,
)
self. samp rate slider = forms.slider (
parent=self.GetWin (),
sizer= samp rate sizer,
value=self.samp rate,
callback=self.set samp rate,
minimum=0,
maximum=40eo0,
num steps=100,
style=wx.SL VERTICAL,
cast=float,
proportion=1,
)
self.GridAdd(samp rate sizer, 1, 7, 1, 1)
_rf gain rx sizer = wx.BoxSizer (wx.VERTICAL)
self. rf gain rx text box = forms.text box(
parent=self.GetWin (),
sizer= rf gain rx sizer,
value=self.rf gain rx,
callback=self.set rf gain rx,
label='rf gain rx',
converter=forms.float converter(),

proportion=0,

75

)

self. rf gain rx slider = forms.slider (
parent=self.GetWin (),
sizer= rf gain rx sizer,
value=self.rf gain rx,
callback=self.set rf gain rx,
minimum=0,
maximum=50,
num steps=51,
style=wx.SL VERTICAL,
cast=float,
proportion=1,

)

self.GridAdd(rf gain rx sizer, 1, 2, 1, 1)

_1f gain rx sizer = wx.BoxSizer (wx.VERTICAL)

self. if gain rx text box = forms.text box(
parent=self.GetWin (),
sizer= if gain rx sizer,
value=self.if gain rx,
callback=self.set if gain rx,
label='if gain rx',
converter=forms.float converter(),
proportion=0,

)

self. if gain rx slider = forms.slider (
parent=self.GetWin (),
sizer= if gain rx sizer,
value=self.if gain rx,
callback=self.set if gain rx,
minimum=0,
maximum=70,
num steps=5,
style=wx.SL VERTICAL,

cast=float,

76

proportion=1,
)
self.GridAdd(if gain rx sizer, 1, 3, 1, 1)
_bb gain rx sizer = wx.BoxSizer (wx.VERTICAL)
self. bb gain rx text box = forms.text box(
parent=self.GetWin (),
sizer= bb gain rx sizer,
value=self.bb gain rx,
callback=self.set bb gain rx,
label="'bb gain rx',
converter=forms.float converter(),
proportion=0,
)
self. bb gain rx slider = forms.slider (
parent=self.GetWin (),
sizer= bb gain rx sizer,
value=self.bb gain rx,
callback=self.set bb gain rx,
minimum=0,
maximum=62,
num steps=31,
style=wx.SL VERTICAL,
cast=float,
proportion=1,
)
self.GridAdd(bb gain rx sizer, 1, 4, 1, 1)
_Samples Symbols sizer = wx.BoxSizer (wx.VERTICAL)
self. Samples Symbols text box = forms.text box(
parent=self.GetWin (),
sizer= Samples Symbols sizer,
value=self.Samples Symbols,
callback=self.set Samples Symbols,
label="'Samples Symbols',

converter=forms.float converter(),

77

)

proportion=0,

self. Samples Symbols slider = forms.slider (

)

parent=self.GetWin (),

sizer= Samples Symbols sizer,
value=self.Samples Symbols,
callback=self.set Samples Symbols,
minimum=2,

maximum=16,

num steps=12,

style=wx.SL VERTICAL,

cast=float,

proportion=1,

self.GridAdd(Samples Symbols sizer, 1, 5, 1,

_Frequency sizer = wx.BoxSizer (wx.VERTICAL)

self. Frequency text box = forms.text box(

)

parent=self.GetWin (),

sizer= Frequency sizer,
value=self.Frequency,
callback=self.set Frequency,
label="'Frequency',
converter=forms.float converter(),

proportion=0,

self. Frequency slider = forms.slider (

parent=self.GetWin (),

sizer= Frequency sizer,
value=self.Frequency,
callback=self.set Frequency,
minimum=100e6,

maximum=2e9,

num steps=1000,

style=wx.SL VERTICAL,

78

cast=float,

proportion=1,
)
self.GridAdd (Frequency sizer, 1, 6, 1, 1)
self.wxgui waterfallsink Tx =

waterfallsink2.waterfall sink c(

self.GetWin (),

baseband freg=Frequency,

dynamic_ range=100,

ref level=0,

ref scale=2.0,

sample_rate=samp_rate,

fft size=512,

fft rate=15,

average=False,

avg_ alpha=None,

title="Waterfall Plot Rx",
)
self.GridAdd (self.wxgui waterfallsink Tx.win, 2, 1, 1,
self.wxgui scopesink2 0 = scopesink2.scope sink c(

