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1.0 Problem Statement 

On any given weekend during the summer, over 2,000 people gather in New Braunfels, 

Texas in preparation to float either the Guadalupe or Comal Rivers. With so many people in the 

river, water quality can decrease quickly because of debris thrown in the river, human urination, 

and sediment disturbance along the river bottom. Decreases in water quality can disrupt species 

that use the river as a source of water, habitat, and/or their food supply. Water quality can also 

affect the health of the people that use the water for recreation, resulting in increases in water 

treatment plant prices because it is more difficult to revert the water back to the quality where it 

can be used for human consumption. Ensuring water quality requires water testing. There is great 

potential to monitor water quality by using remote sensing data, but there are few studies that 

report how image spectral information compares to in situ testing despite remote sensing data 

being more cost efficient (Ritchie et al 2003). This study provides one of the few comparisons 

how remote sensing can test the utility of remote sensing data to estimate water quality. 

In situ water quality testing currently takes place both in the field as well as in a 

laboratory. Tests conducted in the field include pH, conductivity, chlorine concentration, water 

temperature, and turbidity. Laboratory tests include dissolved oxygen, total phosphorous, nitrate, 

sulfate, ammonia, and chlorophyll – a. A challenge to measuring and monitoring water quality in 

situ is that it can be prohibitively expensive and time consuming. A person has to go to the 

collection site, collect the water, do on-site testing, and then bring the water to the laboratory so a 

lab technician can test the water and validate the results that were collected in the field.  An 

alternative method to monitor water quality is by using satellite imagery. With the development 

and launching of satellites such as Landsat and Sentinel-2, people in areas where water quality 

data are limited or missing can use remote sensing techniques to estimate water quality. 
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By using satellite imagery available from the European Space Agency and water quality 

data from the Guadalupe Blanco River Authority (GBRA), this research will analyze images at 

different testing sites along the Guadalupe and Comal Rivers to determine if spectral responses 

within the water column have a statistical relationship with turbidity and total suspended solids 

(TSS) measurements collected by GBRA on site. Specifically, my research question is “How 

effective are Sentinel-2 satellite data for estimating turbidity and total suspended solids in the 

Guadalupe and Comal Rivers, near New Braunfels, TX, compared to in situ measurements 

collected by the Guadalupe Blanco River Authority?” I hypothesize that reflectance values from 

the satellite imagery can be used to estimate quantities that GBRA collected at their testing sites. 

To answer the proposed question, this study will involve the use of quantitative data that 

were acquired from the Sentinel-2 satellite sensor and measurements that GBRA collected and 

posted on their website. The GBRA website has water quality data and associated GPS testing 

locations, dates, and the specific data acquired.  Five testing sites were chosen along the 

Guadalupe and Comal Rivers based on a date buffer of five days before or after Sentinel-2 

satellite overpass. This analysis will be useful for local water authorities because it can be a way 

to mitigate costs associated with field data collection and monitoring costs.   
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2.0 Background 

2.1 Study Region: Guadalupe River Basin 

The Guadalupe River headwaters are in located in Kerr County, Texas, approximately 

145 km northwest of San Antonio.  The river flows out to the San Antonio Bay roughly 56 km 

southeast of Victoria and empties into the Gulf of Mexico.  Total river length is 370 km (Smyrl 

2010). Major cities along the Guadalupe River include Kerrville, New Braunfels, Seguin, Cuero 

and Victoria. The Guadalupe River is divided into three parts, the Upper Guadalupe River, the 

Middle Guadalupe River, and the Lower Guadalupe River.  The upper and middle sections of the 

river bring in tourists for activities including fly fishing, rafting, canoeing, hiking and tubing, 

while the lower part of the river is more suitable for camping (Smyrl 2010). 

 

Figure 1: Map of the Guadalupe River basin (Asquith and Bumgarner, 2014). 
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The Middle Guadalupe River drains from Canyon Lake Dam in Comal County, Texas to 

Cuero, Texas in DeWitt County, Texas. Water quality testing for this section is important due to 

the large number of people using the river for recreation as well as species’ habitats. This section 

of the river has “the finest white-water” stretch in the state because it cuts through the Balcones 

Fault Zone (GBRA 2013). It also contains seven water power plants used by the Guadalupe 

Blanco River Authority (GBRA) whose dam structures have created lakes used for recreational 

activities. Up until the confluence with the San Marcos River in Gonzales, Texas, the Guadalupe 

River is a narrow fast moving river. However, when it combines with the San Marcos River, it 

becomes large and slow moving. This middle section of the river is very scenic and has 

limestone bluffs, bald cypress trees (Taxodium distichum), pecan trees (Carya illinoinensis), and 

elm trees (Ulmus americana) (GBRA 2013).  The Middle Guadalupe River is also stocked with 

rainbow trout (Oncorhynchus mykiss) between December and January by the Trout Unlimited 

organization and the Texas Parks and Wildlife Department. 

The Upper Guadalupe River runs from the headwaters in Kerr County, Texas to Canyon 

Lake in Comal County, Texas. Water quality is important in the Upper Guadalupe River because 

of the four major aquifers and plant and animal biodiversity. This portion of the river flows over 

four major aquifers which are defined by the Texas Water Development Board as areas “that 

supply large quantity of water in large areas of the state” (Ashworth and Hopkins 1995). These 

aquifers are layers of limestone which were formed during the Lower Cretaceous period (65 – 

145 million years ago) with the beds of the canyons that were formed from the erosion of the 

water flowing over the rocks (Stricklin et al. 1971). The landscape around the Upper Guadalupe 

River includes riparian forests that contain species such as sycamore (Platanus occidentalis), 

cedar elm (Ulmus crassifola), bald cypress (Taxodium distichum), mountain laurel (Kalmia 
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latifolia) and Ashe juniper (Juniperus ashei). Additionally, this section contains grasslands that 

include native grasses such as sideoats grama mix (Bouteloua curtipendula), indian grass 

(Sorghastrum nutans) and little bluestem (Schizachyrium scoparium) (TNC 2007). The Golden 

Cheek Warbler (Setophaga chrysoparia) and Black-capped vireo (Vireo atricapilla) are two 

federally-listed endangered bird species that have critical habitats along the Upper Guadalupe 

River (Flatten 2017) as well as other endangered species including Guadalupe bass (Micropterus 

treculii), Honey Creek Cave salamander (Eurycea tridentifera), and Cagle’s map turtle 

(Graptemys caglei) (TPWD 2000). 

