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ABSTRACT 

In manufacturing industry, data is available in both structured and unstructured 

forms. Although the unstructured data represented in natural language text contains 

valuable information and knowledge, its effective processing for the sake of information 

retrieval and knowledge extraction is a challenge. Manufacturing Capability data is an 

example of unstructured data widely used for describing the technological capabilities of 

manufacturing companies. The objective of this research is to use a set of text analytics 

techniques to enable automated classification and ranking of manufacturing companies 

based on their capability narratives available on their websites. For this purpose, a 

supervised classification method is used in conjunction with semantic similarity 

measurement method. A formal thesaurus that uses Simple Knowledge Organization 

System (SKOS) format provides structural and lexical semantics to support classification 

and ranking. To conduct semantic similarity measurement, edge-based method is 

combined with Normalized Google Distance (NGD) technique to create a weighted edge-

based method for measuring the similarities of manufacturers’ capabilities with the 

queried capabilities provided by customers. The proposed framework is validated 

experimentally using a hypothetical search scenario. The results indicate that the 

generated ranked list is highly correlated with human judgment, especially if the query 

model and supplier capability model belong to the same class. However, the correlation 

decreases when multiple overlapping classes of suppliers are mixed. The findings of this 

research can be used to improve the precision and reliability of Capability Language 
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Processing (CLP) tools and methods and improve the intelligence of supplier discovery 

and capability mapping platforms. 
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1. INTRODUCTION 

1.1. Background and Motivation 

Due to rapid digitalization of manufacturing industry, the volume and diversity of 

data, in both structured and unstructured forms, is growing exponentially. The focus of 

this thesis is on manufacturing capability data that describe the production process, 

material, quality capability, and engineering capabilities of manufacturers. Manufacturers 

use various forms of data, including structured and unstructured natural language, to 

describe their manufacturing capabilities. Particularly, companies’ websites are often 

used as the primary venue for advertising manufacturing capabilities. Most of the 

information found on manufacturing suppliers’ websites is human generated which 

presents data in the form of unstructured natural language text. The unstructured data is a 

valuable source of highly important capability data. While querying and searching 

structured data is a relatively mature and efficient process, unstructured data in the form 

of natural language presents several challenges with respect to search, information 

retrieval, and knowledge extraction. 

Keyword search is the de facto method for retrieving information from 

unstructured text. However, keyword search often results in lower precisions since it 

often ignores the semantics of data. In this thesis, the focus is on semantic search 

methods. As opposed to keyword search, semantic search considers meaning and context 

instead of only exact matches of a word.  

 This research is motivated by the need for improving the intelligence of supplier 

discovery process. A supplier evaluation system that is supported by text analytics and 

machine learning algorithms can provide manufacturers with a better visibility into the 
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strengths and weaknesses of the other manufacturing suppliers and positively impacts 

their decisions about their prospective business partners. The methods and models 

developed in this research can support supply chain decisions during the early stages of 

supply chain formation process.  The goal is to help supply chain managers select 

appropriate manufacturing partners based on their capabilities as described on their 

public websites. Traditional keyword-based techniques for search have several limitations 

and typically the returned results have very low precision. More sophisticated techniques 

need to be used to ensure the search process returns a set of relevant manufacturing 

suppliers that can fulfill the required manufacturing services. Various supervised and 

unsupervised text analytics techniques can be used for this purpose. One of the 

techniques that can effectively organize the data into various categories is classification   

. Classification (Bhavsar & Panchal, n.d.) is a machine learning technique which is 

widely used in different industries to classify data in various classes. Classification 

techniques identify group membership for data instances. 

Typically, the supplier groups that are formed after classification steps ate still 

very large in size and manual sorting and analysis of the members of each group is very 

time consuming.   Therefore, suppliers within each group need to be ranked according to 

their relevance to the search criteria. Keyword matching can be used as a technique for 

ranking the results. However, since keyword matching disregards the semantics of the 

search terms, the outcome often suffers from low precision and recall. This research is 

addressing this issue by implementing a semantic approach to measuring similarity and 

relatedness.  
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1.2. Problem Statement  

A typical supplier search and assessment process often entails the evaluation of a 

large number of small-to- medium sized manufacturers (SMMs) which are potentially 

capable of providing the requested services. However, the diversity of this supply pool 

negatively affects the efficiency of evaluating and selecting manufacturers while 

searching for qualified suppliers in this pool. A large volume of unstructured data can be 

found on manufacturers’ website, which contain valuable information about suppliers’ 

capabilities. If manufacturing capabilities available on suppliers’ website are analyzed 

and evaluated, more accurate decision will be made when selecting supply chain partners.  

The objective of this research is to use text analytics techniques to compare, evaluate, and 

analyze the capabilities of manufacturing companies based on the unstructured data 

available on their website.  

1.3. Research questions 

This research work is intended to answer the following questions: 

 Which classifier will have the best precision/recall/ F-measure in this work? 

 What method of similarity measurement should be used for the ranking? 

 How can classification affect similarity scores? 

 How to compare automatically generated rankings with human expert’s 

rankings?  

1.4. Assumptions, Limitations, Delimitations 

1.4.1.  Assumptions 

 It is assumed that manufacturers might use informal terminology and jargons 

for describing their capabilities. The reason for this assumption is that 
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practitioners in the manufacturing domain do not always follow the scientific 

terminology often found in manufacturing reference books and technical 

documents.  

 It is assumed that all information that suppliers have provided on their website 

is true and indicates their real capability. 

 It is assumed that the sourcing web-portal (Thomas Net) that is used for 

collecting supplier data has categorized suppliers correctly. Thomas Net 

includes multiple capability categories and there exist hundreds of contract 

manufacturers under each category.  

1.4.2.  Limitations 

 Data can only be collected from suppliers’ websites, and it is limited to what 

they have published as their website content. It is not possible to have access 

their internal and proprietary information that is not published publicly. 

 Limited and various number of suppliers providing services in different 

manufacturing classes, is a limitation to collect adequate data. 

 Lots of suppliers’ website URLs are protected against being crawled, which 

makes it impossible to used Entity Extractor feature on SKOS Tool. 

1.4.3.  Delimitations 

 The research only uses suppliers’ websites which are in the USA and have 

their content in English for data collection, as the source portal only provides 

categorized suppliers in the USA. 

 In this work numeric data such as tolerances and dimensions are excluded, as 

the manufacturing capability thesaurus primarily addresses qualitative 
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manufacturing capability characteristics and excludes quantitative 

characteristics. 

 This research only studies manufacturing suppliers and excludes logistics 

service providers since this research mainly focuses on manufacturing 

capabilities.  

1.5. Research Methodology 

To unlock the value of the unstructured capability data, there is a need for 

developing advanced quantitative techniques supported by semantic modeling, machine 

learning, Natural Language Processing (NLP), and statistical inference methods. We refer 

to the pipeline of capability text analysis tools and methods as Capability Language 

Processing (CLP) which is a branch of Technical Language Processing (TLP).  TLP is a 

human-in-the-loop iterative approach to tailor NLP tools to engineering data (Brundage 

et al., 2021) .TLP seeks to re-imagine the out-of-the-box NLP pipeline (including 

tokenization, stop-word removal, cleaning, and stemming) since they are historically 

designed with non-technical language in mind. Capability Language (CL) is a highly 

technical language containing specialized vocabulary, jargons, and tribal knowledge, and 

the data processing and analysis techniques that use capability language as the input need 

to be supported by specialized resources for data preparation, annotation, and 

representation. 

This research uses a hybrid approach that involves classification and ranking of 

manufacturing suppliers based on the textual data available on company websites.  

Bag of Concepts (BoC) method is used for supervised classification of 

manufacturing suppliers in which a dictionary of manufacturing concepts is required. In 
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this research Manufacturing Capability Thesaurus (MCT) which contains manufacturing 

capability concepts is used. MCT is created using a web-based tool called SKOS Tool 

that is developed in the Engineering Informatics lab. The created thesaurus uses semantic 

relationships and links and organizes capability concepts in this regard. It includes 8 

concepts schemes and manufacturing capability concepts are added under these concept 

schemes. Once target classes are defined, for each target class, a set of features have to be 

chosen which demonstrate relative features to each target class. In addition, as not all the 

concepts are at the same level of importance in describing the features of a target class, 

they need to be weighted. These weighed sets are called Concepts Models which SKOS 

Tool is able to create using Concept Model Builder feature.  

To collect data, manufacturing suppliers’ websites contents are extracted to 

generate the raw data. These data are used as the input to Entity Extractor feature in 

SKOS Tool that can create a concept vector for each supplier. A concept vector includes 

the concepts and their frequencies for each supplier in a comma-separated value (CSV) 

format. The generated concept vectors for individual supplier can be unified in a CSV file 

to form a matrix. Manufacturing suppliers’ websites in two target classes are reached out 

using Thomas Net sourcing portal1 . 

Once concepts model and unified suppliers file are available, using known 

classifiers, the experiment can be performed. Decision Tree, Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN), and Random Forest (RF) are the classifiers which 

will be used in this experiment to classify suppliers into two pre-defined target classes. 

                                                 
1 Thomasnet.com 
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Precision, recall, and F-measure are the three metrics that will be used to evaluate each 

classifier’s accuracy. 

According to the motivating use case for the proposed manufacturer 

recommendation framework, the user submits a query that is composed of a vector of 

thesaurus concepts that collectively represent the required manufacturing services and the 

desired capabilities of supplier of those services. Since the manufacturers are also 

represented as concept vectors extracted from the same thesaurus, the similarity 

measurement between the requested capabilities and provided capabilities by each 

manufacturer is reduced to a set of pairwise similarity measurements between requested 

and provided capability concepts.  

A hybrid approach using both corpus-based and knowledge-based methods is 

adopted in this work for semantic similarity measurement between concept pairs. While 

the edge-based method takes into account the inheritance relationships between the 

concepts as an indication of their semantic similarity, the Normalized Google Distance 

(NGD) approximates the semantic relatedness of concepts based on their co-occurrences 

in a large corpus. In the proposed hybrid method, the NGD between two concepts will be 

used as the weight of the edges on the path between these concepts.  

An example query will be formulated for this experiment that contains a set of 

concepts referring to different aspects of manufacturing capabilities that can be provided 

by qualified suppliers. The query will be formulated such that it targets suppliers from 

one of the target classes. The overall similarity score for each category is the average of 

the pairwise similarity scores obtained for that category. In this way, the length of the 

concept vector for each supplier will not inflate the overall similarity score of the 
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category. The overall similarity between the query and the supplier can be calculated as 

the sum of similarity values calculated for each capability category. Using the existing 

equations for proposed methods, the similarity score associated with each supplier will be 

computed in Python environment. 

When all suppliers’ similarity scores are available, they will be ranked based on 

their score. In addition, to evaluate the accuracy of the ranking step, its output will be 

compared with the ranking provided by a human expert. The human expert will be 

provided with suppliers’ website URL and will be asked to rank suppliers based on their 

similarity to the formulated given query. Once both rankings of similarity measurement 

and human expert are done, Spearman’s ranking correlation will be used to compute the 

correlation between similarity measurements ranking with rankings generated by the 

expert. 

Figure 1 shows the main steps of the proposed framework for supplier 

classification and ranking.  The raw data, i.e., capability narratives, are extracted directly 

from the website of suppliers and typical pre-processing and data cleaning steps are 

conducted. The next step is tokenization or separating the text into meaningful terms and 

phrases for each supplier. Then the suppliers are classified into several predetermined 

capability classes such as suppliers with precisions machining capabilities or suppliers 

with heavy and large part machining capabilities. Similarity measurement step entails 

measuring the similarity between the capabilities advertised by a supplier and the 

capabilities requested by a customer. Since the text is decomposed into tokens, the 

similarity measurement is boiled down to measuring pair-wise similarities between 

relevant terms and phrases.  For example, if a supplier’s industry focus is Automotive 
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Industry but the queried industry focus is Aerospace Industry, then similarity between 

aerospace industry and automotive industry needs to be measured as one of the 

components of the overall similarity score.  The final outcome is a ranked list of suppliers 

based on their degree of similarities with the queried capabilities. Both classificational 

and similarity measurement steps use the Manufacturing Capability Thesaurus (MCT) as 

one of the inputs. It should be noted that in this work we are mainly concerned about the 

semantic similarities between the terms. In absence of a formal ontology that can provide 

formal and axiomatic semantics for a term, a formal thesaurus that encodes structural and 

lexical semantics is used in this work. Figure 1 shows an overview of the classification 

and ranking framework proposed in this work. 

 

Figure 1: The Overview of the Classification and Ranking Framework 
  



 

10 

1.6. Research Plan 

Work in this research is divided into tasks as described below: 

 Task 1. Literature Review on Text Classification and Semantic Similarity 

Measurement: 

Reviewing text classification and semantic similarity measurement papers to 

discern and recognize problem is the purpose of this task. In this task using 

Google Scholar search engine, related keywords to the topics have to be 

searched and by reviewing more than 60 papers, appropriate and most related 

papers to this research have to be selected. 

 Task 2. Modeling and Implementation: 

In this task, based on the gathered knowledge from previous task, a proper 

model which can fill the gaps and solve the problem has to be created. This step 

includes finding the best similarity measurement method and equation to solve 

the problem.  

 Task 3. Thesaurus Extension: 

The thesaurus is built in bottom-up manner through tagging the capability-

related term on manufacturing suppliers’ websites. In this task, thesaurus will 

be extended by tagging previously untagged capability-related terms on 

manufacturing suppliers’ websites.  

 Task 4. Data Collection: 

In this task, using Thomasnet.com suppliers of each of these 2 (or more) classes 

will be collected using their website content and SKOS Tool entity extractor 
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feature created by the Engineering Informatics lab at Texas State University 

and collected data will be unified in a CSV file. 

 Task 5. Experiment: 

In this task, gathered data and created model will be used to run the experiment. 

The experiment will include the two phases of classification and ranking. The 

results obtained through classification and ranking will be compared with the 

ranking generated by human expert. 

 Task 6. Analysis: 

When experiment is done, the experiment result will be analyzed in this task. 

Analysis of the experiment result will provide a roadmap for improving the 

model. In addition, in this task, suggestions for future work will be provided. 

 
Figure 2: Research plan Gantt chart 

 

 

 

  

Task
DURATION 

(Months)
START FINISH Predecessors

Task 1 4 Feb-1-2020 May-31-2020

Task 2 6 June-1-2020 Nov-30-2020 1

Task 3 3 Dec-1-2020 Feb-28-2020 2

Task 4 4 Mar-1-2021 Jun-30-2021 3

Task 5 2.5 Jul-1-2021 Sep-15-2021 4

Task 6 3 Sep-16-2021 Dec-15-2021 5

Nov DecJune July Aug Sep OctMayJulyJuneMayAprilMarchFeb OctSepAug AprilMarchFebJanDecNov

16-May:30-Oct
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2. CAPABILITY TEXT CLASSIFICATION 

2.1. Document Classification  

Classification is the process of categorizing inputs under pre-defined classes or 

categories based on shared features of the input elements such as concepts.  

