

CAPABILITY LANGUAGE PROCESSING (CLP): CLASSIFICATION AND

RANKING OF MANUFACTURING SUPPLIERS BASED ON

 UNSTRUCTURED CAPABILITY DATA

by

Kimia Zandbiglari, B.Sc.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment of

the requirements for the degree of

 Master of Science

with a Major in Engineering Management

May 2022

Committee Members:

 Farhad Ameri, Chair

 Jaymeen Shah

 Meysam Khaleghian

COPYRIGHT

by

Kimia Zandbiglari

2022

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Kimia Zandbiglari, refuse permission to copy in

excess of the “Fair Use” exemption without my written permission

DEDICATION

To Mohammad, my husband, who unconditionally supported me all the way even from

thousands of miles away, to my beloved family, whom I will forever be indebted to, and to

all strong, confident, and courageous girls who embrace challenges, persist during

setbacks, and believe that being brave is more valuable than being perfect,

this work is dedicated.

v

ACKNOWLEDGEMENTS

No words could express my deepest gratitude to my supervisor Prof. Farhad Ameri, a

great scholar who introduced me to the world of ontology and natural language

processing, always patiently encouraged me and taught me unforgettable lessons about

research the academic life. I strongly believe that without his help, this work would not

have been completed, and I continue to count on him as an inspiring scholar.

Special thanks most also be sent to my advisory committee Prof. Khaleghian and Prof.

Shah for their most constructive instructions and guidance throughout this work.

vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xi

ABSTRACT ... xiii

CHAPTER

1. INTRODUCTION .. 1

1.1. Background and Motivation .. 1

1.2. Problem Statement ... 3
1.3. Research questions ... 3

1.4. Assumptions, Limitations, Delimitations .. 3
1.5. Research Methodology .. 5

1.6. Research Plan ... 10

2. CAPABILITY TEXT CLASSIFICATION .. 12

2.1. Document Classification .. 12

2.2. Capabilty Text Classification ... 13

2.3. Related Works in Text Classification .. 14

2.4. Capability Text Classification.. 15

2.5. Manufacturing Capability Thesaurus (MCT) 16

2.6. Manufacturing Text Classification .. 23

2.7. Experiment Implementation... 29

2.8. Performance Evaluation ... 36

2.9. Conclusion ... 37

3. SIMILARITY MEASUREMENT .. 39

v

vii

3.1. Introduction .. 39

3.2. Related Work ... 40

3.3. Similarity Measurement ... 49

4. RANKING EXPERIMENT .. 52

4.1. Introduction .. 52

4.2. Experiment Validation ... 53

4.3. Ranking Results ... 55

4.4. Conclusion ... 62

5. CONCLUSION AND FUTURE WORK ... 64

5.1. Introduction .. 64

5.2. Findings.. 65

5.3. Future Work ... 67

APPENDIX SECTION ... 69

REFERENCES ... 92

viii

LIST OF TABLES

Table Page

1: Entry Concepts of Target Classes ... 32

2: An Example of Two Suppliers’ Concept Vectors .. 36

3: Calculation of Precision, Recall, and F-Measure for Heavy Machining Class 37

4: Classification Results .. 37

5: Requested Manufacturing Capabilities (Query) - Complex Machining Class 52

6: Requested Manufacturing Capabilities (Query)- Heavy Component Machining

 Class ... 52

7: Examples of computed 𝑁𝐺𝐷s ... 54

8: (brass, bronze) similarity measurement (𝑤𝑢𝑝 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) .. 55

9: Similarity scores of suppliers in complex machining class- wup method- complex

machining query.. 55

10: Similarity scores of suppliers in heavy component machining class- wup method

complex machining query ... 56

11: Similarity score of top-16 suppliers in complex maching suppliers- wup method

complex machining query ... 56

12: Precision and Complex Machining query suppliers' scores 56

13: Heavy Component Machining query suppliers' scores ... 58

14: Human expert ranking .. 59

ix

15: Spearman's rank-order correlation result for complex machining query 61

16: Spearman's rank-order correlation result for heavy component machining query 61

17: Spearman's correlation average for complex machining query 61

18: Spearman's correlation average for heavy component machining query 62

x

LIST OF FIGURES

Figure Page

1: The Overview of The Classification and Ranking Framework 9

2: Research plan Gantt chart ... 11

3: An example of unstructured manufacturing data .. 13

4:The concept diagram of the Molding Sand based on SKOS terminology 18

5: Tagging candidate terms manually to develop the thesaurus 19

6: Term selector feature and relevant terms to the thesaurus.. 20

7: Distribution of concepts included in each concept scheme .. 21

8: Proposed Manufacturer Classification Framework .. 24

9: Concept Model Weighting Schema .. 26

10: Entity Extractor Tool: Preferred Labels are highlighted in Green and Alternative

Labels in Red .. 28

11: Concept Model Builder Gadget in SKOS Tool .. 33

12: Entity Extractor Tool User Interface .. 34

13: The depth of a concept is the shortest path between the concept and the root 48

14: All Given Concepts in a Query Will Be Paired with Concepts in Thesaurus to

Calculate Supplier’s Similarity Score ... 51

xi

LIST OF ABBREVIATIONS

Abbreviation Description

BoC Bag of Concepts

BoW Bag of Words

CLP Capability Language Processing

CM Concept Model

CMB Concept Model Builder

CSV Comma-Separated Value

EC Entry Concept

EE Entity Extractor

F F-Measure

IC Information Content

IDF Inverse Document Frequency

KNN K-Nearest Neighbor

lch Leacock Chordorow

LCS Least Common Subsume

LSA Latent Semantic Analysis

Maas Manufacturing-as-a-Service

MCT Manufacturing Capability Thesaurus

MSP Most Specific Parent

xii

NGD Normalized Google Distance

NLP Natural Language Processing

OEM Original Equipment Manufacturers

P Precision

R Recall

RF Random Forest

SKOS Simple Knowledge Organization System

SME Small and Medium Enterprises

SVD Singular Value Decomposition

SVM Support Vector Machine

TLP Technical Language Processing

wup Wu and Palmer

xiii

ABSTRACT

In manufacturing industry, data is available in both structured and unstructured

forms. Although the unstructured data represented in natural language text contains

valuable information and knowledge, its effective processing for the sake of information

retrieval and knowledge extraction is a challenge. Manufacturing Capability data is an

example of unstructured data widely used for describing the technological capabilities of

manufacturing companies. The objective of this research is to use a set of text analytics

techniques to enable automated classification and ranking of manufacturing companies

based on their capability narratives available on their websites. For this purpose, a

supervised classification method is used in conjunction with semantic similarity

measurement method. A formal thesaurus that uses Simple Knowledge Organization

System (SKOS) format provides structural and lexical semantics to support classification

and ranking. To conduct semantic similarity measurement, edge-based method is

combined with Normalized Google Distance (NGD) technique to create a weighted edge-

based method for measuring the similarities of manufacturers’ capabilities with the

queried capabilities provided by customers. The proposed framework is validated

experimentally using a hypothetical search scenario. The results indicate that the

generated ranked list is highly correlated with human judgment, especially if the query

model and supplier capability model belong to the same class. However, the correlation

decreases when multiple overlapping classes of suppliers are mixed. The findings of this

research can be used to improve the precision and reliability of Capability Language

xiv

Processing (CLP) tools and methods and improve the intelligence of supplier discovery

and capability mapping platforms.

1

1. INTRODUCTION

1.1. Background and Motivation

Due to rapid digitalization of manufacturing industry, the volume and diversity of

data, in both structured and unstructured forms, is growing exponentially. The focus of

this thesis is on manufacturing capability data that describe the production process,

material, quality capability, and engineering capabilities of manufacturers. Manufacturers

use various forms of data, including structured and unstructured natural language, to

describe their manufacturing capabilities. Particularly, companies’ websites are often

used as the primary venue for advertising manufacturing capabilities. Most of the

information found on manufacturing suppliers’ websites is human generated which

presents data in the form of unstructured natural language text. The unstructured data is a

valuable source of highly important capability data. While querying and searching

structured data is a relatively mature and efficient process, unstructured data in the form

of natural language presents several challenges with respect to search, information

retrieval, and knowledge extraction.

Keyword search is the de facto method for retrieving information from

unstructured text. However, keyword search often results in lower precisions since it

often ignores the semantics of data. In this thesis, the focus is on semantic search

methods. As opposed to keyword search, semantic search considers meaning and context

instead of only exact matches of a word.

 This research is motivated by the need for improving the intelligence of supplier

discovery process. A supplier evaluation system that is supported by text analytics and

machine learning algorithms can provide manufacturers with a better visibility into the

2

strengths and weaknesses of the other manufacturing suppliers and positively impacts

their decisions about their prospective business partners. The methods and models

developed in this research can support supply chain decisions during the early stages of

supply chain formation process. The goal is to help supply chain managers select

appropriate manufacturing partners based on their capabilities as described on their

public websites. Traditional keyword-based techniques for search have several limitations

and typically the returned results have very low precision. More sophisticated techniques

need to be used to ensure the search process returns a set of relevant manufacturing

suppliers that can fulfill the required manufacturing services. Various supervised and

unsupervised text analytics techniques can be used for this purpose. One of the

techniques that can effectively organize the data into various categories is classification

. Classification (Bhavsar & Panchal, n.d.) is a machine learning technique which is

widely used in different industries to classify data in various classes. Classification

techniques identify group membership for data instances.

Typically, the supplier groups that are formed after classification steps ate still

very large in size and manual sorting and analysis of the members of each group is very

time consuming. Therefore, suppliers within each group need to be ranked according to

their relevance to the search criteria. Keyword matching can be used as a technique for

ranking the results. However, since keyword matching disregards the semantics of the

search terms, the outcome often suffers from low precision and recall. This research is

addressing this issue by implementing a semantic approach to measuring similarity and

relatedness.

3

1.2. Problem Statement

A typical supplier search and assessment process often entails the evaluation of a

large number of small-to- medium sized manufacturers (SMMs) which are potentially

capable of providing the requested services. However, the diversity of this supply pool

negatively affects the efficiency of evaluating and selecting manufacturers while

searching for qualified suppliers in this pool. A large volume of unstructured data can be

found on manufacturers’ website, which contain valuable information about suppliers’

capabilities. If manufacturing capabilities available on suppliers’ website are analyzed

and evaluated, more accurate decision will be made when selecting supply chain partners.

The objective of this research is to use text analytics techniques to compare, evaluate, and

analyze the capabilities of manufacturing companies based on the unstructured data

available on their website.

1.3. Research questions

This research work is intended to answer the following questions:

 Which classifier will have the best precision/recall/ F-measure in this work?

 What method of similarity measurement should be used for the ranking?

 How can classification affect similarity scores?

 How to compare automatically generated rankings with human expert’s

rankings?

1.4. Assumptions, Limitations, Delimitations

1.4.1. Assumptions

 It is assumed that manufacturers might use informal terminology and jargons

for describing their capabilities. The reason for this assumption is that

4

practitioners in the manufacturing domain do not always follow the scientific

terminology often found in manufacturing reference books and technical

documents.

 It is assumed that all information that suppliers have provided on their website

is true and indicates their real capability.

 It is assumed that the sourcing web-portal (Thomas Net) that is used for

collecting supplier data has categorized suppliers correctly. Thomas Net

includes multiple capability categories and there exist hundreds of contract

manufacturers under each category.

1.4.2. Limitations

 Data can only be collected from suppliers’ websites, and it is limited to what

they have published as their website content. It is not possible to have access

their internal and proprietary information that is not published publicly.

 Limited and various number of suppliers providing services in different

manufacturing classes, is a limitation to collect adequate data.

 Lots of suppliers’ website URLs are protected against being crawled, which

makes it impossible to used Entity Extractor feature on SKOS Tool.

1.4.3. Delimitations

 The research only uses suppliers’ websites which are in the USA and have

their content in English for data collection, as the source portal only provides

categorized suppliers in the USA.

 In this work numeric data such as tolerances and dimensions are excluded, as

the manufacturing capability thesaurus primarily addresses qualitative

5

manufacturing capability characteristics and excludes quantitative

characteristics.

 This research only studies manufacturing suppliers and excludes logistics

service providers since this research mainly focuses on manufacturing

capabilities.

1.5. Research Methodology

To unlock the value of the unstructured capability data, there is a need for

developing advanced quantitative techniques supported by semantic modeling, machine

learning, Natural Language Processing (NLP), and statistical inference methods. We refer

to the pipeline of capability text analysis tools and methods as Capability Language

Processing (CLP) which is a branch of Technical Language Processing (TLP). TLP is a

human-in-the-loop iterative approach to tailor NLP tools to engineering data (Brundage

et al., 2021) .TLP seeks to re-imagine the out-of-the-box NLP pipeline (including

tokenization, stop-word removal, cleaning, and stemming) since they are historically

designed with non-technical language in mind. Capability Language (CL) is a highly

technical language containing specialized vocabulary, jargons, and tribal knowledge, and

the data processing and analysis techniques that use capability language as the input need

to be supported by specialized resources for data preparation, annotation, and

representation.

This research uses a hybrid approach that involves classification and ranking of

manufacturing suppliers based on the textual data available on company websites.

Bag of Concepts (BoC) method is used for supervised classification of

manufacturing suppliers in which a dictionary of manufacturing concepts is required. In

6

this research Manufacturing Capability Thesaurus (MCT) which contains manufacturing

capability concepts is used. MCT is created using a web-based tool called SKOS Tool

that is developed in the Engineering Informatics lab. The created thesaurus uses semantic

relationships and links and organizes capability concepts in this regard. It includes 8

concepts schemes and manufacturing capability concepts are added under these concept

schemes. Once target classes are defined, for each target class, a set of features have to be

chosen which demonstrate relative features to each target class. In addition, as not all the

concepts are at the same level of importance in describing the features of a target class,

they need to be weighted. These weighed sets are called Concepts Models which SKOS

Tool is able to create using Concept Model Builder feature.

To collect data, manufacturing suppliers’ websites contents are extracted to

generate the raw data. These data are used as the input to Entity Extractor feature in

SKOS Tool that can create a concept vector for each supplier. A concept vector includes

the concepts and their frequencies for each supplier in a comma-separated value (CSV)

format. The generated concept vectors for individual supplier can be unified in a CSV file

to form a matrix. Manufacturing suppliers’ websites in two target classes are reached out

using Thomas Net sourcing portal1 .

Once concepts model and unified suppliers file are available, using known

classifiers, the experiment can be performed. Decision Tree, Support Vector Machine

(SVM), K-Nearest Neighbor (KNN), and Random Forest (RF) are the classifiers which

will be used in this experiment to classify suppliers into two pre-defined target classes.

1 Thomasnet.com

7

Precision, recall, and F-measure are the three metrics that will be used to evaluate each

classifier’s accuracy.

According to the motivating use case for the proposed manufacturer

recommendation framework, the user submits a query that is composed of a vector of

thesaurus concepts that collectively represent the required manufacturing services and the

desired capabilities of supplier of those services. Since the manufacturers are also

represented as concept vectors extracted from the same thesaurus, the similarity

measurement between the requested capabilities and provided capabilities by each

manufacturer is reduced to a set of pairwise similarity measurements between requested

and provided capability concepts.

A hybrid approach using both corpus-based and knowledge-based methods is

adopted in this work for semantic similarity measurement between concept pairs. While

the edge-based method takes into account the inheritance relationships between the

concepts as an indication of their semantic similarity, the Normalized Google Distance

(NGD) approximates the semantic relatedness of concepts based on their co-occurrences

in a large corpus. In the proposed hybrid method, the NGD between two concepts will be

used as the weight of the edges on the path between these concepts.