The Lower Guadalupe River is classified as the section that runs through Cuero, Texas in 

DeWitt County, Texas to the Gulf of Mexico through the San Antonio Bay in Calhoun County, 

Texas. Water quality is pertinent to this section because this is where the fresh river water meets 

the salty ocean water. This section of the river is surrounded by grasslands and contains marshes 

which are created by the tide of the river mixing with the Gulf of Mexico (GBRA 2013). This 

section includes habitat used by the endangered whooping crane (Grus americana), whose diet 

consist of blue crabs; a food source dependent on brackish water (GBRA 2013). 

2.2 Population Pressure Increase on Water Quality 

The Middle Guadalupe River flows through the City of New Braunfels, Texas which is 

located in Comal County between San Antonio, Texas to the south and San Marcos, Texas to the 

north.  It is situated along Interstate 35 and listed as one of the fastest growing cities in the 

United States with a total population of 73, 959 in 2016 (US Census Bureau 2017). With urban 

development, there are many water quality issues that can occur such as the redistribution of 

water resources to new developments, the movement and settlement of suspended sediments due 

to development taking place upstream, an increase in nitrogen and phosphorus runoff from crop 
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fertilization and amendments, and sewage overflows due to clogged pipes or the breakdown of 

pumping stations (USGS 2016).  

The redistribution of water causes more pipes to be placed for the pumping of water and 

also leads to areas that will no longer get adequate amounts of water necessary for their 

population. Increased sediment loads can cause the lifetime of reservoir to decrease because as 

the sediment flows in at a quick rate, the water flow within the reservoir slows and keeps the 

sediment suspended causing the sediment to settle to the bottom and build up over time. This 

build up then causes the reservoir to become useable (USGS 2016). Excess nitrogen and 

phosphorus results in eutrophication, the process of rapid plant growth and oxygen depletion, 

with detrimental effects on a water body.  In lakes and reservoirs, eutrophication can occur 

which produces algae on the water’s surface and can kill fish due to the lack of sunlight being 

able to penetrate through the water (USGS 2016). Excess nitrogen and phosphorus, in drinking 

water, can be harmful to young infants and livestock, and it can also lead to the restriction of 

oxygen in the bloodstream (USGS 2016).   

2.3 Water quality policies 

Water quality testing standards have not always been in place and to the degree with 

which they are enforced today. To control the pollution that was occurring in United States 

waterways, the United States Legislature enacted the Federal Water Pollution Control Act 

(FWPCA) of 1948. This act initiated programs that would eliminate and reduce pollution 

occurring in waterways and tributaries, along with improving the sanitary conditions of surface 

and underground waters (US Fish and Wildlife Service 2013). This statute also allowed for 

establishment of water treatment plants to prevent the discharge of untreated sewage and other 

wastes into the water. Since its implementation, this act has been amended multiple times to 
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allow for additional water quality programs, updates to procedures and standards that are allowed 

for discharge, and funding for grants and programs (US Fish and Wildlife Service 2013). Before 

the implementation of the FWPC Act, the Federal government did not address the pollution 

issues that occurred in the waterways that stayed in one state; they were only interested in the 

waterways that were crossing multiple states (Copeland 2016). The 1965 amendment was the 

first reference to water quality standards that required the states to set standards to determine the 

amount of pollution in the water that crossed multiple state boundaries and also requirements to 

control pollution (Copeland 2016). In 1972, the Federal Water Pollution Control Act of 1948 was 

revised and is now known as the Clean Water Act. This revamp lead to goals that all wastewater 

had to be treated, increased federal government funding for construction of water treatment 

plants, and the increased role the federal government in implementing the law (Copeland 2016).  

In 1991, the Texas Clean River Program was formed through a partnership with the 

Texas Commission of Environmental Quality (TCEQ) and regional water authorities, such as 

GBRA and Canyon Regional Water Authority, etc., to coordinate water quality monitoring and 

conduct assessments to improve the surface water qualities in Texas river basins (TCEQ 2018). 

There are six main objectives of the Clean River Program including: 1) providing the TCEQ with 

quality assured data that can be used in water quality decision making, 2) identifying and 

evaluating issues related to the water quality, 3) involve federal, state and local agencies on the 

issues that are related to planning and cleaning up the water, 4) inform and involve those that 

have an interest in the program so their ideas can be heard, 5) use the funds that the TCEQ 

provides without going over, and 6) come up with a plan and committee to adapt to the changes 

that occur in the program (TCEQ 2018).  These objectives have led to increased sampling of the 

rivers around the state to get a better understanding of the river water quality, built relationships 
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among regional water authorities and TCEQ, increased communication between TCEQ and 

regional water authorities on issues related to poor water quality, and increased the public 

participation for issues that are plaguing their local river basin and coming up with ideas on how 

to make their area cleaner and healthier (TCEQ 2018). 
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3.0 Literature Review 

3.1 Remote Sensing Compared to In Situ Measurements 

According to House Document 110-91 (2008), the advantages of remote sensing include 

the ability to incorporate data with other information that can aid in decision making, 

characterize physical objects and natural features on the ground, collect data over large spatial 

areas, and to observe areas and monitor their changes over time. The location of this committee 

hearing took place in Colorado and the State of Colorado is currently using infrared remote 

sensing to estimate aquifer depletion, water rights and climate change (US H.Doc. 110-91 2008). 

