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UNIFORM CONVERGENCE OF THE SPECTRAL EXPANSIONS
IN TERMS OF ROOT FUNCTIONS FOR A SPECTRAL
PROBLEM

NAZIM B. KERIMOV, SERTAC GOKTAS, EMIR A. MARIS

ABSTRACT. In this article, we consider the spectral problem
" +qx)y=)y, 0<x<l,
¥ (0)sinf =y(0)cos B, 0<B<m y'(1)=(ar+Db)y(l)
where X is a spectral parameter, a and b are real constants and a < 0, g(z)
is a real-valued continuous function on the interval [0,1]. The root function

system of this problem can also consist of associated functions. We investigate
the uniform convergence of the spectral expansions in terms of root functions.

1. INTRODUCTION
Consider the spectral problem
" +q@)y=Xy, 0<z<l, (
y'(0)sin B =y(0)cos B, 0<B<m, (
y' (1) = (aA+b)y(1), (

where A is a spectral parameter, a and b are real constants and a < 0, g(x
real-valued continuous function on the interval [0, 1].

In this article, we study the uniform convergence of the expansions in terms of
root functions of the boundary value problem 7 for the functions which be-
long to C]0, 1]. There are many articles which investigate the uniform convergence
of the expansions for the functions in terms of root functions of some differential
operators with a spectral parameter in the boundary conditions (see, for example,
[, 15, [7, 18, [0}, [10, [T}, 12, 13} [14]).

Especially, the spectral problems which investigated the uniform convergence of
the spectral expansions underlie an important class of the mathematical physics
problems. For example, the problem

u(z)+ du(z) =0 (0<z<1),
uw(l) =0, (a—X)u'(0)+ b u(0)=0, a,b>0

1)
2)
3)
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appears in a model of transrelaxation heat process and in the mathematical de-
scription of vibrations of a loaded string (see [§]), and the problems on vibrations
of a homogeneous loaded string, torsional vibrations of a rod with a pulley at one
end, heat propagation in a rod with lumped heat capacity at one end, the current
in a cable ground at one end through a concentrated capacitance or inductance lead
to the spectral problem

u(x) + du(z) =0(0 <z < 1),
w(0) =0, ' (1)=d u(l), d>0

(see [8,09]).
In [I3], it has been investigated the uniform convergence of the Fourier series
expansions in terms of eigenfunctions for the spectral problem

" +qlx)y=2Ay, 0<z<l, (1.4)
boy(0) = doy/(0), (a1 X + b1)y(1) = (1A + dy)y/' (1), (1.5)

where \ is a spectral parameter, ¢(z) is a real-valued continuous function on the
interval [0, 1], and aq,bg, b1, c1,do and dy are real constants that satisfy the condi-
tions

|bo| + [do| #0, o =aidy —bicy > 0. (1.6)

Note that all the eigenvalues of problem ([1.4), are real and simple, hence
the root functions system of this problem consists of only eigenfunctions. Problem
f does not satisfy the condition , because 0 = a < 0.

It was proved [3] that the eigenvalues of f form an infinite sequence
An, (n = 0,1,2,...) without finite limit points and only the following cases are
possible:

(i) all the eigenvalues are real and simple.
) all the eigenvalues are real and all, except one double, are simple.
ii) all the eigenvalues are real and all, except one triple, are simple.
) all the eigenvalues are simple and all, except a conjugate pair of non-real,
are real.

Note that the eigenvalues A, (n =0,1,2,...) were considered to be listed accord-
ing to non-decreasing real part and repeated according to algebraic multiplicity.
Therefore, the results of the article [I3] cannot be applied directly to the problem
i )

We need some properties of eigenvalues, eigenfunctions and associated functions
of problem 7, for the uniform convergence of the spectral expansions in
terms of root functions of this problem.

Let @(x,\) and v (z, A) denote the solutions of which satisfy the initial
conditions

(P(Oa /\) =1, @I(Ov )‘) =h, (17)
¥(0,2) =0, ¥'(0,\)=1, (1.8)
where h = cot 3, (0 < 8 < 7).