An example query will be formulated for this experiment that contains a set of

concepts referring to different aspects of manufacturing capabilities that can be provided

by qualified suppliers. The query will be formulated such that it targets suppliers from

one of the target classes. The overall similarity score for each category is the average of

the pairwise similarity scores obtained for that category. In this way, the length of the

concept vector for each supplier will not inflate the overall similarity score of the

8

category. The overall similarity between the query and the supplier can be calculated as

the sum of similarity values calculated for each capability category. Using the existing

equations for proposed methods, the similarity score associated with each supplier will be

computed in Python environment.

When all suppliers’ similarity scores are available, they will be ranked based on

their score. In addition, to evaluate the accuracy of the ranking step, its output will be

compared with the ranking provided by a human expert. The human expert will be

provided with suppliers’ website URL and will be asked to rank suppliers based on their

similarity to the formulated given query. Once both rankings of similarity measurement

and human expert are done, Spearman’s ranking correlation will be used to compute the

correlation between similarity measurements ranking with rankings generated by the

expert.

Figure 1 shows the main steps of the proposed framework for supplier

classification and ranking. The raw data, i.e., capability narratives, are extracted directly

from the website of suppliers and typical pre-processing and data cleaning steps are

conducted. The next step is tokenization or separating the text into meaningful terms and

phrases for each supplier. Then the suppliers are classified into several predetermined

capability classes such as suppliers with precisions machining capabilities or suppliers

with heavy and large part machining capabilities. Similarity measurement step entails

measuring the similarity between the capabilities advertised by a supplier and the

capabilities requested by a customer. Since the text is decomposed into tokens, the

similarity measurement is boiled down to measuring pair-wise similarities between

relevant terms and phrases. For example, if a supplier’s industry focus is Automotive

9

Industry but the queried industry focus is Aerospace Industry, then similarity between

aerospace industry and automotive industry needs to be measured as one of the

components of the overall similarity score. The final outcome is a ranked list of suppliers

based on their degree of similarities with the queried capabilities. Both classificational

and similarity measurement steps use the Manufacturing Capability Thesaurus (MCT) as

one of the inputs. It should be noted that in this work we are mainly concerned about the

semantic similarities between the terms. In absence of a formal ontology that can provide

formal and axiomatic semantics for a term, a formal thesaurus that encodes structural and

lexical semantics is used in this work. Figure 1 shows an overview of the classification

and ranking framework proposed in this work.

Figure 1: The Overview of the Classification and Ranking Framework

10

1.6. Research Plan

Work in this research is divided into tasks as described below:

 Task 1. Literature Review on Text Classification and Semantic Similarity

Measurement:

Reviewing text classification and semantic similarity measurement papers to

discern and recognize problem is the purpose of this task. In this task using

Google Scholar search engine, related keywords to the topics have to be

searched and by reviewing more than 60 papers, appropriate and most related

papers to this research have to be selected.

 Task 2. Modeling and Implementation:

In this task, based on the gathered knowledge from previous task, a proper

model which can fill the gaps and solve the problem has to be created. This step

includes finding the best similarity measurement method and equation to solve

the problem.

 Task 3. Thesaurus Extension:

The thesaurus is built in bottom-up manner through tagging the capability-

related term on manufacturing suppliers’ websites. In this task, thesaurus will

be extended by tagging previously untagged capability-related terms on

manufacturing suppliers’ websites.

 Task 4. Data Collection:

In this task, using Thomasnet.com suppliers of each of these 2 (or more) classes

will be collected using their website content and SKOS Tool entity extractor

11

feature created by the Engineering Informatics lab at Texas State University

and collected data will be unified in a CSV file.

 Task 5. Experiment:

In this task, gathered data and created model will be used to run the experiment.

The experiment will include the two phases of classification and ranking. The

results obtained through classification and ranking will be compared with the

ranking generated by human expert.

 Task 6. Analysis:

When experiment is done, the experiment result will be analyzed in this task.

Analysis of the experiment result will provide a roadmap for improving the

model. In addition, in this task, suggestions for future work will be provided.

Figure 2: Research plan Gantt chart

Task
DURATION

(Months)
START FINISH Predecessors

Task 1 4 Feb-1-2020 May-31-2020

Task 2 6 June-1-2020 Nov-30-2020 1

Task 3 3 Dec-1-2020 Feb-28-2020 2

Task 4 4 Mar-1-2021 Jun-30-2021 3

Task 5 2.5 Jul-1-2021 Sep-15-2021 4

Task 6 3 Sep-16-2021 Dec-15-2021 5

Nov DecJune July Aug Sep OctMayJulyJuneMayAprilMarchFeb OctSepAug AprilMarchFebJanDecNov

16-May:30-Oct

12

2. CAPABILITY TEXT CLASSIFICATION

2.1. Document Classification

Classification is the process of categorizing inputs under pre-defined classes or

categories based on shared features of the input elements such as concepts.

Document classification is related to the process of categorizing, labeling, and

tagging items and assigning them to defined categories in databases based on their

content to ease the procedures of managing, searching, and analyzing the documents.

One of the applications of document classification is text classification which is

the concern of this work. Text classification involves the process of classifying textual

document using some text analysis techniques in different levels of document, paragraph,

sentence, and subsentence.

Three different approaches can be adopted in text classification based on the

application text classification is doing for:

 Supervised Text Classification: In supervised text classification, a set of training

data and classes (labels) are available and controlled by human. Model can learn

from the training data and perform classification on other sets of data.

 Unsupervised Text Classification: As opposed to the supervised text

classification, this approach puts documents into different clusters without any

prior training.

 Semi-Supervised Text Classification: Semi- supervised text classification falls

between supervised and unsupervised text classification. Semi-supervised text

classification uses a self-training mechanism to learn from small amount of

labeled data to label a vast amount of unlabeled data.

13

2.2. Capability Text Classification

In the initial stages of supply chain building, capability analysis is required. While

the majority of capability analysis methods use structured data, manufacturing suppliers’

website present their data in form of unstructured data and natural language form. Figure

3 shows an example of unstructured data that described the capabilities of a manufacturer

with specialty in CNC machining of large parts.

As a high volume of information and knowledge is stored as text in

manufacturing suppliers’ website, text analytics techniques can be used for extracting

useful knowledge patterns and insights. Manufacturing capability data can be found

through various sources and formats; yet the largest proportion of data is in unstructured

and semi-structured form which is the reason why using text mining approaches

including text classification can be beneficial (Korde, 2012).

Figure 3: An example of unstructured manufacturing data

This work uses text classification approaches for manufacturing suppliers’

capability classification. Text classification techniques are used to classify suppliers

under pre-defined capability classes. One step in the text classification is the feature

extraction. As text and documents are in the form of unstructured data, this data needs to

14

be converted into structured forms of data by using mathematical modeling. In the first

stage of feature extraction, data needs to be polished to be free of nuisances. Feature

extraction can be applied after data cleaning (Kowsari et al., 2019).

A thesaurus guided method is adopted in this work. Manufacturing Capability

Thesaurus is built in a bottom-up manner through tagging relevant terms which are

semantically and lexically interconnected. The thesaurus contains capability related

terminologies used in the manufacturing industry. The thesaurus provides the concepts

(features) associated with each manufacturing capability class. The documents (capability

narratives collected from websites) are also transformed into vector of terms to provide

the input to the classifier. The classifiers that are often used for text classification are:

Decision Tree, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and

Random Forest (RF).

2.3. Related Works in Text Classification

One of the first steps in unstructured data processing is tokenization or separating

the text into meaningful terms and phrases.

Wang et al. addressed the words with different meanings (polysemy) problem

using bag of concepts instead of traditional bag of terms technique (F. Wang et al., 2014).

Their proposed mechanism has two stages. In the first stage, a conceptual model for each

target category is generated using a large knowledge-based thesaurus. Then phrases and

short texts are classified based on their similarity.

Dong and Liu studied classification of enterprise websites using a technique based

on support vector machine and topic feature modeling (Dong et al., 2010). They exploited

a multi-feature topic vector generated by the website’s textual content and content

15

structure to determine the category of the website. Their method was validated by

conducting an experiment on manufacturing enterprise website search.

(Shotorbani et al., 2016) offered a method using clustering and topic modeling to

enhance searching and organizing textual documents and extract valuable patterns from

manufacturing websites. The method illustrated topic modeling along with document

clustering, boost annotation, and classification of manufacturing supplier’s webpages,

which helped users to extract valuable patterns from supplier’s websites (Shotorbani et

al., 2016).

Assessing factories’ readiness for implementation of technologies was proposed

by Jung et al. The result of this research can support creation of smart manufacturing

systems. Evaluating the companies and providing users with the status of the current

target company’s readiness level in comparison to the reference model is the basis of this

method. Knowing the current state helps companies improve their readiness level that can

have a positive correlation with companies’ operational functions (Jung et al., 2017).

2.4. Capability Text Classification

Text classification is the process of categorizing text under pre-defined classes

according to its content (Korde, 2012). An automated text classification for

manufacturing suppliers provides the opportunity of using the untouched data as

published by the manufacturing suppliers. Automatic text classification can be conducted

using both rule-based and machine learning methods. This work uses supervised machine

learning in which pre-classified text is used to train the classifier. Once trained, the

classifier can make a prediction about the class of an unlabeled text. One of the first steps

in supervised classification is the feature extraction step, where the text is transformed

16

into a vector representation (F. Wang et al., 2014). This step can be done either manually

or automatically through machine learning. Domain experts will precisely extract features

associated with each class of interest in a timely manner. On the other hand, automated

feature extraction consumes less time and effort by satisfying the consideration of

semantic relationships of the features. Feature extraction strategies do not change the

variables' original representation, but rather choose a subset of them. As a result, they

preserve the original semantics of the variables, allowing a domain expert to interpret

them (Saeys et al., 2007). A semi-automatic feature extraction is used in this research

supported by a formal thesaurus that uses SKOS (Simple Knowledge Organization

System) for its syntax and semantics.

2.5. Manufacturing Capability Thesaurus (MCT)

The Manufacturing Capability Thesaurus (MCT) is the core of the proposed

classification method. MCT provides a concept schema for manufacturing capability

terms. The MC Thesaurus comprises the common terminologies that are frequently used

to describe a supplier's manufacturing capabilities. One complication is that every

industry has a limited set of vocabulary that is only meaningful to those who work in that

field. A thesaurus can be used to reduce terminological obscurity by semantically

integrating seemingly diverse terms in different subcategories of the manufacturing

industry. Terms as Articulating Arm, Coordinate Measuring Machine, and CMM may be

used in MCT to describe suppliers’ capability with respect to production resources. A

thorough thesaurus of manufacturing capability enables each website to be translated to a

vector model (Ameri & Bernstein, 2017). MCT is built in a bottom-up manner (by

selecting terms from raw text and classifying them under appropriate broader concepts)

17

through tagging the capability-related terms found on manufacturing suppliers’ websites

in a corpus and connecting them using semantic and lexical relationships. The thesaurus

is built with 13 Concept Schemes, namely, Accreditation and Certification, Capacity and

Variety, Human Resource, Industry, Input/Output Artifact, Manufacturing Process,

Material, Organization, Product and Process Attribute, Production Capability, Production

Resource, Service, and System. Each concept scheme forms a taxonomy of concepts

structured through parent-child relationships.

2.5.1. SKOS Tool

MCT uses Simple Knowledge Organization System (SKOS1) for its syntax and

semantics. SKOS is a W3C standard that is recommended for creating thesauri, concept

schemes, and taxonomies by providing an interoperable framework and formal

annotation vocabulary. SKOS thesauri are concept-based, as opposed to term-based, in

nature. In a term-based thesaurus, terms are directly connected by lexical relationships

whereas, in a concept-based thesaurus, semantic connection is at a concept level and

terms are the lexical labels for the concepts.

Concept is defined as a unit of thoughts which is based on the common

characteristic of the objects or experiences which belong to a category and is able to

fragment a vast amount of information (Gray & F. Bjorklund, n.d.).

Each concept in SKOS has exactly one preferred label (skos:prefLabel) and can

have several alternative labels (skos:altLabel) which are the synonym terms frequently

used pointing to the same concept.

SKOS thesaurus has a three-level structure:

18

a) Conceptual level, which identifies concepts and establishes

interrelationships of concepts.

b) Terminological correspondence level, which allocates terms to their

respective concepts (preferred or alternative labels)

c) Lexical level, which defines concepts interrelationships (i.e., broader,

narrower, related).

Narrower labels (skos:narrower) indicate a more specific form of their broader

labels (skos:broader) having a hierarchical link, and the associative relationships are

defined through related labels (skos:related) (Ameri et al., 2020). A SKOS thesaurus

forms a knowledge graph which can be enriched continuously to support various data-

driven and knowledge-intensive applications. Figure 5 shows the concept diagram of the

molding sand based on the SKOS terminology.

Figure 4:The concept diagram of the Molding Sand based on SKOS terminology (Ameri et al., 2020)

2.5.2. Thesaurus Development and Extension

The MC Thesaurus is built in a bottom-up manner by tagging capability-related

terms and phrases on manufacturing suppliers' websites. Thesaurus terms are only added

19

when they are frequently used. Using the bottom-up technique enables the thesaurus to

capture well understood informal vocabularies in the manufacturing industry. It is worth

noting that the generated thesaurus focuses primarily on qualitative characteristics of

industrial capability. The numeric and quantitative characteristics, same as tolerances and

dimensions, are excluded in building the thesaurus, as there is not a fixed list available

for them and they vary from supplier to supplier and product to product. The MC

Thesaurus currently contains more than 990 concepts designated by about 1,300 labels

that are categorized under 13 concepts schemas.

Tagging relevant words in a bottom-up manner can be done through SKOS Tool

by Tagging the candidate terms to the most relevant concept schemes manually by

identifying the most appropriate broader concept as shown in Figure 5.

Figure 5: Tagging candidate terms manually to develop the thesaurus

Term selector feature provided in the SKOS Tool is another method of tagging

relevant concepts and extending the thesaurus. This feature identifies tagged terms in a

plain text, website URL, or in a CSV file which enables the human expert to identify and

tag new relevant text by simply choosing the most related parent. Figure 7 shows how

term selector feature adds new relevant terms to the thesaurus. Terms highlighted in red

and green already exist in the thesaurus.

20

Figure 6: Term selector feature and relevant terms to the thesaurus

The following stages might be used to further explain and define the integrated concepts:

1-Providing a textual definition of the concept

2-Providing alternative labels for the concept, if possible

3-Linking the concept with the other related concepts (both internal and

external)

21

2.5.3. Capability Model in MCT

As a result of the bottom-up term tagging and concept integration described in the

previous section, numerous categories of concepts (or concept schemes) were created:

Accreditation and Certification, Capacity and Variety, Human Resource, Industry,

Input/Output Artifact, Manufacturing Process, Material, Organization, Product and

Process Attribute, Production Capability, Production Resource, Service, and System.

Figure 7 shows the distribution of concepts in the thesaurus related to each concept

scheme.

Figure 7: Distribution of concepts included in each concept scheme

Accreditation and Certification: Quality certifications, quality awards, quality

control, industry-wide accreditations and inspection methods and tools, and other terms

relating to quality, accreditations, and inspection are covered by this schema.

Capacity and Variety: This concept scheme includes production capacity, production

scope, and production variety that a manufacturer can provide.

Human Resource: The capabilities relating to human resources and occupation are

described in this concept scheme.

0

5

10

15

20

25

30

35

40

22

Industry: This concept scheme incorporates concepts that explain the market

categories and industries supplied by the company, such as defense, automotive, and

aerospace.

Input/Output Artifact: This concept scheme contains both digital and physical

artifacts that a manufacturer can process or manufacture.

Manufacturing Process: This concept scheme includes manufacturing processes a

manufacturer may be capable of.

Material: Material concepts scheme includes material related concepts of material

family and named material.

Organization: The capabilities relating to organization type are brought under this

concept scheme.

Product and Process Attribute: This concept scheme includes geometric features,

min-max limits, part attribute, and process attribute.