Document classification is related to the process of categorizing, labeling, and 

tagging items and assigning them to defined categories in databases based on their 

content to ease the procedures of managing, searching, and analyzing the documents.  

One of the applications of document classification is text classification which is 

the concern of this work. Text classification involves the process of classifying textual 

document using some text analysis techniques in different levels of document, paragraph, 

sentence, and subsentence.  

Three different approaches can be adopted in text classification based on the 

application text classification is doing for: 

 Supervised Text Classification: In supervised text classification, a set of training 

data and classes (labels) are available and controlled by human. Model can learn 

from the training data and perform classification on other sets of data. 

 Unsupervised Text Classification: As opposed to the supervised text 

classification, this approach puts documents into different clusters without any 

prior training. 

 Semi-Supervised Text Classification: Semi- supervised text classification falls 

between supervised and unsupervised text classification. Semi-supervised text 

classification uses a self-training mechanism to learn from small amount of 

labeled data to label a vast amount of unlabeled data. 



 

13 

2.2. Capability Text Classification  

In the initial stages of supply chain building, capability analysis is required. While 

the majority of capability analysis methods use structured data, manufacturing suppliers’ 

website present their data in form of unstructured data and natural language form. Figure 

3 shows an example of unstructured data that described the capabilities of a manufacturer 

with specialty in CNC machining of large parts. 

As a high volume of information and knowledge is stored as text in 

manufacturing suppliers’ website, text analytics techniques can be used for extracting 

useful knowledge patterns and insights. Manufacturing capability data can be found 

through various sources and formats; yet the largest proportion of data is in unstructured 

and semi-structured form which is the reason why using text mining approaches 

including text classification can be beneficial (Korde, 2012).  

 
Figure 3: An example of unstructured manufacturing data 

 

This work uses text classification approaches for manufacturing suppliers’ 

capability classification. Text classification techniques are used to classify suppliers 

under pre-defined capability classes. One step in the text classification is the feature 

extraction. As text and documents are in the form of unstructured data, this data needs to 
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be converted into structured forms of data by using mathematical modeling. In the first 

stage of feature extraction, data needs to be polished to be free of nuisances. Feature 

extraction can be applied after data cleaning (Kowsari et al., 2019). 

A thesaurus guided method is adopted in this work. Manufacturing Capability 

Thesaurus is built in a bottom-up manner through tagging relevant terms which are 

semantically and lexically interconnected. The thesaurus contains capability related 

terminologies used in the manufacturing industry. The thesaurus provides the concepts 

(features) associated with each manufacturing capability class. The documents (capability 

narratives collected from websites) are also transformed into vector of terms to provide 

the input to the classifier. The classifiers that are often used for text classification are: 

Decision Tree, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and 

Random Forest (RF).  

2.3. Related Works in Text Classification 

One of the first steps in unstructured data processing is tokenization or separating 

the text into meaningful terms and phrases.  

Wang et al. addressed the words with different meanings (polysemy) problem 

using bag of concepts instead of traditional bag of terms technique (F. Wang et al., 2014). 

Their proposed mechanism has two stages. In the first stage, a conceptual model for each 

target category is generated using a large knowledge-based thesaurus. Then phrases and 

short texts are classified based on their similarity. 

Dong and Liu studied classification of enterprise websites using a technique based 

on support vector machine and topic feature modeling (Dong et al., 2010). They exploited 

a multi-feature topic vector generated by the website’s textual content and content 
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structure to determine the category of the website. Their method was validated by 

conducting an experiment on manufacturing enterprise website search. 

(Shotorbani et al., 2016) offered a method using clustering and topic modeling to 

enhance searching and organizing textual documents and extract valuable patterns from 

manufacturing websites. The method illustrated topic modeling along with document 

clustering, boost annotation, and classification of manufacturing supplier’s webpages, 

which helped users to extract valuable patterns from supplier’s websites (Shotorbani et 

al., 2016).  

Assessing factories’ readiness for implementation of technologies was proposed 

by Jung et al. The result of this research can support creation of smart manufacturing 

systems. Evaluating the companies and providing users with the status of the current 

target company’s readiness level in comparison to the reference model is the basis of this 

method. Knowing the current state helps companies improve their readiness level that can 

have a positive correlation with companies’ operational functions (Jung et al., 2017). 

2.4. Capability Text Classification 

Text classification is the process of categorizing text under pre-defined classes 

according to its content (Korde, 2012). An automated text classification for 

manufacturing suppliers provides the opportunity of using the untouched data as 

published by the manufacturing suppliers. Automatic text classification can be conducted 

using both rule-based and machine learning methods. This work uses supervised machine 

learning in which pre-classified text is used to train the classifier. Once trained, the 

classifier can make a prediction about the class of an unlabeled text. One of the first steps 

in supervised classification is the feature extraction step, where the text is transformed 
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into a vector representation (F. Wang et al., 2014). This step can be done either manually 

or automatically through machine learning. Domain experts will precisely extract features 

associated with each class of interest in a timely manner. On the other hand, automated 

feature extraction consumes less time and effort by satisfying the consideration of 

semantic relationships of the features. Feature extraction strategies do not change the 

variables' original representation, but rather choose a subset of them. As a result, they 

preserve the original semantics of the variables, allowing a domain expert to interpret 

them (Saeys et al., 2007). A semi-automatic feature extraction is used in this research 

supported by a formal thesaurus that uses SKOS (Simple Knowledge Organization 

System) for its syntax and semantics. 

2.5. Manufacturing Capability Thesaurus (MCT) 

The Manufacturing Capability Thesaurus (MCT) is the core of the proposed 

classification method.  MCT provides a concept schema for manufacturing capability 

terms. The MC Thesaurus comprises the common terminologies that are frequently used 

to describe a supplier's manufacturing capabilities. One complication is that every 

industry has a limited set of vocabulary that is only meaningful to those who work in that 

field. A thesaurus can be used to reduce terminological obscurity by semantically 

integrating seemingly diverse terms in different subcategories of the manufacturing 

industry. Terms as Articulating Arm, Coordinate Measuring Machine, and CMM may be 

used in MCT to describe suppliers’ capability with respect to production resources. A 

thorough thesaurus of manufacturing capability enables each website to be translated to a 

vector model (Ameri & Bernstein, 2017). MCT is built in a bottom-up manner (by 

selecting terms from raw text and classifying them under appropriate broader concepts) 
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through tagging the capability-related terms found on manufacturing suppliers’ websites 

in a corpus and connecting them using semantic and lexical relationships. The thesaurus 

is built with 13 Concept Schemes, namely, Accreditation and Certification, Capacity and 

Variety, Human Resource, Industry, Input/Output Artifact, Manufacturing Process, 

Material, Organization, Product and Process Attribute, Production Capability, Production 

Resource, Service, and System. Each concept scheme forms a taxonomy of concepts 

structured through parent-child relationships.  

2.5.1.  SKOS Tool 

MCT uses Simple Knowledge Organization System (SKOS1) for its syntax and 

semantics. SKOS is a W3C standard that is recommended for creating thesauri, concept 

schemes, and taxonomies by providing an interoperable framework and formal 

annotation vocabulary. SKOS thesauri are concept-based, as opposed to term-based, in 

nature. In a term-based thesaurus, terms are directly connected by lexical relationships 

whereas, in a concept-based thesaurus, semantic connection is at a concept level and 

terms are the lexical labels for the concepts.  

Concept is defined as a unit of thoughts which is based on the common 

characteristic of the objects or experiences which belong to a category and is able to 

fragment a vast amount of information (Gray & F. Bjorklund, n.d.).  

Each concept in SKOS has exactly one preferred label (skos:prefLabel) and can 

have  several alternative labels (skos:altLabel) which are the synonym terms frequently 

used pointing to the same concept.  

SKOS thesaurus has a three-level structure:  



 

18 

a) Conceptual level, which identifies concepts and establishes 

interrelationships of concepts. 

b) Terminological correspondence level, which allocates terms to their 

respective concepts (preferred or alternative labels) 

c) Lexical level, which defines concepts interrelationships (i.e., broader, 

narrower, related).  

Narrower labels (skos:narrower) indicate a more specific form of their broader 

labels (skos:broader) having a hierarchical link, and the associative relationships are 

defined through related labels (skos:related) (Ameri et al., 2020). A SKOS thesaurus 

forms a knowledge graph which can be enriched continuously to support various data-

driven and knowledge-intensive applications. Figure 5 shows the concept diagram of the 

molding sand based on the SKOS terminology. 

 
Figure 4:The concept diagram of the Molding Sand based on SKOS terminology (Ameri et al., 2020) 

 

2.5.2.  Thesaurus Development and Extension 

The MC Thesaurus is built in a bottom-up manner by tagging capability-related 

terms and phrases on manufacturing suppliers' websites. Thesaurus terms are only added 
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when they are frequently used. Using the bottom-up technique enables the thesaurus to 

capture well understood informal vocabularies in the manufacturing industry. It is worth 

noting that the generated thesaurus focuses primarily on qualitative characteristics of 

industrial capability. The numeric and quantitative characteristics, same as tolerances and 

dimensions, are excluded in building the thesaurus, as there is not a fixed list available 

for them and they vary from supplier to supplier and product to product. The MC 

Thesaurus currently contains more than 990 concepts designated by about 1,300 labels 

that are categorized under 13 concepts schemas. 

Tagging relevant words in a bottom-up manner can be done through SKOS Tool 

by Tagging the candidate terms to the most relevant concept schemes manually by 

identifying the most appropriate broader concept as shown in Figure 5.  

 
Figure 5: Tagging candidate terms manually to develop the thesaurus 

 

 

Term selector feature provided in the SKOS Tool is another method of tagging 

relevant concepts and extending the thesaurus. This feature identifies tagged terms in a 

plain text, website URL, or in a CSV file which enables the human expert to identify and 

tag new relevant text by simply choosing the most related parent. Figure 7 shows how 

term selector feature adds new relevant terms to the thesaurus. Terms highlighted in red 

and green already exist in the thesaurus. 
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Figure 6: Term selector feature and relevant terms to the thesaurus 

 

The following stages might be used to further explain and define the integrated concepts:  

1-Providing a textual definition of the concept  

2-Providing alternative labels for the concept, if possible  

3-Linking the concept with the other related concepts (both internal and 

external) 
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2.5.3.  Capability Model in MCT  

As a result of the bottom-up term tagging and concept integration described in the 

previous section, numerous categories of concepts (or concept schemes) were created: 

Accreditation and Certification, Capacity and Variety, Human Resource, Industry, 

Input/Output Artifact, Manufacturing Process, Material, Organization, Product and 

Process Attribute, Production Capability, Production Resource, Service, and System. 

Figure 7 shows the distribution of concepts in the thesaurus related to each concept 

scheme. 

 
Figure 7: Distribution of concepts included in each concept scheme 

 

Accreditation and Certification: Quality certifications, quality awards, quality 

control, industry-wide accreditations and inspection methods and tools, and other terms 

relating to quality, accreditations, and inspection are covered by this schema. 

Capacity and Variety: This concept scheme includes production capacity, production 

scope, and production variety that a manufacturer can provide. 

Human Resource: The capabilities relating to human resources and occupation are 

described in this concept scheme. 
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Industry: This concept scheme incorporates concepts that explain the market 

categories and industries supplied by the company, such as defense, automotive, and 

aerospace. 

Input/Output Artifact: This concept scheme contains both digital and physical 

artifacts that a manufacturer can process or manufacture. 

Manufacturing Process: This concept scheme includes manufacturing processes a 

manufacturer may be capable of. 

Material: Material concepts scheme includes material related concepts of material 

family and named material. 

Organization: The capabilities relating to organization type are brought under this 

concept scheme. 

Product and Process Attribute: This concept scheme includes geometric features, 

min-max limits, part attribute, and process attribute. 

Production Capability: Capability concepts related to complex part machining, large 

part machining, precision machining, and work holding machining are the concepts 

under this concept scheme. 

Production Resource: Equipment, facility, machine, and tool are covered under 

production resource concept scheme. 

Service: Engineering service, logistic service, test and inspection service, and tool 

making service are included in this concept scheme. 
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System: This concept scheme contains concepts related to the production support 

system, production system, quality system, and software system. 

2.6. Manufacturing Text Classification  

In this section, the proposed method of classification is described.  

2.6.1.  BoW vs. BoC  

Most conventional text classifiers use an approach known as Bag of Words 

(BoW) where a document is represented as a vector of words with their frequency of 

occurrence in the document. The words in BoW come from a dictionary or vocabulary 

generated automatically from the collection of provided text.  One major drawback of 

BoW approach is that it does not retain the semantics of the original phrases (or N-grams) 

when they are decomposed into single terms (1-grams). For example, the phrase Swiss 

Turning designates a specialized turning process for small and intricate parts is 

decomposed into Swiss and Turning, none of which convey the precise meaning of the 

Swiss Turning process (Ameri & Bernstein, 2017). To remedy the semantic degradation 

issue in the BoW approach, Manufacturing Capability Thesaurus (MCT), as a hand-

crafted controlled vocabulary, is adopted in this work to substitute the dictionary of terms 

used in conventional methods of text classification (Sabbagh et al., 2018). MCT contains 

relevant concepts pointing to different aspects of manufacturing capability. The feature or 

concept vectors generated during the feature extraction process directly use the concepts 

from MCT without decomposing them into atomic terms. We refer to this alternative 

method as the Bag of Concepts (BoC) technique. It has been demonstrated that BoC 

results have better accuracy compared to the BoW technique when classifying 

manufacturing capability text (Sabbagh & Ameri, 2018). 
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2.6.2.  Classification 

Manufacturing suppliers are classified indirectly by classifying the text that 

describes their capabilities. Text classification is conducted in two phases: (1) Concept 

Model Generation (offline phase); (2) Test Document Classification (online phase) as 

shown in Figure 8. 

The first phase results in generating a concept model associated with each class. 

The concept model is essentially a weighted vector of concepts representing the class of 

interest.  During the second phase, the classifier is trained to identify manufacturer 

capability class for each manufacturer based on its capability narrative. These two phases 

are discussed in more detail in the following sections.   

 
Figure 8: Proposed Manufacturer Classification Framework 



 

25 

2.6.3. Concept Model 

Entry Concepts (𝒆𝒄𝒊): Concept Models are formed by submitting relevant 

SPARQL queries to the thesaurus.  To build a concept model, the first step is to identify a 

few entry concepts (eci) that are closely related to the target class. Entry concepts are 

selected by a human expert since background knowledge is needed for identifying the 

distinguishing concepts for each class of interest. For example, in Heavy and Large 

Machining capability class, a possible entry concept set can be EC = {ec1= Heavy 

Machining, ec2= Large CNC Machining, ec3= deep hole machining, ec4 = Large Part, 

ec4= Vertical Milling Machine}. The Human expert will identify entry concepts from 

mid-level concepts which are interrelated with other concepts existing in the thesaurus. 