It is easy to see by the same method as in [I3] theorem 2.1] that the following
asymptotic formulae are valid for sufficiently large n:
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(i) If 3=0and A\, = 2, (Re i, > 0), then
A 3y

i =17+ — + O(——),

nm n

Yn(2) = (@, An)
sinnme | cosnme [ Az — 1/ q(r)dr + 1/ q(7) cos 2nmrdr]
; 2 Jo (1.10)

T oar (n7r)2 2
sinnrr [* . 57(})
2(n7r)2 /0 q(7) &n(?mﬁ')dT—l—O(F),

where

11t 1
A==+ f/ q(rydr, oM = |/ ) cos(2nmT)dT| + —
a 2/ n’

(ii) If0 < B < mand A\, = p2(Re y, > 0) then

a (n_%)“L (n 1—42;)77 +O(%)7 (1.11)
yn(@) = (2, An)
sin(n — )7z .
esln gt (ng;r Y Rl

) 1.12

+ %/0 q(7) cos(2n — 1)7er7} (1.12)
cos(n — Hyma [* ' 5@

_ W/O q(T)sin(2n — V)wrdr + O(T)’

where
11! @ 1

As=h+ -+ = [ q(r)dr, 4,7 = | )cos(2n — V)mrdr| + =
a 2/ n’

Let Ax be a multiple eigenvalue (A = )\k+1). Then for the first order associated
function ygy1 corresponding to the eigenfunction yg, the following relations hold

15, p. 28]
=" 11 + 4@ Ykt1 = MeYkt1 + ks
Y k41(0)sin 3 = yp41(0) cos B,

= (e + b0)yr11(1) + ayr(1).

ylk+1(1)
Then for the first order

Let A be a triple eigenvalue (A = Ap41 = Apt2)
associated function yjy1 there exist the second order associated function yio for

which the following relations hold
— jr2 + a(T)yrg2
Y 142(0) sin B = yp42(0) cos 3,

= (a)\k + b)yk+2(]—) + aka(l).

= MeWk+2 + Yrs1,

Vkp2(1)
Note that the functions yiy1 + cyr and yry2 + dyi, where ¢ and d are arbitrary
constants, are also associated functions of the first and second order respectively.
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Let y(z,\) denote the solution of the equation ([L.1) which satisfy the initial
condition ((1.7) if 0 < 8 < 7 or (1.8) if 8 = 0. Then, the eigenvalues of (|1.1)—(1.3)

are the roots of the characteristic equation

wA) =y (1,A) — (aX+ b)y(1, \). (1.13)

It was proven in [I] that if Ay is a multiple (double or triple) eigenvalue of
7, then

y(@, ) = ye(), y'(@,A) = 'y (2), (1.14)

Ya(@, ) = Grr (), YA (@A) = Ty ()

uniformly according to « € [0,1], as A — Ay (see also [0]), where §x11 is one of the
associated functions of the first order. It is obvious that §x11 = yr+1 + Cyx.
Furthermore, if )\ is a triple eigenvalue of ([1.1))—(1.3)), then

(@A) = 20k42(2), Y an(@,A) = 20440 (2) (1.15)
uniformly according to x € [0,1], as A — A, where 12 is one of the associated
functions of the second order corresponding to the first associated function gi1.
It is obvious that Jxt+2 = Yk+2 + Cyr+1 + dyx [1L16].