The use of remote sensing techniques can replace on the ground investigation because satellite 

based information is beneficial for proficient water management, proficient use of limited 

resources and improve the decision making processes (US H.Doc. 110-91 2008). The use of 

satellite imagery is a way to measure large areas when rivers and crops lands can vary in size 

(US H.Doc. 110-91 2008).  

Baumgartner and Apfl (1996) and Santamaria-del-Angel et al. (2011) state that remote 

sensing measurements are taken at a much larger scale, depending on the satellite that is chosen, 

ranging from 1 m2 to 1 km2, while in situ measurements are based on one liter of water. Remote 

sensing measurements integrate data through optic approximations from greater volume which 

yield averages in the water quality values (Santamaria-del-Angel et al 2011). Remote sensing 

offers a cost-effective way for scientists to measure water quality by collecting measurements 

over large areas and provides an overall summary of the surface (Sputh et al 2008). Additionally, 

remote sensing offers the advantage of having datasets that are large in both temporal and 

spectral areas (Baumgartner & Apfl 1996). This benefit gives scientists the added capability to 

re-measure a location due to lost data or an initial bad reading. Sputh et al (2008) also describes 
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that a limitation of remote sensing can be the spatial and temporal resolution of the data as well 

as the environmental parameters, such as current and sediment. 

In situ measurements have the ability to monitor water quality with a high resolution but 

are limited to the area in which they are fixed (Sputh et al 2008). When measuring a large area, 

this requires a lot of testing stations and with the increased number of testing stations come the 

increase operational maintenance cost and the initial deployment which also costs a lot of money 

(Sputh et al 2008). When the results are taken back to the lab, they are based off of information 

from a spectrophotometer, a fluorometer, or a high performance liquid chromatograph which 

uses the one liter of water (Santamaria-del-Angel et al 2011).   

3.2 Remote Sensing to Assess Water Quality 

Approaches to estimate or monitor water quality with remotely sensed data have taken 

multiple approaches.  Ritchie et al. (2003) discuss how remote sensing can be used to calculate 

reflectance values for chlorophyll, total suspended solids, and temperature. Curran and Novo 

(1988) describe that the best wavelengths to use to measure total suspended solids are the 

blue/green wavelengths but these wavelengths are most affected by atmospheric scattering 

making it difficult for the values to be calculated. For chlorophyll, the Landsat and SPOT sensors 

have bandwidths that are too large to be able to differentiate the difference between chlorophyll 

and total suspended solids (Ritchie et al., 2003). It was determined that the narrow wavelength 

difference between the red band and NIR band, “red edge” is the best area to depict chlorophyll 

because it shows the relationship between chlorophyll and total suspended solids. The larger the 

“red edge” the more photosynthesis is occurring. To measure the temperature of water, the 

thermal bands are the most effective. Monitoring the thermal changes of water is useful because 

biological productivity can be detected (Ritchie et al 2003).  



11 
 

Kabbara et al. (2008) conducted a study of the coastal area of Tripoli (Lebanon) to map 

the distribution of water quality parameters that included turbidity and chlorophyll-a 

concentration. They used two sensors, Landsat 7 Enhanced Thematic Mapper Plus (ETM+)  as 

their high resolution sensor and the SeaWiFS as their low resolution sensor to compare to the 

data that they gather via in situ using the Secchi Disk depth method for turbidity. Kabbara et al. 

(2008) determined that the use of the Landsat 7 ETM+ was not a viable option to measure water 

quality because high concentrations of chlorophyll-a results in high reflectance values making it 

difficult to determine whether the energy is being reflected from the water or chlorophyll-a. 

Ogashawara and Moreno-Madrinan (2014) also studied the reflectance of chlorophyll-a.  They 

used the Moderate Resolution Imaging Spectroradiometer (MODIS) which has a pixel size the 

same as SeaWiFS (1 km), much larger than the Landsat 7 ETM+ at 30m spatial resolution. They 

found that the NIR band was not sufficient because the band width was too large to detect the 

small spectral variations that were required to estimate chlorophyll-a concentrations.   

3.3 Measuring Turbidity and Total Suspended Solids of Water through Remote Sensing 

 Kabbara et al. (2008) states that measuring turbidity is difficult because it can be affected 

by many factors such as the presence of zooplankton and phytoplankton.  Chen et al. (2007), 

Petus et al. (2010) and Robert et al. (2016) used MODIS to measure turbidity. The areas that 

were studied were highly turbid, but the conclusions were the same, that there is a positive 

correlation between reflectance values of the red/NIR bands and turbidity. Petus et al (2010) also 

concluded that MODIS band 2 (NIR), which detects land/clouds/aerosols/boundaries, was not 

sensitive enough to detect turbidity due to the location of the bands wavelengths (841 nm – 876 

nm). 



12 
 

 Hellweger et al. (2004) chose to study the New York Harbor with two different sensors, 

Landsat Thematic Mapper (TM) and MODIS. To study turbidity, the red band of the TM was 

used.  They noted that as the Secchi Disk got deeper in the harbor, the reflectance values also 

decreased, suggesting there is a strong negative correlation between red reflectance values and 

turbidity. Harrington et al. (1992) studied Lake Chicot, Arkansas with the Landsat Multispectral 

Sensor (MSS) and determined that the best MSS bands were the visible red and near infrared 

bands due to the ability to eliminate the detection of photosynthesis. MODIS can also be used to 

measure totals suspended solids (TSS) concentration and the 250 meter bands are the optimal 

wavelengths (Chen et al, 2015).  Liu et al. (2017) used Sentinel 2 data and compared those 

results to those from MODIS to estimate the TSS concentration of Poyang Lake, China. They 

determined that Sentinel-2 bands 4 (red) and 7 (vegetation red edge) were the best at estimating 

TSS concentration. 

