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Abstract. In this article, we study the fractional elliptic equation with crit-

ical Sobolev-Hardy nonlinearity

(−∆)αu+ a(x)u =
|u|2∗s−2u

|x|s
+ k(x)|u|q−2u,

u ∈ Hα(RN ),

where 2 < q < 2∗, 0 < α < 1, N > 4α, 0 < s < 2α, 2∗s = 2(N − s)/(N −
2α) is the critical Sobolev-Hardy exponent, 2∗ = 2N/(N − 2α) is the critical

Sobolev exponent, a(x), k(x) ∈ C(RN ). Through a compactness analysis of

the functional associated, we obtain the existence of positive solutions under
certain assumptions on a(x), k(x).

1. Introduction

We consider the nonlinear elliptic equation

(−∆)αu+ a(x)u =
|u|2∗s−2u

|x|s
+ k(x)|u|q−2u, x ∈ RN ,

u ∈ Hα(RN ),
(1.1)

where 2 < q < 2∗, 0 < α < 1, 0 < s < 2α, N > 4α, 2∗s = 2(N − s)/(N − 2α)
is the critical Sobolev-Hardy exponent, 2∗ = 2N/(N − 2α) is the critical Sobolev
exponent, a(x), k(x) ∈ C(RN ).

Recently the fractional Laplacian and more general nonlocal operators of elliptic
type have been widely studied, both for their interesting theoretical structure and
concrete applications in many fields such as optimization, finance, phase transitions,
stratified materials, anomalous diffusion and so on (see [4, 9, 13, 11, 8, 19, 20, 21]).
In particular, many results have been obtained for elliptic equations with critical
nonlinearity related to (1.1). Dipierro et al. [9] considered the critical problem with
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Hardy-Leray potential

(−∆)αu− γ u

|x|2α
= |u|2

∗−2u, x ∈ RN ,

u ∈ Ḣα(RN ),
(1.2)

where Ḣα(RN ) is defined in (1.5). They proved existence, certain qualitative prop-
erties and asymptotic behavior of positive solutions to (1.2). Ghoussoub and Shak-
erian in [14] investigated the double critical problem in RN ,

(−∆)αu− γ u

|x|2α
=
|u|2∗s−2u

|x|s
+ |u|2

∗−2u, x ∈ RN ,

u > 0, u ∈ Ḣα(RN ),
(1.3)

with γ > 0. There through the non-compactness analysis of the Palais-Smale se-
quence of (1.3), they obtained the existence of the solutions. Also Yang etc. in [27],
[25] consider a class of critical problems with a Hardy term for the fractional Lapla-
cian in a bounded domain. For the two gathered of the spectral fractional Laplacian
and of the regional fractional Laplacian, they obtained the existence of solutions re-
spectively. In addition, the authors in [10] established a concentration-compactness
result for a fractional Schrödinger equation with the subcritical nonlinearity f(x, u).
Motivated by [9, 14, 10, 27, 25] we consider the existence of positive solutions for
problem (1.1) in RN . The main interest for this type of problems, in addition to
the nonlocal fractional Laplacian is the presence of the singular potential 1/|x|s
related to the fractional Sobolev-Hardy’s inequality. We recall the Sobolev-Hardy
inequality(∫

RN

|u(x)|2∗s
|x|s

dx
)2/2∗s

≤ c
∫

RN
|(−∆)α/2u(x)|2dx, ∀u ∈ Ḣα(RN ), (1.4)

where c is a positive constant. The Sobolev embedding Ḣα(RN ) ↪→ L2∗s (|x|−s,RN )
is not compact, even locally, in any neighborhood of zero. As it is well known, the
loss of the compactness of the embeddings is one of the main difficulties for elliptic
problems with critical nonlinearities. Thus our problem has two factors, one is the
critical Sobolev-Hardy term, the other is the unbounded domain. In [9] and [14], the
authors can consider the solutions of critical problems in the homogeneous fractional
Sobolev space Ḣα(RN ), while we must deal with (1.1) in the nonhomogeneous
fractional Sobolev space Hα(RN ) given the presence of low sub-critical terms in
(1.1). This is why the methods in [9] and [14] can not be used directly to (1.1).
As far as we know, the existence results for global problems for the fractional
Lapalacian with a mixture of critical Sobolev-Hardy terms and subcritical terms
are relatively new. To overcome the difficulties caused by the lack of compactness,
we carry out a non-compactness analysis which can distinctly express all the parts
which cause non-compactness. As a result, we are able to obtain the existence
of nontrival solutions of the elliptic problem with the critical nonlinear term on
an unbounded domain by getting rid of these noncompact factors. To be more
specific, for the Palais-Smale sequences of the variational functional corresponding
to (1.1) we first establish a complete noncompact expression which includes all the
blowing up bubbles caused by the critical Sobolev-Hardy nonlinearity and by the
unbounded domain. Then we derive the existence of positive solutions for (1.1).
Our methods are based on some techniques of [5, 7, 10, 16, 17, 23, 24, 26, 28].
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Notation and assumptions. Denote c and C as arbitrary constants which may
change from line to line. Let B(x, r) denote a ball centered at x with radius r and
B(x, r)C = RN \B(x, r).