The SPARQL query is then submitted to the thesaurus to retrieve the broader, narrower, 

and related concepts for each entry concept with adjustable depths. By identifying the 

entry concepts by the human expert, concepts models associated to each capability class 

will be built around the entry concepts.  

Weighting System for Concepts: As not all the concepts have the same level of 

importance for each particular capability class, the level of significance of each concept is 

specified using a weighting schema as shown in Figure 9. 

All returned concepts do not have the same level of importance for the target 

class. For example, according to the concept weighting schema used in this work, for an 

entry concept, the weight assigned to preferred labels of entry concepts is “9” while the 

alternative labels receive “5” as their weights for entry concepts as the preferred label has 

more importance than the alternative label(s) based on this schema. In this regard, any 

related concept, narrower, or boarder receives a lower weight. Given training data as 𝐷 =

 {𝑑1, 𝑑2, … , 𝑑𝑛} for the class 𝐶𝐿𝑖, the weighted concept model will be represented 
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as: 𝐶𝑀𝑖 =  (𝑐1, 𝑤1], 𝑐2, 𝑤2], … , 𝑐𝑚 , 𝑤𝑚]), in which wi  is the weight associated with each 

concept.  

 
Figure 9: Concept Model Weighting Schema 

 

Concept Model Generation: A Concept Model is a set of weighted concepts that 

collectively designate a target capability class. In essence, the target capability class 

describes a desirable supplier through a set of concepts contained in a concept model.  

2.6.4. Test Document Classification 

In this section, the documents (suppliers’ website content) are converted into 

concept vectors to be classified under the target classes of capability via four common 
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classification techniques, namely, Decision Tree, Support Vector Machine (SVM), K-

Nearest Neighbor (KNN), and Random Forest (RF).   

Classification Data: the document’s content is directly extracted from the 

relevant pages of suppliers’ websites, and then pre-processed by removing numbers, stop 

words, and generic words. 

 Data Conceptualization: In this phase, data related to each supplier’s website will 

be converted to a vector of concepts which represents the supplier’s webpage. For this 

purpose, a custom-made tool, named Entity Extractor Tool, has been built through SKOS 

Tool. Entity Extractor Tool identifies the thesaurus concepts existing in a document using 

their preferred or alternative labels. Entity Extractor Tool also calculates frequency of 

each concept in the given document. Receiving a text document, the Entity Extractor 

Tool, generate the vector model of a document exported as a Comma-Separated Value 

(CSV) file, as shown in Figure 10. Entity Extractor tags each term in the text with its 

matching concept in the thesaurus using their preferred or alternative label. Entity 

Extractor Tool can also accept supplier’s website URL as the input instead of the plain 

text which makes the process of extracting concepts vector less time consuming.  

The level of specificity of the target class, defines the level of abstraction in this 

process. Three levels of abstraction can be done through Entity Extractor Tool. To be 

more specific, the highest level of specification, Entity Extractor Tool, considers low-

level concepts along with higher- level concepts and top concepts in converting the text 

to a concept vector. 
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Figure 10: Entity Extractor Tool: Preferred Labels are highlighted in Green and Alternative Labels in Red 

 

Classification: The training and test data in CSV format are provided as the input 

to the classifier and each supplier is pre-assigned to a capability class. The training data 
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(concept model for each capability class) and the test data (concept vector for each 

supplier) that are already converted into CSV format, are the inputs to the classifiers.  A 

classification algorithm is then used to categorize suppliers under capability classes. The 

process is conducted in Python environment using four classification algorithms of: 

Decision Tree, Random Forest (RF), Support Vector Machine (SVM), and K-Nearest 

Neighbor (KNN). In real-life supplier search scenarios, the classified data may still 

contain a large number of suppliers and the selection process may require significant 

effort due to the large number of suppliers within each group. Section 3. Classification  in 

the appendix shows the programmed codes related to the classification. 

2.7. Experiment Implementation 

This section provides the experimental validation results of the proposed method 

for supplier classification. Two capability classes are used in this research to evaluate the 

effectiveness of the proposed model. Three information retrieval metrics of precision, 

recall, and F-measure are used to evaluate the classifier. 

2.7.1.  Target Capability Classes 

The target capability classes were established in the context of machining process 

capability since the MC thesaurus is plentiful enough in terms of machining concepts. 

Heavy Component Machining, Precision Electrochemical Machining, Silicon 

Micromachining, Precision and Complex, General Contract Machining are examples of 

capability machining classes. Each capability class has a set of concepts which 

differentiates it from other capability classes. Concepts presenting the capability classes 

are not unique to a capability class, but the set of concepts is unique for each class of 
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capability. Precision and Complex Machining and Heavy Component Machining are used 

in this work as the target class. 

Handling and manufacturing of large components for use in heavy machinery, 

machine tools, and buildings are all part of heavy component machining. Heavy 

machining, as a result, necessitates specialized tools capable of withstanding the strains 

and harshness imposed by large components while sustaining precision and tolerance 

standards. The capability to process items with complicated and geometrically complex 

features is referred to as Precision and Complex capabilities. Heavy component 

machining and precision and complex machining are two district capability class; 

however, it is expected to see some overlaps as well.  

2.7.2. Classification of Capability Classes 

As discussed before, the classification process has two phases: the offline phase 

and the online phase. The concepts models for the target classes are generated in the 

offline phase. During the online phase, the classifier is trained using a training dataset, 

and then the unlabeled members of the test dataset are classified. Two capability classes, 

namely heavy component machining and precision and complex machining, were 

selected for this experiment. The suppliers in those categories often have specialized 

equipment, facilities, and expertise represented by a unique vocabulary.  

2.7.3.  Concept Model Building 

For each capability class, a concept model is generated automatically using the 

Concept Model Builder (CMB) gadget of the SKOS Tool by submitting appropriate 

queries that are formulated around a few entry concepts.  Entry concepts are the key 
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concepts within MCT that represent the class of interest and they are selected by human 

expert. Table 1 shows the selected entry concepts for both target classes.   
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Table 1: Entry Concepts of Target Classes 

Heavy Component Machining  Precision and Complex Machining 

Heavy component  Complex machining  

Large part  Difficult machining  

Vertical machining center  Live tooling  

Deep hole machining  Complex precision part  

Heavy machining  Multi-axis capabilities  

Large CNC machining    

 

The SPARQL queries that are executed behind the scenes on Concept Model 

Builder (CMB), return the broader, narrower, and related concepts for each entry concept 

based on a user-specified depth level.  The final concept model vector is exported as a 

CSV file containing concepts and their associated weight based on the weighting scheme 

shown in Figure 9. The CMB user interface is also shown in Figure 11. 
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Figure 11: Concept Model Builder Gadget in SKOS Tool 

 

2.7.4.  Data Preparation 

For each capability class, 130 suppliers were selected from Thomas Net for each 

class. As a web-based sourcing portal, Thomas Net includes multiple capability classes 

each containing hundreds of contract manufacturers that have several capabilities related 

to their respective group. Although every company has a profile on Thomas Net that 

includes a short textual description of the capabilities and areas of expertise of the 
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company, the raw text data was collected directly from the company’s website rather than 

their Thomas Net profile for the sake of completeness.   

The Entity Extractor feature of the SKOS Tool was used to generate the concept 

vectors in CSV format for all 260 suppliers participating in this experiment. The Entity 

Extractor provides the possibility of either entering the URL of the supplier’s website or 

directly inserting the text from the website into a provided textbox before parsing the text 

and extracting the concepts through their preferred or alternative labels. Figure 12 shows 

the user interface of Entity Extractor Tool. Examples of generated concept vectors for 

two representative suppliers from the target classes are shown in Table 2.  

 
Figure 12: Entity Extractor Tool User Interface 

 

The output of the Entity Extraction step is a vector of observed concepts (along 

with their frequencies) for each manufacturing supplier. All 260 concept vectors are then 

combined to form a document-term matrix of 𝑛 × 260, where 𝑛 indicates the number of 
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extracted concepts for all suppliers participating in the experiment. The body of the 

matrix contains the frequencies of occurrences of the concepts for each supplier.  
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Table 2: An Example of Two Suppliers’ Concept Vectors 

Heavy Component 

Machining for Supplier XYZ  
Frequency  

Precision and Complex 

Machining for Supplier ABC  
Frequency  

Large component  9  Complex machining  6  
Heavy component  2  5-axis machining  2  

Large part  3  7-axis machining  4  

Large machining   6  Difficult machining  5  

Large machined part  1  Live tooling  1  

Heavy lifting equipment  2  Complex machined part  6  
Vertical machining center  5  Complex precision part  2  

Heavy CNC machining  7  Machining  7  

Large part machining  3  Multi-axis complex machining  1  

Vertical boring   4  Complex CNC machining  3  

Heavy machining  2  Large-machined part  5  
  

2.8. Performance Evaluation 

80% of the data was selected for training the classifier, and the rest was reserved 

for test and validation. Four classification algorithms, namely, Random Forest, KNN, 

SVM, and Decision Tree, were used in this experiment.  The classification process was 

implemented and executed in Python environment.   

2.8.1. Classification Performance Evaluation Metrics    

Precision, recall, and F-measure are the three metrics used to evaluate the 

classifier’s accuracy. Precision is the ratio of the number of correctly classified suppliers 

and the total number of returned suppliers, while recall is the ratio of correctly classified 

suppliers to the total number of suppliers belonging to the class of interest in the entire 

dataset. F-measure is a single score balancing precision and recall, reflecting the model 

accuracy. To measure model accuracy for all four evaluated classifiers, precision, recall 

and F-measure equations were used as shown in Table 3. 
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Table 3: Calculation of Precision, Recall, and F-Measure for Heavy Machining Class 

True Positive (TP)  
The number of heavy machining suppliers 

which are correctly classified as heavy 

machining class.  

False Negative (FN)  
The number of heavy machining suppliers 

which are not classified as heavy 

machining class.  

TP+FN  

False Positive (FP)  
The number of non-heavy machining 

suppliers which are incorrectly classified as 

heavy machining class.  

True Negative (TN)  
The number of non-heavy machining 

suppliers which are not classified as a 

heavy machining class.  

FP+TN  

TP + FP  FN + TN  N  
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑅
 

  
(1)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3)  

2.8.2. Classification Results  

20% of the experimental dataset (composed of a mix of 52 suppliers from both 

groups) were used to test and validate the classifiers. The results obtained for all four 

classifiers are shown in Table 4. 

Table 4: Classification Results 

Metric  Decision Tree  SVM  Random Forest  KNN  

Precision  81.48%  69.70%  60%  51.16%  

Recall  84.62%  88.46%  57.69%  84.62%  

F-measure  83.02%  77.97%  58.82%  63.77%  

 

2.9. Conclusion 

As shown in Table 4, the Decision Tree classifier has a higher F-measure, which 

indicates higher accuracy in class prediction. After classification, the suppliers in the test 

group are then transferred to the next stage during which they are ranked according to 

their semantic similarities with the queried capabilities. To evaluate the impact of the 

classification step on the accuracy of the final ranking results, the ranking process is 

carried out separately for classified and unclassified data. The hypothesis is that if the 
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query vector and the document vectors belong to the same class, the ranking results will 

be more accurate since the query and the data both share the same context.  
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3. SIMILARITY MEASUREMENT 

3.1. Introduction 

Natural Language Processing methods usually implement some type of text 

similarity measurement technique to support information retrieval, recommendations, 

automatic question answering, machine translation, dialogue systems, and document 

matching. Text similarity is defined as the commonness of two piece of text fragments, 

the more commonness two pieces of text fragment has the more similar, they are (J. 

Wang & Dong, 2020).  

Text similarity approaches can be divided into corpus-based and knowledge-

based similarities. With the development of neural network representation, some sematic 

relationships and graph structures are considered in calculating the text similarity. In 

addition to semantic similarity, broader perspectives of sematic properties are also 

considered in text similarity. This work uses text similarity techniques in a graph 

structure to consider the distance of the words instead of text piece fragments. 

According to the motivating use case for the proposed manufacturer 

recommendation framework, this work aims to provide a quantitative technique for 

ranking suppliers within certain capability classes based on their similarities to the 

desirable capabilities. The use case that motivates this work is a supplier search scenario 

where a customer submits a query to find one or more suppliers that have a set of 

desirable capabilities related to available manufacturing processes, resources, equipment, 

processible materials, industry focus, quality certifications, and acceptable part types. We 

assume that there exists a supplier recommender system that receives the query from the 

user and returns a list of highly relevant suppliers that are ranked according to their 
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similarity to the query.   Since the manufacturers are also represented as concept vectors 

extracted from the same thesaurus, similarity measurement between the requested 

capabilities and provided capabilities is reduced to a set of pairwise similarity 

measurements between requested and provided capability concepts. For example, if the 

query includes end milling and the requested process but a manufacturer only offers face 

milling process, then the similarity between face milling and end milling needs to be 

calculated as a component of the overall similarity between query and advertisement with 

respect to manufacturing processes.  

3.2. Related Work 

This section provides a brief overview of the existing computational methods for 

measuring the similarity between terms or phrases. The existing methods can be 

categorized under two main approaches, namely, knowledge-based and corpus-based 

approaches which correspond to the semantic similarity relationship and semantic 

similarity relatedness, respectively (Sharma et al., 2016). 

3.2.1.  Knowledge-based Similarity Measurement 

Knowledge-based methods calculate the semantic similarity between two terms or 

concepts based on the information derived from one or more underlying knowledge 

sources such as ontologies, thesauri, or concept schemas. Depending on how the semantic 

similarity between words is assessed, knowledge-based semantic similarity methods can 

be categorized as: 

 Edge-based methods 

 Feature-based methods 

 Information content-based methods 
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Edge-Based Methods: The general edge-based method is to consider the 

underlying ontology as a graph connecting words hierarchically and counting the edges 

between two terms to measure the similarity between them. The terms that are farther 

apart tend to be the less similar. A measure called 𝑝𝑎𝑡ℎ that was proposed by Rada et al. 

considers the similarity between two terms to be inversely proportional to the length of 

the shortest path between them (Rada et al., 1989). Edge-based method considers the fact 

that the words located deeper down in the hierarchy of a graph have a more specific 

meaning, and that, they may be more similar to each other even though they have the 

same distance as two words which represent a more generic concept was not taken into 

consideration.  