self.GetWin (),

title="Scope Plot Rx",

sample rate=samp rate,

v_scale=0,

v_offset=0,

t scale=0,

ac_couple=True,

xy mode=False,

num_ inputs=1,

trig mode=wxgui.TRIG MODE AUTO,

y_axis label="Counts",
)
self.GridAdd (self.wxgui scopesink2 O.win, 4, 1, 1, 4)

self.wxgui numbersink2 1 = numbersink2.number sink c(

79

self.GetWin (),
unit="Units",
minval=-100,
maxval=100,
factor=1.0,
decimal places=10,
ref level=0,
sample rate=samp rate,
number rate=15,
average=False,
avg alpha=None,
label="Number Plot",
peak hold=False,
show gauge=True,

)

self.Add (self.wxguili numbersink2 1.win)

self.wxgui fftsink2 0 0 = fftsink2.fft sink c(

self.GetWin (),

baseband freg=Frequency,

y_per div=10,

y _divs=10,

ref level=0,

ref scale=2.0,

sample rate=samp rate,

fft size=512,

fft rate=15,

average=False,

avg_ alpha=None,

title="FFT Plot Rx",

peak hold=False,
)
self.GridAdd (self.wxgui fftsink2 0 O.win,
self.wxgui constellationsink2 0 =

constsink gl.const sink c(

80

4,

self.GetWin (),
title="Constellation Plot Rx",
sample rate=samp rate,
frame rate=5,
const size=2048/4,
M=4,
theta=0,
loop bw=6.28/100.0,
fmax=0.06,
mu=0.5,
gain mu=0.005,
symbol rate=samp rate/4.,
omega 1limit=0.005,

)

self.GridAdd (self.wxgui constellationsink2 0O.win,

_rf gain sizer = wx.BoxSizer (wx.VERTICAL)

self. rf gain text box = forms.text box(
parent=self.GetWin (),
sizer= rf gain sizer,
value=self.rf gain,
callback=self.set rf gain,
label='rf gain',
converter=forms.float converter(),
proportion=0,

)

self. rf gain slider = forms.slider (
parent=self.GetWin (),
sizer= rf gain sizer,
value=self.rf gain,
callback=self.set rf gain,
minimum=0,
maximum=14,

num_steps=1,

81

2,

style=wx. SL_VERTICZ—\L,
cast=float,

proportion=1,

self.GridAdd(rf gain sizer, 3, 2, 1, 1)
self.osmosdr source 2 = osmosdr.source(args="numchan=" +
str(l) + "™ " + "")
self.osmosdr source 2.set sample rate (samp_ rate)
self.osmosdr source 2.set center freqg(Frequency, 0)
self.osmosdr source 2.set freq corr (0, 0)
self.osmosdr source 2.set dc offset mode (2, 0)
self.osmosdr source 2.set iqg balance mode (0, 0)
self.osmosdr_ source 2.set gain mode (False, 0)
self.osmosdr source 2.set gain(rf gain rx, O0)
self.osmosdr source 2.set if gain(if gain rx, O0)
self.osmosdr source 2.set bb gain(bb gain rx, 0)
self.osmosdr source 2.set antenna("", 0)

self.osmosdr source 2.set bandwidth (0, 0)

_if gain sizer = wx.BoxSizer (wx.VERTICAL)

self. if gain text box = forms.text box(
parent=self.GetWin (),
sizer= if gain sizer,
value=self.if gain,
callback=self.set if gain,
label='if gain’,
converter=forms.float converter(),
proportion=0,

)

self. if gain slider = forms.slider (
parent=self.GetWin (),
sizer= if gain sizer,
value=self.if gain,

callback=self.set if gain,

82

minimum=0,
maximum=50,
num steps=51,
style=wx.SL VERTICAL,
cast=float,
proportion=1,
)
self.GridAdd(if gain sizer, 3, 3, 1, 1)
self.digital dxpsk demod 0 = digital.dgpsk demod (
samples per symbol=Samples Symbols,
excess bw=0.35,
freq bw=6.28/100.0,
phase bw=6.28/100.0,
timing bw=6.28/100.0,
mod code="gray",
verbose=False,
log=False
)
self.blocks file sink 1 =
blocks.file sink(gr.sizeof char*1l, "/home/raghu/Desktop/sensor
data/received 2017-10-13.csv", False)
self.blocks file sink 1l.set unbuffered(False)
self.blks2 packet decoder 1 =
grc_blks2.packet demod b (grc blks2.packet decoder (
access_code="",
threshold=-1,
callback=lambda ok, payload:
self.blks2 packet decoder 1l.recv_pkt (ok, payload),
)