Let N ≥ 1, u ∈ L2(RN ), let the Fourier transform of u be

û(ξ) =
1

(2π)N/2

∫
RN

e−iξ·xu(x)dx.

We define the operator (−∆)αu by the Fourier transform

̂(−∆)αu(ξ) = |ξ|2αû(ξ), ∀u ∈ C∞0 (RN ).

Let Ḣα(RN ) be the homogeneous fractional Sobolev space as the completion of
C∞0 (RN ) under the norm

‖u‖Ḣα(RN ) = ‖|ξ|αû‖L2(RN ), (1.5)

and denote by Hα(RN ) the usual nonhomogeneous fractional Sobolev space with
the norm

‖u‖Hα(RN ) = ‖u‖L2(RN ) + ‖|ξ|αû‖L2(RN ). (1.6)
For 0 < α < 1, a direct calculation (see e.g. [8, Proposition 4.4], or [9, Proposition
1.2], gives

cN,s

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy =

∫
RN
|(−∆)α/2u(x)|2dx = ‖u‖2

Ḣα(RN )
,

where cN,s = 22s−1π−
N
2

Γ(N+2s
2 )

|Γ(−s)| .
Let u+ = max{u, 0}, u− = u+ − u. From the proof of (2.14) in [12], it follows

‖u+‖Ḣα ≤ ‖u‖Ḣα . (1.7)

We call u 6≡ 0 in RN if the measure of the set {x ∈ RN |u(x) 6= 0} is positive.
Recall the definition of Morrey space. A measurable function u : RN → R

belongs to the Morrey space with p ∈ [1,∞) and ν ∈ (0, N ], if and only if

‖u‖p
Lp,ν(RN )

= sup
r>0,x̄∈RN

rν−N
∫
B(x̄,r)

|u(x)|pdx <∞.

By Hölder inequality, we can verify (refer to [8])

L2∗(RN ) ↪→ Lp,ν(RN ), for 1 ≤ p < 2∗, (1.8)

and
Lp,

(N−2α)p
2 (RN ) ↪→ Lp1,

(N−2α)p1
2 (RN ), for 1 < p1 < p < 2∗. (1.9)

Moreover, we have Lp,ν(RN ) ↪→ L1, νp (RN ).
Next we give the definition of the Palais-Smale sequence. Let X be a Banach

space, Φ ∈ C1(X,R), c ∈ R, we call {un} ⊂ X is a Palais-Smale sequence of Φ if

Φ(un)→ c, Φ′(un)→ 0 as n→∞. (1.10)

In this article we assume that:
(H1) a(x) ∈ C(RN ), k(x) ∈ C(RN );
(H2)

lim
|x|→∞

a(x) = ā > 0, lim
|x|→∞

k(x) = k̄ > 0,

inf
x∈RN

a(x) = â > 0, inf
x∈RN

k(x) = k̂ > 0.
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In this article, we assume that a(x), k(x) always satisfy (H1) and (H2). The energy
functional associated with (1.1) is for all u ∈ Hα(RN ),

I(u) =
1
2

∫
RN

(
|(−∆)α/2u(x)|2 + a(x)|u(x)|2

)
dx

− 1
2∗s

∫
RN

(u+(x))2∗s

|x|s
dx− 1

q

∫
RN

k(x)(u+(x))q dx.

Finally we present some problems associated to (1.1) as follows.
The limit equation of (1.1) involving subcritical terms is

(−∆)αu+ āu = k̄|u|q−2u,

u ∈ Hα(RN ),
(1.11)

and its corresponding variational functional is

I∞(u) =
1
2

∫
RN

(
|(−∆)α/2u(x)|2 + ā|u(x)|2

)
dx

− 1
q

∫
RN

k̄(u+(x))qdx, u ∈ Hα(RN ).