Production Capability: Capability concepts related to complex part machining, large

part machining, precision machining, and work holding machining are the concepts

under this concept scheme.

Production Resource: Equipment, facility, machine, and tool are covered under

production resource concept scheme.

Service: Engineering service, logistic service, test and inspection service, and tool

making service are included in this concept scheme.

23

System: This concept scheme contains concepts related to the production support

system, production system, quality system, and software system.

2.6. Manufacturing Text Classification

In this section, the proposed method of classification is described.

2.6.1. BoW vs. BoC

Most conventional text classifiers use an approach known as Bag of Words

(BoW) where a document is represented as a vector of words with their frequency of

occurrence in the document. The words in BoW come from a dictionary or vocabulary

generated automatically from the collection of provided text. One major drawback of

BoW approach is that it does not retain the semantics of the original phrases (or N-grams)

when they are decomposed into single terms (1-grams). For example, the phrase Swiss

Turning designates a specialized turning process for small and intricate parts is

decomposed into Swiss and Turning, none of which convey the precise meaning of the

Swiss Turning process (Ameri & Bernstein, 2017). To remedy the semantic degradation

issue in the BoW approach, Manufacturing Capability Thesaurus (MCT), as a hand-

crafted controlled vocabulary, is adopted in this work to substitute the dictionary of terms

used in conventional methods of text classification (Sabbagh et al., 2018). MCT contains

relevant concepts pointing to different aspects of manufacturing capability. The feature or

concept vectors generated during the feature extraction process directly use the concepts

from MCT without decomposing them into atomic terms. We refer to this alternative

method as the Bag of Concepts (BoC) technique. It has been demonstrated that BoC

results have better accuracy compared to the BoW technique when classifying

manufacturing capability text (Sabbagh & Ameri, 2018).

24

2.6.2. Classification

Manufacturing suppliers are classified indirectly by classifying the text that

describes their capabilities. Text classification is conducted in two phases: (1) Concept

Model Generation (offline phase); (2) Test Document Classification (online phase) as

shown in Figure 8.

The first phase results in generating a concept model associated with each class.

The concept model is essentially a weighted vector of concepts representing the class of

interest. During the second phase, the classifier is trained to identify manufacturer

capability class for each manufacturer based on its capability narrative. These two phases

are discussed in more detail in the following sections.

Figure 8: Proposed Manufacturer Classification Framework

25

2.6.3. Concept Model

Entry Concepts (𝒆𝒄𝒊): Concept Models are formed by submitting relevant

SPARQL queries to the thesaurus. To build a concept model, the first step is to identify a

few entry concepts (eci) that are closely related to the target class. Entry concepts are

selected by a human expert since background knowledge is needed for identifying the

distinguishing concepts for each class of interest. For example, in Heavy and Large

Machining capability class, a possible entry concept set can be EC = {ec1= Heavy

Machining, ec2= Large CNC Machining, ec3= deep hole machining, ec4 = Large Part,

ec4= Vertical Milling Machine}. The Human expert will identify entry concepts from

mid-level concepts which are interrelated with other concepts existing in the thesaurus.

The SPARQL query is then submitted to the thesaurus to retrieve the broader, narrower,

and related concepts for each entry concept with adjustable depths. By identifying the

entry concepts by the human expert, concepts models associated to each capability class

will be built around the entry concepts.

Weighting System for Concepts: As not all the concepts have the same level of

importance for each particular capability class, the level of significance of each concept is

specified using a weighting schema as shown in Figure 9.

All returned concepts do not have the same level of importance for the target

class. For example, according to the concept weighting schema used in this work, for an

entry concept, the weight assigned to preferred labels of entry concepts is “9” while the

alternative labels receive “5” as their weights for entry concepts as the preferred label has

more importance than the alternative label(s) based on this schema. In this regard, any

related concept, narrower, or boarder receives a lower weight. Given training data as 𝐷 =

 {𝑑1, 𝑑2, … , 𝑑𝑛} for the class 𝐶𝐿𝑖, the weighted concept model will be represented

26

as: 𝐶𝑀𝑖 = (𝑐1, 𝑤1], 𝑐2, 𝑤2], … , 𝑐𝑚 , 𝑤𝑚]), in which wi is the weight associated with each

concept.

Figure 9: Concept Model Weighting Schema

Concept Model Generation: A Concept Model is a set of weighted concepts that

collectively designate a target capability class. In essence, the target capability class

describes a desirable supplier through a set of concepts contained in a concept model.

2.6.4. Test Document Classification

In this section, the documents (suppliers’ website content) are converted into

concept vectors to be classified under the target classes of capability via four common

27

classification techniques, namely, Decision Tree, Support Vector Machine (SVM), K-

Nearest Neighbor (KNN), and Random Forest (RF).

Classification Data: the document’s content is directly extracted from the

relevant pages of suppliers’ websites, and then pre-processed by removing numbers, stop

words, and generic words.

 Data Conceptualization: In this phase, data related to each supplier’s website will

be converted to a vector of concepts which represents the supplier’s webpage. For this

purpose, a custom-made tool, named Entity Extractor Tool, has been built through SKOS

Tool. Entity Extractor Tool identifies the thesaurus concepts existing in a document using

their preferred or alternative labels. Entity Extractor Tool also calculates frequency of

each concept in the given document. Receiving a text document, the Entity Extractor

Tool, generate the vector model of a document exported as a Comma-Separated Value

(CSV) file, as shown in Figure 10. Entity Extractor tags each term in the text with its

matching concept in the thesaurus using their preferred or alternative label. Entity

Extractor Tool can also accept supplier’s website URL as the input instead of the plain

text which makes the process of extracting concepts vector less time consuming.

The level of specificity of the target class, defines the level of abstraction in this

process. Three levels of abstraction can be done through Entity Extractor Tool. To be

more specific, the highest level of specification, Entity Extractor Tool, considers low-

level concepts along with higher- level concepts and top concepts in converting the text

to a concept vector.

28

Figure 10: Entity Extractor Tool: Preferred Labels are highlighted in Green and Alternative Labels in Red

Classification: The training and test data in CSV format are provided as the input

to the classifier and each supplier is pre-assigned to a capability class. The training data

29

(concept model for each capability class) and the test data (concept vector for each

supplier) that are already converted into CSV format, are the inputs to the classifiers. A

classification algorithm is then used to categorize suppliers under capability classes. The

process is conducted in Python environment using four classification algorithms of:

Decision Tree, Random Forest (RF), Support Vector Machine (SVM), and K-Nearest

Neighbor (KNN). In real-life supplier search scenarios, the classified data may still

contain a large number of suppliers and the selection process may require significant

effort due to the large number of suppliers within each group. Section 3. Classification in

the appendix shows the programmed codes related to the classification.

2.7. Experiment Implementation

This section provides the experimental validation results of the proposed method

for supplier classification. Two capability classes are used in this research to evaluate the

effectiveness of the proposed model. Three information retrieval metrics of precision,

recall, and F-measure are used to evaluate the classifier.

2.7.1. Target Capability Classes

The target capability classes were established in the context of machining process

capability since the MC thesaurus is plentiful enough in terms of machining concepts.

Heavy Component Machining, Precision Electrochemical Machining, Silicon

Micromachining, Precision and Complex, General Contract Machining are examples of

capability machining classes. Each capability class has a set of concepts which

differentiates it from other capability classes. Concepts presenting the capability classes

are not unique to a capability class, but the set of concepts is unique for each class of

30

capability. Precision and Complex Machining and Heavy Component Machining are used

in this work as the target class.

Handling and manufacturing of large components for use in heavy machinery,

machine tools, and buildings are all part of heavy component machining. Heavy

machining, as a result, necessitates specialized tools capable of withstanding the strains

and harshness imposed by large components while sustaining precision and tolerance

standards. The capability to process items with complicated and geometrically complex

features is referred to as Precision and Complex capabilities. Heavy component

machining and precision and complex machining are two district capability class;

however, it is expected to see some overlaps as well.

2.7.2. Classification of Capability Classes

As discussed before, the classification process has two phases: the offline phase

and the online phase. The concepts models for the target classes are generated in the

offline phase. During the online phase, the classifier is trained using a training dataset,

and then the unlabeled members of the test dataset are classified. Two capability classes,

namely heavy component machining and precision and complex machining, were

selected for this experiment. The suppliers in those categories often have specialized

equipment, facilities, and expertise represented by a unique vocabulary.

2.7.3. Concept Model Building

For each capability class, a concept model is generated automatically using the

Concept Model Builder (CMB) gadget of the SKOS Tool by submitting appropriate

queries that are formulated around a few entry concepts. Entry concepts are the key

31

concepts within MCT that represent the class of interest and they are selected by human

expert. Table 1 shows the selected entry concepts for both target classes.

32

Table 1: Entry Concepts of Target Classes

Heavy Component Machining Precision and Complex Machining

Heavy component Complex machining

Large part Difficult machining

Vertical machining center Live tooling

Deep hole machining Complex precision part

Heavy machining Multi-axis capabilities

Large CNC machining

The SPARQL queries that are executed behind the scenes on Concept Model

Builder (CMB), return the broader, narrower, and related concepts for each entry concept

based on a user-specified depth level. The final concept model vector is exported as a

CSV file containing concepts and their associated weight based on the weighting scheme

shown in Figure 9. The CMB user interface is also shown in Figure 11.

33

Figure 11: Concept Model Builder Gadget in SKOS Tool

2.7.4. Data Preparation

For each capability class, 130 suppliers were selected from Thomas Net for each

class. As a web-based sourcing portal, Thomas Net includes multiple capability classes

each containing hundreds of contract manufacturers that have several capabilities related

to their respective group. Although every company has a profile on Thomas Net that

includes a short textual description of the capabilities and areas of expertise of the

34

company, the raw text data was collected directly from the company’s website rather than

their Thomas Net profile for the sake of completeness.

The Entity Extractor feature of the SKOS Tool was used to generate the concept

vectors in CSV format for all 260 suppliers participating in this experiment. The Entity

Extractor provides the possibility of either entering the URL of the supplier’s website or

directly inserting the text from the website into a provided textbox before parsing the text

and extracting the concepts through their preferred or alternative labels. Figure 12 shows

the user interface of Entity Extractor Tool. Examples of generated concept vectors for

two representative suppliers from the target classes are shown in Table 2.

Figure 12: Entity Extractor Tool User Interface

The output of the Entity Extraction step is a vector of observed concepts (along

with their frequencies) for each manufacturing supplier. All 260 concept vectors are then

combined to form a document-term matrix of 𝑛 × 260, where 𝑛 indicates the number of

35

extracted concepts for all suppliers participating in the experiment. The body of the

matrix contains the frequencies of occurrences of the concepts for each supplier.

36

Table 2: An Example of Two Suppliers’ Concept Vectors

Heavy Component

Machining for Supplier XYZ
Frequency

Precision and Complex

Machining for Supplier ABC
Frequency

Large component 9 Complex machining 6
Heavy component 2 5-axis machining 2

Large part 3 7-axis machining 4

Large machining 6 Difficult machining 5

Large machined part 1 Live tooling 1

Heavy lifting equipment 2 Complex machined part 6
Vertical machining center 5 Complex precision part 2

Heavy CNC machining 7 Machining 7

Large part machining 3 Multi-axis complex machining 1

Vertical boring 4 Complex CNC machining 3

Heavy machining 2 Large-machined part 5

2.8. Performance Evaluation

80% of the data was selected for training the classifier, and the rest was reserved

for test and validation. Four classification algorithms, namely, Random Forest, KNN,

SVM, and Decision Tree, were used in this experiment. The classification process was

implemented and executed in Python environment.

2.8.1. Classification Performance Evaluation Metrics

Precision, recall, and F-measure are the three metrics used to evaluate the

classifier’s accuracy. Precision is the ratio of the number of correctly classified suppliers

and the total number of returned suppliers, while recall is the ratio of correctly classified

suppliers to the total number of suppliers belonging to the class of interest in the entire

dataset. F-measure is a single score balancing precision and recall, reflecting the model

accuracy. To measure model accuracy for all four evaluated classifiers, precision, recall

and F-measure equations were used as shown in Table 3.

37

Table 3: Calculation of Precision, Recall, and F-Measure for Heavy Machining Class

True Positive (TP)
The number of heavy machining suppliers

which are correctly classified as heavy

machining class.

False Negative (FN)
The number of heavy machining suppliers

which are not classified as heavy

machining class.

TP+FN

False Positive (FP)
The number of non-heavy machining

suppliers which are incorrectly classified as

heavy machining class.

True Negative (TN)
The number of non-heavy machining

suppliers which are not classified as a

heavy machining class.

FP+TN

TP + FP FN + TN N

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑅

(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

2.8.2. Classification Results

20% of the experimental dataset (composed of a mix of 52 suppliers from both

groups) were used to test and validate the classifiers. The results obtained for all four

classifiers are shown in Table 4.

Table 4: Classification Results

Metric Decision Tree SVM Random Forest KNN

Precision 81.48% 69.70% 60% 51.16%

Recall 84.62% 88.46% 57.69% 84.62%

F-measure 83.02% 77.97% 58.82% 63.77%

2.9. Conclusion

As shown in Table 4, the Decision Tree classifier has a higher F-measure, which

indicates higher accuracy in class prediction. After classification, the suppliers in the test

group are then transferred to the next stage during which they are ranked according to

their semantic similarities with the queried capabilities. To evaluate the impact of the

classification step on the accuracy of the final ranking results, the ranking process is

carried out separately for classified and unclassified data. The hypothesis is that if the

38

query vector and the document vectors belong to the same class, the ranking results will

be more accurate since the query and the data both share the same context.

39

3. SIMILARITY MEASUREMENT

3.1. Introduction

Natural Language Processing methods usually implement some type of text

similarity measurement technique to support information retrieval, recommendations,

automatic question answering, machine translation, dialogue systems, and document

matching. Text similarity is defined as the commonness of two piece of text fragments,

the more commonness two pieces of text fragment has the more similar, they are (J.

Wang & Dong, 2020).

Text similarity approaches can be divided into corpus-based and knowledge-

based similarities. With the development of neural network representation, some sematic

relationships and graph structures are considered in calculating the text similarity. In

addition to semantic similarity, broader perspectives of sematic properties are also

considered in text similarity. This work uses text similarity techniques in a graph

structure to consider the distance of the words instead of text piece fragments.

According to the motivating use case for the proposed manufacturer

recommendation framework, this work aims to provide a quantitative technique for

ranking suppliers within certain capability classes based on their similarities to the

desirable capabilities. The use case that motivates this work is a supplier search scenario

where a customer submits a query to find one or more suppliers that have a set of

desirable capabilities related to available manufacturing processes, resources, equipment,

processible materials, industry focus, quality certifications, and acceptable part types. We

assume that there exists a supplier recommender system that receives the query from the

user and returns a list of highly relevant suppliers that are ranked according to their

40

similarity to the query. Since the manufacturers are also represented as concept vectors

extracted from the same thesaurus, similarity measurement between the requested

capabilities and provided capabilities is reduced to a set of pairwise similarity

measurements between requested and provided capability concepts. For example, if the

query includes end milling and the requested process but a manufacturer only offers face

milling process, then the similarity between face milling and end milling needs to be

calculated as a component of the overall similarity between query and advertisement with

respect to manufacturing processes.

3.2. Related Work

This section provides a brief overview of the existing computational methods for

measuring the similarity between terms or phrases. The existing methods can be

categorized under two main approaches, namely, knowledge-based and corpus-based

approaches which correspond to the semantic similarity relationship and semantic

similarity relatedness, respectively (Sharma et al., 2016).