It is easily seen from (1.14]) and (1.15]) that

¢ = ~Y';+1(0), if B=0, (1.16)
—ykt1(0), fO0<p<m, '
5 (y’k+1(0))2 — Y 42(0), if =0,
d= 1.17
{y1%+1(0) — Yr12(0), if0< @ <m. (1.17)

The following systems were investigated in [1]:
(a) yn(z) (n=0,1,...;n # 1), if all of eigenvalues of (L.I)~(1.3) are real and
simple, where [ is an arbitrary non-negative integer.
(b) yn(z) (n =0,1,...;n # k + 1), if A is double eigenvalue (A, = Agy1) of
the problem 7.
(¢) yn(x) (n = 0,1,...;n # k), if A\; is double eigenvalue (A\p = Agy1) of
£ € ond

w"'()\k) 75 3éw"()\k). (1.18)
(d) yn(z) (n=0,1,...;n #1), if Ay is double eigenvalue (A, = A\p11) of (L.1)—

(1.3]), where [ # k, k + 1 is an arbitrary non-negative integer.
(€) yn(z) (n = 0,1,...;5n # k+ 2), if A is triple eigenvalues (A = Agy1 =

)
)

) of 1) 63
)

(f) yn(x) (n = 0,1,...5m # k+ 1), if Ay is triple eigenvalues (A = Apy1 =
Akt2) of (L.1)—(1.3) and
WV () # 4e” (). (1.19)
(h) yn(z) (n=0,1,...;n # k), if A is triple eigenvalues (A = Agy1 = Agt2)
of (LI)—(L3) and

oIV WV WM W’ (X wV (\ " (N
4(!k)( (k) (k))7,é 3(!k)( (k) (k))_

A1 Y 51 31 (1.20)

(h) yn(z) (n=0,1,...5n # 1), if A is triple eigenvalues (A\y = Ag+1 = Apa2)
of (L.1)—(L.3), where [ # k,k+ 1, k42 is an arbitrary non-negative integer.
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(i) yn(z) (n = in #£ 1), if A\, and A4 are conjugate of non-real eigenval-
ues (Ag of . .
() yn(x) (n = in ;é 1), if A and A4 are conjugate of non-real eigenvalues

( = \,) of (1.1 . , where [ # r, s is an arbitrary non-negative integer.
1

It was proven in [I] that each of the systems (a)-(j) is a basis of L,(0,1),1 < p < o0;
moreover, if p = 2, then this basis is unconditional.

We denote by {un(x)} corresponding biorhogonally conjugate to each of the sys-
tems (a)-(j). For example, the system u,(z) (n = 0,1,...;n # k) is biorhogonally
conjugate to system (c).

The following auxiliary associated functions were considered in [IJ:

Yrt1 = Yk+1 + 1Yk, (1.21)
Y1 = Yk+1 + C2Yk, (1.22)
y]fé_fz = Yk+2 + C2Yk+1 + d2yk (1.23)
where

W Ae) oy (1)
- - 1.24
TR0 w) (1.24)

W) gk (1)
- - g 1.25
T w) © (1.25)
PRECCT RNy

2720w () T \Aw(A) (1.26)

n (wIV(Ak) n yk+1(1)> (yk+1(1) _ 5) ~ Ukt2(1) L
4w (k) ye(1) k(1) yr(1) '
These auxiliary associated functions were studied for the basis properties of systems
(¢), (f) and (g) respectively. We will use them for the uniform convergence of the
spectral expansions in systems (c), (f) and (g).
It is verified in [I] that if A, is double eigenvalue of the problem (L.I)—(L.3), the
condition ([1.18) is equivalent to the condition y;_ (1) # 0; if A is trlple eigenvalue

of (L.1)—(L.3), the conditions (L.19) and (1.20) are equivalent to the conditions
yﬁ_l(l) # 0 and y;ﬁé(l) # 0 respectively.

2. UNIFORM CONVERGENCE OF THE SPECTRAL EXPANSIONS FOR THE
BOUNDARY VALUE PROBLEM (|1.1))—(1.3)

In this section, we give uniformly convergent spectral expansions in terms of
root functions of the problem (L.1| . We define the trigonometric system
{0,(x)}52, as follows:

On(z) = V2sinnrz, if 6 =0,
A V2cos(n— )z, f0< B <

Theorem 2.1. Suppose that f € C[0,1] and f(z) has a uniformly convergent
Fourier expansions in the system {0,,(x)},—_, on the interval [0,1]. Then, the func-
tion f(x) can be expanded in Fourier series in each of the systems (a)-(j) and these
expansions are uniformly convergent on every interval [0,b],0 < b < 1. Moreover,
the Fourier series of f(x) in systems (a)-(j) are uniformly convergent on [0,1] if

and only if (f,y1) =0 for systems (a), (d), (h) and (5); (f,yx) = 0 for the systems
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(b) and (e); (f,yiy1) = 0 for system (c); (f,yi4,) = 0 for system (f); (f, o) =0
for system (g) and (f,ys) = 0 for system (i).
Proof. We only prove theorem for system (c). The proof of the theorem for
other systems is similar.

Let 8 = 0. Consider the Fourier series f(z) on the interval [0,1] in system (c):

o0

F)= 3 (frun)ya(a), (2.1)

n=0,n#k
where the system wu,(x) (n =0,1,...;n # k) is defined by (see [I])

yn(@) — #0741 (@) yi (@) = 2 Y (@)
n(3) = g () = i (2.2)
||yn|| +ayn(1) —yk(l)T
where y; | is defined by (1.21)). Let
—1
= (ynl* + ag2() . (2.3)
Then according to (2.2), we obtain
yn<1) *
Un(T) = gn|Yn(T) — — Y z) ). 2.4
(@) = gn (&) = 2 gt () (2.4)
By (1.10), we have the estimates
(=1)" , 0w
n(l) = +0(—), 2.5
Yn(1) a(mr)2 (ng) (2.5)
2 1 -3
nl|" = —— + 2.6
l[ynll D)2 (n™7) (2.6)
By (2.5) and (2.6), equality (2.3) can be written as
gn = 2(nm)* + O(n). (2.7)
Note that the series (2.1) is uniformly convergent on [0, 1] if and only if the series
Fi(@)= Y (fun)yn(2) (2.8)
n=k+2

is uniformly convergent on [0, 1]. Suppose that the sequence {S,,(x)}5_; o is the
partial sum of the series (2.8)). By using (2.4]), the equality

S (x) = Sm1(x) + S 2(2)
holds, where

m

Sm,l(x): Z gn(fayn)yn(x)v

n=k+2

(fs i
Sm,2( )_ k+1 Z gnyn yn )

yk"‘l n=k+2

(2.9)

Firstly, we analyze the uniform convergence of the first sequence in (2.9)). Using

(2.7), we obtain

In ([ Yn)yn(x) = 2(f, nTyn)nmyn (z) + (f, n7Yn)yn (2)O(1). (2.10)
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By (1.10)), the estimate

a(z)cosnrr  an(x)cosnmwr

nmy, () = sinnrx + - Sy

. . (2.11)
i
holds, where
a(z) = Az — % /0 o(r)dr, (2.12)
an(@) = /0 " 4(7) cos 2nmrdr, (2.13)
By () = /0 " g(7) sinnrdr. (2.14)

Note that a(x) € C0,1] and the functional sequences {c, () }7 119, {5n () } 7l itz
are uniformly bounded. Hence, by (2.11)), the equality (2.10|) can be written as

In (s yn)yn(z) = 2(f, sinnrx) sinnrx + By (z),

where

B, (z) = (, sinmrx)O(%) + (Oc(:v)f(x),cosnwx)O(l)

n

X s (219)
+ (f, an(z) cos nmz)O ( )+ (f, Bu (@) sinnrz)O(=) + O(=—).
Therefore
Sma(z) = i (f, V2sinnrz)v2sin nrz+ i B
n=k+2 n=k+2
The series
> Bu() (2.16)
n=k+2

is absolutely and uniformly convergent on [0, 1]. Indeed, by (2.15]) we have

|Bn(z)] < %{\(f, sinnmz)| + |(a(x) f(z), cosnmz)|
+ |(f, an(x) cosnmx)| + |(f, Bn(x) sinnmx)| + (5,(11)}
< Cz{l(ﬁ sin naz)|® + |(a(:c)f(m) cosnmz)|?
50