The limit equation of (1.1) involving the Sobolev-Hardy critical nonlinear term is

(−∆)αu =
|u|2∗s−2u

|x|s
,

u ∈ Ḣα(RN ),
(1.12)

and the corresponding variational functional is

Is(u) =
1
2

∫
RN
|(−∆)α/2u(x)|2dx− 1

2∗s

∫
RN

(u+(x))2∗s

|x|s
dx, u ∈ Ḣα(RN ).

In [5] Chen and Yang proved that all the positive solutions of (1.12) are of the
form

Uε(x) := ε
2α−N

2 U(x/ε), (1.13)
and U(x) satisfies

C1

1 + |x|N−2α
≤ U(x) ≤ C2

1 + |x|N−2α
, (1.14)

where C2 > C1 > 0 are constants. These solutions are also minimizers for the
quotient

Sα,s = inf
u∈Ḣα(RN )\{0}

∫
RN |(−∆)α/2u(x)|2dx( ∫

RN
|u(x)|2∗s
|x|s dx

)2/2∗s ,

which is associated with the fractional Sobolev-Hardy inequality (1.4). Define

D0 =
∫

RN

(1
2
|(−∆)α/2U(x)|2 − 1

2∗s

|U(x)|2∗s
|x|s

)
dx =

2α− s
2(N − s)

S
N−s
2α−s
α,s , (1.15)

N =
{
u ∈ Hα(RN ) \ {0} :

∫
RN

(
|(−∆)α/2u(x)|2 + ā|u(x)|2

− k̄(u+(x))q
)
dx = 0

}
,

(1.16)

J∞ = inf
u∈N

I∞(u). (1.17)
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It is known that N 6= ∅ since problem (1.11) has at least one positive solution if
N > 2α (see [18]) for 1 < q < 2∗.

The main result of our paper is as follows.

Theorem 1.1. Suppose a(x), k(x) satisfy (H1) and (H2), 2 < q < 2∗, 0 < α < 1,
N > 4α, 0 < s < 2α. Assume that {un} is a positive Palais-Smale sequence of
I at level d ≥ 0, then there exist two sequences {Rin} ⊂ R+ (1 ≤ i ≤ l1) and
{yjn} ⊂ RN (1 ≤ j ≤ l2), u ∈ Hα(RN ), and uj ∈ Hα(RN ) (1 ≤ j ≤ l2), (l1, l2 ∈ N)
such that up to a subsequence:

d = I(u) + l1D0 +
l2∑
j=1

I∞(uj);

‖un − u−
l1∑
i=1

UR
i
n −

l2∑
j=1

uj(x− yjn)‖Hα(RN ) = o(1) as n→∞ (1.18)

where u and uj (1 ≤ j ≤ l2) satisfy

I ′(u) = 0, I∞′(uj) = 0,

Rin → 0 (1 ≤ i ≤ l1), |yjn| → ∞ (1 ≤ j ≤ l2) as n→∞.

In particular, if u 6≡ 0, then u is a weakly solution of (1.1). Note that the corre-
sponding sum in (1.18) will be treated as zero if li = 0 (i = 1, 2).

Remark 1.2. (1) Similar to [23, Corollary 3.3], one can show that any Palais-Smale
sequence for I at a level which is not of the form m1D0 +m2J

∞, m1,m2 ∈ N
⋃
{0},

gives rise to a non-trivial weak solution of equation (1.1).
(2) In our non-compactness analysis, we prove that the blowing up positive

Palais-Smale sequences can bear exactly two kinds of bubbles. Up to harmless
constants, they are either of the form

URn(x), |Rn| → 0 as n→∞,
or

u(x− yn) ∈ Hα(RN ), |yn| → ∞, as n→∞,
where u is the solution of (1.11). For any Palais-Smale sequence un for I, ruling
out the above two bubbles yields the existence of a non-trivial weak solution of
equation (1.1).

(3) Because of the lower order terms a(x)u and k(x)|u|q−2u in (1.1), we must
deal with u ∈ Hα(RN ) to ensure that the functional I(u) is well defined. In
fact, if u ∈ Hα(RN ), by the Sobolev inequality, u ∈ L2(RN ) and u ∈ Lq(RN ) for
2 < q < 2∗. Noting that ‖u‖L2 and ‖u‖Lq only satisfy the translation invariance and∫

RN
(u+(x))2∗s

|x|s dx only satisfies the scaling invariance, then there exists a new limit
equation (1.11) which causes some new structures for the Palais-Smale sequence of
(1.1).