3.2.1. Knowledge-based Similarity Measurement

Knowledge-based methods calculate the semantic similarity between two terms or

concepts based on the information derived from one or more underlying knowledge

sources such as ontologies, thesauri, or concept schemas. Depending on how the semantic

similarity between words is assessed, knowledge-based semantic similarity methods can

be categorized as:

 Edge-based methods

 Feature-based methods

 Information content-based methods

41

Edge-Based Methods: The general edge-based method is to consider the

underlying ontology as a graph connecting words hierarchically and counting the edges

between two terms to measure the similarity between them. The terms that are farther

apart tend to be the less similar. A measure called 𝑝𝑎𝑡ℎ that was proposed by Rada et al.

considers the similarity between two terms to be inversely proportional to the length of

the shortest path between them (Rada et al., 1989). Edge-based method considers the fact

that the words located deeper down in the hierarchy of a graph have a more specific

meaning, and that, they may be more similar to each other even though they have the

same distance as two words which represent a more generic concept was not taken into

consideration.

𝑠𝑖𝑚𝑝𝑎𝑡ℎ(𝑡1, 𝑡2) =
1

1 + min(𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1, 𝑡2))
 (4)

 The proposed method by Leacock Chordorow known as lch technique employs a non-

linear function to evaluate the semantic similarity between concepts based on their

shortest route length, where D is the maximum depth of a Knowledge Graph's concept

taxonomy (KG). Given that KGs comprise concepts that may be structured as a concept

taxonomy with hierarchical relations, depth is the path through hierarchical relations

between the root concept and a given concept (Leacock & Chodorow, 1998). The lch

equation is shown in Equation 5.

𝑠𝑖𝑚𝑙𝑐ℎ(𝑡1, 𝑡2) = −log
𝑙𝑒𝑛𝑔𝑡ℎ(𝑡1, 𝑡2)

2 × 𝐷
 (5)

In this equation, length min (t1, t2) represents the minimum distance between the

terms t1 and t2. More sophisticated edge-counting methods also take depth into account.

Terms that are located deeper in the taxonomy have more specific semantics compared to

42

the shallower terms. Therefore, it is reasonable to include both the depth and the path

length as influential variables when calculating semantic similarity in knowledge-based

methods.

Wu and Palmer proposed a measure, known as 𝑤𝑢𝑝 measure, that uses the path

length from the root node to the Least Common Subsumer (LCS), or Most Specific

Parent (MSP), of the two terms (Zhu & Iglesias, 2016). This value is then scaled by the

sum of the depth of the individual terms as shown in Equation 6.

𝑠𝑖𝑚𝑤𝑢𝑝(𝑡1, 𝑡2) =
2𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)

𝑑𝑒𝑝𝑡ℎ (𝑡1) + depth(𝑡2)
 (6)

In this equation, depth (𝑡𝑙𝑐𝑠) is the depth of LCS node and depth (𝑡1) and depth

(𝑡2) indicate the depth of the first term and the second term respectively.

The shortest path length is defined as an exponential function of the similarity of

two concepts according to (Y. Li et al., 2003). The similarity equation is as follows:

𝑠𝑖𝑚𝑙𝑒𝑛𝑔𝑡ℎ = 𝑒−𝛼.min 𝑙𝑒𝑛(𝑡1,𝑡2) (7)

In addition to the shortest path length, the approach utilizes a nonlinear function.

It has been discovered that the strongest correlation is found at 𝛼 = 0.25.

Li et al. proposed a non-linear measure, as shown in Equation 6, which considers

both the minimum path distance and depth. In this equation, the optimal values of 𝛼 =

0.2 and 𝛽 = 0.6 are derived empirically (Y. Li et al., 2003).

𝑠𝑖𝑚𝑙𝑖 = 𝑒−𝛼.min 𝑙𝑒𝑛(𝑡1,𝑡2).
𝑒𝛽.𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠) − 𝑒−𝛽.𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)

𝑒𝛽.𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠) + 𝑒−𝛽.𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)
 (8)

One shortcoming of edge-based methods is that they assume edges between terms

or concepts to have equal length.

43

 Feature-Based Methods: In these categories of knowledge-based methods,

calculation is based on a function of properties of the words, like gloss, neighboring

concepts, etc. Gloss is defined as the meaning of a word in a dictionary; a collection of

glosses is called a glossary. Gloss-based semantic similarity measures exploit the

knowledge that words with similar meanings have more common words in their gloss

(Sánchez et al., 2012). In another word, in feature-based methods, similarity is a function

of the properties or features of the words in a lexical or logical model. The semantic

similarity is measured based on the extent of overlap between the features of the words in

consideration.

The Lesk measure assigns a value of relatedness between two words based on the

overlap of words in their gloss and the glosses of the concepts they are related to in an

ontology like WordNet (Lastra-Díaz et al., 2019).

Jiang et al. proposed a feature-based method where semantic similarity is

measured using the glosses of concepts present in Wikipedia (Y. Jiang et al., 2015). Most

feature-based methods take into account common and non-common features between two

words/terms. The common features contribute to the increase of the similarity value and

the non-common features decrease the similarity value. The major limitation of feature-

based methods is its dependency on ontologies with semantic features, and most

ontologies rarely incorporate any semantic features other than taxonomic relationships.

Information Content-Based Methods The information content (IC) is the value

of information contained in a word in the context. IC is calculated based on the

probability of occurrence of a word in a corpus such as WordNet or Wikipedia Category

Graph (Martis et al., 2013). A high value of this measure indicates that the word is more

44

specific and clearly describes a concept with less ambiguity, and conversely for the lower

information content values, that is, the words are more abstract in meaning in lower

values (Yang et al., 2020). The specificity of the word is determined using Inverse

Document Frequency (IDF), which implies on the principle that the more specific a word

is, the less it occurs in a document. Information content-based methods measure the

similarity between terms using the information content value associated with them.

Resnik proposed a semantic similarity measure called 𝑟𝑒𝑠 (Resnik, 1995). The

base of this measure is on the idea that if two concepts share a common subsumer they

share more information since the 𝐼𝐶 value of the LCS is higher. Considering 𝐼𝐶

represents the Information Content of the given term, 𝑟𝑒𝑠 is measured as,

𝑠𝑖𝑚𝑟𝑒𝑠(𝑡1, 𝑡2) = 𝐼𝐶𝑡𝑙𝑐𝑠
 (9)

By considering the 𝐼𝐶 value of the terms that dedicate to the individual

information of description of the terms and the 𝐼𝐶 value of their 𝐿𝐶𝑆, 𝐷. Lin proposed a

below measure.

𝑠𝑖𝑚𝑙𝑖𝑛(𝑡1, 𝑡2) =
2𝐼𝐶𝑡𝑙𝑐𝑠

𝐼𝐶𝑡1
+ 𝐼𝐶𝑡2

(10)

A distance measure based on the discrepancy between the sum of the individual

IC value of terms and the 𝐼𝐶 value of their 𝐿𝐶𝑆 was designed by Jiang and Conrath in (J.

J. Jiang & Conrath, n.d.).

𝑑𝑖𝑠𝑗𝑐𝑛(𝑡1, 𝑡2) = 𝐼𝐶𝑡1
+ 𝐼𝐶𝑡2

− 2𝐼𝐶𝑡𝑙𝑐𝑠
 (11)

However, knowledge-based systems are highly dependent on the underlying

source resulting in the need to update them frequently which requires time and high

computational resources. Although strong ontologies like WordNet exist for the English

45

language, similar resources are not available for other languages that results in the need

for the building of strong and structured knowledge bases to implement knowledge-based

methods in different languages and across different domains. Various research works

were conducted on extending semantic similarity measures in the biomedical domain

(Soğancıoğlu et al., 2017) . McInnes et al. built a domain-specific model called UMLS to

measure the similarity between words in the biomedical domain. With nearly 6,500 world

languages and numerous domains, this becomes a serious drawback for knowledge-based

systems (McInnes et al., 2013).

3.2.2. Corpus-Based Semantic-Similarity Methods

 This group of similarity measurement methods measure the semantic similarity

between terms using the information retrieved from large corpora. The underlying

principle which is referred to as ‘distributional hypothesis’ exploits the idea that "similar

words occur together, frequently"; however, the actual meaning of the words is not taken

into consideration (Gorman & Curran, 2006). While various techniques were used to

construct the vector representation of the text data, several semantic distance measures

based on the distributional hypothesis were proposed to estimate the similarity between

the vectors. Among all corpora measures, the cosine similarity gained significance and

has been widely used among NLP researchers to date (Mohammad & Hirst, 2012). Based

on the underlying methods using which the word-vectors are constructed there are a wide

variety of corpus-based methods some of which are discussed in this section.

Latent Semantic Analysis (LSA) :LSA is one of the most popular and widely

used corpus-based techniques used for measuring semantic similarity (Landauer &

Dumais, 1997). A word co-occurrence matrix is formed where the rows represent the

46

words and columns represent the paragraphs, and the cells are populated with word

counts. This matrix is formed with a large underlying corpus, and dimensionality

reduction is achieved by a mathematical technique called Singular Value Decomposition

(SVD). SVD represents a given matrix as a product of three matrices, where two matrices

represent the rows and columns as vectors derived from their eigenvalues and the third

matrix is a diagonal matrix that has values that would reproduce the original matrix when

multiplied with the other two matrices (Landauer et al., 1998). SVD reduces the number

of columns while retaining the number of rows thereby preserving the similarity structure

among the words. Then each word is represented as a vector using the values in its

corresponding rows and semantic similarity is calculated as the cosine value between

these vectors. LSA models are generalized by replacing words with texts and columns

with different samples and are used to calculate the similarity between sentences,

paragraphs, and documents.

Normalized Google Distance: Normalized Google Distance (NGD) is a relative

semantic metrics that reflects the similarity of two words or phrases in Web documents or

other large databases. NGD measurement is based on the co-occurrence of the words in

webpages, the more frequent they come together the more similar they are. Given two

terms (𝑡1, 𝑡2), NGD uses Equation 12 to calculate their similarity (Cilibrasi & Vitanyi,

2007).

𝑁𝐺𝐷(𝑡1, 𝑡2) =
max{log 𝑓(𝑡1), log 𝑓(𝑡2)} − log 𝑓(𝑡1, 𝑡2)

log 𝐺 − min{log 𝑓(𝑡1), log 𝑓(𝑡2)}
 (12)

𝑓 (𝑡1) and 𝑓 (𝑡2) represent the number of hits in Google search for terms x and y,

and 𝑓 (𝑡1, 𝑡2), returns the number of hits when both terms appear together in a page and

𝐺 indicates the total number of pages participating in the Google search. NGD is often

47

used to measure semantic relatedness rather than semantic similarity because related

terms occur together more frequently in web pages though they may have opposite

meaning. Another shortcoming of NGD is that it is highly sensitive to the context in

which the terms appear and if the domain of the search includes the pages that come from

a variety of heterogeneous contexts, the NGD won’t return accurate results.

In this research, a weighted edge-based method is used for calculating the

semantic similarity between two terms. The weight for each edge is calculated using the

NGD method. Five different equations of edge-based method including: path, lch, wup,

length, and Li methods are examined in this work to identify the most suitable method for

the particular use case that motivates this work. There are two defining factors in all five

edge-based methods, namely, length and depth. Length is the number of edges counted

between two concepts in the shortest path connecting them in the thesaurus, while Depth

is the number of nodes existing between the “root node” and the “least common

subsumer” of the two concepts (J. J. Jiang & Conrath, 1997)(Y. Li et al., 2003). The

more the least common subsumer is to the root node, the more general meaning it

conveys comparing to least common subsumer in deeper levels of the thesaurus.

However, it cannot be claimed that if two sets of concepts share the least common

subsumer, they definably are equal in case of similarity measurement, because the

distance or the length of two concepts also matters (Dong et al., 2010). Path, lch, Wu-

Palmer, length, and Li metrics are used for measuring the edge-based similarity of two

concepts respectively.

As shown in Equation 1, the path metric uses the shortest path between two

concepts to measure their similarity, The lch metric uses a non-linear function to consider

48

the shortest path between two concepts as shown in Equation 2. he depth of terms in the

taxonomy defined by "D" which shows the depth of the concepts least common

subsumer.

The Wu-Palmer metric uses depth as the only criterion for assessing the similarity

measurement as shown in Equation 3.

Figure 13: The depth of a concept is the shortest path between the concept and the root

Where depth (𝐶𝑙𝑐𝑠) is the distance of the Least Common Subsumer (or the most

shared ancestor) of concepts to the taxonomy root, which represents the specification

level and depth (𝑐𝑖) is equal to 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐i, 𝑐root) , which defines the shortest length

from ci to root. For example, to measure the similarity for pair of (Brass, Bronze) as

shown in Figure 13, since Material is their LCS, depth (Brass) will be equal to 3 as the

shortest path between Brass and the root (MCT) is defined with three edges, the same is

true for depth (Bronze). Material is the second level of the tree, so depth (𝐶𝑙𝑐𝑠) will be

depth (Material)=2.

49

The length method, like the Path metric, investigates the shortest path between

two concepts but evaluates similarity using an exponential function as shown in Equation

4. The best correlation was found to be at 𝛼 = 0.25.

 Li method introduces two influencing factors of graph distance and specification

level on the semantic similarity measurement. Both components of length and depth,

which are indicators of graph distance and specification level, are utilized to determine

semantic similarity of concepts, as shown in equation 5. To achieve the best outcome in

this equation, 𝛼 and 𝛽 must be equal to 0.2 and 0.6, respectively, according on the results

of Li's research. As can be seen from the equations, path and length methods only

consider length as a defining component when measuring similarity, but wup only uses

depth. Li and lch techniques, on the other hand, employ both parameters to determine

similarity. One of the goals of this study is to see if different similarity measurement

methods produce noticeably different outcomes. To harmonize the context for similarity

measurement between word pairs, the webpages are classified first under predefined

classes. In this way, word similarity measurement is only conducted within similar

groups capability narratives related to similar manufacturers.

3.3. Similarity Measurement

According to the motivating use case for the proposed manufacturer

recommendation framework, the user submits a query composed of a vector of thesaurus

concepts that collectively represent the required manufacturing services and the desired

capabilities of the supplier of those services. Since the manufacturers are also represented

as concept vectors extracted from the same thesaurus, similarity measurement between

50

the requested capabilities and provided capabilities is reduced to a set of pairwise

similarity measurements between requested and provided capability concepts.

This study uses a hybrid strategy to evaluate the semantic similarity between

concept pairings, combining corpus-based and knowledge-based methodologies. The

Normalized Google Distance (NGD) represents the semantic relatedness of concepts

based on their co-occurrences in a large corpus, whereas the edge-based method captures

the inheritance between the concepts to indicate the semantic similarity. The NGD score

of two concepts is employed as the weight of the edges on the path between those

concepts in the suggested hybrid technique. For the concept pair (𝑐1, 𝑐2), the NGD

similarity of the concepts is determined according to Equation 13.

𝑠𝑖𝑚𝑁𝐺𝐷(𝑐1, 𝑐2) = 𝐸𝑥𝑝(−𝑁𝐺𝐷(𝑐1, 𝑐2)) (13)

 For each pair of concepts, the overall similarity is then measured using Equation 14.

𝑠𝑖𝑚𝑝𝑎𝑖𝑟(𝑐1, 𝑐2) = 𝑠𝑖𝑚(𝑐1, 𝑐2) × 𝑠𝑖𝑚𝑁𝐺𝐷(𝑐1, 𝑐2) (14)

 The pairwise similarity for all concept pairs under each capability category (such as

material, equipment, process, and industry) is calculated separately.

Figure 14 shows an example of a capability query in which the manufacturing

processes demanded are 5-axis machining and horizontal boring. Suppose a supplier can

perform three different manufacturing processes, such as 5-axis machining, vertical

milling, and injection molding. In that case, there are six different pairwise similarity

measurements to examine for all pairwise similarity combinations of required and

provided processes (combination of choosing two concepts from six concepts). The

51

weighted edge-based technique will be calculated for each pair of manufacturing process

concepts (Zandbiglari et al., 2021).