𝑠𝑖𝑚𝑝𝑎𝑡ℎ(𝑡1, 𝑡2) =
1

1 + min(𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1, 𝑡2))
 (4) 

 The proposed method by Leacock Chordorow known as lch technique employs a non-

linear function to evaluate the semantic similarity between concepts based on their 

shortest route length, where D is the maximum depth of a Knowledge Graph's concept 

taxonomy (KG). Given that KGs comprise concepts that may be structured as a concept 

taxonomy with hierarchical relations, depth is the path through hierarchical relations 

between the root concept and a given concept (Leacock & Chodorow, 1998). The lch 

equation is shown in Equation 5. 

𝑠𝑖𝑚𝑙𝑐ℎ(𝑡1, 𝑡2) = −log
𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1, 𝑡2)

2 × 𝐷
  (5) 

 

In this equation, length min (t1, t2) represents the minimum distance between the 

terms t1 and t2. More sophisticated edge-counting methods also take depth into account.  

Terms that are located deeper in the taxonomy have more specific semantics compared to 
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the shallower terms.  Therefore, it is reasonable to include both the depth and the path 

length as influential variables when calculating semantic similarity in knowledge-based 

methods.   

Wu and Palmer proposed a measure, known as 𝑤𝑢𝑝 measure, that uses the path 

length from the root node to the Least Common Subsumer (LCS), or Most Specific 

Parent (MSP), of the two terms (Zhu & Iglesias, 2016). This value is then scaled by the 

sum of the depth of the individual terms as shown in Equation 6.  

𝑠𝑖𝑚𝑤𝑢𝑝(𝑡1, 𝑡2) =
2𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)

𝑑𝑒𝑝𝑡ℎ (𝑡1) + depth(𝑡2)
  (6) 

 

In this equation, depth (𝑡𝑙𝑐𝑠) is the depth of LCS node and depth (𝑡1) and depth 

(𝑡2) indicate the depth of the first term and the second term respectively.                                                                                                                                                                                                                                                        

The shortest path length is defined as an exponential function of the similarity of 

two concepts according to (Y. Li et al., 2003). The similarity equation is as follows:  

𝑠𝑖𝑚𝑙𝑒𝑛𝑔𝑡ℎ = 𝑒−𝛼.min 𝑙𝑒𝑛(𝑡1,𝑡2)  (7) 

 

In addition to the shortest path length, the approach utilizes a nonlinear function. 

It has been discovered that the strongest correlation is found at  𝛼 = 0.25. 

Li et al. proposed a non-linear measure, as shown in Equation 6, which considers 

both the minimum path distance and depth. In this equation, the optimal values of 𝛼 =

0.2 and 𝛽 = 0.6 are derived empirically (Y. Li et al., 2003). 

𝑠𝑖𝑚𝑙𝑖 = 𝑒−𝛼.min 𝑙𝑒𝑛(𝑡1,𝑡2).
𝑒𝛽.𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠) − 𝑒−𝛽.𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)

𝑒𝛽.𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠) + 𝑒−𝛽.𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)
 (8) 

One shortcoming of edge-based methods is that they assume edges between terms 

or concepts to have equal length.   
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 Feature-Based Methods: In these categories of knowledge-based methods, 

calculation is based on a function of properties of the words, like gloss, neighboring 

concepts, etc. Gloss is defined as the meaning of a word in a dictionary; a collection of 

glosses is called a glossary. Gloss-based semantic similarity measures exploit the 

knowledge that words with similar meanings have more common words in their gloss 

(Sánchez et al., 2012). In another word, in feature-based methods, similarity is a function 

of the properties or features of the words in a lexical or logical model. The semantic 

similarity is measured based on the extent of overlap between the features of the words in 

consideration. 

The Lesk measure assigns a value of relatedness between two words based on the 

overlap of words in their gloss and the glosses of the concepts they are related to in an 

ontology like WordNet (Lastra-Díaz et al., 2019). 

Jiang et al. proposed a feature-based method where semantic similarity is 

measured using the glosses of concepts present in Wikipedia (Y. Jiang et al., 2015). Most 

feature-based methods take into account common and non-common features between two 

words/terms. The common features contribute to the increase of the similarity value and 

the non-common features decrease the similarity value. The major limitation of feature-

based methods is its dependency on ontologies with semantic features, and most 

ontologies rarely incorporate any semantic features other than taxonomic relationships. 

Information Content-Based Methods The information content (IC) is the value 

of information contained in a word in the context. IC is calculated based on the 

probability of occurrence of a word in a corpus such as WordNet or Wikipedia Category 

Graph (Martis et al., 2013). A high value of this measure indicates that the word is more 
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specific and clearly describes a concept with less ambiguity, and conversely for the lower 

information content values, that is, the words are more abstract in meaning in lower 

values (Yang et al., 2020). The specificity of the word is determined using Inverse 

Document Frequency (IDF), which implies on the principle that the more specific a word 

is, the less it occurs in a document. Information content-based methods measure the 

similarity between terms using the information content value associated with them.  

Resnik proposed a semantic similarity measure called 𝑟𝑒𝑠 (Resnik, 1995). The 

base of this measure is on the idea that if two concepts share a common subsumer they 

share more information since the 𝐼𝐶 value of the LCS is higher. Considering 𝐼𝐶 

represents the Information Content of the given term, 𝑟𝑒𝑠 is measured as, 

𝑠𝑖𝑚𝑟𝑒𝑠(𝑡1, 𝑡2) = 𝐼𝐶𝑡𝑙𝑐𝑠
 (9) 

By considering the 𝐼𝐶 value of the terms that dedicate to the individual 

information of description of the terms and the 𝐼𝐶 value of their 𝐿𝐶𝑆, 𝐷. Lin proposed a 

below measure. 

𝑠𝑖𝑚𝑙𝑖𝑛(𝑡1, 𝑡2) =
2𝐼𝐶𝑡𝑙𝑐𝑠

𝐼𝐶𝑡1
+ 𝐼𝐶𝑡2

 
(10) 

 

A distance measure based on the discrepancy between the sum of the individual 

IC value of terms and the 𝐼𝐶 value of their 𝐿𝐶𝑆 was designed by Jiang and Conrath in (J. 

J. Jiang & Conrath, n.d.). 

𝑑𝑖𝑠𝑗𝑐𝑛(𝑡1, 𝑡2) = 𝐼𝐶𝑡1
+ 𝐼𝐶𝑡2

− 2𝐼𝐶𝑡𝑙𝑐𝑠
 (11) 

However, knowledge-based systems are highly dependent on the underlying 

source resulting in the need to update them frequently which requires time and high 

computational resources. Although strong ontologies like WordNet exist for the English 
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language, similar resources are not available for other languages that results in the need 

for the building of strong and structured knowledge bases to implement knowledge-based 

methods in different languages and across different domains. Various research works 

were conducted on extending semantic similarity measures in the biomedical domain 

(Soğancıoğlu et al., 2017) . McInnes et al. built a domain-specific model called UMLS to 

measure the similarity between words in the biomedical domain. With nearly 6,500 world 

languages and numerous domains, this becomes a serious drawback for knowledge-based 

systems (McInnes et al., 2013). 

3.2.2.  Corpus-Based Semantic-Similarity Methods 

 This group of similarity measurement methods measure the semantic similarity 

between terms using the information retrieved from large corpora. The underlying 

principle which is referred to as ‘distributional hypothesis’ exploits the idea that "similar 

words occur together, frequently"; however, the actual meaning of the words is not taken 

into consideration (Gorman & Curran, 2006). While various techniques were used to 

construct the vector representation of the text data, several semantic distance measures 

based on the distributional hypothesis were proposed to estimate the similarity between 

the vectors. Among all corpora measures, the cosine similarity gained significance and 

has been widely used among NLP researchers to date (Mohammad & Hirst, 2012). Based 

on the underlying methods using which the word-vectors are constructed there are a wide 

variety of corpus-based methods some of which are discussed in this section. 

Latent Semantic Analysis (LSA) :LSA is one of the most popular and widely 

used corpus-based techniques used for measuring semantic similarity (Landauer & 

Dumais, 1997). A word co-occurrence matrix is formed where the rows represent the 
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words and columns represent the paragraphs, and the cells are populated with word 

counts. This matrix is formed with a large underlying corpus, and dimensionality 

reduction is achieved by a mathematical technique called Singular Value Decomposition 

(SVD). SVD represents a given matrix as a product of three matrices, where two matrices 

represent the rows and columns as vectors derived from their eigenvalues and the third 

matrix is a diagonal matrix that has values that would reproduce the original matrix when 

multiplied with the other two matrices (Landauer et al., 1998). SVD reduces the number 

of columns while retaining the number of rows thereby preserving the similarity structure 

among the words. Then each word is represented as a vector using the values in its 

corresponding rows and semantic similarity is calculated as the cosine value between 

these vectors. LSA models are generalized by replacing words with texts and columns 

with different samples and are used to calculate the similarity between sentences, 

paragraphs, and documents. 

Normalized Google Distance: Normalized Google Distance (NGD) is a relative 

semantic metrics that reflects the similarity of two words or phrases in Web documents or 

other large databases. NGD measurement is based on the co-occurrence of the words in 

webpages, the more frequent they come together the more similar they are. Given two 

terms (𝑡1, 𝑡2), NGD uses Equation 12 to calculate  their similarity (Cilibrasi & Vitanyi, 

2007). 

𝑁𝐺𝐷(𝑡1, 𝑡2) =
max{log 𝑓(𝑡1), log 𝑓(𝑡2)} − log 𝑓(𝑡1, 𝑡2)

log 𝐺 − min{log 𝑓(𝑡1), log 𝑓(𝑡2)}
 (12) 

𝑓  (𝑡1) and 𝑓  (𝑡2) represent the number of hits in Google search for terms x and y, 

and 𝑓  (𝑡1, 𝑡2), returns the number of hits when both terms appear together in a page and 

𝐺  indicates the total number of pages participating in the Google search. NGD is often 
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used to measure semantic relatedness rather than semantic similarity because related 

terms occur together more frequently in web pages though they may have opposite 

meaning. Another shortcoming of NGD is that it is highly sensitive to the context in 

which the terms appear and if the domain of the search includes the pages that come from 

a variety of heterogeneous contexts, the NGD won’t return accurate results.  

In this research, a weighted edge-based method is used for calculating the 

semantic similarity between two terms. The weight for each edge is calculated using the 

NGD method.  Five different equations of edge-based method including: path, lch, wup, 

length, and Li methods are examined in this work to identify the most suitable method for 

the particular use case that motivates this work. There are two defining factors in all five 

edge-based methods, namely, length and depth. Length is the number of edges counted 

between two concepts in the shortest path connecting them in the thesaurus, while Depth 

is the number of nodes existing between the “root node” and the “least common 

subsumer” of the two concepts (J. J. Jiang & Conrath, 1997)(Y. Li et al., 2003). The 

more the least common subsumer is to the root node, the more general meaning it 

conveys comparing to least common subsumer in deeper levels of the thesaurus. 

However, it cannot be claimed that if two sets of concepts share the least common 

subsumer, they definably are equal in case of similarity measurement, because the 

distance or the length of two concepts also matters (Dong et al., 2010). Path, lch, Wu-

Palmer, length, and Li metrics are used for measuring the edge-based similarity of two 

concepts respectively.  

As shown in Equation 1, the path metric uses the shortest path between two 

concepts to measure their similarity, The lch metric uses a non-linear function to consider 
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the shortest path between two concepts as shown in Equation 2. he depth of terms in the 

taxonomy defined by "D" which shows the depth of the concepts least common 

subsumer. 

The Wu-Palmer metric uses depth as the only criterion for assessing the similarity 

measurement as shown in Equation 3. 

  

 

Figure 13: The depth of a concept is the shortest path between the concept and the root 

 

Where depth (𝐶𝑙𝑐𝑠) is the distance of the Least Common Subsumer (or the most 

shared ancestor) of concepts to the taxonomy root, which represents the specification 

level   and depth (𝑐𝑖) is equal to 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐i, 𝑐root) , which defines the shortest length 

from ci to root. For example, to measure the similarity for pair of (Brass, Bronze) as 

shown in Figure 13, since Material is their LCS, depth (Brass) will be equal to 3 as the 

shortest path between Brass and the root (MCT) is defined with three edges, the same is 

true for depth (Bronze). Material is the second level of the tree, so depth (𝐶𝑙𝑐𝑠) will be 

depth (Material)=2.  



 

49 

The length method, like the Path metric, investigates the shortest path between 

two concepts but evaluates similarity using an exponential function as shown in Equation 

4. The best correlation was found to be at  𝛼 = 0.25.  

 Li method introduces two influencing factors of graph distance and specification 

level on the semantic similarity measurement.  Both components of length and depth, 

which are indicators of graph distance and specification level, are utilized to determine 

semantic similarity of concepts, as shown in equation 5. To achieve the best outcome in 

this equation, 𝛼 and 𝛽 must be equal to 0.2 and 0.6, respectively, according on the results 

of Li's research. As can be seen from the equations, path and length methods only 

consider length as a defining component when measuring similarity, but wup only uses 

depth. Li and lch techniques, on the other hand, employ both parameters to determine 

similarity. One of the goals of this study is to see if different similarity measurement 

methods produce noticeably different outcomes. To harmonize the context for similarity 

measurement between word pairs, the webpages are classified first under predefined 

classes. In this way, word similarity measurement is only conducted within similar 

groups capability narratives related to similar manufacturers.  

3.3. Similarity Measurement 

According to the motivating use case for the proposed manufacturer 

recommendation framework, the user submits a query composed of a vector of thesaurus 

concepts that collectively represent the required manufacturing services and the desired 

capabilities of the supplier of those services. Since the manufacturers are also represented 

as concept vectors extracted from the same thesaurus, similarity measurement between 
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the requested capabilities and provided capabilities is reduced to a set of pairwise 

similarity measurements between requested and provided capability concepts.   

This study uses a hybrid strategy to evaluate the semantic similarity between 

concept pairings, combining corpus-based and knowledge-based methodologies. The 

Normalized Google Distance (NGD) represents the semantic relatedness of concepts 

based on their co-occurrences in a large corpus, whereas the edge-based method captures 

the inheritance between the concepts to indicate the semantic similarity. The NGD score 

of two concepts is employed as the weight of the edges on the path between those 

concepts in the suggested hybrid technique. For the concept pair (𝑐1, 𝑐2), the NGD 

similarity of the concepts is determined according to Equation 13.   

𝑠𝑖𝑚𝑁𝐺𝐷(𝑐1, 𝑐2) = 𝐸𝑥𝑝(−𝑁𝐺𝐷(𝑐1, 𝑐2)) (13)  

 For each pair of concepts, the overall similarity is then measured using Equation 14.  

𝑠𝑖𝑚𝑝𝑎𝑖𝑟(𝑐1, 𝑐2) =  𝑠𝑖𝑚(𝑐1, 𝑐2) ×  𝑠𝑖𝑚𝑁𝐺𝐷(𝑐1, 𝑐2) (14)  

 The pairwise similarity for all concept pairs under each capability category (such as 

material, equipment, process, and industry) is calculated separately.   