Using the compactness results and the Mountain Pass Theorem [3] we prove the
following existence result.

Theorem 1.3. Assume that 2 < q < 2∗, 0 < α < 1, 0 < s < 2α, N > 4α. If
a(x), k(x) satisfy (H1), (H2) and

ā ≥ a(x), k(x) ≥ k̄ > 0, k(x) 6≡ k̄. (1.19)
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Then (1.1) has a nontrivial solution u ∈ Hα(RN ) which satisfies

I(u) < min
{ 2α− s

2(N − s)
S
N−s
2α−s
α,s , J∞

}
.

This paper is organized as follows. In Section 2, we prove Theorem 1.1 by
carefully analyzing the features of a positive Palais-Smale sequence for I. Theorem
1.3 is proved in Section 3 by applying Theorem 1.1 and the Mountain Pass Theorem.
Finally we put some preliminaries in the last section as an appendix.

2. Non-compactness analysis

In this section, we prove Theorem 1.1 by using the Concentration-Compactness
Principle and a delicate analysis of the Palais-Smale sequences of I. Firstly we give
the following Lemmas.

Lemma 2.1. Let 0 < α < N/2, 0 < s < 2α, r > 0, {un} ⊂ Ḣα(RN ) be a bounded
sequence such that

inf
n∈N

∫
B(0,r)

(
u+
n (x)

)2∗s
|x|s

dx ≥ c > 0. (2.1)

Then, up to subsequence, there exist two sequences {rn} ⊂ R+ and {xn} ⊂ B(0, 2r)
such that

ūn ⇀ w 6≡ 0 in Ḣα(RN ), (2.2)

where

ūn(x) =

r
N−2α

2
n un(rnx) when xn/rn is bounded,

r
N−2α

2
n un(rnx+ xn) when |xn/rn| → ∞.

(2.3)

Proof. Let 0 ≤ η(x) ≤ 1, η(x) ∈ C∞0 (RN ), η(x) ≡ 1 on B(0, r), η(x) ≡ 0 on
B(0, 2r)C . From [8, Lemma 5.3], it follows that

‖ηun‖Ḣα(RN ) ≤ C‖un‖Ḣα(RN ). (2.4)

By [5, Theorem 1.2],(∫
RN

|η(x)un(x)|2∗s
|x|s

dx
)1/2∗s

≤ C‖ηun‖θḢα(RN )
‖ηun‖1−θL2,N−2α(RN )

, (2.5)

where max{N−2α
N−s ,

2α−s
N−s } ≤ θ < 1. From (2.4) and (2.5), it follows

c ≤
(∫

B(0,r)

(
u+
n (x))2∗s

|x|s
dx
)1/2∗s

≤
(∫

RN

|η(x)un(x)|2∗s
|x|s

dx
)1/2∗s

≤ C‖un‖θḢα(RN )
‖ηun‖1−θL2,N−2α(RN )

.

(2.6)

Then there exists a constant c > 0 such that

‖ηun‖2L2,N−2α(RN ) = sup
x̄∈RN , R∈R+

R−2α

∫
B(x̄,R)

|η(x)un(x)|2dx ≥ c > 0. (2.7)

From (2.7), we may find rn > 0 and xn ∈ B(0, 2r) such that for n large enough,

r−2α
n

∫
B(xn,rn)

|η(x)un(x)|2dx ≥ ‖ηun‖2L2,N−2α(RN ) −
c

2n
≥ c/2 > 0. (2.8)



EJDE-2018/12 A FRACTIONAL ELLIPTIC PROBLEM 7

Denote

ūn(x) =

r
N−2α

2
n un(rnx) when xn

rn
is bounded,

r
N−2α

2
n un(rnx+ xn) when |xnrn | → ∞.

(2.9)

Since {un} is bounded in Ḣα(RN ), from the scaling and translation invariance of
Ḣα(RN ), we have {ūn} is bounded in Ḣα(RN ); therefore, up to a subsequence (still
denoted by ūn),

ūn ⇀ w in Ḣα(RN ), and ūn → w in L2
loc(RN ), as n→∞.