Figure 14: All Given Concepts in a Query Will Be Paired with Concepts in Thesaurus to Calculate

Supplier’s Similarity Score

The average pairwise similarity scores acquired for each category make up the

overall similarity score for that category. As a result, the length of a supplier's concept

vector will not inflate the category's total similarity score. Equation 13 shows how to

calculate the overall similarity between the query and the supplier by adding the

similarity values calculated for each capability category.

𝑠𝑖𝑚𝑤𝑢𝑝(𝑄𝑢𝑒𝑟𝑦, 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟) = ∑ 𝑠𝑖𝑚𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗

𝑚
𝑗=1 (15)

 Where 𝑚 is the total number of existing categories in the query.

52

4. RANKING EXPERIMENT

4.1. Introduction

For the ranking experiment, two queries were designed to target manufacturers in

the precision and complex machining class and the heavy component machining class.

The precision and complex machining query contains material capabilities, available

manufacturing processes, engineering design services, supported part types, quality

certifications, and target industries. In the heavy component machining query, the

required production capabilities include process, equipment, item type, and industry. The

desired concepts for the two queries are listed in Table 5 and Table 6. A basic Google

search using the search parameters for the complex machining class yielded 755 results,

but only 5 manufacturing suppliers. To increase the precision and recall of this complex

search, a more advanced search technique with some semantic support is required.

Table 5: Requested Manufacturing Capabilities (Query) - Complex Machining Class

Material Titanium, Waspaloy, Zircon, Inconel, Tool Steel

Industry
Aerospace Industry, Oil and Gas Industry, Medical Industry, Automotive

Industry

Manufacturing Process
5-axis machining, Electrical discharge machining, Screw machining, Thin

wall machining

Production Resource Articulating Arm Coordinate Measuring Machine, CMM

Engineering Services Reverse Engineering, Tool Design

 Accreditation and

Certification
ISO 9000, ISO 9001

Physical Artifact Complex precision parts, complex machined parts, close tolerance parts

Table 6: Requested Manufacturing Capabilities (Query)- Heavy Component Machining Class

Industry
Aerospace Industry, Oil and Gas Industry, Mining Industry, Construction Industry,

Agriculture Industry

Manufacturing

Process
Heavy Duty Machining, Large CNC Machining, Large Precision Machining, Large

Working Envelope Machining, Vertical Boring

Production

Resources
Heavy Lifting Equipment, Gantry Machining Center, Vertical Boring Machine, Large

Capacity Lathe

Physical Artifact
Large and Heavy Part, Large Diameter Part, Large and Heavy Part, Large and Heavy

Machined Components

53

4.2. Experiment Validation

As indicated in the methodology section, each supplier's overall similarity to the

queried capabilities is calculated using a combination of edge-based measures and

Google Normalized Distance.

4.2.1. Normalized Google Distance (NGD)

Despite the fact that the entire Internet can be utilized as a corpus for counting

hits and computing NGD, the findings will be unreliable due to context heterogeneity. In

the manufacturing context, "tubing" refers to the process of forming tubes and pipes by

running a strip of metal through rollers to achieve the appropriate shape. Tubing, on the

other hand, can have a variety of connotations in various settings, such as a recreational

sport in which a person rides on top of an inflatable tube on water or snow. A pilot

manufacturing corpus was developed by crawling more than 650 manufacturing

webpages with no overlap with the training and test datasets to harmonize the corpus with

its context. The crawling was only limited to manufacturers’ websites to impart

contextual consistency to the pilot corpus. A series of codes in the Python programming

environment were run to convert websites contents thoroughly to text files to create

customized corpus for manufacturing capability. Related codes to the websites crawling

are shown in the appendix of this work in section 4. Convert HTML to Text. Shown in

the appendix, section 6. Search Engine, then searches each two concepts in the created

corpus to get number of hits for each individual word in the corpus in addition to the

number of times a pair of concepts appear together in the corpus. By gathering the

number of hits and NGD equation, the NGD score for each pair of concepts is then

54

calculated using Python programming as section 5. Normalized Google Distance, in the

appendix shows.

The NGD values calculated varied from zero to ∞, with zero indicating that

concept pairings always appear together and higher values (including ∞) suggesting that

concept pairs hardly appear together. The NGD values were scaled in a range between 0

and 1, with 1 denoting the most comparable couples, using the sim NGD(𝑐1, 𝑐2) equation

(exact match)

Table 7 shows the calculated NGD and Sim NGD values for a few example pairs of

terms.

Table 7: Examples of computed 𝑁𝐺𝐷s

Concept 1 Concept 2 NGD 𝑺𝒊𝒎𝑵𝑫𝑮

Bronze Brass 0.48 0.62

Titanium Inconel 0.08 0.92

5-axis machining Electrical discharge machining 0.17 0.84

Horizontal Boring Tubing 0.29 0.75

Oil and gas industry Oil and gas industry 0.00 1.00

4.2.2. Edge-based Method

Using the given equation, 𝑠𝑖𝑚𝑤𝑢𝑝(𝑐1, 𝑐2) the similarity of all concepts given in

Table 5 with all concepts existing in the manufacturing capability thesaurus is computed

in Python environment, which entailed 21,780 pairwise similarity measurements.

As the thesaurus is built on the SKOS Tool provided and developed in the

Infoneer Engineering lab, it was not accessible through out of the network internet. To

facilitate the accessibility to the thesaurus a series of codes programmed by Python

simulate the thesaurus in a HTML file containing all the broader and narrower

relationships in the thesaurus as shown in the section 2. Tree Builder the appendix of this

work.

55

As an example, according to Equation 6, 𝑠𝑖𝑚𝑤𝑢𝑝(𝑐1, 𝑐2), the similarity of

(Bronze, Brass) pair, depicted in Figure 13 is calculated in Table 8.

Table 8: (brass, bronze) similarity measurement (𝑤𝑢𝑝 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛)

𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)= 2 𝑑𝑒𝑝𝑡ℎ (𝐵𝑟𝑎𝑠𝑠) = 3 3 𝑑𝑒𝑝𝑡ℎ (𝐵𝑟𝑜𝑛𝑧𝑒) = 3

𝑠𝑖𝑚𝑤𝑢𝑝(𝑡1, 𝑡2) =
2𝑑𝑒𝑝𝑡ℎ (𝑡𝑙𝑐𝑠)

𝑑𝑒𝑝𝑡ℎ (𝑡1) + depth(𝑡2)
 𝑠𝑖𝑚𝑤𝑢𝑝(𝐵𝑟𝑜𝑛𝑧𝑒 , 𝐵𝑟𝑎𝑠𝑠) =

2 ∗ 2

3 + 3
= 1.5

The same measure is applied to all possible pairwise combinations of query

concepts and thesaurus concepts.

4.3. Ranking Results

Using 𝑠𝑖𝑚𝑁𝐺𝐷(𝑐1, 𝑐2) as the weight for 𝑠𝑖𝑚𝑤𝑢𝑝(𝑐1, 𝑐2) for each pair of document

and query, averaging the similarity score of each category, and summing categories’

averages, the similarity scores for all 52 suppliers in the test dataset were calculated.

4.3.1. Precision and Complex Machining Query

The similarity scores of wup method for the complex query for the top-16

suppliers are shown in Table 9 and Table 10 for heavy component and complex

machining classes. Table 11 ranks all top-16 suppliers of complex machining class in

which is calculated through the wup equation regardless of their class.

Table 9: Similarity scores of suppliers in complex machining class- wup method- complex machining

query

Suppliers’ Rank in the Class Suppliers’ ID Similarity Score

1 212 149.57

2 262 103.91

3 238 102.99

4 118 100.63

5 27 95.59

6 150 93.90

7 162 85.39

8 265 81.96

9 249 81.96

10 136 81.17

56

Table 10: Similarity scores of suppliers in heavy component machining class- wup method -- complex

machining query

Suppliers’ Rank in the Class Suppliers’ ID Similarity Score

1 31 134.17

2 238 102.24

3 198 101.22

4 144 96.58

5 128 88.32

6 101 87.16

Table 11: Similarity score of top-16 suppliers in complex machining suppliers- wup method- complex

machining query

Supplier Suppliers’ ID Similarity Score Classified by Decision tree classifier

1 212 149.57 Precision and Complex Machining

2 31 134.17 Heavy Component Machining

3 262 103.91 Precision and Complex Machining

4 238 102.99 Precision and Complex Machining

5 109 102.24 Heavy Component Machining

6 101 101.22 Heavy Component Machining

7 118 100.63 Precision and Complex Machining

8 144 96.58 Heavy Component Machining

9 23 95.59 Precision and Complex Machining

10 150 93.90 Precision and Complex Machining

11 128 88.32 Heavy Component Machining

12 101 87.16 Heavy Component Machining

13 162 85.39 Precision and Complex Machining

14 265 81.96 Precision and Complex Machining

15 249 81.96 Precision and Complex Machining

16 136 81.179 Precision and Complex Machining

As mentioned earlier in this work, 5 edge-based method metrics have been used to

calculate the similarity of manufacturing suppliers. When listing the top-16 suppliers of

each equation, it can be seen that there are a combination of 16 out of 20 mutual suppliers

in different orders in all metrics. Table 12 shows similarity scores for the 20 mutual

suppliers based on their scores for lch, path, Li, and length metrics.

Table 12: Precision and Complex Machining query suppliers' scores

Suppliers'

ID
lch Path Length Li Class of Capability

4 1139.81766 798.175204 436.066855 17.3333333 Heavy Component

16 1013.95627 387.128677 708.200435 17.3333333 Heavy Component

23 1673.31041 1171.79459 633.324014 5.33333333 Precision and Complex

31 2089.53995 1459.75163 791.983455 22.6666667 Heavy Component

54 1012.86864 701.256156 383.707888 17.3333333 Precision and Complex

57

Suppliers'

ID
lch Path Length Li Class of Capability

65 826.601922 577.022962 316.679872 16 Precision and Complex

73 1402.67211 975.492523 530.677777 10.6666667 Precision and Complex

101 1349.01791 934.962832 507.676789 5.33333333 Heavy Component

108 788.922063 546.656752 299.445811 10.6666667 Precision and Complex

109 1729.72965 1729.72965 656.541939 10.6666667 Heavy Component

118 1645.56535 1147.53909 622.149408 10.6666667 Precision and Complex

125 1123.93751 778.861416 419.521721 0 Heavy Component

128 1396.22966 974.627759 529.904722 10.6666667 Heavy Component

136 1109.98101 769.574996 417.312155 5.33333333 Heavy Component

140 1151.6368 803.183096 419.521721 5.33333333 Heavy Component

144 1429.95099 995.023685 543.018781 41.3333333 Heavy Component

150 1421.86926 991.255224 537.59996 0 Precision and Complex

162 1347.64229 935.265072 505.678672 0 Precision and Complex

198 1744.47588 1210.48348 652.867332 0 Heavy Component

212 2259.31168 1578.41623 858.798566 41.3333333 Precision and Complex

238 1575.59018 1093.76363 596.047027 37.3333333 Precision and Complex

249 1108.36254 768.92537 421.592778 36 Precision and Complex

262 1648.013 1150.77804 626.666589 25.3333333 Precision and Complex

26 1108.36254 768.92537 421.592778 22.666666 Precision and Complex

4.3.2. Heavy Component Machining Query

Considering the requested query of heavy component machining the similarity

scores of wup, lch, path, Li, and length metrics for the 20 suppliers are shown. When

listing the top-16 suppliers of each equation, it can be seen that there are a combination of

16 out of 20 mutual suppliers in different orders in all metrics as shown in Table 13.

58

Table 13: Heavy Component Machining query suppliers' scores

Suppliers'

ID
wup lch Path Length Li Capability Class

4 199.6996 42.88937 2745.333 1935.113 17.33333
Heavy

Component

23 291.6134 60.16066 4055.488 2865.586 22.66666
Heavy

Component

31 319.7800 49.9569 4898.9860 3448.5845 5.3333
Heavy

Component

73 241.3889 49.3891 3341.5315 2344.8755 17.3333
Precision and

Complex

101 42.3503 42.3503 3197.4987 2235.8260 10.6666
Heavy

Component

109 4102.8070 2890.7725 4102.8070 2890.7725 0
Precision and

Complex

118 239.5820 39.32273 3834.9113 2698.1399 5.3333
Precision and

Complex

125 173.7256 29.8628 2403.7273 1900.0548 5.3333
Precision and

Complex

128 238.2205 42.9778 3351.5741 2355.0235 10.6666
Precision and

Complex

136 188.1868 31.27930 2649.8523 1855.0832 5.3333
Heavy

Component

140 219.4237 52.3864 2861.3838 2022.0372
25.33333

3

Heavy

Component

144 282.40605 75.6279 3510.0701 2467.9091 41.3333
Precision and

Complex

150 3460.8376 2442.1190 2442.1190 2442.1190 36
Heavy

Component

162 243.63816 43.41636 3279.3036 2298.7800 10.6666
Heavy

Component

177 198.91486 43.439893 2575.1616 1803.449 17.3333
Precision and

Complex

187 188.39467 58.297013 1962.5736 1383.7712 37.3333
Heavy

Component

198 337.24080 83.27851 4294.4393 3019.4411 41.3333
Heavy

Component

212 344.87651 58.547379 5332.9151 3752.6579
10.66666

6

Precision and

Complex

238 270.76537 58.44421 3724.3552 2609.9528 22.6666
Precision and

Complex

249 185.63896 36.093753 2621.3687 1831.5625 10.6666
Precision and

Complex

262 278.0614 53.2941 3925.0979 2760.3920 16
Precision and

Complex

4.3.3. Spearman’s Correlation

The degree of correlation independent variables is determined using Spearman

rank correlation coefficients. It is comparable to Pearson's product-moment correlation

coefficient; only it works with data ranks instead of raw data. Spearman's rank correlation

59

coefficient has advantages over the typical product-moment correlation coefficient

(Detecting Trends Using Spearman’s Rank Correlation Coefficient | Elsevier Enhanced

Reader, n.d.). In this section, Spearman’s Rank-Order Correlation is used to compute the

correlation between the human expert generated rankings with computationally generated

rankings using Equation 15.

ρ = 1 −
∑ 6 𝑑𝑖

2

𝑛 (𝑛2 − 1)

(15)

In Equation 16, 𝜌 shows Spearman’s rank correlation coefficient, di is the

difference between two ranks of each observation and n is the total number of

observations. Table 14 shows human expert rankings of suppliers for both target classes.

Table 14. Human expert ranking

Precision and Complex Machining Heavy Component Machining

Suppliers' ID Human Expert Ranking Suppliers' ID Human Expert Ranking

4 9 4 1

16 16 23 3

23 3 31 13

31 5 73 14

54 10 101 19

65 6 109 6

73 8 118 21

101 17 125 7

108 19 128 9

109 20 136 15

118 23 140 4

125 12 144 11

128 13 150 12

136 24 162 2

140 4 177 16

144 2 187 17

150 18 198 18

162 11 212 8

198 22 238 10

212 1 249 20

238 21 262 5

60

Precision and Complex Machining Heavy Component Machining

Suppliers' ID Human Expert Ranking Suppliers' ID Human Expert Ranking

249 15

262 14

265 7

Correlation analysis results of precision and complex machining and heavy

component machining class for all examined similarity metrics are shown in Table 15

and Table 16.