Lim et al. (2010) studies TSS concentration in Malaysia using THEOS satellite imagery. 

They found that the visible bands had the strongest correlation with TSS concentration. 

Mabwoga et al. (2010) studied the concentration TSS in a wetland in India using imagery from 

the Indian Remote Sensing satellite, LISS IV. The band that showed the strongest correlation 

with TSS was the NIR band. Wang et al (2007) used the Hyperion sensor to measure the TSS 

concentration of a bay in China. After testing, they determined that the VNIR wavelength would 

be suited to continue with future work but of the visible bands that were tested, the red 

wavelength showed to have the highest correlation.  
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4.0 Research Methods 

As defined above, this study seeks to determine how effective a satellite sensor data, 

particularly Sentinel-2, is at estimating in situ turbidity and total suspended solids (TSS) 

measurements of the Guadalupe and Comal Rivers, near New Braunfels, Texas. I plan to use a 

positivist epistemology to measure the pixel values and show statistically by date areas that are 

turbid and have a high TSS value.  

To conduct a thorough understanding of the water quality of the Guadalupe and Comal 

Rivers study area, I planned my analysis in four steps: data collection and preparation, 

calculating reflectance values of pixels, comparison of reflectance values to in situ 

measurements, and mapping what each testing location looks like during the day the image was 

acquired. The study’s methodology includes a linear regression model and visualizations, which 

include GIS-generated maps and remote sensing data analysis.  

4.1 Data Collection and Preparation 

Five; Texas Commission on Environmental Quality (TCEQ) testing locations were 

identified along the Guadalupe and Comal Rivers that have dates after the launching of the 

Sentinel-2 satellites, June 23, 2015 for Sentinel-2A and March 2, 2017 for Sentinel-2B. These 

testing location are: TCEQ station 12598, Canyon Reservoir (Canyon Park Marina), station 

12653, Comal River at Hinman Island, station 12658, Guadalupe River at River Road (Second 

Crossing), station 13700, Guadalupe River near Spring Branch, and station 15082, Comal River 

at Landa Park Area 16. The GBRA collection dates that were chosen for the TCEQ testing 

locations were December 19, 2016, January 29, 2017 and April 29, 2017. 

 Sentinel-2A Level-1C imagery were downloaded from the European Space Agency 

(Copernicus) website for the following dates: December 21, 2016, January 30, 2017 and April 
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30, 2017. Level-1C processing includes radiometric and geometric corrections and top of 

atmosphere reflectance (ESA 2018). These images were chosen because they have minimal 

cloud coverage and are based on a temporal buffer of 5 days before or 5 days after the collection 

of the data GBRA posted on their website. 

Agency Data 

European Space Agency Sentinel-2 Imagery 

Guadalupe Blanco River Authority  Water quality measurements and testing site locations 

Table 1: Data sources for satellite imagery and in situ turbidity and TSS measurements. 

This temporal buffer ensured that the water quality is similar to when the collection 

occurred and also facilitated for the possibility of using alternative additional images if there was 

cloud cover over the location. After the images were acquired, the testing locations were 

geolocated and the turbidity and total suspended solids values were added into a GIS. These 

locations used the NAD_1983_2011_StatePlane_Texas_South_Central_FIPS_4204 projection.  

4.2 Reflectance Value Measurements 

Second, measuring reflectance values of pixels occurred by measuring the spectral 

response of the pixel for each band. The bands chosen included: visible blue (band 2), visible 

green (band 3), visible red (band 4), and the near infrared (band 8). Equation 1 takes the digital 

number, which is the pixel value the sensor stores, and converts it to top-of-atmosphere (TOA) 

reflectance (ESA 2018). 

𝜌𝜅(𝑖, 𝑗) =
𝜋 × 𝐶𝑁𝜅,𝑁𝑇𝐷𝐼(𝑖, 𝑗)

𝐴𝜅,𝑁𝑇𝐷𝐼 × 𝐸𝑠 × 𝑑(𝑡) × cos (𝜃𝑠(𝑖, 𝑗))
 

Equation 1: Conversion to Top-of-Atmosphere reflectance 

where: 

 𝜌𝜅 = TOA reflectance 
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 CN = Digital Number of each pixel in the image 

 i, j = Pixel image value 

 k = Spectral band 

 𝐸𝑠 = Extra-terrestrial solar spectrum 

 𝜃𝑠 = Incoming solar direction, zenith angle 

 𝐴𝜅 = Absolute calibration of the instrument 

 𝑑(𝑡) = Correction for the sun-Earth distance variation 

The TOA reflectance was used in the Sen2Cor program which converts TOA reflectance to 

scaled surface reflectance values. Surface reflectance is different from TOA reflectance because 

it accounts for scattering and absorption in the atmosphere and provides file pixel values that are 

spectrally similar to what an observer would have measured with a spectroradiometer in situ 

during satellite overpass. The Sen2Cor program converted the Level-1C imagery to Level-2A 

imagery, which resampled the bands to their respective 10m spectral resolutions. 

 To measure the reflectance values of each band at the testing locations, ESRI’s ArcMap 

tool, Extract Multi Point Values to Points, was used. This tool extracts cell values that coincide 

spatially to a specified point feature class from one or more rasters and records that value as an 

attribute in the point feature class. These values were then entered in an Excel spreadsheet along 

with observation data, TCEQ station number, and the in situ turbidity and TSS data. Additional 

band ratios were included as well, for example B2/B3, B2/B4, B2/B8, etc. 