If xn/rn is bounded, there exist a R̃ > 1 such that B(xnrn , 1) ⊂ B(0, R̃), then

c/2 <
∫
B( xnrn ,1)

|ūn(x)η(rnx)|2dx ≤
∫
B(0,R̃)

|ūn(x)|2dx→
∫
B(0,R̃)

|w(x)|2dx.

(2.10)
If |xnrn | → ∞, then

c/2 <
∫
B(0,1)

|ūn(x)η(rnx+ xn)|2dx ≤
∫
B(0,R̃)

|ūn(x)|2dx

→
∫
B(0,R̃)

|w(x)|2dx
(2.11)

where R̃ > 1. Obviously we have w 6≡ 0. From (2.10) and (2.11), Lemma 2.1 is
complete. �

Lemma 2.2. Assume N > 4α, 0 < s < 2α, 2 < q < 2∗, 0 < α < 1. Let {vn} ⊂
Hα(RN ) be a Palais-Smale sequence of I at level d1 and vn ⇀ 0 in Hα(RN ) as
n → ∞. If there exists a sequence {rn} ⊂ R+, with rn → 0 as n → ∞ such that

v̄n(x) := r
N−2α

2
n vn(rnx) converges weakly in Ḣα(RN ) and almost everywhere to

some v0 ∈ Ḣα(RN ) as n→∞ with v0 6≡ 0, then v0 solves (1.12) and the sequence

zn(x) := vn(x)− v0( xrn )r
2α−N

2
n is a Palais-Smale sequence of I at level d1 − Is(v0).

Proof. First, we prove that v0 solves (1.12) and I(zn) = I(vn)− Is(v0). Fix a ball
B(0, r) and a test function φ ∈ C∞0 (B(0, r)). Since

v̄n ⇀ v0 in Ḣα(RN ), (2.12)
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applying Lemma 4.3, it implies

〈φ, I ′s(v0)〉+ o(1) = 〈φ, I ′s(v̄n)〉

= cN,s

∫
RN

∫
RN

(v̄n(x)− v̄n(y))(φ(x)− φ(y))
|x− y|N+2α

dx dy

−
∫

RN

(
v̄+
n (x)

)2∗s−1
φ(x)

|x|s
dx

= cN,s

∫
RN

∫
RN

(v̄n(x)− v̄n(y))(φ(x)− φ(y))
|x− y|N+2α

dx dy

−
∫

RN

(
v̄+
n (x)

)2∗s−1
φ(x)

|x|s
dx+ r2α

n

∫
RN

a(rnx)φ(x)v̄n(x) dx

− rN−
N−2α

2 q
n

∫
RN

k(rnx)φ(x)(v̄+
n (x))q−1dx+ o(1)

= cN,s

∫
RN

∫
RN

(vn(x)− vn(y))(φn(x)− φn(y))
|x− y|N+2α

dx dy

−
∫

RN

(v+
n (x))2∗s−1φn(x)

|x|s
dx+

∫
RN

a(x)φn(x)vn(x)dx

−
∫

RN
k(x)φn(x)(v+

n (x))q−1 dx+ o(1)

= o(1) as n→∞,

(2.13)

where φn = r
−N−2α

2
n φ( xrn ). The last equality in (2.13) holds since∫

RN
|φn(x)|2dx = r2α

n

∫
RN
|φ(x)|2dx = o(1),

‖φ‖Ḣα(RN ) = ‖φn‖Ḣα(RN ) = ‖φn‖Hα(RN ) + o(1), as n→∞.

Thus v0 is a nontrival critical point of Is. By Lemma 4.6, (1.14) and the fact
N > 4α, it follows∫

RN
|v0(x)|pdx ≤ c

∫
RN

1
(1 + |x|N−2α)p

dx ≤ c, ∀p ≥ 2, (2.14)

which implies that v0 ∈ L2(RN ). Let

zn(x) = vn(x)− r
2α−N

2
n v0(

x

rn
) ∈ Hα(RN ).