61

Table 15. Spearman's rank-order correlation result for complex machining query

METRIC Iteration 1 (all

suppliers)

Iteration 2 (only complex

machining)

Iteration 3 (only heavy

machining)

Path 0.788235 0.925000 0.678571

lch 0.976470 0.619047 0.619047

wup 0.726471 0.941667 0.357143

Length 0.788235 0.964285 0.366666

Li 0.947058 0.988095 1

Table 16. Spearman's rank-order correlation result for heavy component machining query

METRIC Iteration 1 (all

suppliers)

Iteration 2 (only complex

machining)

Iteration 3 (only heavy

machining)

Path 0.523529 0.683333 0.5

lch 0.998529 0.751470 0.982142

wup 0.788235 0.607142 0.35

Length 0.822058 0.261904 0.988095

Li 0.751470 0.303571 0.925

According to the equations, each metric considers different variables to measure

similarity of the formulated capability query with the manufacturing supplier. The length

and the depth are the main variables of these equations. As previously indicated in

chapter 4, some of these metrics consider either the length or depth variable while some

consider both. The average Spearman’s rank-order correlation result of the metrics is

based on the main variables involved in the measurement determined in Table 17 and

Table 18 respectively for complex machining and heavy component machining.

Table 17. Spearman's correlation average for complex machining query

Complex Machining Query

Considered factor in the

equation

Metric Spearman’s

correlation

Average Spearman’s

correlation

Length
Path 0.788235

0.788235
Length 0.788235

Depth wup 0.726471 0.726471

Length and Depth
lch 0.97647

0.8823525 Li 0.788235

62

Table 18. Spearman's correlation average for heavy component machining query

Heavy Component Machining Query

Considered factor in the

equation
Metric

Spearman’s

correlation

Average Spearman’s

correlation

Length
Path 0.523529

0.6727935
Length 0.822058

Depth wup 0.788235 0.788235

Length and Depth
lch 0.998529

0.8749995
Li 0.75147

It can be seen that the average Spearman’s correlation is higher for the lch and Li

metrics which consider both length and depth.

4.4. Conclusion

Table 12 shows that among the top-five suppliers, two are classified as heavy

machining suppliers. Because the complex machining and heavy machining capability

groups overlap significantly, this was an expected result. Manufacturers who can supply

machining services in one class are quite likely to be able to give the services required in

the second. Those highly ranked suppliers in the heavy component machining class

would be classified under both classes if a multi-label classification approach was

applied. When the capability classes are significantly diverse, there is a sharper division

between the groups. Rank-order correlation result indicates that there is a significant

correlation between human and machine generated rankings when suppliers are first

classified under pre-defined capability classes. The rank order correlation result supports

the original hypothesis that NGD measure yields better results when the concepts pairs

come from the same semantic context. This result justifies the need for conducting

classification prior to similarity measurement.

63

Table 15 and Table 16 represent low correlation between human and machine

ranking for the suppliers in the opposite class of the formulated class. One explanation

for this low correlation is that an individual is able to analyze the capabilities more

accurately though browsing different pages of the website of a supplier, and for instance,

identifying the primary and secondary expertise of a supplier, thus giving a higher rank to

those companies that use complex machining as their primary expertise in the experiment

when the formulated query belongs to complex machining. However, due to using a

light-weight ontology, the thesaurus, the expressivity needed for representing primary

and secondary capabilities is not supported in the proposed approach. Overall, the

proposed method provides a reasonable tradeoff between the search accuracy and search

time.

64

5. CONCLUSION AND FUTURE WORK

5.1. Introduction

This study proposes a mechanism for categorizing and rating manufacturing

suppliers based on their capability narratives. A formal manufacturing capability

thesaurus supports the proposed procedure. A combination of edge-based and corpus-

based methodologies is used in the suggested similarity measurement method. When the

search area is populated by a vast number of manufacturers, it is necessary to narrow

down the search space to a smaller group of highly relevant suppliers. This objective is

achieved through sequential classification and ranking of suppliers based on the

similarities between their capability narratives with the queried capabilities. The findings

of this research can support supplier screening process in the early stages of suppler

discovery.

One of the goals of this study is to assess the efficacy of evaluating manufacturing

capabilities using lightweight and low-fidelity knowledge models (such as a thesaurus)

and public manufacturing datasets (unstructured data from manufacturers' websites).

Although heavy-weight and axiomatic ontologies and gold standard corpora can improve

search precision, their development time and cost can be prohibitive. As a result, the

proposed method builds a reasonable balance between the overall performance and the

development cost. Because the Manufacturing Capability Thesaurus uses SKOS as a

standard representation language, it can be shared and extended in a decentralized

manner by various groups. This will significantly reduce the effort required to develop a

comprehensive formal vocabulary of manufacturing capabilities for various

manufacturing industry sectors.

65

5.2. Findings

This study utilized different methods and algorithms to address the research

questions identified in Chapter 1. This section provides the responses to the initial

research questions that motivated this work.

5.2.1. Which classifier will have the best precision/recall/ F-measure?

In this work, four classifiers, namely, Decision Tree, Random Forest, K-Nearest

Neighbor and Support Vector Machine were used to classify manufacturing suppliers into

two capability classes of precision and complex machining and heavy component

machining. As shown in Table 4, decision tree classifiers with the highest precision,

recall, and F-measure provided the most precise classification result in this work.

Decision Tree classifiers are widely used in data mining to create classification

algorithms based on various covariates or to forecast target variables. The method

generates an inverted tree using a population of individuals classified into branch-like

segments containing the root, internal nodes, and leaf nodes (SONG & LU, 2015).

5.2.2. How to compare automatically generated rankings with human expert’s

rankings?

Spearman’s Rank-Order Correlation is used to compute the correlation between

the human expert generated rankings with computationally generated rankings.

Spearman’s rank-order correlation compared the results attributed by the machine and the

human expert and provides a correlation between 0 to 1 with 1 indicating the highest

correlation.

66

5.2.3. How can classification affect similarity scores?

Knowing that decision tree provides the best highest precision, recall, and F-

measure, ranking experiment uses the results obtained from decision tree classification to

study the effect of classification on the similarity measurement ranking. The comparison

of Spearman’s rank-order classification for three iterations of non-classified suppliers,

suppliers belonging to the same capability class that the query belongs to, and the

opposite classes of query and suppliers showed significantly higher correlation in the

second iteration which confirms the effect of classification on ranking results.

Classification as the first step of this hybrid approach, screens suppliers’ websites

content and categories them based on the content they have provided. This initial

screening narrows down the list of qualified suppliers which are expected to have more

similarity with the formulated query of capability. Therefore, it was expected to see

significantly higher correlation in ranking when suppliers have been classified at the first

step.

5.2.4. What method of similarity measurement should be used for the ranking?

This research used a weighted edge-based method to consider both inheritance

relationships and relatedness of concepts in the thesaurus by having both corpus-based

methods and knowledge-based methods included. Five metrics of edge-based methods

for two different queries of capabilities were studied and the average Spearman’s

correlation showed higher correlation higher for the lch and Li metrics which consider

both length and depth as the elements of the similarity measurement, while other metrics

considered either length or depth.

67

5.3. Future Work

In the validation stage, only a single human expert was used to evaluate the

outcome. In the future, multiple experts will participate in the validation phase to

improve the credibility of the findings.

As discussed in the limitation section, there are different and limited number of

suppliers in each class, collecting adequate data for training and test set difficult. The lack

of having adequate and appropriate data is a barrier to using some more precise

approaches such as deep learning. In future, this limitation can be resolved by changing

the source of data, gathering data not only from US based company in the field, choosing

different capability classes which provide a more extensive list of suppliers.

The corpus in this work was established by crawling 650 unique manufacturing

suppliers’ websites. Although increasing the number of websites will result in increasing

the run time of the codes, it improves the accuracy and precision of the results. Creating a

sufficiently comprehensive and thorough corpus may provide the possibility of using

Information Content-based (IC) methods in future works.

In addition to focusing on manufacturing and processes related capabilities,

extending, and developing the thesaurus concepts can provide future research with the

opportunity to explore other aspects of manufacturing suppliers’ capabilities, such as

logistic services.

Additionally, future work can be focused on improving the data acquisition into

more autonomous improving the entity extracotr feature on the SKOS Tool.

Traditional deep learning-based models based on convolutional neural networks (CNN)

and recurrent neural networks (RNN) mostly use dynamic character- level of word level

embedding as the input which makes text feature extraction not to be comprehensive.

68

BERT (Bidirectional Encoder Representations from Transformers) method represented by

Google in October 2018 is an automatic text classification method and an open machine

framework for natural language processing. While other methods can only read characters

from either left to right or right to left, BERT considers two sides of each character at a

time to implement sematic information (W. Li et al., 2019). BERT provides a significant

improvement as it does not require data in any specific sequence which enables it to process

and pre-train larger amount of data. BERT method can be used in future works to pre-train

massive amount of data.

69

APPENDIX SECTION

Payton Codes of Classification and Ranking

1. Get Relevant Data

import argparse

import math

import numpy as np

import pandas as pd

from sklearn import preprocessing

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn import tree

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import AdaBoostClassifier

from sklearn.metrics import accuracy_score, precision_score,

recall_score, f1_score

from sklearn.metrics import precision_recall_fscore_support

from sklearn import decomposition

from sklearn.model_selection import GridSearchCV

from sklearn import svm

import tree_builder

import nd

classes = {'complex': 0, 'heavy': 1}

def _generate_upper_case(text):

 str_list = text.split()

 # Define a variable to store the converted string

 new_string = ''

 # Iterate the list

 for val in str_list:

 # Capitalize each list item and merge

 new_string += val.capitalize() + ' '

 return new_string:-1]

def _find_LCS(first_node, second_node):

 first_node_path =]

 first_node_parent = first_node

 while first_node_parent is not None:

 first_node_path.append(first_node_parent)

 first_node_parent = first_node_parent.parent

 second_node_parent = second_node

 path_length = len(first_node_path)-1

 while second_node_parent is not None:

70

 if second_node_parent in first_node_path:

 return second_node_parent, path_length

 second_node_parent = second_node_parent.parent

 path_length += 1

def decision_tree_regressor_predict_proba(X_train, y_train, X_test,

**kwargs):

 """Trains DecisionTreeRegressor model and predicts probabilities of

each y.

 Args:

 X_train: Training features.

 y_train: Training labels.

 X_test: New data to predict on.

 **kwargs: Other arguments passed to DecisionTreeRegressor.

 Returns:

 DataFrame with columns for record_id (row of X_test), y

 (predicted value), and prob (of that y value).

 The sum of prob equals 1 for each record_id.

 """

 # Train model.

 m = DecisionTreeRegressor(**kwargs).fit(X_train, y_train)

 # Get y values corresponding to each node.

 node_ys = pd.DataFrame({'node_id': m.apply(X_train), 'y': y_train})

 # Calculate probability as 1 / number of y values per node.

 node_ys'prob'] = 1 /

node_ys.groupby(node_ys.node_id).transform('count')

 # Aggregate per node-y, in case of multiple training records with

the same y.

 node_ys_dedup = node_ys.groupby('node_id',

'y']).prob.sum().to_frame()\

 .reset_index()

 # Extract predicted leaf node for each new observation.

 leaf = pd.DataFrame(m.decision_path(X_test).toarray()).apply(

 lambda x:x.to_numpy().nonzero()0].max(), axis=1).to_frame(

 name='node_id')

 leaf'record_id'] = leaf.index

 # Merge with y values and drop node_id.

 return leaf.merge(node_ys_dedup, on='node_id').drop(

 'node_id', axis=1).sort_values('record_id', 'y'])

def classify(dataset):

 dataset'Hc'] = dataset'Hc'].replace('complex', 'heavy'], 1, 2])

 Y_dataset = dataset"Hc"]]

 X_dataset = dataset.drop('Hc', 1)

 le = preprocessing.LabelEncoder()

 X_dataset = X_dataset.apply(le.fit_transform)

 X_dataset = (X_dataset-X_dataset.mean())/X_dataset.std()

 X_train, X_test, Y_train, Y_test = train_test_split(X_dataset,

Y_dataset, test_size=0.2, random_state=42, stratify=Y_dataset)

 # res = decision_tree_regressor_predict_proba(X_train, Y_train,

71

X_test, random_state=0, min_samples_leaf=5)

 # print(res)

 # param_grid = {

 # 'bootstrap': False, True],

 # 'max_depth': 80, 90, 100, 110],

 # 'min_samples_leaf': 1, 3, 4, 5],

 # 'min_samples_split': 8, 10, 12],

 # 'n_estimators': 100, 200, 300, 1000]

 # }

 # classifier = tree.DecisionTreeClassifier()

 # classifier = RandomForestClassifier()

 # classifier = AdaBoostClassifier(n_estimators=2, random_state=42)

 # classifier = KNeighborsClassifier()

 param_grid = {'kernel': 'rbf'], 'gamma': 1e-3, 1e-4, 1e-5],

 'C': 1, 10, 100, 1000, 5000]},

 {'kernel': 'linear'], 'gamma': 1e-3, 1e-4], 'C': 1,

10, 100, 1000, 5000]}]

 # classifier = svm.SVC()

 # scores = 'precision', 'recall']

 classifier = GridSearchCV(

 svm.SVC(probability=True), param_grid

)

 # grid_search = GridSearchCV(estimator=classifier,

param_grid=param_grid, cv=3, n_jobs=-1, verbose=2)

 classifier.fit(X_train, Y_train.values.ravel())

 Y_pred = classifier.predict(X_test)

 y_proba = classifier.predict_proba(X_test)

 # print(Y_test.values.ravel() - Y_pred)

 # print(Y_test)

 # print(classifier.best_params_)

 # print(grid_search.cv_results_)

 # print(Y_pred)

 # prob = classifier.predict_proba(X_test)

 test_acc = accuracy_score(Y_test, Y_pred)

 test_precision = precision_score(Y_test, Y_pred)

 test_recall = recall_score(Y_test, Y_pred)

 test_f1 = f1_score(Y_test, Y_pred)

 # packed = pd.DataFrame(X_test, Y_pred)

 # print(len(X_train))

 # print(sum(Y_pred))

 # print(len(Y_pred))

 # print(sum(Y_test.values))

 # print('test_accuracy = {:.2f}%, precision = {:.2f}%, recall =

{:.2f}%, f1 = {:.2f}%'.format(

 # test_acc*100,

 # test_precision*100,

 # test_recall*100,

 # test_f1*100,

 #)

 #)

 # print(y_proba)

 # print(Y_pred)

72

 # print(Y_test)

 classification_result = {}

 for row, i in zip(X_test.index, Y_pred):

 classification_resultrow] = y_probai]

 return classification_result

def _compute_similarity_between_word_and_all_nodes(desired_node):

 similarity = {}

 for other_node in tree_builder.tree.all_nodes:

 LCS, path_length = _find_LCS(desired_node, other_node)

 nd_value = nd.get_normalized_distance(desired_node.data,

other_node.data)

 if other_node.data == desired_node.data:

 similarityother_node.data] = tree_builder.tree.max_depth

 else:

 similarityother_node.data] = \

 math.exp(-nd_value)*(2*LCS.depth/float(path_length))

 #1 LCH

 # print(path_length)

 # similarityother_node.data] = \

 # math.exp(-nd_value) * (math.log((2 * LCS.depth), 10)

/ float(path_length))

 # print(similarityother_node.data])

 # #2 PATH

 # similarityother_node.data] = \

 # math.exp(-nd_value) * (1 / 1 + float(path_length))

 # #3 LI1

 # similarityother_node.data] = \

 # math.exp(-nd_value) * (math.exp(-0.2) *

float(path_length))