_bb gain sizer = wx.BoxSizer (wx.VERTICAL)
self. bb gain text box = forms.text box(
parent=self.GetWin (),

sizer= bb gain sizer,

83

value=self.bb gain,
callback=self.set bb gain,
label="'bb gain’,
converter=forms.float converter(),
proportion=0,

)

self. bb gain slider = forms.slider (
parent=self.GetWin (),
sizer= bb gain sizer,
value=self.bb gain,
callback=self.set bb gain,
minimum=0,
maximum=50,
num_ steps=51,
style=wx.SL VERTICAL,
cast=float,
proportion=1,

)

self.GridAdd(bb gain sizer, 3, 4, 1, 1)

_bandwidth tx sizer = wx.BoxSizer (wx.VERTICAL)

self. bandwidth tx text box = forms.text box(
parent=self.GetWin (),
sizer= bandwidth tx sizer,
value=self.bandwidth tx,
callback=self.set bandwidth tx,
label="'bandwidth tx',
converter=forms.float converter(),
proportion=0,

)

self. bandwidth tx slider = forms.slider (
parent=self.GetWin (),
sizer= bandwidth tx sizer,
value=self.bandwidth tx,
callback=self.set bandwidth tx,

84

minimum=0,
maximum=10eo6,
num steps=1000,
style=wx.SL VERTICAL,
cast=float,
proportion=1,
)
self.GridAdd (bandwidth tx sizer, 3, 1, 1, 1)
_bandwidth rx sizer = wx.BoxSizer (wx.VERTICAL)
self. bandwidth rx text box = forms.text box(
parent=self.GetWin (),
sizer= bandwidth rx sizer,
value=self.bandwidth rx,
callback=self.set bandwidth rx,
label="'bandwidth rx',
converter=forms.float converter(),
proportion=0,
)
self. bandwidth rx slider = forms.slider (
parent=self.GetWin (),
sizer= bandwidth rx sizer,
value=self.bandwidth rx,
callback=self.set bandwidth rx,
minimum=0,
maximum=10eo6,
num steps=1000,
style=wx.SL VERTICAL,
cast=float,
proportion=1,
)
self.GridAdd (bandwidth rx sizer, 1, 1, 1, 1)
_Bits Symbol sizer = wx.BoxSizer (wx.VERTICAL)
self. Bits Symbol text box = forms.text box(

parent=self.GetWin(),

85

(self

(self

(self.

(self

(self

sizer= Bits Symbol sizer,
value=self.Bits Symbol,
callback=self.set Bits Symbol,
label='Bits Symbol',
converter=forms.float converter(),
proportion=0,

)

self. Bits Symbol slider = forms.slider (
parent=self.GetWin (),
sizer= Bits Symbol sizer,
value=self.Bits Symbol,
callback=self.set Bits Symbol,
minimum=2,
maximum=16,
num_ steps=8§,
style=wx.SL VERTICAL,
cast=float,
proportion=1,

)

self.GridAdd(Bits Symbol sizer, 1, 8, 1, 1)

3 sk
Connections

s R R R R
self.connect ((self.blks2 packet decoder 1, 0),

.blocks file sink 1, 0))

self.connect ((self.digital dxpsk demod 0, 0),

.blks2 packet decoder 1, 0))

self.connect ((self.osmosdr source 2, 0),
digital dxpsk demod 0, 0))

self.connect ((self.osmosdr source 2, 0),

.wxgul constellationsink2 0, 0))

self.connect ((self.osmosdr source 2, 0),

.wxguil fftsink2 0 0, 0))