4.3 Comparison of In Situ Data vs Reflectance Data 

To meet the assumptions required for linear regression modeling, transformation of the in 

situ data collected by taking the square root of the in situ turbidity samples, and the logarithm of 

the in situ TSS samples so that the dependent variables were normally distributed. To determine 

which band or band ratios explained the most variability in field-measured values, the highest R2 
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(correlation of determination) value was selected based on an all possible model approach 

executed in JMP Pro. 

The overall models for turbidity and TSS implemented those variables as dependent 

variables (Y value) and Sentinel-2 reflectance values or band ratios as independent variables (X 

values). From the output, all possible models were created using all possible combinations of the 

independent variables. The top four models with up to two terms per model were reported. From 

those results the model that produced the highest R2 values and lowest Root Mean Square Error 

(RMSE) values were chosen. Taking the band and band combinations from the all possible 

models, the fit model tool was ran again using the standard least squares personality, producing 

an actual by predicted plot. The predicted values were then saved and the fit Y by X tool was ran 

creating a predicted by actual values plot and regression outputs. This process was carried out for 

all dates and for individual dates. 

4.4 Current Extent of Turbidity and Total Suspended Solids 

Five maps were generated using the regression equations and the raster calculator 

function in ArcMap to show the estimated turbidity and TSS throughout the study area. 
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5.0 Results 

5.1 Regression modeling of turbidity and TSS 

 The all dates model for turbidity (n=14) produced an R2 value of 0.567 and a root mean 

square error (RMSE) of 0.405 and included two terms; band 8 (near infrared) and ratio band 

3/band 8 (green/near infrared). Figure 2 provides an actual vs. predicted plot for this model 

output.  

 

Figure 2: Actual vs predicted plot for sqrt(turbidity) using B8 and B3/B8. 

Figure 3 shows the actual versus predicted values for December 21, 2016 based on a one term 

model that included ratio band 3/band 8 (green/near infrared) as predictor variables and produced 

an R2 = 0.758 and RMSE = 0.30. This model used five observation and only included the in situ 

measurements that were collected on December 21, 2016. 
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Figure 3: Actual vs predicted plot for sqrt(turbidity) for Dec. 21, 2016 using B3/B8. 

A one term model produce an R2 value of 0.86 with a RMSE of 0.26 (n = 5) for the reflectance 

values and in situ data collected on January 30, 2017, as shown in Figure 4. The term used in this 

model was the ratio of band 4/band 8 (red/near infrared).  
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Figure 4: Actual vs predicted plot for sqrt(turbidity) for Jan. 30, 2017 using B4/B8. 

To best predict the turbidity for April 30, 2017, a one term model included band 3 (green) was 

used. To generate the R2 = 0.73, RMSE = 0.46, with n = 4. Refer to Figure 5 for the actual vs. 

predicted plot. 
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Figure 5: Actual vs predicted plot for sqrt(turbidity) for Apr. 30, 2017 using B3. 

The linear regression for TSS produced for all observed dates, also included two model 

terms: band 8 (near infrared) and band ratio band 8/band 2 (near infrared/blue). This model 

generated an R2 = 0.6396 (RMSE = 0.23; n = 14). Refer to Figure 6 for the actual vs predicted 

TSS plot. 
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Figure 6: Actual vs predicted plot for log(TSS) using B8 and B8/B2. 

Figure 7 shows the actual TSS values versus the predicted reflectance values for December 21, 

2016 based on a one term model for ratio band 3/band 8 (green/near infrared). The model (n=5) 

produced an R2 = 0.79 and an RMSE of 0.14.  
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Figure 7: Actual vs predicted plot for log(TSS) for Dec. 21, 2016 using B3/B8. 

A one term model resulted in the highest R2 value (n=5), R2 = 0.51 (RMSE = 0.27), for the 

reflectance values and data collected via in situ on January 30, 2017, as shown in Figure 8. The 

term used in this model was band 3 (green).  
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Figure 8: Actual vs predicted plot for log(TSS) for Jan. 30, 2017 using B3. 

A one term TSS model (n=4) was selected for April 30, 2017 and included, band 2 (blue) with an 

R2 of 0.97 and RMSE of 0.11. Refer to Figure 9 for the actual vs. predicted plot. 
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Figure 9: Actual vs predicted plot for log(TSS) for Apr. 30, 2017 using B2. 

In describing each model by the bands that produced the highest R2 values, linear 

regression equations were produced based on each model’s parameter estimates. These 

parameters include the intercept and the coefficients for each model term. These equations are 

used to communicate the values that will be used when determining the actual turbidity and TSS 

values from the predicted reflectance values. Table 2 summarizes the model equations.  
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Dataset n R2 RMSE Model 

All Data 14 0.57 0.41 Turbidity = -1.408 + 0.00058(B8) + 2.7568(B3/B8) 

Dec. 21, 2016 5 0.76 0.30 No significant model 

Jan. 30, 2017 5 0.86 0.26 Turbidity = -1.745 + 3.72886(B4/B8) 

Apr. 30, 2017 4 0.73 0.46 No significant model 
 

Dataset n R2 RMSE Model 

All Data 14 0.64 0.23 TSS = 1.01141 + 0.00045(B8) – 0.71419(B8/B2) 

Dec. 21, 2016 5 0.79 0.14 TSS = -1.103 + 1.79261(B3/B8) 

Jan. 30, 2017 5 0.51 0.27 No significant model 

Apr. 30, 2017 4 0.97 0.11 TSS = -1.321 + 0.00176(B2) 

Table 2: Linear regression equations for predicting turbidity and TSS from band reflectance. 