Figure 14 shows an example of a capability query in which the manufacturing 

processes demanded are 5-axis machining and horizontal boring. Suppose a supplier can 

perform three different manufacturing processes, such as 5-axis machining, vertical 

milling, and injection molding. In that case, there are six different pairwise similarity 

measurements to examine for all pairwise similarity combinations of required and 

provided processes (combination of choosing two concepts from six concepts). The 
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weighted edge-based technique will be calculated for each pair of manufacturing process 

concepts (Zandbiglari et al., 2021). 

 
Figure 14: All Given Concepts in a Query Will Be Paired with Concepts in Thesaurus to Calculate 

Supplier’s Similarity Score 

 

The average pairwise similarity scores acquired for each category make up the 

overall similarity score for that category. As a result, the length of a supplier's concept 

vector will not inflate the category's total similarity score. Equation 13 shows how to 

calculate the overall similarity between the query and the supplier by adding the 

similarity values calculated for each capability category.  

𝑠𝑖𝑚𝑤𝑢𝑝(𝑄𝑢𝑒𝑟𝑦, 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟) = ∑ 𝑠𝑖𝑚𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗

𝑚
𝑗=1    (15)  

 Where 𝑚 is the total number of existing categories in the query.  
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4. RANKING EXPERIMENT 

4.1. Introduction 

For the ranking experiment, two queries were designed to target manufacturers in 

the precision and complex machining class and the heavy component machining class. 

The precision and complex machining query contains material capabilities, available 

manufacturing processes, engineering design services, supported part types, quality 

certifications, and target industries. In the heavy component machining query, the 

required production capabilities include process, equipment, item type, and industry. The 

desired concepts for the two queries are listed in Table 5 and Table 6. A basic Google 

search using the search parameters for the complex machining class yielded 755 results, 

but only 5 manufacturing suppliers. To increase the precision and recall of this complex 

search, a more advanced search technique with some semantic support is required. 

Table 5: Requested Manufacturing Capabilities (Query) - Complex Machining Class 

Material  Titanium, Waspaloy, Zircon, Inconel, Tool Steel  

Industry  
Aerospace Industry, Oil and Gas Industry, Medical Industry, Automotive 

Industry  

Manufacturing Process  
5-axis machining, Electrical discharge machining, Screw machining, Thin 

wall machining  

Production Resource   Articulating Arm Coordinate Measuring Machine, CMM  

Engineering Services Reverse Engineering, Tool Design  

 Accreditation and 

Certification  
ISO 9000, ISO 9001  

Physical Artifact  Complex precision parts, complex machined parts, close tolerance parts  
 

 

Table 6: Requested Manufacturing Capabilities (Query)- Heavy Component Machining Class 

Industry  
Aerospace Industry, Oil and Gas Industry, Mining Industry, Construction Industry, 

Agriculture Industry  

Manufacturing 

Process  
Heavy Duty Machining, Large CNC Machining, Large Precision Machining, Large 

Working Envelope Machining, Vertical Boring  

Production 

Resources   
Heavy Lifting Equipment, Gantry Machining Center, Vertical Boring Machine, Large 

Capacity Lathe  

Physical Artifact  
Large and Heavy Part, Large Diameter Part, Large and Heavy Part, Large and Heavy 

Machined Components  
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4.2. Experiment Validation 

As indicated in the methodology section, each supplier's overall similarity to the 

queried capabilities is calculated using a combination of edge-based measures and 

Google Normalized Distance. 

4.2.1.  Normalized Google Distance (NGD) 

Despite the fact that the entire Internet can be utilized as a corpus for counting 

hits and computing NGD, the findings will be unreliable due to context heterogeneity. In 

the manufacturing context, "tubing" refers to the process of forming tubes and pipes by 

running a strip of metal through rollers to achieve the appropriate shape. Tubing, on the 

other hand, can have a variety of connotations in various settings, such as a recreational 

sport in which a person rides on top of an inflatable tube on water or snow. A pilot 

manufacturing corpus was developed by crawling more than 650 manufacturing 

webpages with no overlap with the training and test datasets to harmonize the corpus with 

its context. The crawling was only limited to manufacturers’ websites to impart 

contextual consistency to the pilot corpus.  A series of codes in the Python programming 

environment were run to convert websites contents thoroughly to text files to create 

customized corpus for manufacturing capability. Related codes to the websites crawling 

are shown in the appendix of this work in section 4. Convert HTML to Text. Shown in 

the appendix, section 6. Search Engine, then searches each two concepts in the created 

corpus to get number of hits for each individual word in the corpus in addition to the 

number of times a pair of concepts appear together in the corpus. By gathering the 

number of hits and NGD equation, the NGD score for each pair of concepts is then 
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calculated using Python programming as section 5. Normalized Google Distance, in the 

appendix shows. 

The NGD values calculated varied from zero to ∞, with zero indicating that 

concept pairings always appear together and higher values (including ∞) suggesting that 

concept pairs hardly appear together. The NGD values were scaled in a range between 0 

and 1, with 1 denoting the most comparable couples, using the sim NGD(𝑐1, 𝑐2) equation 

(exact match) 

Table 7 shows the calculated NGD and Sim NGD values for a few example pairs of 

terms.  

Table 7: Examples of computed 𝑁𝐺𝐷s 

Concept 1 Concept 2 NGD 𝑺𝒊𝒎𝑵𝑫𝑮 

Bronze Brass 0.48 0.62 

Titanium Inconel 0.08 0.92 

5-axis machining Electrical discharge machining 0.17 0.84 

Horizontal Boring Tubing 0.29 0.75 

Oil and gas industry Oil and gas industry 0.00 1.00 

 

4.2.2. Edge-based Method  

Using the given equation, 𝑠𝑖𝑚𝑤𝑢𝑝(𝑐1, 𝑐2) the similarity of all concepts given in 

Table 5 with all concepts existing in the manufacturing capability thesaurus is computed 

in Python environment, which entailed 21,780 pairwise similarity measurements.  

As the thesaurus is built on the SKOS Tool provided and developed in the 

Infoneer Engineering lab, it was not accessible through out of the network internet. To 

facilitate the accessibility to the thesaurus a series of codes programmed by Python 

simulate the thesaurus in a HTML file containing all the broader and narrower 

relationships in the thesaurus as shown in the section 2. Tree Builder the appendix of this 

work. 
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As an example, according to Equation 6, 𝑠𝑖𝑚𝑤𝑢𝑝(𝑐1, 𝑐2), the similarity of 

(Bronze, Brass) pair, depicted in Figure 13 is calculated in Table 8. 

Table 8: (brass, bronze) similarity measurement (𝑤𝑢𝑝 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)= 2 𝑑𝑒𝑝𝑡ℎ (𝐵𝑟𝑎𝑠𝑠) = 3 3 𝑑𝑒𝑝𝑡ℎ (𝐵𝑟𝑜𝑛𝑧𝑒) = 3 

𝑠𝑖𝑚𝑤𝑢𝑝(𝑡1, 𝑡2) =
2𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)

𝑑𝑒𝑝𝑡ℎ (𝑡1) + depth(𝑡2)
  𝑠𝑖𝑚𝑤𝑢𝑝(𝐵𝑟𝑜𝑛𝑧𝑒 , 𝐵𝑟𝑎𝑠𝑠) =

2 ∗ 2

3 + 3
= 1.5 

The same measure is applied to all possible pairwise combinations of query 

concepts and thesaurus concepts. 

4.3. Ranking Results 

Using 𝑠𝑖𝑚𝑁𝐺𝐷(𝑐1, 𝑐2) as the weight for 𝑠𝑖𝑚𝑤𝑢𝑝(𝑐1, 𝑐2) for each pair of document 

and query, averaging the similarity score of each category, and summing categories’ 

averages, the similarity scores for all 52 suppliers in the test dataset were calculated. 

4.3.1.  Precision and Complex Machining Query 

The similarity scores of wup method for the complex query for the top-16 

suppliers are shown in Table 9 and Table 10 for heavy component and complex 

machining classes.  Table 11 ranks all top-16 suppliers of complex machining class in 

which is calculated through the wup equation regardless of their class. 

Table 9: Similarity scores of suppliers in complex machining class- wup method- complex machining 

query 

Suppliers’ Rank in the Class Suppliers’ ID Similarity Score 

1 212 149.57 

2 262 103.91 

3 238 102.99 

4 118 100.63 

5 27 95.59 

6 150 93.90 

7 162 85.39 

8 265 81.96 

9 249 81.96 

10 136 81.17 
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Table 10: Similarity scores of suppliers in heavy component machining class- wup method -- complex 

machining query 

Suppliers’ Rank in the Class Suppliers’ ID Similarity Score 

1 31 134.17 

2 238 102.24 

3 198 101.22 

4 144 96.58 

5 128 88.32 

6 101 87.16 

 
Table 11: Similarity score of top-16 suppliers in complex machining suppliers- wup method- complex 

machining query 

Supplier Suppliers’ ID Similarity Score Classified by Decision tree classifier 

1 212 149.57 Precision and Complex Machining 

2 31 134.17 Heavy Component Machining 

3 262 103.91 Precision and Complex Machining 

4 238 102.99 Precision and Complex Machining 

5 109 102.24 Heavy Component Machining 

6 101 101.22 Heavy Component Machining 

7 118 100.63 Precision and Complex Machining 

8 144 96.58 Heavy Component Machining 

9 23 95.59 Precision and Complex Machining 

10 150 93.90 Precision and Complex Machining 

11 128 88.32 Heavy Component Machining 

12 101 87.16 Heavy Component Machining 

13 162 85.39 Precision and Complex Machining 

14 265 81.96 Precision and Complex Machining 

15 249 81.96 Precision and Complex Machining 

16 136 81.179 Precision and Complex Machining 

As mentioned earlier in this work, 5 edge-based method metrics have been used to 

calculate the similarity of manufacturing suppliers. When listing the top-16 suppliers of 

each equation, it can be seen that there are a combination of 16 out of 20 mutual suppliers 

in different orders in all metrics. Table 12 shows similarity scores for the 20 mutual 

suppliers based on their scores for lch, path, Li, and length metrics. 

Table 12: Precision and Complex Machining query suppliers' scores 

Suppliers' 

ID 
lch Path Length Li Class of Capability 

4 1139.81766 798.175204 436.066855 17.3333333 Heavy Component 

16 1013.95627 387.128677 708.200435 17.3333333 Heavy Component 

23 1673.31041 1171.79459 633.324014 5.33333333 Precision and Complex 

31 2089.53995 1459.75163 791.983455 22.6666667 Heavy Component 

54 1012.86864 701.256156 383.707888 17.3333333 Precision and Complex 
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Suppliers' 

ID 
lch Path Length Li Class of Capability 

65 826.601922 577.022962 316.679872 16 Precision and Complex 

73 1402.67211 975.492523 530.677777 10.6666667 Precision and Complex 

101 1349.01791 934.962832 507.676789 5.33333333 Heavy Component 

108 788.922063 546.656752 299.445811 10.6666667 Precision and Complex 

109 1729.72965 1729.72965 656.541939 10.6666667 Heavy Component 

118 1645.56535 1147.53909 622.149408 10.6666667 Precision and Complex 

125 1123.93751 778.861416 419.521721 0 Heavy Component 

128 1396.22966 974.627759 529.904722 10.6666667 Heavy Component 

136 1109.98101 769.574996 417.312155 5.33333333 Heavy Component 

140 1151.6368 803.183096 419.521721 5.33333333 Heavy Component 

144 1429.95099 995.023685 543.018781 41.3333333 Heavy Component 

150 1421.86926 991.255224 537.59996 0 Precision and Complex 

162 1347.64229 935.265072 505.678672 0 Precision and Complex 

198 1744.47588 1210.48348 652.867332 0 Heavy Component 

212 2259.31168 1578.41623 858.798566 41.3333333 Precision and Complex 

238 1575.59018 1093.76363 596.047027 37.3333333 Precision and Complex 

249 1108.36254 768.92537 421.592778 36 Precision and Complex 

262 1648.013 1150.77804 626.666589 25.3333333 Precision and Complex 

26 1108.36254 768.92537 421.592778 22.666666 Precision and Complex 

4.3.2. Heavy Component Machining Query 

Considering the requested query of heavy component machining the similarity 

scores of wup, lch, path, Li, and length metrics for the 20 suppliers are shown.  When 

listing the top-16 suppliers of each equation, it can be seen that there are a combination of 

16 out of 20 mutual suppliers in different orders in all metrics as shown in Table 13. 
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Table 13: Heavy Component Machining query suppliers' scores 

Suppliers' 

ID 
wup lch Path Length Li Capability Class 

4 199.6996 42.88937 2745.333 1935.113 17.33333 
Heavy 

Component 

23 291.6134 60.16066 4055.488 2865.586 22.66666 
Heavy 

Component 

31 319.7800 49.9569 4898.9860 3448.5845 5.3333 
Heavy 

Component 

73 241.3889 49.3891 3341.5315 2344.8755 17.3333 
Precision and 

Complex 

101 42.3503 42.3503 3197.4987 2235.8260 10.6666 
Heavy 

Component 

109 4102.8070 2890.7725 4102.8070 2890.7725 0 
Precision and 

Complex 

118 239.5820 39.32273 3834.9113 2698.1399 5.3333 
Precision and 

Complex 

125 173.7256 29.8628 2403.7273 1900.0548 5.3333 
Precision and 

Complex 

128 238.2205 42.9778 3351.5741 2355.0235 10.6666 
Precision and 

Complex 

136 188.1868 31.27930 2649.8523 1855.0832 5.3333 
Heavy 

Component 

140 219.4237 52.3864 2861.3838 2022.0372 
25.33333

3 

Heavy 

Component 

144 282.40605 75.6279 3510.0701 2467.9091 41.3333 
Precision and 

Complex 

150 3460.8376 2442.1190 2442.1190 2442.1190 36 
Heavy 

Component 

162 243.63816 43.41636 3279.3036 2298.7800 10.6666 
Heavy 

Component 

177 198.91486 43.439893 2575.1616 1803.449 17.3333 
Precision and 

Complex 

187 188.39467 58.297013 1962.5736 1383.7712 37.3333 
Heavy 

Component 

198 337.24080 83.27851 4294.4393 3019.4411 41.3333 
Heavy 

Component 

212 344.87651 58.547379 5332.9151 3752.6579 
10.66666

6 

Precision and 

Complex 

238 270.76537 58.44421 3724.3552 2609.9528 22.6666 
Precision and 

Complex 

249 185.63896 36.093753 2621.3687 1831.5625 10.6666 
Precision and 

Complex 

262 278.0614 53.2941 3925.0979 2760.3920 16 
Precision and 

Complex 

4.3.3. Spearman’s Correlation 

The degree of correlation independent variables is determined using Spearman 

rank correlation coefficients. It is comparable to Pearson's product-moment correlation 

coefficient; only it works with data ranks instead of raw data. Spearman's rank correlation 
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coefficient has advantages over the typical product-moment correlation coefficient 

(Detecting Trends Using Spearman’s Rank Correlation Coefficient | Elsevier Enhanced 

Reader, n.d.). In this section, Spearman’s Rank-Order Correlation is used to compute the 

correlation between the human expert generated rankings with computationally generated 

rankings using Equation 15.  