 # #4 LI2

 # similarityother_node.data] = \

 # math.exp(-nd_value) * (math.exp(-0.2) *

float(path_length)) \

 # * ((math.exp(0.6) * LCS.depth) - (math.exp(0.6) *

LCS.depth)) \

 # / ((math.exp(0.6) * LCS.depth) + (math.exp(-0.6) *

LCS.depth))

 return similarity

def main():

 parser = argparse.ArgumentParser()

 parser.add_argument(

 '--csv_file',

 help='Path to csv file',

 required=True,

 type=str,

)

 parser.add_argument(

 '--query',

73

 help='Path to the query file',

 required=True,

)

 parser.add_argument(

 '--dfdict',

 help='Path to Document Frequency Dict',

 required=True,

)

 parser.add_argument(

 '--weights',

 help='Path to Weights',

 required=False,

)

 arguments = parser.parse_args()

 tree_builder.generate_tree_from_csv_file(arguments.csv_file)

 nd.load_data(arguments.dfdict)

 weights = {}

 if arguments.weights:

 with open(arguments.weights) as f:

 lines = f.read().splitlines()

 for line in lines:

 key = line:-2]

 key = _generate_upper_case(key)

 weight = line-1]

 weightskey] = int(weight)

 with open(arguments.query) as f:

 lines = f.read().splitlines()

 supplier = pd.read_csv('./word_occurrence2/HC.csv')

 columns = supplier.columns

 for column in columns:

 upper_case = _generate_upper_case(column)

 supplier.rename(columns={column: upper_case}, inplace=True)

 if upper_case in weights.keys():

 supplierupper_case] =

weightsupper_case]*supplierupper_case]

 classification_result = classify(supplier)

 similarity = {}

 categories = {}

 for index, line in enumerate(lines):

 tokens = line.split(",")

 parent_data = _generate_upper_case(tokens0])

 categoriesparent_data] = parent_data]

 wanted_nodes = tokens1:]

 for wanted_node in wanted_nodes:

 wanted_node = _generate_upper_case(wanted_node)

 categoriesparent_data].append(wanted_node)

 related_node = tree_builder.find_node(parent_data,

wanted_node)

 if related_node is None:

 continue

74

 similaritywanted_node] =

_compute_similarity_between_word_and_all_nodes(related_node)

 supplier_score = {}

 # max_reward = 2

 for row in range(1, len(supplier)+1):

 if row not in classification_result.keys():

 continue

 supplier_scorestr(row+2)] = 0

 categories_score = {}

 for wanted_node in similarity:

 if wanted_node not in supplier.columns:

 continue

 value = supplierwanted_node].valuesrow-1]

 wanted_node_score = 0

 # if value >= 1:

 # wanted_node_score += max_reward

 # machining = '5-axis Machining', 'Electrical Discharge

Machining', 'Screw Machining', 'Thin Wall Machining']

 # number_of_similar_node = 0

 # alternative_nodes_score = 0

 for other_node in similaritywanted_node]:

 # print(wanted_node, other_node)

 if other_node in supplier.columns:

 if supplierother_node]row-1] > 0:

 wanted_node_score +=

similaritywanted_node]other_node]

 # number_of_similar_node += 1

 # print('@@@@@@@@@@@@@')

 # if number_of_similar_node > 0:

 # wanted_node_score +=

alternative_nodes_score/number_of_similar_node

 #weightsDict = {} #final dict

 #names =] #category names

 #wghts =] #categoru weights

 #for i in range(len(names)):

 # weightsDictnamesi]] = wghtsi]

 for key in categories.keys():

 if wanted_node in categorieskey]:

 if key in categories_score:

 categories_scorekey].append(wanted_node_score)

 else:

 categories_scorekey] = wanted_node_score]

 for key in categories_score.keys():

75

 categories_scorekey] =

weightskey]*(sum(categories_scorekey])/len(categories_scorekey]))

 print(categories_score)

 # print('=========================')

 # if 'Machining' not in categories_score.keys() \

 # or categories_score'Machining'] == 0:

 # supplier_scorestr(row+2)] = 0

 #

 # else:

 supplier_scorestr(row+2)] = sum(categories_score.values())

 d_sorted_by_value = sorted(supplier_score.items(), key=lambda x:

x1], reverse=True)

 final_complex =]

 final_heavy =]

 print('====================================')

 for i in range(len(d_sorted_by_value)-1):

 print(d_sorted_by_valuei]0],

classification_resultint(d_sorted_by_valuei]0])-2])

 cls =

np.argmax(classification_resultint(d_sorted_by_valuei]0])-2])

 if cls == classes'complex']:

 final_complex.append(d_sorted_by_valuei])

 else:

 final_heavy.append(d_sorted_by_valuei])

 print('complex ' + str(final_complex))

 print('====================================')

 print('heavy ' + str(final_heavy))

if __name__ == "__main__":

 main()

76

2. Tree Builder

import argparse

import json

import time

import pandas as pd

import search_engine

import taxonomy

import tf_idf

global arguments, tree

def parse_arguments():

 parser = argparse.ArgumentParser()

 parser.add_argument(

 '--csv_file',

 help='Path to csv file',

 required=True,

 type=str,

)

 parser.add_argument(

 '--website_folder',

 help='Path to your websites to generate word counts',

 required=False,

 type=str,

)

 parser.add_argument(

 '--with_tf_idf',

 help='Generate tf_idf_vector',

 required=True,

 type=bool,

)

 global arguments

 arguments = parser.parse_args()

def _generate_upper_case(text):

 str_list = text.split()

 # Define a variable to store the converted string

 new_string = ''

 # Iterate the list

 for val in str_list:

 # Capitalize each list item and merge

 new_string += val.capitalize() + ' '

 return new_string:-1]

def _find_node(node, parent_data, data):

 for child in node.children:

 if child.data == data:

77

 return child

 for child in node.children:

 result = _find_node(child, parent_data, data)

 if result is None:

 continue

 return result

def find_node(parent_data, data):

 global tree

 root = tree.root

 return _find_node(root, parent_data, data)

def generate_tree_from_csv_file(csv_path):

 csv_file = pd.read_csv(csv_path)

 columns = csv_file.columns

 global tree, parent

 tree = taxonomy.Tree()

 depth = 2

 old_parents =]

 for column_name in columns:

 if 'concept' not in column_name:

 continue

 column = csv_filecolumn_name].notnull()

 # if column is True:

 not_null_indices = columncolumn].index

 new_parents =]

 for index in range(len(not_null_indices)):

 row_number = not_null_indicesindex]

 concept = csv_filecolumn_name].valuesrow_number]

 if concept-1] == ' ':

 concept = concept:-1]

 concept = _generate_upper_case(concept)

 node = taxonomy.Node(concept, row_number, depth)

 if depth == 2:

 parent = tree.root

 else:

 for p_index in range(len(old_parents) - 1):

 if old_parentsp_index].row_number < node.row_number

< old_parentsp_index + 1].row_number:

 parent = old_parentsp_index]

 break

 if old_parents-1].row_number < node.row_number:

 parent = old_parents-1]

 break

78

 parent.add_child(node)

 node.set_parent(parent)

 new_parents.append(node)

 tree.all_nodes.append(node)

 old_parents = new_parents

 depth += 1

 tree.max_depth = depth

 tree.plot_tree()

python3 get_relevant_document.py --query ./words.txt --dfdict

./word_occurrence2/word_occurrence_dict.json --csv_file

./word_occurrence2/HC.csv

python3 tree_builder.py --csv_file ./word_occurrence2/HC.csv --

with_tf_id ./word_occurrence2/word_occurrence_dict.json

def main():

 parse_arguments()

 global arguments

 generate_tree_from_csv_file(arguments.csv_file)

 if arguments.website_folder:

 word_occurrence_dict = build_word_occurrence_vector()

 save_word_occurrence_vector(word_occurrence_dict)

 if arguments.with_tf_idf and arguments.with_tf_idf:

 tf_idf_dict = generate_tf_idf(word_occurrence_dict)

 save_tf_idf_dict(tf_idf_dict)

def save_tf_idf_dict(tf_idf_dict):

 json_value = json.dumps(tf_idf_dict)

 tf_idf_file = open("tf_idf_dict.json", "w")

 tf_idf_file.write(json_value)

 tf_idf_file.close()

def generate_tf_idf(word_occurrence_dict):

 tf_idf_dict = {}

 for word in word_occurrence_dict.keys():

 word_tf_idf_dict =

tf_idf.get_word_tf_idf(word_occurrence_dictword])

 tf_idf_dictword] = word_tf_idf_dict

 return tf_idf_dict

def init_search_engine(website_folder):

 print('Loading the search engine ...')

 search_engine.ROOT_PATH = website_folder

 search_engine.load_data()

 print('Search engine loaded!')

def compute_word_occurrence(node, word_occurrence_dict):

 for child in node.children:

79

 start = time.time()

 word_occurrence_dict = compute_word_occurrence(child,

word_occurrence_dict)

 pages_hit, page_hit_info =

search_engine.get_number_of_hits(child.data])

 word_occurrence_dictchild.data] = page_hit_info

 search_time = time.time() - start

 print('Computing occurrence vector for the word {} took {}s'

 .format(child.data, search_time))

 return word_occurrence_dict

def build_word_occurrence_vector():

 global tree

 # init the search engine

 word_occurrence_dict = {}

 init_search_engine(arguments.website_folder)

 word_occurrence_dict = compute_word_occurrence(tree.root,

word_occurrence_dict)

 return word_occurrence_dict

def save_word_occurrence_vector(word_occurrence_dict):

 json_value = json.dumps(word_occurrence_dict)

 f = open("word_occurrence_dict.json", "w")

 f.write(json_value)

 f.close()

if __name__ == "__main__":

 main()

80

3. Classification

Importing all required libraries

from sklearn import datasets

import pandas as pd

import numpy as np

import requests

from sklearn import preprocessing

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import Perceptron

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy_score

from sklearn.neural_network import MLPClassifier

def plot_contours(ax, clf, xx, yy, **params):

 Z = clf.predict(np.c_xx.ravel(), yy.ravel()])

 Z = Z.reshape(xx.shape)

 out = ax.contourf(xx, yy, Z, **params)

 return out

Downloading the dataset, creating dataframe

download_url = "https://archive.ics.uci.edu/ml/machine-learning-

databases/car/car.data"

cardata_path = "car.data"

response = requests.get(download_url)

response.raise_for_status()

Check that the request was successful

with open(cardata_path, "wb") as f:

 f.write(response.content)

print("Download ready.")

Read the data from the file

cardata = pd.read_csv("car.data", names="buying", "safety", "output"])#

Check the number of columns and rows in the file

convert categorical data to numeric

le = preprocessing.LabelEncoder()

cardata = cardata.apply(le.fit_transform)

Get the output

Ycardatnorm_train=cardata"output"]]

Normalize the data

normalized_cardata=(cardata-cardata.mean())/cardata.std()

Get feature vectors X

Xcardatnorm_train=normalized_cardata"buying", "safety"]]

Neural Network hyperparameteres

splits = 0.1, 0.2, 0.3]

learning_rates = 1, 0.1, 0.01]

n_iterations = 10, 100, 200, 400]

81

splits = 0.1]

learning_rates = 1]

n_iterations = 10]

#open the file to report

f= open("Accuracy.txt","w+")

import matplotlib.pyplot as plt

max_test_acc = 0

best_model = None

x_boundary = None

y_boundary = None

for split in splits:

 X_train, X_test, Y_train, Y_test =

train_test_split(Xcardatnorm_train, Ycardatnorm_train, test_size=split,

random_state=1, stratify=Ycardatnorm_train)

 for learning_rate in learning_rates:

 for n_iter in n_iterations:

 ppn = MLPClassifier(activation='logistic',

learning_rate='constant',learning_rate_init=learning_rate,

max_iter=n_iter)

 #ppn = Perceptron(eta0=learning_rate, random_state=1,

max_iter = n_iter)

 #This is training the model

 ppn.fit(X_train, Y_train.values.ravel())

 #Testing the model data

 Y_pred = ppn.predict(X_test)

 train_acc = ppn.score(X_train, Y_train.values.ravel())

 test_acc = accuracy_score(Y_test, Y_pred)

 print('Train Accuracy: %.2f' % train_acc)

 print('Test Accuracy: %.2f' % test_acc)

 print('split = ', split, ' learning_rate = ',

learning_rate, ' n_iter = ', n_iter)

print('###')

 f.write('split = '+ str(split) + ' learning_rate = ' +

str(learning_rate) + ' n_iter = ' + str(n_iter) + "\n")

 f.write('Train Accuracy: ' + str(train_acc) + "\n")

 f.write('Test Accuracy: '+ str(test_acc)+"\n")

 f.write("\n")

 if test_acc > max_test_acc:

 max_test_acc = test_acc

 best_model = ppn

 x_boundary, y_boundary = X_train, Y_train

fig, ax = plt.subplots()

Set-up grid for plotting.

X0, X1 = X_train'buying'], X_train'safety']

82

x_min, x_max = X0.min(), X0.max()

y_min, y_max = X1.min(), X1.max()

xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min,

y_max, 0.01))

plot_contours(ax, best_model, xx, yy, cmap=plt.cm.coolwarm, alpha=0.01)

ax.scatter(X0, X1, c=Y_train.values.ravel(), cmap=plt.cm.coolwarm,

s=20, edgecolors="k")

ax.set_ylabel("{}".format('buying'))

ax.set_xlabel("{}".format('safety'))

ax.set_xticks(())

ax.set_yticks(())

ax.set_title('Decision Boundary')

plt.show()

4. Convert HTML to Text

import os

import html2text

from bs4 import BeautifulSoup as soup

ROOT_READ_PATH = "./websites"

ROOT_SAVE_PATH = "./websites_converted_to_text"

def main():

 h = html2text.HTML2Text()

 h.ignore_links = True

 if not os.path.exists(ROOT_SAVE_PATH):

 os.mkdir(ROOT_SAVE_PATH)

 websites_paths = os.path.join(ROOT_READ_PATH, website)

 for website in os.listdir(ROOT_READ_PATH)

 if os.path.isdir(os.path.join(ROOT_READ_PATH,

website))]

 for website_path in websites_paths:

 website = os.path.basename(website_path)

 print('Converting {} website to text files'.format(website))

 website_save_path = os.path.join(ROOT_SAVE_PATH, website)

 if not os.path.exists(website_save_path):

 os.mkdir(website_save_path)

 website_html_files = os.path.join(website_path, html_file)

 for html_file in os.listdir(website_path)

 if os.path.isdir(website_path)]

 for html_file_path in website_html_files:

 try:

 html_file = open(html_file_path, 'r', encoding="utf-8")

 html_content = str(soup(html_file.read(),

'html.parser'))

 text_content = h.handle(html_content)

83

 html_file_name = os.path.basename(html_file_path)

 text_file_save_path = os.path.join(website_save_path,

html_file_name)

 destination_file = open(text_file_save_path, 'w')

 destination_file.write(text_content)

 destination_file.close()

 except Exception as e:

 print(website, e)

if __name__ == "__main__":

 main()

84

5. Normalized Google Distance

import argparse

import math

import json

import pandas as pd

import search_engine

global word_occurrence_dict

def get_number_of_hits(keyword):

 global word_occurrence_dict

 if len(keyword) == 1:

 if keyword0] in word_occurrence_dict.keys():

 number_of_hits = sum(1 for value in

word_occurrence_dictkeyword0]].values() if value != 0])

 return keyword0], number_of_hits

 edited = ' {}'.format(keyword0])

 if edited in word_occurrence_dict.keys():

 number_of_hits = sum(1 for value in

word_occurrence_dictedited].values() if value != 0])

 return edited, number_of_hits

 else:

 print('{} not in the keywords'.format(keyword0]))

 return keyword0], -1

 else:

 first_word = keyword0]

 second_word = keyword1]

 number_of_hits = sum(

 1 for value1, value2 in

zip(word_occurrence_dictfirst_word].values(),

word_occurrence_dictsecond_word].values())

 if value1 != 0 and value2 != 0]

)

 return number_of_hits

def get_normalized_distance(w1, w2):

 N = 587.0 # Number of results for "the", proxy for total pages

 N = math.log(N, 2)

 if w1 != w2:

 word1, w1_hits = get_number_of_hits(w1])

 if w1_hits == -1:

 return 1

 word2, w2_hits = get_number_of_hits(w2])

 if w2_hits == -1:

 return 1

 w12_hits = get_number_of_hits(word1, word2])