When deciding if the overall model best represents the ability to calculate either turbidity or TSS, 

the value of the F-test in the Analysis of Variance (ANOVA) was verified in determining that 

both models as a whole are statistically significant. The F-test values for turbidity and TSS were 

0.0099 and 0.0036 respectively, with a significance level of < 0.01.  

In breaking down the equations by observation date, the regression equations for turbidity 

and TSS on December 21, 2016, showed an ANOVA F-test significance value of 0.0547 with no 

significance and 0.0433 at significance level of 0.05, respectively. Even though turbidity cannot 

be predicted in December, having a 99% confidence level for TSS, the hypothesis can be 

accepted for TSS with the reflectance values for the model to best explain the variability from in 

situ measurements. Since the parameter estimates for turbidity were not statistically significant, 

the model produced was not used. The regressions equations produced for turbidity and TSS on 

January 1, 2017, the ANOVA F-test value showed 0.0236 at significance level of 0.05 for 

turbidity and 0.1759 with no significance for TSS.  For TSS, the parameter estimates were not 

statistically significant, so the model produced from the regression equation was not used. Lastly, 

the regression equations that were produced for April 30, 2017, resulted in an ANOVA F-test 

significance of 0.1446 with no significance for turbidity and an ANOVA F-test significance of 
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0.0143 with a 0.05 significance level. With a confidence level of 95% confidence for TSS, the 

hypothesis of reflectance values may be used to estimate TSS for this study area. For turbidity, 

the model produced from the regression equation was not used, due to the statistically 

insignificant parameter estimates.  
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6.0 Discussion 

 The hypothesis for the ability to use reflectance values from satellite imagery to estimate 

water quantities that GBRA collected at their testing sites, can be accepted as true.  

Figure 10 shows what the turbidity looks like for all observations (n=14). The darker the 

brown the higher the turbidity and the darker the blue the lower the turbidity. From Station 

13700, Guadalupe River near Spring Branch, it can be noticed that there is a mixture of turbidity, 

some areas are higher than other. When the value of the pixel is measured and compared to the 

normalized turbidity measurement, the values are similar resulting in the all date’s model 

prediction as a valid option for predicting turbidity. Station 12598, Canyon Reservoir (Canyon 

Park Marina), has a mixture of turbidities, ranging from high turbidity farther in the lake and 

lower turbidity the closer to land.  As for where the station is located, the turbidity is on the 

higher side which relates to what the normalized in situ turbidity measurement collected read. 

Moving down the river to Station 12658, Guadalupe River at River Road (Second Crossing), 

from the map, it is noticeable that the turbidity is low. This station is not accurately predicted as 

these predicted values are lower than the measurements collected by GBRA. This could be 

caused from the shallowness of the Guadalupe River at this location, with more light being 

reflected back to the sensor, than being absorbed by the water. As the stations become closer to 

the City of New Braunfels, the more detection of light there is to the sensor due to the large 

amount of asphalt that surrounds Station 12653, Comal River at Hinman Island, and Station 

15082, Comal River at Landa Park. Station 12653 shows to have a low turbidity value and when 

compared to the in situ measurement, the in situ measurement is similar leading to the all date’s 

model accurately predicting this location.  The values of the pixels surrounding Station 15082, 

were accurately predicted from the all date’s model. The blue pixel turbidity value is similar to 
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the measurement collected in situ. Overall, the all date’s model accurately predicted 80% of the 

stations that were selected for turbidity measurement. The one station that the model did not 

accurately predict could have resulted from a bad measurement GBRA which lead to the model 

being skewed or not having enough observation points which resulted in a model that was no 

longer used for generalized points but just for those particular observations. 

 

 

Figure 10: Map of Guadalupe and Comal River showing estimated turbidity using the all date’s 

model. 

 Figure 11 shows the predictions of TSS using the all date’s model. The darker the red the 

higher the TSS and the darker the blue the lower the TSS.  Station 13700, shows to have a 
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mixture of yellow and red surrounding its location. When comparing the predicted values to the 

in situ collected measurements, the all date’s model prediction does not accurately represents the 

in situ collected measurements. The prediction model is higher than the collected measurement. 

When looking at Station 12598, it is noticeable that the area surrounding the station is a yellow 

green, this results in a TSS value that is mid value and approaching high. When looking at the 

predicted value versus the actual value, the all date’s model does not accurately predict TSS.  

The all date’s model predicted value is larger than what was collected in the field. Station 12658, 

shows to have a mixture of TSS with values ranging from high to low. The predicted values for 

this station are also higher than the measurements that GBRA collected. Station 12653, shows to 

have a range of TSS of the predicted values. In comparing the predicted values to the actual 

values, the predicted values are slightly higher than the actual values, but they are very similar, 

resulting in an accurate prediction. Predicting TSS for Station 15082, resulted in TSS values 

ranging from medium to high. In the comparison, the predicted values again where higher than 

the values that were in situ collected.  Overall, TSS could not be accurately predicted.  
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Figure 11: Map of Guadalupe and Comal River showing TSS using the all date’s model. 

When breaking the data down by observation date, starting with December 2016, the 

amount of solids within the water was low as can be seen in Figure 12. Station 13700 near 

Spring Branch, shows to have predicted low TSS. When comparing that value to the value 

GBRA collected they are very similar, meaning that the model accurately predicted TSS for that 

station. Station 12598, Canyon Reservoir, shows to have low to mid-range TSS. With the 

comparison between the predicted December model and the measurements collected via in situ, 

the model accurately predicted TSS at this station. At Station 12658, Guadalupe River second 

crossing, the model predicted that the TSS is low, which was accurate when looking at the 

comparison between the model and actual measurements. Station 12653, Comal River at Hinman 



31 
 

Island, shows to have low TSS for the month of December. In seeing how that relates to the 

actual TSS data, the model accurately predicted TSS for that station. Station 15082, Comal River 

at Landa Park, is predicted to have low TSS and when comparing the predicted values to the 

actual measurements, the predicted values were lower than the actual measurement. The 

December model did not accurately predict the TSS as this location. Overall, the December 

model accurately predicted 80% TSS at those station locations. As there was no significant 

model created for turbidity in December that data is not available. 