ρ = 1 −  
∑ 6 𝑑𝑖

2

𝑛 (𝑛2 − 1)
 

(15) 

In Equation 16, 𝜌 shows Spearman’s rank correlation coefficient, di is the 

difference between two ranks of each observation and n is the total number of 

observations. Table 14 shows human expert rankings of suppliers for both target classes. 

Table 14. Human expert ranking 

Precision and Complex Machining Heavy Component Machining 

Suppliers' ID Human Expert Ranking Suppliers' ID Human Expert Ranking 

4 9 4 1 

16 16 23 3 

23 3 31 13 

31 5 73 14 

54 10 101 19 

65 6 109 6 

73 8 118 21 

101 17 125 7 

108 19 128 9 

109 20 136 15 

118 23 140 4 

125 12 144 11 

128 13 150 12 

136 24 162 2 

140 4 177 16 

144 2 187 17 

150 18 198 18 

162 11 212 8 

198 22 238 10 

212 1 249 20 

238 21 262 5 
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Precision and Complex Machining Heavy Component Machining 

Suppliers' ID Human Expert Ranking Suppliers' ID Human Expert Ranking 

249 15   

262 14   

265 7   

 

Correlation analysis results of precision and complex machining and heavy 

component machining class for all examined similarity metrics are shown in Table 15 

and Table 16. 
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Table 15. Spearman's rank-order correlation result for complex machining query 

METRIC Iteration 1 (all 

suppliers) 

Iteration 2 (only complex 

machining) 

Iteration 3 (only heavy 

machining) 

Path 0.788235 0.925000  0.678571  

lch 0.976470 0.619047 0.619047 

wup 0.726471 0.941667 0.357143 

Length 0.788235 0.964285 0.366666 

Li 0.947058 0.988095 1 

 
Table 16. Spearman's rank-order correlation result for heavy component machining query 

METRIC Iteration 1 (all 

suppliers) 

Iteration 2 (only complex 

machining) 

Iteration 3 (only heavy 

machining) 

Path 0.523529 0.683333 0.5 

lch 0.998529 0.751470 0.982142 

wup 0.788235 0.607142 0.35 

Length 0.822058 0.261904 0.988095 

Li 0.751470 0.303571 0.925 
 

 

According to the equations, each metric considers different variables to measure 

similarity of the formulated capability query with the manufacturing supplier. The length 

and the depth are the main variables of these equations. As previously indicated in 

chapter 4, some of these metrics consider either the length or depth variable while some 

consider both. The average Spearman’s rank-order correlation result of the metrics is 

based on the main variables involved in the measurement determined in Table 17 and 

Table 18 respectively for complex machining and heavy component machining.  

Table 17. Spearman's correlation average for complex machining query 

Complex Machining Query 

Considered factor in the 

equation 

Metric Spearman’s 

correlation 

Average Spearman’s 

correlation 

Length 
Path 0.788235 

0.788235 
Length 0.788235 

Depth wup 0.726471 0.726471 

Length and Depth 
lch 0.97647 

0.8823525 Li 0.788235 
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Table 18. Spearman's correlation average for heavy component machining query 

Heavy Component Machining Query 

Considered factor in the 

equation 
Metric 

Spearman’s 

correlation 

Average Spearman’s 

correlation 

Length 
Path 0.523529 

0.6727935 
Length 0.822058 

Depth wup 0.788235 0.788235 

Length and Depth 
lch 0.998529 

0.8749995 
Li 0.75147 

 

It can be seen that the average Spearman’s correlation is higher for the lch and Li 

metrics which consider both length and depth. 

4.4. Conclusion 

Table 12 shows that among the top-five suppliers, two are classified as heavy 

machining suppliers. Because the complex machining and heavy machining capability 

groups overlap significantly, this was an expected result. Manufacturers who can supply 

machining services in one class are quite likely to be able to give the services required in 

the second. Those highly ranked suppliers in the heavy component machining class 

would be classified under both classes if a multi-label classification approach was 

applied. When the capability classes are significantly diverse, there is a sharper division 

between the groups. Rank-order correlation result indicates that there is a significant 

correlation between human and machine generated rankings when suppliers are first 

classified under pre-defined capability classes. The rank order correlation result supports 

the original hypothesis that NGD measure yields better results when the concepts pairs 

come from the same semantic context. This result justifies the need for conducting 

classification prior to similarity measurement.  
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Table 15 and Table 16 represent low correlation between human and machine 

ranking for the suppliers in the opposite class of the formulated class. One explanation 

for this low correlation is that an individual is able to analyze the capabilities more 

accurately though browsing different pages of the website of a supplier, and for instance, 

identifying the primary and secondary expertise of a supplier, thus giving a higher rank to 

those companies that use complex machining as their primary expertise in the experiment 

when the formulated query belongs to complex machining. However, due to using a 

light-weight ontology, the thesaurus, the expressivity needed for representing primary 

and secondary capabilities is not supported in the proposed approach. Overall, the 

proposed method provides a reasonable tradeoff between the search accuracy and search 

time.  
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5. CONCLUSION AND FUTURE WORK 

5.1. Introduction 

This study proposes a mechanism for categorizing and rating manufacturing 

suppliers based on their capability narratives. A formal manufacturing capability 

thesaurus supports the proposed procedure. A combination of edge-based and corpus-

based methodologies is used in the suggested similarity measurement method. When the 

search area is populated by a vast number of manufacturers, it is necessary to narrow 

down the search space to a smaller group of highly relevant suppliers. This objective is 

achieved through sequential classification and ranking of suppliers based on the 

similarities between their capability narratives with the queried capabilities. The findings 

of this research can support supplier screening process in the early stages of suppler 

discovery.   

One of the goals of this study is to assess the efficacy of evaluating manufacturing 

capabilities using lightweight and low-fidelity knowledge models (such as a thesaurus) 

and public manufacturing datasets (unstructured data from manufacturers' websites). 

Although heavy-weight and axiomatic ontologies and gold standard corpora can improve 

search precision, their development time and cost can be prohibitive. As a result, the 

proposed method builds a reasonable balance between the overall performance and the 

development cost. Because the Manufacturing Capability Thesaurus uses SKOS as a 

standard representation language, it can be shared and extended in a decentralized 

manner by various groups. This will significantly reduce the effort required to develop a 

comprehensive formal vocabulary of manufacturing capabilities for various 

manufacturing industry sectors.  
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5.2. Findings 

This study utilized different methods and algorithms to address the research 

questions identified in Chapter 1. This section provides the responses to the initial 

research questions that motivated this work. 

5.2.1.  Which classifier will have the best precision/recall/ F-measure? 

In this work, four classifiers, namely, Decision Tree, Random Forest, K-Nearest 

Neighbor and Support Vector Machine were used to classify manufacturing suppliers into 

two capability classes of precision and complex machining and heavy component 

machining. As shown in Table 4, decision tree classifiers with the highest precision, 

recall, and F-measure provided the most precise classification result in this work.  

Decision Tree classifiers are widely used in data mining to create classification 

algorithms based on various covariates or to forecast target variables. The method 

generates an inverted tree using a population of individuals classified into branch-like 

segments containing the root, internal nodes, and leaf nodes (SONG & LU, 2015).  

5.2.2.  How to compare automatically generated rankings with human expert’s 

rankings?  

Spearman’s Rank-Order Correlation is used to compute the correlation between 

the human expert generated rankings with computationally generated rankings. 

Spearman’s rank-order correlation compared the results attributed by the machine and the 

human expert and provides a correlation between 0 to 1 with 1 indicating the highest 

correlation. 
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5.2.3.  How can classification affect similarity scores? 

Knowing that decision tree provides the best highest precision, recall, and F-

measure, ranking experiment uses the results obtained from decision tree classification to 

study the effect of classification on the similarity measurement ranking. The comparison 

of Spearman’s rank-order classification for three iterations of non-classified suppliers, 

suppliers belonging to the same capability class that the query belongs to, and the 

opposite classes of query and suppliers showed significantly higher correlation in the 

second iteration which confirms the effect of classification on ranking results. 

Classification as the first step of this hybrid approach, screens suppliers’ websites 

content and categories them based on the content they have provided. This initial 

screening narrows down the list of qualified suppliers which are expected to have more 

similarity with the formulated query of capability. Therefore, it was expected to see 

significantly higher correlation in ranking when suppliers have been classified at the first 

step. 

5.2.4. What method of similarity measurement should be used for the ranking? 

This research used a weighted edge-based method to consider both inheritance 

relationships and relatedness of concepts in the thesaurus by having both corpus-based 

methods and knowledge-based methods included. Five metrics of edge-based methods 

for two different queries of capabilities were studied and the average Spearman’s 

correlation showed higher correlation higher for the lch and Li metrics which consider 

both length and depth as the elements of the similarity measurement, while other metrics 

considered either length or depth. 
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5.3. Future Work 

In the validation stage, only a single human expert was used to evaluate the 

outcome. In the future, multiple experts will participate in the validation phase to 

improve the credibility of the findings. 

As discussed in the limitation section, there are different and limited number of 

suppliers in each class, collecting adequate data for training and test set difficult. The lack 

of having adequate and appropriate data is a barrier to using some more precise 

approaches such as deep learning. In future, this limitation can be resolved by changing 

the source of data, gathering data not only from US based company in the field, choosing 

different capability classes which provide a more extensive list of suppliers.  

The corpus in this work was established by crawling 650 unique manufacturing 

suppliers’ websites. Although increasing the number of websites will result in increasing 

the run time of the codes, it improves the accuracy and precision of the results. Creating a 

sufficiently comprehensive and thorough corpus may provide the possibility of using 

Information Content-based (IC) methods in future works. 

In addition to focusing on manufacturing and processes related capabilities, 

extending, and developing the thesaurus concepts can provide future research with the 

opportunity to explore other aspects of manufacturing suppliers’ capabilities, such as 

logistic services. 

Additionally, future work can be focused on improving the data acquisition into 

more autonomous improving the entity extracotr feature on the SKOS Tool. 

Traditional deep learning-based models based on convolutional neural networks (CNN) 

and recurrent neural networks (RNN) mostly use dynamic character- level of word level 

embedding as the input which makes text feature extraction not to be comprehensive. 
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BERT (Bidirectional Encoder Representations from Transformers) method represented by 

Google in October 2018 is an automatic text classification method and an open machine 

framework for natural language processing. While other methods can only read characters 

from either left to right or right to left, BERT considers two sides of each character at a 

time to implement sematic information (W. Li et al., 2019). BERT provides a significant 

improvement as it does not require data in any specific sequence which enables it to process 

and pre-train larger amount of data. BERT method can be used in future works to pre-train 

massive amount of data. 
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APPENDIX SECTION 

Payton Codes of Classification and Ranking 

1. Get Relevant Data 

import argparse 

import math 

 

import numpy as np 

import pandas as pd 

from sklearn import preprocessing 

from sklearn.model_selection import train_test_split 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn import tree 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score 

# from sklearn.metrics import precision_recall_fscore_support 

from sklearn import decomposition 

from sklearn.model_selection import GridSearchCV 

from sklearn import svm 

 

import tree_builder 

import nd 

 

 

classes = {'complex': 0, 'heavy': 1} 

 

 

def _generate_upper_case(text): 

    str_list = text.split() 

 

    # Define a variable to store the converted string 

    new_string = '' 

 

    # Iterate the list 

    for val in str_list: 

        # Capitalize each list item and merge 

        new_string += val.capitalize() + ' ' 

 

    return new_string:-1] 

 

 

def _find_LCS(first_node, second_node): 

    first_node_path = ] 

    first_node_parent = first_node 

    while first_node_parent is not None: 

        first_node_path.append(first_node_parent) 

        first_node_parent = first_node_parent.parent 

 

    second_node_parent = second_node 

    path_length = len(first_node_path)-1 

    while second_node_parent is not None: 



 

70 

        if second_node_parent in first_node_path: 

            return second_node_parent, path_length 

 

        second_node_parent = second_node_parent.parent 

        path_length += 1 

 

def decision_tree_regressor_predict_proba(X_train, y_train, X_test, 

**kwargs): 

    """Trains DecisionTreeRegressor model and predicts probabilities of 

each y. 

 

    Args: 

        X_train: Training features. 

        y_train: Training labels. 

        X_test: New data to predict on. 

        **kwargs: Other arguments passed to DecisionTreeRegressor. 

 

    Returns: 

        DataFrame with columns for record_id (row of X_test), y 

        (predicted value), and prob (of that y value). 

        The sum of prob equals 1 for each record_id. 