85

 if w1_hits == 0 or w2_hits == 0 or w12_hits == 0:

 return 1

 f_w1 = math.log(w1_hits, 2)

 f_w2 = math.log(w2_hits, 2)

 f_w1_w2 = math.log(w12_hits, 2)

 normalized_distance = \

 (max(f_w1, f_w2) - f_w1_w2) / (N - min(f_w1, f_w2))

 return normalized_distance

 else:

 return 0

def init_search_engine(website_folder):

 search_engine.ROOT_PATH = website_folder

 search_engine.load_data()

def load_data(dfdict_path):

 global word_occurrence_dict

 word_occurrence_dict_file = open(dfdict_path, 'r')

 word_occurrence_dict = json.load(word_occurrence_dict_file)

 return word_occurrence_dict

def main():

 parser = argparse.ArgumentParser()

 parser.add_argument(

 '--words',

 help='Path to words',

 required=True,

)

 parser.add_argument(

 '--dfdict',

 help='Path to Document Frequency Dict',

 required=True,

)

 arguments = parser.parse_args()

 load_data(arguments.dfdict)

 csv_file = pd.read_csv('./words.txt', names='first', 'second'])

 nds =]

 for index, row in csv_file.iterrows():

 first = str(row.iloc0]).strip()

 second = str(row.iloc1]).strip()

 ND = get_normalized_distance(first, second)

 nds.append(ND)

 csv_file'nd'] = nds

 csv_file.to_csv('ngds.csv')

 # for count, line in enumerate(lines):

 # if (count + 1) % 3 != 0:

 # words.append(line.strip())

 #

86

 # if len(words) == 2:

 # print('computing NGD for words {}'.format(words))

 # result_file.write('words : {}\n'.format(words))

 # result_file.write(

 # 'NGD for words {}, {}: {}\n\n'.format(

 # words0],

 # words1],

 # get_normalized_distance(words0], words1]),

 #)

 #)

 # words =]

 #

 # json_value = json.dumps(tf_idf_dict)

 # f = open("dict2.json", "w")

 # f.write(json_value)

 # f.close()

if __name__ == "__main__":

 main()

87

6. Search Engine

import os

import itertools

ROOT_PATH = './websites'

global websites

global website_pages

def load_data():

 global websites, website_pages

 website_pages = {}

 websites = website

 for website in os.listdir(ROOT_PATH)

 if os.path.isdir(os.path.join(ROOT_PATH, website))]

 for website in websites:

 website_pageswebsite] = {}

 website_path = os.path.join(ROOT_PATH, website)

 pages = os.listdir(website_path)

 for page in pages:

 f = open(os.path.join(website_path, page), 'r')

 contents = f.read()

 website_pageswebsite]page] = contents

def number_of_documents():

 return len(websites)

def get_different_cases(word):

 tokens = word.split(' ')

 all_cases = list(map(''.join,

itertools.product(*((token.capitalize()+' ', token.lower()+' ') for

token in tokens))))

 all_cases = item:-1] for item in all_cases]

 return all_cases

def check_occurrence_by_folder(words, folder):

 global website_pages

 included_words = {}

 number_of_hits = 0

 for key in website_pagesfolder].keys():

 contents = website_pagesfolder]key]

 for word in words:

 all_cases = get_different_cases(word)

 for case in all_cases:

 if case in contents:

 included_wordsword] = 1

 number_of_hits += contents.count(case)

 if len(included_words) == len(words):

 return number_of_hits

88

 return 0

def get_number_of_hits(words):

 global websites

 pages_hit = 0

 page_hit_info = {}

 for website in websites:

 hits_per_page = check_occurrence_by_folder(words, website)

 if hits_per_page != 0:

 pages_hit += 1

 website_base_name = os.path.basename(website)

 page_hit_infowebsite_base_name] = hits_per_page

 return pages_hit, page_hit_info

89

7. Taxonomy

import view

class Node(object):

 def __init__(self, data, row_number, depth):

 self.data = data

 self.row_number = row_number

 self.depth = depth

 self.children =]

 self.parent = None

 def add_child(self, node):

 self.children.append(node)

 def set_parent(self, node):

 self.parent = node

class Tree(object):

 def __init__(self):

 self.root = Node('root', row_number=-1, depth=1)

 self.all_nodes =]

 self.root.set_parent(None)

 self.max_depth = 0

 def print_tree(self, node):

 for child in node.children:

 print(node.depth, node.data, child.data)

 for child in node.children:

 self.print_tree(child)

 def _plot_node(self, node, html_content):

 if len(node.children) == 0:

 html_content += '{}-{}\n'.format(node.depth,

node.data)

 return html_content

 html_content += '{}-{}\n'.format(node.depth, node.data)

 html_content += '\n'

 for child in node.children:

 html_content = self._plot_node(child, html_content)

 html_content += '\n'

 html_content += '\n'

 return html_content

 def plot_tree(self):

 f = open('tree.html', 'w')

 html_content = '''

 <!DOCTYPE html>

 <html>

 <head>

 <style>

 {}

90

 </style>

 </head>

 <body>\n

 '''.format(view.css_content)

 html_content += ' <ul class="tree">\n'

 html_content = self._plot_node(self.root, html_content) + '\n'

 html_content += '\n'

 html_content += '</body>\n</html>'

 f.write(html_content)

91

8. TF/IDF

import json

import math

def get_word_tf_idf(word_occurrence_dict):

 tf_idf_dict = {}

 N = len(word_occurrence_dict.values())

 number_of_documents = sum(1 for value in

word_occurrence_dict.values() if value != 0])

 idf = math.log(N/min(number_of_documents+1, N))

 for key, value in word_occurrence_dict.items():

 tf = math.log(1+value)

 wtf_idf = tf * idf

 tf_idf_dictkey] = wtf_idf

 return tf_idf_dict

def main():

 word_occurrence_dict_file = open('./word_occurrence_dict.json',

'r')

 tf_idf_dict = {}

 word_occurrence_dict = json.load(word_occurrence_dict_file)

 for word in word_occurrence_dict.keys():

 word_tf_idf_dict = get_word_tf_idf(word_occurrence_dictword])

 tf_idf_dictword] = word_tf_idf_dict

 json_value = json.dumps(tf_idf_dict)

 tf_idf_file = open("tf_idf_dict.json", "w")

 tf_idf_file.write(json_value)

 tf_idf_file.close()

if __name__ == "__main__":

 main()

92

REFERENCES

Ameri, F., & Bernstein, W. (2017). A Thesaurus-Guided Framework for Visualization of

Unstructured Manufacturing Capability Data. In H. Lödding, R. Riedel, K.-D.

Thoben, G. von Cieminski, & D. Kiritsis (Eds.), Advances in Production

Management Systems. The Path to Intelligent, Collaborative and Sustainable

Manufacturing (Vol. 513, pp. 202–212). Springer International Publishing.

https://doi.org/10.1007/978-3-319-66923-6_24

Ameri, F., Yoder, R., & Zandbiglari, K. (2020). SKOS Tool: A Tool for Creating

Knowledge Graphs to Support Semantic Text Classification. In B. Lalic, V.

Majstorovic, U. Marjanovic, G. von Cieminski, & D. Romero (Eds.), Advances in

Production Management Systems. Towards Smart and Digital Manufacturing (pp.

263–271). Springer International Publishing. https://doi.org/10.1007/978-3-030-

57997-5_31

Bhavsar, H., & Panchal, M. H. (n.d.). A Review on Support Vector Machine for Data

Classification. 1(10), 5.

Brundage, M. P., Sexton, T., Hodkiewicz, M., Dima, A., & Lukens, S. (2021). Technical

language processing: Unlocking maintenance knowledge. Manufacturing Letters,

27, 42–46.

Cilibrasi, R., & Vitanyi, P. M. B. (2007). The Google Similarity Distance.

ArXiv:Cs/0412098. http://arxiv.org/abs/cs/0412098

Detecting Trends Using Spearman’s Rank Correlation Coefficient | Elsevier Enhanced

Reader. (n.d.). https://doi.org/10.1006/enfo.2001.0061

93

Dong, L., Srimani, P. K., & Wang, J. Z. (2010). WEST: Weighted-Edge Based Similarity

Measurement Tools for Word Semantics. 2010 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, 216–223.

https://doi.org/10.1109/WI-IAT.2010.39

Gorman, J., & Curran, J. R. (2006). Scaling Distributional Similarity to Large Corpora.

Proceedings of the 21st International Conference on Computational Linguistics

and 44th Annual Meeting of the Association for Computational Linguistics, 361–

368. https://doi.org/10.3115/1220175.1220221

Gray, P., & F. Bjorklund, D. (n.d.). Psychology (Eighth).

Jiang, J. J., & Conrath, D. W. (n.d.). Semantic Similarity Based on Corpus Statistics and

Lexical Taxonomy. 15.

Jiang, J. J., & Conrath, D. W. (1997). Semantic Similarity Based on Corpus Statistics and

Lexical Taxonomy. Proceedings of the 10th Research on Computational

Linguistics International Conference, 19–33. https://aclanthology.org/O97-1002

Jiang, Y., Zhang, X., Tang, Y., & Nie, R. (2015). Feature-based approaches to semantic

similarity assessment of concepts using Wikipedia. Inf. Process. Manag.

https://doi.org/10.1016/J.IPM.2015.01.001

Jung, K., Kulvatunyou, B., Choi, S., & Brundage, M. P. (2017). An Overview of a Smart

Manufacturing System Readiness Assessment. IFIP Advances in Information and

Communication Technology, 488, 705–712. https://doi.org/10.1007/978-3-319-

51133-7_83

94

Korde, V. (2012). Text Classification and Classifiers:A Survey. International Journal of

Artificial Intelligence & Applications, 3(2), 85–99.

https://doi.org/10.5121/ijaia.2012.3208

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D.

(2019). Text Classification Algorithms: A Survey. Information, 10(4), 150.

https://doi.org/10.3390/info10040150

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic

analysis theory of acquisition, induction, and representation of knowledge.

Psychological Review, 104(2), 211.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic

analysis. Discourse Processes, 25(2–3), 259–284.

https://doi.org/10.1080/01638539809545028

Lastra-Díaz, J. J., Goikoetxea, J., Hadj Taieb, M. A., García-Serrano, A., Ben Aouicha, M.,

& Agirre, E. (2019). A reproducible survey on word embeddings and ontology-

based methods for word similarity: Linear combinations outperform the state of the

art. Engineering Applications of Artificial Intelligence, 85, 645–665.

https://doi.org/10.1016/j.engappai.2019.07.010

Leacock, C., & Chodorow, M. (1998). Combining Local Context and WordNet Similarity

for Word Sense Identification. In WordNet: An Electronic Lexical Database (Vol.

49, p. 265).

95

Li, W., Gao, S., Zhou, H., Huang, Z., Zhang, K., & Li, W. (2019). The Automatic Text

Classification Method Based on BERT and Feature Union. 2019 IEEE 25th

International Conference on Parallel and Distributed Systems (ICPADS), 774–777.

https://doi.org/10.1109/ICPADS47876.2019.00114

Li, Y., Bandar, Z. A., & Mclean, D. (2003). An approach for measuring semantic similarity

between words using multiple information sources. IEEE Transactions on

Knowledge and Data Engineering, 15(4), 871–882.

https://doi.org/10.1109/TKDE.2003.1209005

Martis, R., Acharya, U. R., Lim, C., Mandana, K., Ray, A., & Chakraborty, C. (2013).

Application of higher order cumulant features for cardiac health diagnosis using

ECG signals. International Journal of Neural Systems, 23, 1350014.

https://doi.org/10.1142/S0129065713500147

McInnes, B., Pedersen, T., Pakhomov, S., Liu, Y., & Melton-Meaux, G. (2013).

UMLS::Similarity: Measuring the Relatedness and Similarity of Biomedical

Concepts. Proceedings of the 2013 NAACL HLT Demonstration Session, 28–31.

https://www.aclweb.org/anthology/N13-3007

Mohammad, S. M., & Hirst, G. (2012). Distributional Measures of Semantic Distance: A

Survey. ArXiv:1203.1858 [Cs]. http://arxiv.org/abs/1203.1858

Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of a

metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics,

19(1), 17–30. https://doi.org/10.1109/21.24528

Resnik, P. (1995). Using Information Content to Evaluate Semantic Similarity in a

Taxonomy. ArXiv:Cmp-Lg/9511007. http://arxiv.org/abs/cmp-lg/9511007

96

Sabbagh, R., & Ameri, F. (2018). Supplier clustering based on unstructured manufacturing

capability data. International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference, 51739, V01BT02A036.

Sabbagh, R., Ameri, F., & Yoder, R. (2018). Thesaurus-guided text analytics technique for

capability-based classification of manufacturing suppliers. Journal of Computing

and Information Science in Engineering, 18(3).

Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in

bioinformatics. Bioinformatics (Oxford, England), 23, 2507–2517.

https://doi.org/10.1093/bioinformatics/btm344

Sánchez, D., Batet, M., Isern, D., & Valls, A. (2012). Ontology-based semantic similarity:

A new feature-based approach. Expert Systems with Applications, 39, 7718–7728.

https://doi.org/10.1016/j.eswa.2012.01.082

Sharma, R., Agarwal, R., & Arora, A. (2016). Evaluation of Ultrasonic Transducer with

Divergent Membrane Materials and Geometries. In A. Unal, M. Nayak, D. K.

Mishra, D. Singh, & A. Joshi (Eds.), Smart Trends in Information Technology and

Computer Communications (pp. 779–787). Springer. https://doi.org/10.1007/978-

981-10-3433-6_93

Shotorbani, P. Y., Ameri, F., Kulvatunyou, B., & Ivezic, N. (2016). A Hybrid Method for

Manufacturing Text Mining Based on Document Clustering and Topic Modeling

Techniques. In I. Nääs, O. Vendrametto, J. Mendes Reis, R. F. Gonçalves, M. T.

Silva, G. von Cieminski, & D. Kiritsis (Eds.), Advances in Production Management

Systems. Initiatives for a Sustainable World (Vol. 488, pp. 777–786). Springer

International Publishing. https://doi.org/10.1007/978-3-319-51133-7_91

97

Soğancıoğlu, G., Öztürk, H., & Özgür, A. (2017). BIOSSES: A semantic sentence

similarity estimation system for the biomedical domain. Bioinformatics, 33(14),

i49–i58. https://doi.org/10.1093/bioinformatics/btx238

SONG, Y., & LU, Y. (2015). Decision tree methods: Applications for classification and

prediction. Shanghai Archives of Psychiatry, 27(2), 130–135.

https://doi.org/10.11919/j.issn.1002-0829.215044

Wang, F., Wang, Z., Li, Z., & Wen, J.-R. (2014). Concept-based Short Text Classification

and Ranking. Proceedings of the 23rd ACM International Conference on

Conference on Information and Knowledge Management, 1069–1078.

https://doi.org/10.1145/2661829.2662067

Wang, J., & Dong, Y. (2020). Measurement of Text Similarity: A Survey. Information,

11(9), 421. https://doi.org/10.3390/info11090421

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2020). XLNet:

Generalized Autoregressive Pretraining for Language Understanding.

ArXiv:1906.08237 [Cs]. http://arxiv.org/abs/1906.08237

Zandbiglari, K., Ameri, F., & Javadi, M. (2021, November 17). Capability Language

Processing (CLP): Classification and Ranking of Manufacturing Suppliers Based

on Unstructured Capability Data. ASME 2021 International Design Engineering

Technical Conferences and Computers and Information in Engineering

Conference. https://doi.org/10.1115/DETC2021-71308

Zhu, G., & Iglesias, C. A. (2016). Computing semantic similarity of concepts in knowledge

graphs. IEEE Transactions on Knowledge and Data Engineering, 29(1), 72–85.