86

self.connect ((self.osmosdr source 2, 0),
(self.wxgui numbersink2 1, 0))

self.connect((self.osmosdr source 2, 0),
(self.wxgui scopesink2 0, 0))

self.connect((self.osmosdr source 2, 0),

(self.wxgui waterfallsink Tx, 0))

def get samp rate(self):

return self.samp rate

def set samp rate(self, samp rate):
self.samp rate = samp rate
self. samp rate slider.set value (self.samp rate)
self. samp rate text box.set value(self.samp rate)

self.osmosdr_ source 2.set sample rate(self.samp rate)

self.wxgui constellationsink2 O.set sample rate(self.samp rate)
self.wxgui fftsink2 0 O.set sample rate(self.samp rate)

self.wxgui scopesink2 0O.set sample rate(self.samp rate)

self.wxguli waterfallsink Tx.set sample rate(self.samp rate)

def get rf gain rx(self):

return self.rf gain rx

def set rf gain rx(self, rf gain rx):
self.rf gain rx = rf gain rx
self. rf gain rx slider.set value(self.rf gain rx)
self. rf gain rx text box.set value(self.rf gain rx)

self.osmosdr source 2.set gain(self.rf gain rx, 0)

def get rf gain(self):

return self.rf gain

87

def

def

def

def

def

def

def

def

set rf gain(self, rf gain):
self.rf gain = rf gain
self. rf gain slider.set value(self.rf gain)

self. rf gain text box.set value(self.rf gain)

get if gain rx(self):

return self.if gain rx

set if gain rx(self, if gain rx):

self.if gain rx = if gain rx

self. if gain rx slider.set value(self.if gain rx)
self. if gain rx text box.set value(self.if gain rx)

self.osmosdr source 2.set if gain(self.if gain rx, O0)

get if gain(self):

return self.if gain

set if gain(self, if gain):
self.if gain = if gain
self. if gain slider.set value(self.if gain)

self. if gain text box.set value(self.if gain)

get bb gain rx(self):

return self.bb gain rx

set bb gain rx(self, bb gain rx):

self.bb gain rx = bb gain rx

self. bb gain rx slider.set value(self.bb gain rx)
self. bb gain rx text box.set value(self.bb gain rx)

self.osmosdr source 2.set bb gain(self.bb gain rx, 0)

get bb gain(self):

return self.bb gain

88

def

def

def

def

def

def

def

set bb gain(self, bb gain):

self.bb gain = bb gain

self. bb gain slider.set value(self.bb gain)
self. bb gain text box.set value(self.bb gain)

get bandwidth tx(self):
return self.bandwidth tx

set bandwidth tx(self, bandwidth tx):

self.bandwidth tx = bandwidth tx

self. bandwidth tx slider.set value(self.bandwidth tx)
self. bandwidth tx text box.set value(self.bandwidth tx)

get bandwidth rx(self):

return self.bandwidth rx

set bandwidth rx(self, bandwidth rx):

self.bandwidth rx = bandwidth rx

self. bandwidth rx slider.set value(self.bandwidth rx)
self. bandwidth rx text box.set value (self.bandwidth rx)

get Samples Symbols (self):

return self.Samples Symbols

set Samples Symbols(self, Samples Symbols):
self.Samples Symbols = Samples Symbols

self. Samples Symbols slider.set value(self.Samples Symbols)

self. Samples Symbols text box.set value(self.Samples Symbols)

def

get Frequency (self):

return self.Frequency

89

def set Frequency(self, Frequency):
self.Frequency = Frequency
self. Frequency slider.set value (self.Frequency)
self. Frequency text box.set value (self.Frequency)
self.osmosdr source 2.set center freqg(self.Frequency, 0)

self.wxgui fftsink2 0 O.set baseband freg(self.Frequency)

self.wxgui waterfallsink Tx.set baseband freqg(self.Frequency)

def get Bits Symbol (self):

return self.Bits Symbol

def set Bits Symbol (self, Bits Symbol):
self.Bits Symbol = Bits Symbol
self. Bits Symbol slider.set value(self.Bits Symbol)
self. Bits Symbol text box.set value(self.Bits Symbol)

def main (top block cls=top block, options=None):
tb = top block cls()

tb.Start (True)
th.Wait ()

if name == ' main ':

main ()

90

APPENDIX C

Data_Acquisition_System.py

Sensor data logging using MCP3008 analog input channels
Author: Raghu Krishnappa

import RPi.GPIO as GPIO

import time

GPIO.cleanup ()

Import SPI library and MCP3008 library.