([ @ania) + ([ 1@ )+

where C and Cs are certain positive constants. By the Bessel inequality for the
Fourier coefficients, the numerical series

[eS) [eS) oo (SS)

Yo (fsinnma)®, Y |(ale)f(z),cosnma)®, Y

n
n=k+2 n=k+2 n=k+2
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are convergent. By using Bessel inequality again and by (2.13)), we obtain

S / lan(@)Pdz

n=k+2

> ( 1If(x)an(%)ldﬂc) < |If1?
n:Ek;r2 ‘/0

2

< |f||2/01 [ i ’/OT q(7) cos 2n7Tdr| }dx

n=k+2

1 T
<CallfIP [ [ lanPards < GalfPlal?,
0 Jo

where Cj is a certain positive constant. Similarly, by (2.14) we obtain the estimate

> ([ BN < il Pl

n=k+2

where Cy is a certain positive constant. Thus, the functional series (2.16] is abso-
lutely and uniformly convergent. Since the series

oo

Z (f,V2sinnrz)V2sinnrz

n=k+2

is uniformly convergent on the interval [0, 1]. The sequence {S,, 1(x)} is also
uniformly convergent on this interval.

If (f,y541) = 0, then the equality S,,(z) = Sp,1(x) holds. Hence, the func-
tional sequence { Sy, ()}, _; o is uniformly convergent on the interval [0,1]. Con-
sequently, in the case § = 0, the second part of the Theorem is proven.

Suppose that (f,y;,,) # 0. We now analyze the uniform convergence of the

second functional sequence in (2.9). By using (1.10)), (2.5) and (2.7, we obtain
m m . m
2 sinnm(1 + x) _
S (D) = — 3 EITUED S~ (-2),

am n
n=k+2 n=k+2 n=k+2

Note that the series

oo
m=k+2

i sin nt
n
n=k+2

is uniformly convergent on every closed interval [d,27 — ], where 0 < § < 7 [2
Chapter I, §30, Theorem I]. So, the series

i sinnw(1l + )
n=k+2 n
is uniformly convergent on the interval [0,b], 0 < b < 1. Hence, the functional

sequence { Sy, 2(x)},-_ ; is uniformly convergent on [0,b], 0 < b < 1.
Let 0 < 3 < 7. Consider the Fourier series f(z) on the interval [0, 1] in system

(c):

o0

G(x) = Z (fa un)yn(x)a (217)

n=0,n#k
where the system u,(z) (n =0,1,...;n # k) is defined by (2.2).
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Note that the series (2.17) is uniformly convergent on [0,1] if and only if the
series

is uniformly convergent on [0, 1].
Suppose that the sequence {G,(2)},-_, ., is the partial sum of the series (2.18).
By using ([2.2)), the equality

Gm(x) = Gpi(z) + Gy2(2)
holds, where

Crma(@) = Y hulf,yn)yn(@),
n=k+2
Gm,Z(x) = _m Z hnyn(l)yn(x)a
+

n=k+2
_ 2 291
b = ([[ynll” + ayn (1))
By using (|1.12)), we obtain the estimates

1\ (2)
yn(1) = a(22(n 1)1)7'(' + O(%)’ (2.19)
hn =24 0(n™1). (2.20)
From (1.12)), (2.19) and (2.20]),
sin(n — )7 T (2)
Bt (1)yn (z) = —é ( 2n2)7 fl L O(%)

Since

_ Jeos(k 4+ 1)m(1 + ) — cosmm(1 + )|

| Z sin(n — %)71’(1 + )|
n=k+2

. ow(l4z)
28in —5—

< ! < 1
" sin 777(124-1) " sin Ll;b) ’

for 0 < z < b < 1 and the numerical series Z;’Lo:kw (L@/n is convergent, then the
sequence {Gy 2(x)},_, . o is absolutely and uniformly convergent on the interval
[0,0], 0 < b < 1 [2, Introductory material, §1 , Abel’s Lemma].