    """ 

    # Train model. 

    m = DecisionTreeRegressor(**kwargs).fit(X_train, y_train) 

    # Get y values corresponding to each node. 

    node_ys = pd.DataFrame({'node_id': m.apply(X_train), 'y': y_train}) 

    # Calculate probability as 1 / number of y values per node. 

    node_ys'prob'] = 1 / 

node_ys.groupby(node_ys.node_id).transform('count') 

    # Aggregate per node-y, in case of multiple training records with 

the same y. 

    node_ys_dedup = node_ys.groupby('node_id', 

'y']).prob.sum().to_frame()\ 

        .reset_index() 

    # Extract predicted leaf node for each new observation. 

    leaf = pd.DataFrame(m.decision_path(X_test).toarray()).apply( 

        lambda x:x.to_numpy().nonzero()0].max(), axis=1).to_frame( 

            name='node_id') 

    leaf'record_id'] = leaf.index 

    # Merge with y values and drop node_id. 

    return leaf.merge(node_ys_dedup, on='node_id').drop( 

        'node_id', axis=1).sort_values('record_id', 'y']) 

 

 

def classify(dataset): 

    dataset'Hc'] = dataset'Hc'].replace('complex', 'heavy'], 1, 2]) 

    Y_dataset = dataset"Hc"]] 

    X_dataset = dataset.drop('Hc', 1) 

 

    le = preprocessing.LabelEncoder() 

    X_dataset = X_dataset.apply(le.fit_transform) 

    X_dataset = (X_dataset-X_dataset.mean())/X_dataset.std() 

 

    X_train, X_test, Y_train, Y_test = train_test_split(X_dataset, 

Y_dataset, test_size=0.2, random_state=42, stratify=Y_dataset) 

 

    # res = decision_tree_regressor_predict_proba(X_train, Y_train, 
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X_test, random_state=0, min_samples_leaf=5) 

    # print(res) 

 

    # param_grid = { 

    #     'bootstrap': False, True], 

    #     'max_depth': 80, 90, 100, 110], 

    #     'min_samples_leaf': 1, 3, 4, 5], 

    #     'min_samples_split': 8, 10, 12], 

    #     'n_estimators': 100, 200, 300, 1000] 

    # } 

    # classifier = tree.DecisionTreeClassifier() 

    # classifier = RandomForestClassifier() 

    # classifier = AdaBoostClassifier(n_estimators=2, random_state=42) 

    # classifier = KNeighborsClassifier() 

    param_grid = {'kernel': 'rbf'], 'gamma': 1e-3, 1e-4, 1e-5], 

                     'C': 1, 10, 100, 1000, 5000]}, 

                    {'kernel': 'linear'], 'gamma': 1e-3, 1e-4], 'C': 1, 

10, 100, 1000, 5000]}] 

    # classifier = svm.SVC() 

    # scores = 'precision', 'recall'] 

    classifier = GridSearchCV( 

        svm.SVC(probability=True), param_grid 

    ) 

 

    # grid_search = GridSearchCV(estimator=classifier, 

param_grid=param_grid, cv=3, n_jobs=-1, verbose=2) 

 

    classifier.fit(X_train, Y_train.values.ravel()) 

    Y_pred = classifier.predict(X_test) 

    y_proba = classifier.predict_proba(X_test) 

 

    # print(Y_test.values.ravel() - Y_pred) 

    # print(Y_test) 

    # print(classifier.best_params_) 

    # print(grid_search.cv_results_) 

    # print(Y_pred) 

    # prob = classifier.predict_proba(X_test) 

    test_acc = accuracy_score(Y_test, Y_pred) 

    test_precision = precision_score(Y_test, Y_pred) 

    test_recall = recall_score(Y_test, Y_pred) 

    test_f1 = f1_score(Y_test, Y_pred) 

 

    # packed = pd.DataFrame(X_test, Y_pred) 

    # print(len(X_train)) 

    # print(sum(Y_pred)) 

    # print(len(Y_pred)) 

    # print(sum(Y_test.values)) 

    # print('test_accuracy =  {:.2f}%, precision =  {:.2f}%, recall =  

{:.2f}%, f1 = {:.2f}%'.format( 

    #     test_acc*100, 

    #     test_precision*100, 

    #     test_recall*100, 

    #     test_f1*100, 

    #     ) 

    # ) 

    # print(y_proba) 

    # print(Y_pred) 
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    # print(Y_test) 

    classification_result = {} 

    for row, i in zip(X_test.index, Y_pred): 

        classification_resultrow] = y_probai] 

 

    return classification_result 

 

 

def _compute_similarity_between_word_and_all_nodes(desired_node): 

    similarity = {} 

    for other_node in tree_builder.tree.all_nodes: 

        LCS, path_length = _find_LCS(desired_node, other_node) 

        nd_value = nd.get_normalized_distance(desired_node.data, 

other_node.data) 

        if other_node.data == desired_node.data: 

            similarityother_node.data] = tree_builder.tree.max_depth 

 

        else: 

             similarityother_node.data] = \ 

                 math.exp(-nd_value)*(2*LCS.depth/float(path_length)) 

            #1 LCH 

            # print(path_length) 

            # similarityother_node.data] = \ 

            #     math.exp(-nd_value) * (math.log((2 * LCS.depth), 10) 

/ float(path_length)) 

            # print(similarityother_node.data]) 

            # #2 PATH 

            # similarityother_node.data] = \ 

            #     math.exp(-nd_value) * (1 / 1 + float(path_length)) 

            # #3 LI1 

            # similarityother_node.data] = \ 

            #     math.exp(-nd_value) * (math.exp(-0.2) * 

float(path_length)) 

            # #4 LI2 

            # similarityother_node.data] = \ 

            #     math.exp(-nd_value) * (math.exp(-0.2) * 

float(path_length)) \ 

            # * ((math.exp(0.6) * LCS.depth) - (math.exp(0.6) * 

LCS.depth)) \ 

            # / ((math.exp(0.6) * LCS.depth) + (math.exp(-0.6) * 

LCS.depth)) 

 

 

 

    return similarity 

 

 

def main(): 

    parser = argparse.ArgumentParser() 

    parser.add_argument( 

        '--csv_file', 

        help='Path to csv file', 

        required=True, 

        type=str, 

    ) 

    parser.add_argument( 

        '--query', 
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        help='Path to the query file', 

        required=True, 

    ) 

    parser.add_argument( 

        '--dfdict', 

        help='Path to Document Frequency Dict', 

        required=True, 

    ) 

    parser.add_argument( 

        '--weights', 

        help='Path to Weights', 

        required=False, 

    ) 

    arguments = parser.parse_args() 

 

    tree_builder.generate_tree_from_csv_file(arguments.csv_file) 

    nd.load_data(arguments.dfdict) 

 

    weights = {} 

    if arguments.weights: 

        with open(arguments.weights) as f: 

            lines = f.read().splitlines() 

 

        for line in lines: 

            key = line:-2] 

            key = _generate_upper_case(key) 

            weight = line-1] 

            weightskey] = int(weight) 

 

    with open(arguments.query) as f: 

        lines = f.read().splitlines() 

 

    supplier = pd.read_csv('./word_occurrence2/HC.csv') 

    columns = supplier.columns 

    for column in columns: 

        upper_case = _generate_upper_case(column) 

        supplier.rename(columns={column: upper_case}, inplace=True) 

        if upper_case in weights.keys(): 

            supplierupper_case] = 

weightsupper_case]*supplierupper_case] 

 

    classification_result = classify(supplier) 

 

    similarity = {} 

    categories = {} 

    for index, line in enumerate(lines): 

        tokens = line.split(",") 

        parent_data = _generate_upper_case(tokens0]) 

        categoriesparent_data] = parent_data] 

        wanted_nodes = tokens1:] 

        for wanted_node in wanted_nodes: 

            wanted_node = _generate_upper_case(wanted_node) 

            categoriesparent_data].append(wanted_node) 

            related_node = tree_builder.find_node(parent_data, 

wanted_node) 

            if related_node is None: 

                continue 
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            similaritywanted_node] = 

_compute_similarity_between_word_and_all_nodes(related_node) 

 

    supplier_score = {} 

    # max_reward = 2 

    for row in range(1, len(supplier)+1): 

        if row not in classification_result.keys(): 

            continue 

 

        supplier_scorestr(row+2)] = 0 

        categories_score = {} 

        for wanted_node in similarity: 

            if wanted_node not in supplier.columns: 

                continue 

 

            value = supplierwanted_node].valuesrow-1] 

            wanted_node_score = 0 

 

            # if value >= 1: 

            #     wanted_node_score += max_reward 

 

            # machining = '5-axis Machining', 'Electrical Discharge 

Machining', 'Screw Machining', 'Thin Wall Machining'] 

 

            # number_of_similar_node = 0 

            # alternative_nodes_score = 0 

            for other_node in similaritywanted_node]: 

                # print(wanted_node, other_node) 

                if other_node in supplier.columns: 

                    if supplierother_node]row-1] > 0: 

                        wanted_node_score += 

similaritywanted_node]other_node] 

                        # number_of_similar_node += 1 

 

            # print('@@@@@@@@@@@@@') 

            # if number_of_similar_node > 0: 

            #     wanted_node_score += 

alternative_nodes_score/number_of_similar_node 

 

            #weightsDict = {} #final dict 

            #names = ] #category names 

            #wghts = ] #categoru weights 

            #for i in range(len(names)): 

            #    weightsDictnamesi]] = wghtsi] 

             

 

            for key in categories.keys(): 

                if wanted_node in categorieskey]: 

                    if key in categories_score: 

                        categories_scorekey].append(wanted_node_score) 

 

                    else: 

                        categories_scorekey] = wanted_node_score] 

 

 

        for key in categories_score.keys(): 
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            categories_scorekey] = 

weightskey]*(sum(categories_scorekey])/len(categories_scorekey])) 

 

        print(categories_score) 

        # print('=========================') 

 

        # if 'Machining' not in categories_score.keys() \ 

        #         or categories_score'Machining'] == 0: 

        #     supplier_scorestr(row+2)] = 0 

        # 

        # else: 

        supplier_scorestr(row+2)] = sum(categories_score.values()) 

 

    d_sorted_by_value = sorted(supplier_score.items(), key=lambda x: 

x1], reverse=True) 

    final_complex = ] 

    final_heavy = ] 

 

    print('====================================') 

    for i in range(len(d_sorted_by_value)-1): 

        print(d_sorted_by_valuei]0], 

classification_resultint(d_sorted_by_valuei]0])-2]) 

        cls = 

np.argmax(classification_resultint(d_sorted_by_valuei]0])-2]) 

        if cls == classes'complex']: 

            final_complex.append(d_sorted_by_valuei]) 

 

        else: 

            final_heavy.append(d_sorted_by_valuei]) 

 

    print('complex ' + str(final_complex)) 

    print('====================================') 

    print('heavy ' + str(final_heavy)) 

 

 

if __name__ == "__main__": 

    main() 
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2. Tree Builder 

import argparse 

import json 

import time 

 

import pandas as pd 

 

import search_engine 

import taxonomy 

import tf_idf 

 

 

global arguments, tree 

 

 

def parse_arguments(): 

    parser = argparse.ArgumentParser() 

    parser.add_argument( 

        '--csv_file', 

        help='Path to csv file', 

        required=True, 

        type=str, 

    ) 

    parser.add_argument( 

        '--website_folder', 

        help='Path to your websites to generate word counts', 

        required=False, 

        type=str, 

    ) 

    parser.add_argument( 

        '--with_tf_idf', 

        help='Generate tf_idf_vector', 

        required=True, 

        type=bool, 

    ) 

    global arguments 

    arguments = parser.parse_args() 

 

 

def _generate_upper_case(text): 

    str_list = text.split() 

 

    # Define a variable to store the converted string 

    new_string = '' 

 

    # Iterate the list 

    for val in str_list: 

        # Capitalize each list item and merge 

        new_string += val.capitalize() + ' ' 

 

    return new_string:-1] 

 

 

def _find_node(node, parent_data, data): 

    for child in node.children: 

        if child.data == data: 
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            return child 

 

    for child in node.children: 

        result = _find_node(child, parent_data, data) 

        if result is None: 

            continue 

 

        return result 

 

 

def find_node(parent_data, data): 

    global tree 

    root = tree.root 

 

    return _find_node(root, parent_data, data) 

 

 

def generate_tree_from_csv_file(csv_path): 

    csv_file = pd.read_csv(csv_path) 

    columns = csv_file.columns 

 

    global tree, parent 

    tree = taxonomy.Tree() 

    depth = 2 

    old_parents = ] 

    for column_name in columns: 

        if 'concept' not in column_name: 

            continue 

 

        column = csv_filecolumn_name].notnull() 

        # if column is True: 

 

 

 

        not_null_indices = columncolumn].index 

        new_parents = ] 

        for index in range(len(not_null_indices)): 

            row_number = not_null_indicesindex] 

            concept = csv_filecolumn_name].valuesrow_number] 

            if concept-1] == ' ': 

                concept = concept:-1] 

 

            concept = _generate_upper_case(concept) 

            node = taxonomy.Node(concept, row_number, depth) 

            if depth == 2: 

                parent = tree.root 

 

            else: 

                for p_index in range(len(old_parents) - 1): 

                    if old_parentsp_index].row_number < node.row_number 

< old_parentsp_index + 1].row_number: 

                        parent = old_parentsp_index] 

                        break 

 

                    if old_parents-1].row_number < node.row_number: 

                        parent = old_parents-1] 

                        break 
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            parent.add_child(node) 

            node.set_parent(parent) 

            new_parents.append(node) 

            tree.all_nodes.append(node) 

 

        old_parents = new_parents 

        depth += 1 

 

    tree.max_depth = depth 

    tree.plot_tree() 

# python3 get_relevant_document.py --query ./words.txt --dfdict 

./word_occurrence2/word_occurrence_dict.json --csv_file 

./word_occurrence2/HC.csv 

# python3 tree_builder.py --csv_file ./word_occurrence2/HC.csv --

with_tf_id ./word_occurrence2/word_occurrence_dict.json 

 

def main(): 

    parse_arguments() 

    global arguments 

    generate_tree_from_csv_file(arguments.csv_file) 

 

    if arguments.website_folder: 

        word_occurrence_dict = build_word_occurrence_vector() 

        save_word_occurrence_vector(word_occurrence_dict) 

 

    if arguments.with_tf_idf and arguments.with_tf_idf: 

        tf_idf_dict = generate_tf_idf(word_occurrence_dict) 

        save_tf_idf_dict(tf_idf_dict) 

 

 

def save_tf_idf_dict(tf_idf_dict): 

    json_value = json.dumps(tf_idf_dict) 

    tf_idf_file = open("tf_idf_dict.json", "w") 

    tf_idf_file.write(json_value) 

    tf_idf_file.close() 

 

 

def generate_tf_idf(word_occurrence_dict): 

    tf_idf_dict = {} 

    for word in word_occurrence_dict.keys(): 

        word_tf_idf_dict = 

tf_idf.get_word_tf_idf(word_occurrence_dictword]) 

        tf_idf_dictword] = word_tf_idf_dict 

 

    return tf_idf_dict 

 

 

def init_search_engine(website_folder): 

    print('Loading the search engine ...') 

    search_engine.ROOT_PATH = website_folder 

    search_engine.load_data() 

    print('Search engine loaded!') 

 

 

def compute_word_occurrence(node, word_occurrence_dict): 

    for child in node.children: 
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        start = time.time() 

        word_occurrence_dict = compute_word_occurrence(child, 

word_occurrence_dict) 

        pages_hit, page_hit_info = 

search_engine.get_number_of_hits(child.data]) 

        word_occurrence_dictchild.data] = page_hit_info 

        search_time = time.time() - start 

        print('Computing occurrence vector for the word {} took {}s' 

              .format(child.data, search_time)) 

 

    return word_occurrence_dict 

 

 

def build_word_occurrence_vector(): 

    global tree 

    # init the search engine 

    word_occurrence_dict = {} 

    init_search_engine(arguments.website_folder) 

    word_occurrence_dict = compute_word_occurrence(tree.root, 

word_occurrence_dict) 

    return word_occurrence_dict 

 

 

def save_word_occurrence_vector(word_occurrence_dict): 

    json_value = json.dumps(word_occurrence_dict) 

    f = open("word_occurrence_dict.json", "w") 

    f.write(json_value) 

    f.close() 

 

 

if __name__ == "__main__": 

    main() 
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3. Classification 

# Importing all required libraries 

from sklearn import datasets 

import pandas as pd 

import numpy as np 

import requests 

from sklearn import preprocessing 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.linear_model import Perceptron 

from sklearn.preprocessing import LabelEncoder 

from sklearn.metrics import accuracy_score 

from sklearn.neural_network import MLPClassifier 

 

 

def plot_contours(ax, clf, xx, yy, **params): 

    Z = clf.predict(np.c_xx.ravel(), yy.ravel()]) 

    Z = Z.reshape(xx.shape) 

    out = ax.contourf(xx, yy, Z, **params) 

    return out 

 

 

# Downloading the dataset, creating dataframe 

download_url = "https://archive.ics.uci.edu/ml/machine-learning-

databases/car/car.data" 

cardata_path = "car.data" 

 

response = requests.get(download_url) 

response.raise_for_status() 

 

# Check that the request was successful 

with open(cardata_path, "wb") as f: 

    f.write(response.content) 

print("Download ready.") 