import Adafruit GPIO.SPI as SPI

import Adafruit MCP3008

from time import sleep

from datetime import datetime

#ADDING TO CREATE TEXT FILE

GPIO.setmode (GPIO.BCM)

GPIO.setup (17, GPIO.IN)

import spidev

import time

spl = spidev.SpiDev ()

spi.open (0, 0)

datafile = file("temperature.csv", "w")

datafile.write ("%$-25s %$-25s %$-25s %$-25s %-25s %-25s %-25s %-
25s\n"

% ("Date","Time", "Temperature", "Humidity", "Soil Sensor","Sensor 4"
,"Sensor 5","Sensor 6"))

#mcp = Adafruit MCP3008.MCP3008 (c1lk=CLK, cs=CS, miso=MISO,
mosi=MOST)

Hardware SPI configuration:

0

0

SPI_PORT

SPI DEVICE

mcp = Adafruit MCP3008.MCP3008 (spi=SPI.SpiDev (SPI_ PORT,
SPI DEVICE))
var =1

while var ==

91

if GPIO.input(l7) == 1:
print ('Reading MCP3008 values, press Ctrl-C to
quit...")

Print nice channel column headers.

print ('| [[17] | [17]1 | [17]1 | {4:>4}
| {5:>4} | {6:>4} | {7:>4} |'.format (*range(8)))
print ('-' * 57)

Main program loop.
Read all the ADC channel values in a list.
values = [0]*8
for i in range(8):
The read adc function will get the value of the
specified channel (0-7).

values[1i] = mcp.read adc (i)

Print the ADC values.
print ("] {0:>4} | {1:>5} | {2:>4} | {3:>4} |
{4:>4}) | {5:>4} | {6:>4} | {7:>4} |'.format (*values))
Pause for half a second.
temperature = mcp.read adc(2)
humidity = mcp.read adc(3)
if temperature < 1000 or humidity > 150:
print ('Water Leakage found')
else:
print ("No Water leakage found')

now = datetime.now ()

datafile.write ("%-35s %-25s %-25s %-25s %-25s %-
25s %$-25s\n" % (now, temperature,humidity,"0","0","0","0"))

time.sleep (1)
else:

datafile.close ()

print "Data Logging End"

92

APPENDIX D

HTML - Javascript

<html>
<head>
<title>Sensor value report - Texas State University</title>
<link rel="icon" type="image/png" href="agile.png">
<style type="text/css">
body
{
padding-top: 3px;
padding-bottom: 3px;
background-color: #eaele(;
font-family: 'Adobe Garamond WO0l', Garamond, 'Goudy 01d
Style', 'Times New Roman', serif !
important;
color: #000 !important;

height: 80%;

hl

position: relative;
top: 5px;
left: 2px;
padding: 5px;
margin: 2px;
}
header
{
margin: Opx Opx Opx Opx;
padding: 2px;
text-align: center;

background-color: #c7bdae;

93

}

footer

{

margin:

Opx Opx Opx Opx;

padding-bottom: 20px;

padding-left:

padding-right:

text-align:

background-color:

#f££;
100%;

color:

width:

2px;

5px;

left;

#500400;

/* Set the fixed height of the footer here

height: 80px;
}
:1link {
color: #fff;

background-color:

text-decoration:

:visited {

color: #fff;

background-color:

text-decoration:

thover {

color: #fff;

background-color:

text-decoration:

ractive {

color: yellow;

background-color:

text-decoration:

transparent;

noney;

transparent;

noney;

transparent;

underline;

transparent;

underline;

94

*/

.grid

{
border-spacing: Opx;
font-family: Arial;
font-size: 12px;
width: 100%;

}

.grid th

{
background-color: #3A393C;
color: #fff;
padding: 2px 10px;
text-align: left;

}

.grid tr:nth-child (even)

{
background-color: #f5f5f5;
border: lpx solid black;

}

.grid tr:nth-child (odd)

{
background-color: #ccc;
border: lpx solid black;

}

.grid tr:hover

background-color: #664b00;
color: #FFF;
}
.grid td
{
padding: 2px 10px;
vertical-align: bottom;

border: 1lpx solid black;

95

.inputs{
min-height: 100%;
/* equal to footer height */
margin-bottom: -142px;
}
.inputs:after {
content: "";

display: block;

.inputs:after {

height: 142px;