 

Figure 12: Map of Guadalupe and Comal River showing TSS using the Dec 2016 model. 

When analyzing the turbidity image from January 2017, it is noticeable that there is a lot 

of low turbidity areas, but upon further inspection of each station, it can be seen that this is not 
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necessarily true.  At Station 13700, there is low turbidity with one section of mid-range turbidity.  

In comparing the predicted January model to the actual in situ collected data, the predicted model 

accurately predicts the turbidity at that location. Station 12598, at Canyon Lake Marina, show to 

have high turbidity and low turbidity, but when comparing the model to the measurement, the 

model’s prediction was higher than what was collected by GBRA. Station 12658, Guadalupe 

River at the second crossing, shows to have section of high turbidity running through the middle 

of the river. When comparing the model the GBRA collected measurements, the model is lower 

than the actual collected data, leading to an inaccurate prediction. Station 12653, Hinman Island, 

shows to have low turbidity all around the location, in comparison, the model accurately 

predicted the turbidity. Station 15082, Landa Park, was predicted to have low turbidity, when 

comparing the January model to the actual data, lead to an accurately predicted model. Overall, 

turbidity was accurately predicted at 60% of the station. Since there was no significant model 

created for TSS in January that data is not available. 
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Figure 13: Map of Guadalupe and Comal River showing turbidity using the Jan 2017 model. 

 In Figure 14, there is an overall trend of having a high TSS prediction values at all 

stations. Upon further investigation, it can be seen that at Station 12598, Canyon Marina, that the 

model predicted high TSS, which is an accurate prediction based on the data collected by GBRA. 

At Station 12658, Guadalupe River at the second crossing, the model predicted high TSS, which 

is accurately represented in comparison to in situ collected measurements. Station 12653, 

Hinman Island, shows a wide range of high TSS and low TSS. In the comparison, the April 

model accurately predicted the low TSS. Station 15082, show to also have a mixture of high TSS 

and low TSS, and where the station is located the model accurately predicted the low TSS. Since 

Station 13700 was excluded from the April model, it cannot be verified that the model accurately 
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predicted that station. Overall, the model accurately predicted the TSS at these four stations.  

Since there was no significant model created for TSS in April that data is not available.  

 

Figure 14: Map of Guadalupe and Comal River showing TSS using the Apr 2017 model. 

Initially, there were fifteen total samples that were collected, but due to the high turbidity 

and TSS values at Station 13700, Guadalupe River near Spring Branch, on April 30, 2017, those 

values were excluded from the model. The reason this station was excluded was due to late night 

thunderstorms that passed over the Spring Branch, Texas causing the sediment to stir. Since this 

part of the river is shallow, it does not take much rain to for the particles to become suspended 

(WeatherSpark, 2019). According to GBRA, Station 13700 experienced runoff from a rainfall 
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that occurred on the date of collection. This rainfall washed debris into the water column from 

the surrounding watershed which increased the turbidity and TSS readings.  

A reason as to why the model only accurately predicted a portion of the stations in all the 

model could be due to overfitting each model. To have a successful model, statisticians 

recommend having at least 10-15 observation per term. If the model has less than that 

recommended number, then the model can become overfit. Overfitting the model means that the 

model no longer is valid if additional observation are added. That overfit model then starts 

predicting random error which leads to high R2 values (Frost 2019). For example, in the all 

date’s model, there were 14 observation and two terms, which equates to having seven 

observations per term. When the individual date’s model was ran, there was only 4 or 5 

observation points and if a two term model was used, then there would be 2-2.5 observations per 

term causing the model to be overfit.   

Another reason for the models only accurately predicting a portion of the stations could 

be due to the shallowness of the Guadalupe and Comal Rivers. The shallowness can cause light 

to be reflected off the bottom and returned back to the Sentinel-2 sensor leads to the false 

prediction values.  
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Conclusion 

 Although research has been done with comparing satellite reflectance values for turbidity 

and total suspended solids with in situ data measurement, these waterways include deep water, 

such as oceans and lakes, and are also located in highly populated, polluted areas outside the 

United States.  If there are studies done in the United States they are up North in the Great Lakes 

region or the New York Harbor. There is very little research on the water quality of rivers in the 

Southern United States. Through the comparison of reflectance values and linear regression, I 

have produced a water quality assessment of the five testing locations along the Guadalupe and 

Comal Rivers that flows through New Braunfels, Texas.  

 Using remote sensing techniques, water authorities, such as the Guadalupe Blanco River 

Authority, can get the data quicker, cheaper and more often. With these factors, they are able to 

update the stakeholders of their findings more frequently so if there is trouble with the water 

quality then preventative measures can be taken quickly.  

 Future studies will include taking testing locations in the upper and lower portions of the 

Guadalupe River, and comparing those reflectance values and in situ measurement to get a better 

understanding of what the turbidity and total suspended solids look like throughout the whole 

waterway. After looking at the Guadalupe River, testing this method on another shallow river 

waterway such as the Baro River in Ethiopia. 

Furthermore, the study of water quality is an important aspect of everyday life. 