 

# Read the data from the file 

cardata = pd.read_csv("car.data", names="buying", "safety", "output"])# 

Check the number of columns and rows in the file 

 

# convert categorical data to numeric 

le = preprocessing.LabelEncoder() 

cardata = cardata.apply(le.fit_transform) 

 

# Get the output 

Ycardatnorm_train=cardata"output"]] 

 

# Normalize the data 

normalized_cardata=(cardata-cardata.mean())/cardata.std() 

 

# Get feature vectors X 

Xcardatnorm_train=normalized_cardata"buying", "safety"]] 

 

# Neural Network hyperparameteres 

splits = 0.1, 0.2, 0.3] 

learning_rates = 1, 0.1, 0.01] 

n_iterations = 10, 100, 200, 400] 
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# splits = 0.1] 

# learning_rates = 1] 

# n_iterations = 10] 

#open the file to report 

f= open("Accuracy.txt","w+") 

 

 

import matplotlib.pyplot as plt 

 

max_test_acc = 0 

best_model = None 

x_boundary = None 

y_boundary = None 

 

for split in splits: 

    X_train, X_test, Y_train, Y_test = 

train_test_split(Xcardatnorm_train, Ycardatnorm_train, test_size=split, 

random_state=1, stratify=Ycardatnorm_train) 

 

    for learning_rate in learning_rates: 

        for n_iter in n_iterations: 

            ppn = MLPClassifier(activation='logistic', 

learning_rate='constant',learning_rate_init=learning_rate, 

max_iter=n_iter) 

            #ppn = Perceptron(eta0=learning_rate, random_state=1, 

max_iter = n_iter) 

 

            #This is training the model 

            ppn.fit(X_train, Y_train.values.ravel()) 

            #Testing the model data 

            Y_pred = ppn.predict(X_test) 

 

            train_acc = ppn.score(X_train, Y_train.values.ravel()) 

            test_acc = accuracy_score(Y_test, Y_pred) 

            print('Train Accuracy: %.2f' % train_acc) 

            print('Test Accuracy: %.2f' % test_acc) 

            print('split = ', split, '  learning_rate = ', 

learning_rate, '  n_iter = ', n_iter) 

            

print('#####################################################') 

            f.write('split = '+ str(split) + '  learning_rate = ' + 

str(learning_rate) + '  n_iter = ' + str(n_iter) + "\n") 

            f.write('Train Accuracy: ' + str(train_acc) + "\n") 

            f.write('Test Accuracy: '+ str(test_acc)+"\n") 

            f.write("\n") 

 

            if test_acc > max_test_acc: 

                max_test_acc = test_acc 

                best_model = ppn 

                x_boundary, y_boundary = X_train, Y_train 

 

 

fig, ax = plt.subplots() 

# Set-up grid for plotting. 

X0, X1 = X_train'buying'], X_train'safety'] 



 

82 

 

x_min, x_max = X0.min(), X0.max() 

y_min, y_max = X1.min(), X1.max() 

xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, 

y_max, 0.01)) 

 

plot_contours(ax, best_model, xx, yy, cmap=plt.cm.coolwarm, alpha=0.01) 

ax.scatter(X0, X1, c=Y_train.values.ravel(), cmap=plt.cm.coolwarm, 

s=20, edgecolors="k") 

ax.set_ylabel("{}".format('buying')) 

ax.set_xlabel("{}".format('safety')) 

ax.set_xticks(()) 

ax.set_yticks(()) 

ax.set_title('Decision Boundary') 

plt.show() 

 

4. Convert HTML to Text 

import os 

 

import html2text 

from bs4 import BeautifulSoup as soup 

 

ROOT_READ_PATH = "./websites" 

ROOT_SAVE_PATH = "./websites_converted_to_text" 

 

 

def main(): 

    h = html2text.HTML2Text() 

    h.ignore_links = True 

 

    if not os.path.exists(ROOT_SAVE_PATH): 

        os.mkdir(ROOT_SAVE_PATH) 

 

    websites_paths = os.path.join(ROOT_READ_PATH, website) 

                      for website in os.listdir(ROOT_READ_PATH) 

                      if os.path.isdir(os.path.join(ROOT_READ_PATH, 

website))] 

 

    for website_path in websites_paths: 

        website = os.path.basename(website_path) 

        print('Converting {} website to text files'.format(website)) 

        website_save_path = os.path.join(ROOT_SAVE_PATH, website) 

        if not os.path.exists(website_save_path): 

            os.mkdir(website_save_path) 

 

        website_html_files = os.path.join(website_path, html_file) 

                            for html_file in os.listdir(website_path) 

                            if os.path.isdir(website_path)] 

 

        for html_file_path in website_html_files: 

            try: 

                html_file = open(html_file_path, 'r', encoding="utf-8") 

                html_content = str(soup(html_file.read(), 

'html.parser')) 

                text_content = h.handle(html_content) 
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                html_file_name = os.path.basename(html_file_path) 

                text_file_save_path = os.path.join(website_save_path, 

html_file_name) 

 

                destination_file = open(text_file_save_path, 'w') 

                destination_file.write(text_content) 

                destination_file.close() 

 

            except Exception as e: 

                print(website, e) 

 

 

if __name__ == "__main__": 

    main() 
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5. Normalized Google Distance 

import argparse 

import math 

import json 

 

import pandas as pd 

 

import search_engine 

 

global word_occurrence_dict 

 

 

def get_number_of_hits(keyword): 

    global word_occurrence_dict 

 

    if len(keyword) == 1: 

        if keyword0] in word_occurrence_dict.keys(): 

            number_of_hits = sum(1 for value in 

word_occurrence_dictkeyword0]].values() if value != 0]) 

            return keyword0], number_of_hits 

 

        edited = ' {}'.format(keyword0]) 

        if edited in word_occurrence_dict.keys(): 

            number_of_hits = sum(1 for value in 

word_occurrence_dictedited].values() if value != 0]) 

            return edited, number_of_hits 

 

        else: 

            print('{} not in the keywords'.format(keyword0])) 

            return keyword0], -1 

 

    else: 

        first_word = keyword0] 

        second_word = keyword1] 

        number_of_hits = sum( 

            1 for value1, value2 in 

zip(word_occurrence_dictfirst_word].values(), 

word_occurrence_dictsecond_word].values()) 

             if value1 != 0 and value2 != 0] 

        ) 

        return number_of_hits 

 

 

def get_normalized_distance(w1, w2): 

    N = 587.0  # Number of results for "the", proxy for total pages 

    N = math.log(N, 2) 

    if w1 != w2: 

        word1, w1_hits = get_number_of_hits(w1]) 

        if w1_hits == -1: 

            return 1 

 

        word2, w2_hits = get_number_of_hits(w2]) 

        if w2_hits == -1: 

            return 1 

 

        w12_hits = get_number_of_hits(word1, word2]) 
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        if w1_hits == 0 or w2_hits == 0 or w12_hits == 0: 

            return 1 

 

        f_w1 = math.log(w1_hits, 2) 

        f_w2 = math.log(w2_hits, 2) 

        f_w1_w2 = math.log(w12_hits, 2) 

 

        normalized_distance = \ 

            (max(f_w1, f_w2) - f_w1_w2) / (N - min(f_w1, f_w2)) 

        return normalized_distance 

 

    else: 

        return 0 

 

 

def init_search_engine(website_folder): 

    search_engine.ROOT_PATH = website_folder 

    search_engine.load_data() 

 

 

def load_data(dfdict_path): 

    global word_occurrence_dict 

    word_occurrence_dict_file = open(dfdict_path, 'r') 

    word_occurrence_dict = json.load(word_occurrence_dict_file) 

    return word_occurrence_dict 

 

 

def main(): 

    parser = argparse.ArgumentParser() 

    parser.add_argument( 

        '--words', 

        help='Path to words', 

        required=True, 

    ) 

    parser.add_argument( 

        '--dfdict', 

        help='Path to Document Frequency Dict', 

        required=True, 

    ) 

    arguments = parser.parse_args() 

 

    load_data(arguments.dfdict) 

 

    csv_file = pd.read_csv('./words.txt', names='first', 'second']) 

    nds = ] 

    for index, row in csv_file.iterrows(): 

        first = str(row.iloc0]).strip() 

        second = str(row.iloc1]).strip() 

        ND = get_normalized_distance(first, second) 

        nds.append(ND) 

 

    csv_file'nd'] = nds 

    csv_file.to_csv('ngds.csv') 

    # for count, line in enumerate(lines): 

    #     if (count + 1) % 3 != 0: 

    #         words.append(line.strip()) 

    # 
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    #     if len(words) == 2: 

    #         print('computing NGD for words {}'.format(words)) 

    #         result_file.write('words : {}\n'.format(words)) 

    #         result_file.write( 

    #             'NGD for words {}, {}: {}\n\n'.format( 

    #                 words0], 

    #                 words1], 

    #                 get_normalized_distance(words0], words1]), 

    #             ) 

    #         ) 

    #         words = ] 

    # 

    # json_value = json.dumps(tf_idf_dict) 

    # f = open("dict2.json", "w") 

    # f.write(json_value) 

    # f.close() 

 

 

if __name__ == "__main__": 

    main() 
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6. Search Engine 

import os 

import itertools 

 

 

ROOT_PATH = './websites' 

global websites 

global website_pages 

 

 

def load_data(): 

    global websites, website_pages 

    website_pages = {} 

    websites = website 

                for website in os.listdir(ROOT_PATH) 

                if os.path.isdir(os.path.join(ROOT_PATH, website))] 

 

    for website in websites: 

        website_pageswebsite] = {} 

        website_path = os.path.join(ROOT_PATH, website) 

        pages = os.listdir(website_path) 

        for page in pages: 

            f = open(os.path.join(website_path, page), 'r') 

            contents = f.read() 

            website_pageswebsite]page] = contents 

 

 

def number_of_documents(): 

    return len(websites) 

 

 

def get_different_cases(word): 

    tokens = word.split(' ') 

    all_cases = list(map(''.join, 

itertools.product(*((token.capitalize()+' ', token.lower()+' ') for 

token in tokens)))) 

    all_cases = item:-1] for item in all_cases] 

    return all_cases 

 

 

def check_occurrence_by_folder(words, folder): 

    global website_pages 

    included_words = {} 

    number_of_hits = 0 

    for key in website_pagesfolder].keys(): 

        contents = website_pagesfolder]key] 

        for word in words: 

            all_cases = get_different_cases(word) 

            for case in all_cases: 

                if case in contents: 

                    included_wordsword] = 1 

                    number_of_hits += contents.count(case) 

 

    if len(included_words) == len(words): 

        return number_of_hits 
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    return 0 

 

 

def get_number_of_hits(words): 

    global websites 

    pages_hit = 0 

    page_hit_info = {} 

    for website in websites: 

        hits_per_page = check_occurrence_by_folder(words, website) 

        if hits_per_page != 0: 

            pages_hit += 1 

 

        website_base_name = os.path.basename(website) 

        page_hit_infowebsite_base_name] = hits_per_page 

 

    return pages_hit, page_hit_info 
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7. Taxonomy 

import view 

 

 

class Node(object): 

    def __init__(self, data, row_number, depth): 

        self.data = data 

        self.row_number = row_number 

        self.depth = depth 

        self.children = ] 

        self.parent = None 

 

    def add_child(self, node): 

        self.children.append(node) 

 

    def set_parent(self, node): 

        self.parent = node 

 

 

class Tree(object): 

    def __init__(self): 

        self.root = Node('root', row_number=-1, depth=1) 

        self.all_nodes = ] 

        self.root.set_parent(None) 

        self.max_depth = 0 

 

    def print_tree(self, node): 

        for child in node.children: 

            print(node.depth, node.data, child.data) 

 

        for child in node.children: 

            self.print_tree(child) 

 

    def _plot_node(self, node, html_content): 

        if len(node.children) == 0: 

            html_content += '<li>{}-{}</li>\n'.format(node.depth, 

node.data) 

            return html_content 

 

        html_content += '<li>{}-{}\n'.format(node.depth, node.data) 

        html_content += '<ul>\n' 

        for child in node.children: 

            html_content = self._plot_node(child, html_content) 

 

        html_content += '</li>\n' 

        html_content += '</ul>\n' 

        return html_content 

 

    def plot_tree(self): 

        f = open('tree.html', 'w') 

        html_content = ''' 

            <!DOCTYPE html> 

            <html> 

            <head> 

            <style> 

            {} 
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            </style> 

            </head> 

            <body>\n 

        '''.format(view.css_content) 

        html_content += ' <ul class="tree">\n' 

        html_content = self._plot_node(self.root, html_content) + '\n' 

        html_content += '</ul>\n' 

        html_content += '</body>\n</html>' 

        f.write(html_content) 
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8. TF/IDF 

import json 

import math 

 

 

def get_word_tf_idf(word_occurrence_dict): 

    tf_idf_dict = {} 

    N = len(word_occurrence_dict.values()) 

    number_of_documents = sum(1 for value in 

word_occurrence_dict.values() if value != 0]) 

    idf = math.log(N/min(number_of_documents+1, N)) 

    for key, value in word_occurrence_dict.items(): 

        tf = math.log(1+value) 

        wtf_idf = tf * idf 

        tf_idf_dictkey] = wtf_idf 

 

    return tf_idf_dict 

 

 

def main(): 

    word_occurrence_dict_file = open('./word_occurrence_dict.json', 

'r') 

    tf_idf_dict = {} 

    word_occurrence_dict = json.load(word_occurrence_dict_file) 

    for word in word_occurrence_dict.keys(): 

        word_tf_idf_dict = get_word_tf_idf(word_occurrence_dictword]) 

        tf_idf_dictword] = word_tf_idf_dict 

 

    json_value = json.dumps(tf_idf_dict) 

    tf_idf_file = open("tf_idf_dict.json", "w") 

    tf_idf_file.write(json_value) 

    tf_idf_file.close() 

 

 

if __name__ == "__main__": 

    main() 
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