</style>

<script src="https://code.jquery.com/jquery-1.10.2.3s"></script>
<script>
function initiate ()
{
S.ajax ({
url:exportToTable (),

success: function () {

applyStyle();
}
})
}
function exportToTable () {
var regex = /" ([a-zA-Z0-9\s \\.\-:])+(.csv)S$/;

//Checks whether the file is a valid csv file
if (regex.test (S ("#csvfile").val().toLowerCase())) {
//Checks whether the browser supports HTML5
if (typeof (FileReader) != "undefined") {
var reader = new FileReader () ;

reader.onload = function (e) {

96

var table = '<table id = "sensorValues" class ="grid">";
var allRows = e.target.result.split(/\r2\n|\r/);
for (var singleRow = 0; singleRow < allRows.length;
singleRow++) {
if (singleRow === 0) {
table += '<thead>';
table += '<tr>';
} else {
table += '<tr>';
}
var rowCells = allRows[singleRow].split(',");
var infault = false;
for (var rowCell = 0; rowCell < rowCells.length; rowCell++) {
if (singleRow === 0) {
table += '<th>';
table += rowCells[rowCell];
table += '</th>';
} else {
table += '<td>"';
table += rowCells[rowCell];
table += '</td>';

var a = parseFloat (rowCells[rowCell]);

}

if (singleRow === 0) {
table += '</tr>';
table += '</thead>';
table += '<tbody>';

} else {

table += '</tr>';
}

table += '</tbody>';
table += '</table>"';

97

S('#tablespace') .empty () ;
$('#tablespace') .append (table);
S('"#applyBtn') .prop ('disabled', false);
$('#clearBtn') .prop ('disabled', false);
}//onload
reader.readAsText ($ ("#csvfile") [0] .files[0]);
}// html supported
else
{
alert ("Sorry! Your browser does not support HTML5!");
}
}//valid csv
else
{
alert ("Please upload a valid CSV file!");

}
function applyStyle ()

{
S ("#sensorValues td:nth-child(2)") .each (function () {

var tmpThres = parselnt (($("#tempThreshold") .val())):;
if (parselInt ($(this).text(), 10) >= tmpThres) {
$(this) .css("color", "#£ff4d4d");

1)

S ("#sensorValues td:nth-child(3)") .each(function () {
var humThres = parselInt (($ ("#humidThreshold") .val())):;
if (parselInt ($(this).text(), 10) >= humThres) {
$(this) .css("color", "#ff4d4d");

1) ;
S ("#sensorValues td:nth-child(4)") .each (function () {

98

var humThres = parseInt (($("#snsrlThreshold").val()));
if (parseInt($(this).text (), 10) <= snsrlThreshold) {
S (this) .css("color", "#ff4d4d");

b)
S ("#sensorValues td:nth-child (5)") .each (function () {
var humThres = parseInt (($("#snsrlThreshold").val()));
if (parseInt($(this).text (), 10) <= snsr2Threshold) {
$S(this) .css("color", "#ff4d4d");

});
}
</script>
</head>
<body >
<header>
<img src="txst-primary.png" alt="Texas State University"
width= "25%" height= "15%" align="middle"/>
<hl>Underground Sensor Data Acquisition using WUSN</h1>
</header>
<div id="inputgroup" class ="inputs" height="100%">
<main>
<input type="file" id="csvfile" />
<input type="button" id="viewfile" value="Export To Table"
onclick="initiate()" />

<form>
Threshold 1: <input type="number" id="tempThreshold" wvalue="200"
/>

Threshold 2: <input type="number" id="humidThreshold"
value="200" minlength="1" required/>

Threshold 3: <input type="number" id="snsrlThreshold"

value="100" />

99

Threshold 4: <input type="number" id="snsr2Threshold"
value="150" />

<input type="button" id="applyBtn" value="Apply" disabled onclick

="initiate ()"

<input type = "button" id="clearBtn" wvalue ="Clear All" disabled
onclick ="exportToTable ()" />

</form>

<div id="tablespace">

</div>

</main>

</div>

<footer>
<p>By: Raghu Krishnappa</p>
<p>MS- Engineering, Texas State University</p>
<p>Email:
r k88@txstate.edu .</p>

</footer>

</body>

</html>

100

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCE

N. Chaamwe, W. Liu, and H. Jiang, "Seismic monitoring in underground mines: A
case of mufulira mine in Zambia: Using wireless sensor networks for seismic
monitoring,” in 2010 International Conference on Electronics and Information
Engineering, 2010, pp. V1-310-V1-314.

Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F.
Akyildiz, "BorderSense: Border patrol through advanced wireless sensor
networks," Ad Hoc Networks, vol. 9, pp. 468-477, 2011.

E. P. Stuntebeck, D. Pompili, and T. Melodia, "Wireless underground sensor
networks using commodity terrestrial motes,” in Wireless Mesh Networks, 2006.
WiMesh 2006. 2nd IEEE Workshop on, 2006, pp. 112-114.

M. Li and Y. Liu, "Underground structure monitoring with wireless sensor
networks," in Proceedings of the 6th international conference on Information
processing in sensor networks, 2007, pp. 69-78.

D. Daniels, "Surface-penetrating radarThe Institution of Electrical Engineers,"” ed:
London, 1996.

H. Guo and Z. Sun, "Channel and energy modeling for self-contained wireless
sensor networks in oil reservoirs,” IEEE Transactions on Wireless
Communications, vol. 13, pp. 2258-2269, 2014.

X. Tan and Z. Sun, "An optimal leakage detection strategy for underground
pipelines using magnetic induction-based sensor networks,” in International

Conference on Wireless Algorithms, Systems, and Applications, 2013, pp. 414-425.

101

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F.
Akyildiz, "MISE-PIPE: Magnetic induction-based wireless sensor networks for
underground pipeline monitoring,” Ad Hoc Networks, vol. 9, pp. 218-227, 2011.
M. A. Akkas, R. Sokullu, and A. Balci, "Wireless sensor networks in oil pipeline
systems using electromagnetic waves,"” in Electrical and Electronics Engineering
(ELECO), 2015 9th International Conference on, 2015, pp. 143-147.

A.-K. Tarig, A.-T. Ziyad, and A.-O. Abdullah, "Wireless sensor networks for
leakage detection in underground pipelines: a survey paper,” Procedia Computer
Science, vol. 21, pp. 491-498, 2013.

I. F. Akyildiz and E. P. Stuntebeck, "Wireless underground sensor networks:
Research challenges,” Ad Hoc Networks, vol. 4, pp. 669-686, 2006.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor
networks: a survey," Computer networks, vol. 38, pp. 393-422, 2002.

U. Water, "Coping with water scarcity: challenge of the twenty-first century,"”
Prepared for World Water Day, 2007.

L. Xie, Y. Shi, Y. T. Hou, and A. Lou, "Wireless power transfer and applications
to sensor networks," IEEE Wireless Communications, vol. 20, pp. 140-145, 2013.
M. J. Tiusanen, "Wideband antenna for underground Soil Scout transmission,"
IEEE Antennas and Wireless Propagation Letters, vol. 5, 2006.

H. Zemmour, G. Baudoin, and A. Diet, "Effect of depth and soil moisture on buried
ultra-wideband antenna,” Electronics Letters, vol. 52, pp. 792-794, 2016.

Available: https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf

102

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Marwanto, M. A. Sarijari, N. Fisal, S. K. S. Yusof, and R. A. Rashid,
"Experimental study of OFDM implementation utilizing GNU Radio and USRP-
SDR," in Communications (MICC), 2009 IEEE 9th Malaysia International
Conference on, 2009, pp. 132-135.

Antenna Patterns and Their Meaning. Available:
https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-antennas-
accessories/prod_white_paper0900aecd806ala3e.html

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, "Wireless
sensor networks for habitat monitoring,” in Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications, 2002, pp.
88-97.

G. S. Gadgets, "HackRF," ed: Accessed 2015/12/01.[Online]. Available:
http://greatscottgadgets. com/hackrf.

E. Blossom, "GNU radio: tools for exploring the radio frequency spectrum," Linux
journal, vol. 2004, p. 4, 2004.

A. R. Silva and M. C. Vuran, "Empirical Evaluation of Wireless Underground-to-
Underground Communication in Wireless Underground Sensor Networks," in
DCOSS, 2009, pp. 231-244.

A. J. Goldsmith and S. B. Wicker, "Design challenges for energy-constrained ad
hoc wireless networks," IEEE wireless communications, vol. 9, pp. 8-27, 2002.