Note that the sequence {Gy,,1() }ro_j o is uniformly convergent on the interval
[0,1]. This can be seen by the method of the case § = 0. The proof of the theorem
2] is complete. O

Theorem 2.2. Suppose that f € C[0,1] and f(x) has a uniformly convergent
Fourier expansions in the system {0, (x)}52, on the interval [0,1], then this func-
tion can be expanded in Fourier series in each of the systems {u,(x)} which are
biorthogonally conjugates to systems (a)-(j) and these expansions are uniformly
convergent on the interval [0, 1].
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Proof. We only prove theorem [2.2|for system (2.2)) which is biorthogonally conjugate
to system (c). The proof of the theorem for other systems is similar.
Let 8 = 0. Consider the Fourier series f(x) on the interval [0,1] in (2.2)):

oo

T)= > (fyn)un(®). (2.21)

n=0,n#k

Note that the series (2.21]) is uniformly convergent on [0, 1] if and only if the series

o0

Ti(@) = Y (fiyn)un(2) (2.22)

n=k+2
is uniformly convergent on [0, 1].
Suppose that the sequence {75, (%) }55_; o is the partial sum of the series (2.22)).
By using ([2.2)), the equality
Tm(x) - Tm,l(x) + Tm,2(x)
holds, where

m

Tm,l(aj): Z In(f5Yn)yn (),

n=k+2

Y
T’rn,Q(x) = k+1 Z gnyn f7 yn)

yk+1( n=k+2

The sequences {Sy,,1(2) }pe_pio and {Th,1(2) }re_; o are the same. Therefore, the
sequence {Tm 1( }m )42 is uniformly convergent on the interval [0, 1].

Using (1.10] and . we obtain

) (1)
gnyn(l)(f7 yn) = 2( 1) (f, Sinmmc) + O(%)

ani

From here, the estimate
05 . (1) . 2 67(’L1)
[gnyn (1) (fyyn)| < ?{|(f,smn7rx)| + 4y } < C’G{|(f,smn7rx)\ + T}

holds, where C5 and Cg are certain positive number. The numerical series

9] ) oo 67(L1)
Z |(f,sinnmz)|”, Z .
n=k+2 n=k+2

are convergent. Consequently, the sequence {7, 2(x) }5r_; o is absolutely and uni-
formly convergent on [0, 1].
In the case 0 < 3 < m, the proof is similar. Theorem is proven. O

3. EXAMPLES

Example 3.1. Consider the spectral problem

-y =Xy, O<z<l, (3.1)
§(0) =0, /(1) = (=5 + () (32

where X is a spectral parameter.
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The eigenvalues of problem (3.1))—(3.2)) are the root the equation w(A) = 0, where
w\) = (3 - 1)Sinﬁ + cos VA and Rev/A > 0. Tt is easy to see that

3 VA
oAD"+ D) (n+2) |,
w(A) = —A n§:0: ) A (3.3)

Therefore, A = 0 is double eigenvalue of (3.1))-(3.2). Hence, all the eigenvalues
of (3.1)-(3.2) are real and all, except one double, are simple. Further, by (3.3]),
if A <0, then w(A\) < 0. Then, A = 0 is the first eigenvalue of (3.1)—(3.2]) and
Ao =XM1 =0.

From (3.3), w(0) = w/(0) = 0, w”(0) = —2 and w"”(0) = 1. Eigenfunctions

corresponding to A,(0,2,3,...) are yo(z) = « and y,(x) = % (n > 2),

associated function corresponding to eigenfunction yq is y1(z) = —% + cx, where

¢ is an arbitrary constant. From (|1.16)), ¢ = —c. By (1.24),

w”(0)  ye41(1) PSP
3057(0) (1) 21
Note that y7 = y1 + c1yo and yi (1) # O(or w”’'(Ag) # 3éw” (X)), hence ¢ # 1/14.
Therefore, if ¢ # 1/14, then the system y,, () (n = 1,2,...) isabasisin L,(0,1),1 <
p < oo (see, [I]).