Developed countries, such as the United States and Australia, are accustomed to turning on the 

tap and receiving fresh, clean, clear water that can be used for everything. This water has gone 

through a water treatment plant and will not contain any of the pesticides or parasites that will 

make the human population ill. In undeveloped and developing areas of the world, such as 
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Mexico and Argentina, the water coming out of the tap is not always reliable. People may have 

to walk great distances to get water for their family usage from the local watering hole which 

could contain parasites and pesticides. With the use of remote sensing, these developing 

countries can use this technology to determine the quality of their water and enlist help on how 

to make it better for their communities and people. 
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Definitions 

Analysis of Variance – a statistical method used to measure the difference between two or more 

means. 

Atmospheric correction – the process of removing the effect of the atmosphere on the reflectance 

values of images take by satellites and remote sensors 

Atmospheric Scattering – the redirection of electromagnetic energy by suspended particles in the 

air. There are three types of scattering: Rayleigh scattering: light interacts with 

molecules/particles that are smaller in diameter than the wavelength of incoming light, scatters 

blue light; Mie scattering: light interacts with molecule/particles that are similar in diameter to 

the wavelength of incoming light, scatters near ultraviolet to mid infrared light; and Non-

selective scattering: diameter of particles is much larger than the wavelength of incoming light; 

scatter all visible light. 

Bottom of atmosphere reflectance or surface reflectance – accounts for scattering and absorption 

in the atmosphere and provides pixel values that are spectrally similar to what an observer would 

measure on the ground during satellite overpass 

Correlation of determination (R2) – assesses how well a statistical model explains and predicts 

future outcomes. If R2 = 0, then the dependent variable cannot be predicted using the 

independent variable. If R2 = 1, then the dependent variable is always predicted by the 

independent variable. 

Digital Number (DN) – the value of the pixel the satellite sensor stores. 

European Space Agency – an intergovernmental organization of 22 member states dedicated to 

the exploration of space. 

F-test – a test within ANOVA, the measures the dispersal of data points around the mean. 

Geolocation – the identification/estimation of the real world geographic location of an object. 

Geometric corrections – the process of digitally manipulating an image’s data such as the 

image’s projection to precisely match what is seen on the ground. 

Hyperion satellite – a sensor launched by NASA on November 21, 2000, has 220 bands, a spatial 

resolution of 30 meters, was decommissioned on March 30, 2017. 

In situ – taken/left in original location. 

Landsat 7 Enhanced Thematic Mapper Plus – a sensor launched by NASA on April 15, 1999, has 

8 bands, a spatial resolution of 30 meters. Used to study agriculture, forestry, geology, and 

regional planning. 
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Landsat Thematic Mapper – a sensor aboard two satellites launched by NASA, the first Landsat 

4 launched on July 16, 1982, had 7 bands, a spatial resolution of 30 meters, and decommissioned 

on June 15, 2001. The second Landsat 5 launched on March 1, 1984, had 7 bands, a spatial 

resolution of 30 meters, and decommissioned in June 5, 2013. Used to study global warming and 

climate change. 

Landsat Multispectral Sensor – a aboard five satellites (Landsat 1 – 5), had 4 bands, a spatial 

resolution of 60 meters, and was decommissioned between 1978 and 2013. Used to study 

agriculture, forestry, geology, and regional planning. 

Level-1C imagery – composed of 100 km2 tiles, contain radiometric and geometric corrections 

and top of atmosphere reflectance. 

Level-2A imagery – composed of 100 km2 tiles, includes atmospheric correction applied to top 

of atmosphere Level-1C imagery, main output is bottom of atmosphere corrected reflectance 

product. 

LISS IV – an Indian satellite, has 3 bands, and a spatial resolution of 5.8 m. Used to monitor land 

and water resources. 

MODIS – a sensor launched by NASA in 1998, has 36 bands and spatial resolutions ranging 

from 250 m to 1 km. Use to monitor cloud cover, process occurring the ocean, on land and in the 

atmosphere. 

Positive epistemology – uses the scientific method to answer the research question. 

Radiometric corrections – the process of fixing digital numbers when the observed energy does 

not match with the energy emitted or reflected from the same object. 

Red edge – the region of rapid change in reflectance of vegetation in the near infrared band, used 

to monitor plant health. 

Reflectance values – the ratio of the amount of light leaving an object to the amount of light 

hitting the object. 

Remote sensing – the art and science of obtaining information about an object without being in 

direct contact with that object. 

Root Mean Square Error – the difference between values (sample or population) predicted by the 

model and the values observed. 

Secchi Disk depth method – used to gauge the transparency of water by measuring the depth at 

which the disk ceases to be visible from the surface. 

Sen2Cor – a processor for Sentinel-2 Level-2A product generation and formatting. 

Sentinel-2 sensor – two sensors owned by the European Space Agency where 2A was launched 

June 23, 2015 and 2B was launched March 7, 2017. Used to monitor agriculture, emergency 

management, water quality, and land cover classification. 
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Spatial – occupying space. 

Spectral – a collection of energy that is reflected or emitted from features on Earth’s surface. 

Spectroradiometer – an instrument used to measure the spectral response of a source. 

SPOT sensor – a satellite owned by the French space agency, with launch dates starting in 

February 22, 1986 through June 30, 2014. Used to detect and forecast phenomena involving 

climatology and oceanography, along with monitoring human activity and natural phenomena. 

Temporal – time. 

THEOS sensor – satellite owned by the French space agency, launched October 1, 2008, has 4 

bands and a spatial resolution of 15 m. Used to monitor Thailand. 

Top of Atmosphere reflectance – a unit less measurement which provides the ratio of incoming 

light to the emitted light on the surface of an object. 

Total Suspended Solids – the dry weight of suspended particles that can be trapped using a 

filtration system. 

Turbidity – the cloudiness or haziness of a fluid. 

Water column – the area from the surface of a sea, river or lake to the bottom sediment. 

Water Quality – the physical, chemical, and biological aspects of water. 

 

 

  

 