M. Li and Y. Liu, "Underground coal mine monitoring with wireless sensor

networks," ACM Transactions on Sensor Networks (TOSN), vol. 5, p. 10, 2009.

103

[26]

[27]

[28]

[29]

[30]

[31]

[32]

X. Yu, P. Wu, W. Han, and Z. Zhang, "A survey on wireless sensor network
infrastructure for agriculture,” Computer Standards & Interfaces, vol. 35, pp. 59-
64, 2013.

S. Gronemeyer and A. McBride, "MSK and offset QPSK modulation,” IEEE
Transactions on Communications, vol. 24, pp. 809-820, 1976.

Z. Sun and I. F. Akyildiz, "Magnetic induction communications for wireless
underground sensor networks,” IEEE Transactions on Antennas and Propagation,
vol. 58, pp. 2426-2435, 2010.

A. Prabaswara, A. Munir, and A. B. Suksmono, "GNU Radio based software-
defined FMCW radar for weather surveillance application,” in Telecommunication
Systems, Services, and Applications (TSSA), 2011 6th International Conference on,
2011, pp. 227-230.

Z.Sunand I. F. Akyildiz, "Deployment algorithms for wireless underground sensor
networks using magnetic induction,” in Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, 2010, pp. 1-5.

M. C. Vuran and I. F. Akyildiz, "Cross-layer packet size optimization for wireless
terrestrial, underwater, and underground sensor networks," in INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE, 2008, pp. 226-230.

A. R. Silva and M. C. Vuran, "Communication with aboveground devices in
wireless underground sensor networks: An empirical study,” in Communications

(ICC), 2010 IEEE International Conference on, 2010, pp. 1-6.

104

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

X. Dong, M. C. Vuran, and S. Irmak, "Autonomous precision agriculture through
integration of wireless underground sensor networks with center pivot irrigation
systems,"” Ad Hoc Networks, vol. 11, pp. 1975-1987, 2013.

A. Baggio, "Wireless sensor networks in precision agriculture,” in ACM Workshop
on Real-World Wireless Sensor Networks (REALWSN 2005), Stockholm, Sweden,
2005, pp. 1567-1576.

A. Molnar, B. Lu, S. Lanzisera, B. W. Cook, and K. S. Pister, "An ultra-low power
900 MHz RF transceiver for wireless sensor networks," in Custom Integrated
Circuits Conference, 2004. Proceedings of the IEEE 2004, 2004, pp. 401-404.

K. Akkaya and M. Younis, "A survey on routing protocols for wireless sensor
networks," Ad hoc networks, vol. 3, pp. 325-349, 2005.

D. Dondi, A. Bertacchini, L. Larcher, P. Pavan, D. Brunelli, and L. Benini, "A solar
energy harvesting circuit for low power applications,” in Sustainable Energy
Technologies, 2008. ICSET 2008. IEEE International Conference on, 2008, pp.
945-949.

F. Pierce and T. Elliott, "Regional and on-farm wireless sensor networks for
agricultural systems in Eastern Washington," Computers and electronics in
agriculture, vol. 61, pp. 32-43, 2008.

Y. Yu, R. Govindan, and D. Estrin, "Geographical and energy aware routing: A
recursive data dissemination protocol for wireless sensor networks," 2001.

S. L. Howard, C. Schlegel, and K. Iniewski, "Error control coding in low-power
wireless sensor networks: When is ECC energy-efficient?,” EURASIP Journal on

Wireless Communications and Networking, vol. 2006, pp. 29-29, 2006.

105

[41]

[42]

[43]

[44]

W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MAC protocol for
wireless sensor networks,” in INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, 2002, pp. 1567-1576.

K. Romer and F. Mattern, "The design space of wireless sensor networks," IEEE
wireless communications, vol. 11, pp. 54-61, 2004.

M. A. Pasha, S. Derrien, and O. Sentieys, "A complete design-flow for the
generation of ultra low-power WSN node architectures based on micro-tasking," in
Proceedings of the 47th Design Automation Conference, 2010, pp. 693-698.

Z. G. Kovacs, G. E. Marosy, and G. Horvéth, "Case study of a simple, low power
WSN implementation for forest monitoring,” in Electronics Conference (BEC),

2010 12th Biennial Baltic, 2010, pp. 161-164.

106