Let f(x) = 2% — 2. Since

Cc1 — —

if n is even

. O,
(f,sinnmzx) = {_343, if n is odd,

the function f(x) can be expanded uniformly convergent Fourier series in the system

{V2sinnma}s2 . Further, (f,y1*) = 55 — . Consequently, if ¢ = 13-, then the

Fourier series of f(z) in the system y,(x) (n = 1,2,...) is uniformly convergent on
[0,1]; if ¢ # 1=, %, then the Fourier series of f(x) in the system y,(z) (n =1,2,...)
is uniformly convergent on [0,b], 0 < b < 1.

Example 3.2. Consider the spectral problem
-y =Ny, 0<z<l, (3.4)
y'(0) = ay(0), y'(1) = (ar+b)y(1)

where ) is a spectral parameter, « is unique real root of the equation

o® +6a” +15a +15=0 (3.6)
(verify that a = Wﬁ —/ 1+2\/5 —2) and
2
_ o tdafd o, o (3.7)
3(a+1) a+1

The eigenvalues of (3.4)—(3.5)) are the roots of the function

sin v\
VA

w(A) = (—aX + o — b) cos VA — ((aa + 1)\ + ab)

where Re v/ > 0.
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Note that by (3.6) and (3.7), the equalities o« — b = ab = 15a, aa + 1 = —6a
hold. Therefore, the equality (3.8) can be written as w(\) = (15a — a)) cos VX +
(6aX — 15a)31%/\5. Hence, the Maclaurin series of w(\) forms

Therefore, A = 0 is triple eigenvalue of (3.4)-(3.5). Hence, all the eigenvalues of
f are real and all, except one triple, are simple. Further, by (3.9)), if
A < 0, then w(A) < 0. Then, A = 0 is the first eigenvalue of (3.4)—(3.5) and
A= A1 = Ay =0.

From (.9), we obtain w(0) = w'(0) = w”(0) = 0, w”(0) = =28, WV (0) =

% and w"(0) = 7%. Eigenfunctions corresponding to A, (n = 0,3,4,...)
are yo(x) = ax + 1 and y,(v) = cos vV A,z + a%(n > 3). The first and the
second order associated functions corresponding to yo are yi(x) = —“3—’”!3 — Z—T +

aAr+ A and yo(v) = % ® ¢ —4 - a“% - ”!2 + aBx + B respectively, where A and
B are arbitrary constants.

Note that 0 < 8 < 7 for problem 7. From here, and ,
¢=—Aand d = A2 — B. According to above calculations, the condltlon can

be written as
A 13
B#A*— — 4+ —— 1
7 18 + 7128° (3.10)
Therefore, if condition (3.10) is satisfied, then the system y, () (n=1,2,...) is a
basis in L,(0,1) (1 < p < c0).
Let Fy(z) = Ps(22 — 1)(2% — z), where Ps(¢)(s = 0,1,2,...) are Legendre poly-
nomials [16] p.162]:
1 d°
P(t) = g (02~ 1))

Since F,(0) = Fy(1) =0, (F,, cos(n — 3)mz) = O(n™2). It means that this function
can be expanded uniformly convergent Fourier series in the system {v/2cos(n —
D)ma}S, on the interval [0,1].

Note that the equalities

1 1 8| 2
/tﬁqwﬁza/‘M%@ﬁ:2W)
1 15!

-1

hold, where k =0,1,...,s — 1 [I6 p.174 and 175]. From here, since the functions
(2 = y; (L) (j = 0, 1, 2) are polynomials of degree seven or less than seven, we
obtain

| R@weds = [ P2o - 0 - oy (o)is
0 0

— ¢ [ P0E -y

-1

am)? if s=7and j=2.

{Q if s>8andj=0,1,2,
515! »
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Hence, the condition

0, if s >8
(Foyd™) = a(t)? e
sers s =1T

is satisfied. Consequently, from theorem the function Fs(z) can be expanded
uniformly convergent Fourier series in the system y,(z) (n =1,2,...) on [0, 1] for
s>8,0n[0,b] (0<b<1)fors="7.

REFERENCES

[1] Y. N. Aliyev; On the basis properties of Sturm-Liouville problems with decreasing affine
boundary conditions, Proc. IMM of NAS, 24(2006), 35-52.

[2] N. K. Bary; A Treatise on Trigonometric Series Vol I, Pergamon Press, (1964).

[3] P. A. Binding, P. J. Browne, W. J. Code, B. A. Watson; Transformation of Sturm- Liouville
problems with decreasing affine boundary conditions, Proc. Edinb. Math. Soc., 47(2004),
533-552.

[4] D. A. Gulyaev; On the uniform convergence of spectral expansions for a spectral problem
with boundary conditions of the third kind one of which contains the spectral parameter,
Differential Equations, 47(10) (2011), 1503-1507.

[5] D. A. Gulyaev; On the uniform convergence in Wi of spectral expansions for a spectral prob-
lem with boundary conditions of the third kind one of which contains the spectral parameter,
Differential Equations, 48(10) (2012), 1450-1453.

[6] E. L. Ince; Ordinary Differential Equations Vol I, Dover, New York, (1956).

[7] N. Yu. Kapustin; On the uniform convergence of the Fourier Series for a spectral problem with
squared spectral parameter in a boundary condition, Differential Equations, 46(10) (2010)
1504-1507.

[8] N. Yu. Kapustin, E. I. Moiseev; A remark on the convergence problem for spectral expan-
stons corresponding to a classical problem with spectral parameter in the boundary condition,
Differential Equations, 37(12) (2001), 1677-1683.

[9] N. Yu. Kapustin, E. I. Moiseev; Convergence of spectral exzpansions for functions of the
Hlder Class for two problems with spectral parameter in the boundary condition, Differential
Equations, 36(8) (2000), 1182-1188.

[10] N. Yu. Kapustin; On the uniform convergence in C' of Fourier Series for a spectral prob-
lem with squared spectral parameter in a boundary condition, Differential Equations, 47(10)
(2011), 1394-1399.

[11] N. Yu. Kapustin; On the spectral problem arising in the solution of a mized problem for
the heat equation with a mized derivative in the boundary condition, Differential Equations,
45(5) (2012), 694-699.

[12] N. B. Kerimov, E. A. Maris; On the basis properties and convergence of expansions in terms
of etgenfunctions for a spectral problem with a spectral parameter in the boundary condition,
Proc. IMM of NAS, Sp. Issue (2014), 1245-1258.

[13] N. B. Kerimov, E. A. Maris; On the uniform convergence of the Fourier series for one
spectral problem with a spectral parameter in a boundary condition, Math. Meth. Appl. Sci.,
DOI:10.1002/mma.3640 (2015).

[14] D. B. Marchenkov; On the convergence of spectral expansions of functions for problems with a
spectral parameter in a boundary condition, Differential Equations, 41(10) (2005), 1419-1422.

[15] M. A. Naimark; Linear Differential Operators Vol I, Nauka, Moscow, (1969).

[16] E. D. Rainville; Special Functions, The Macmillan Company, New York, (1965).

NaziMm B. KERIMOV
DEPARTMENT OF MATHEMATICS, MERSIN UNIVERSITY, 33343, MERSIN, TURKEY
E-mail address: nazimkerimov@yahoo.com

SERTAC GOKTAS
DEPARTMENT OF MATHEMATICS, MERSIN UNIVERSITY, 33343, MERSIN, TURKEY
E-mail address: srtcgoktas@gmail.com



14 N. B. KERIMOV, S. GOKTAS, E. A. MARIS EJDE-2016/80

EMIR A. MARIS
DEPARTMENT OF MATHEMATICS, MERSIN UNIVERSITY, 33343, MERSIN, TURKEY
E-mail address: ealimaris@gmail.com



	1. Introduction
	2. Uniform convergence of the spectral expansions for the boundary value problem (??)--(??)
	3. Examples
	References