Obviously zn ⇀ 0 in Hα(RN ) as n→∞. Now we prove that {zn} is a Palais-Smale
sequence of I at level d1 − Is(v0). From (2.14), v0 ∈ Lp(RN ) for all p ∈ [2, 2∗).
Then it follows that∫

RN
|v0(

x

rn
)r

2α−N
2

n |pdx = r
N−p (N−2α)

2
n ‖v0‖pLp(RN )

→ 0 (2.15)

as n→∞ for all 2 ≤ p < 2∗. By the Brézis-Lieb Lemma and the weak convergence,
similar to Lemma 4.7, we can prove that

I(zn) = I(vn)− Is(v0),

〈I ′(zn), φ〉 = o(1)

as n→∞. This completes the proof. �
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Proof of Theorem 1.1. By Lemma 4.4 in the appendix, we can assume that {un}
is bounded. Up to a subsequence, let n→∞, and assume that

un ⇀ u in Hα(RN ), (2.16)

un → u in Lploc(RN ) for 2 ≤ p < 2∗, (2.17)

un → u a.e. in RN . (2.18)

Denote vn(x) = un(x)− u(x), then {vn} is a Palais-Smale sequence of I and

vn ⇀ 0 in Hα(RN ), (2.19)

vn → 0 in Lploc(RN ) for 2 ≤ p < 2∗, (2.20)

vn → 0 a.e. in RN . (2.21)

Then by Lemma 4.7 we know that

I(vn) = I(un)− I(u) + o(1), as n→∞, (2.22)

I ′(vn) = o(1), as n→∞, (2.23)

‖vn‖Hα(RN ) = ‖un‖Hα(RN ) − ‖u‖Hα(RN ) + o(1), as n→∞. (2.24)

Without loss of generality, we assume that

‖vn‖2Hα(RN ) → l > 0 as n→∞.

In fact if l = 0, Theorem 1.1 is proved for l1 = 0, l2 = 0.

Step 1. Getting rid of the blowing up bubbles caused by the Sobolev-Hardy term.
Suppose there exists 0 < δ <∞ such that

inf
n∈N

∫
|x|<R

(
v+
n (x)

)2∗s
|x|s

dx ≥ δ > 0, for some 0 < R <∞. (2.25)

It follows from Lemma 2.1 that there exist two sequences {rn} ⊂ R+ and {xn} ⊂
B(0, 2R), such that

v̄n(x) ⇀ v0 6≡ 0 in Ḣα(RN ), (2.26)

where

v̄n(x) =

r
N−2α

2
n vn(rnx) when xn

rn
is bounded,

r
N−2α

2
n vn(rnx+ xn) when |xnrn | → ∞.

(2.27)

Now we claim that rn → 0 as n→∞. In fact there exists a R1 > 0 such that∫
B(0,R1)

|v0(x)|pdx = δ1 > 0, for 2 ≤ p < 2∗. (2.28)

From the Sobolev compact embedding, (2.17), (2.26) and (2.28), we have that for
all r > 0,

vn → 0 in Lp(B(0, r)) for all 2 ≤ p < 2∗,

v̄n → v0 in Lp(B(0, r)) for all 2 ≤ p < 2∗,
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0 6= ‖v0‖2L2(B(0,R1)) + o(1)

=
∫
B(0,R1)

|v̄n(x)|2dx

=

{
r−2α
n

∫
B(0,rnR1)

|vn(x)|2dx, if xn
rn

is bounded,

r−2α
n

∫
B(xn,rnR1)

|vn(x)|2dx if |xnrn | → ∞.

(2.29)

If rn → r0 > 0, then

r−2α
n

∫
B(0,rnR1)

|vn(x)|2dx ≤ cr−2α
0 ‖vn‖2L2(B(0,cR1)) → 0;

r−2α
n

∫
B(xn,rnR1)

|vn(x)|2dx ≤ cr−2α
0 ‖vn‖2L2(B(0,cR1+4R)) → 0.

(2.30)

If rn →∞, then

r−2α
n

∫
B(0,rnR1)

|vn(x)|2dx ≤ r−2α
n ‖vn‖2Hα(RN ) → 0,

r−2α
n

∫
B(xn,rnR1)

|vn(x)|2dx ≤ r−2α
n ‖vn‖2Hα(RN ) → 0.

(2.31)

A contradiction to (2.29). Thus we have rn → 0.
Next we claim that xn/rn is bounded. Indeed, if on the contrary, |xnrn | → ∞, fix

a ball B(0, r) and a test function φ ∈ C∞0 (B(0, r)), then∫
RN

(v̄+
n (x))2∗s−1φ(x)
|x+ xn

rn
|s

dx =
∫
B(0,r)

(v̄+
n (x))2∗s−1φ(x)
|x+ xn

rn
|s

dx

≤ c

|xnrn |

∫
B(0,r)

(v̄+
n (x))2∗s−1φ(x) dx→ 0,

(2.32)

similar to (2.13), it follows that

(−∆)αu = 0, x ∈ RN (2.33)

which implies that ‖v0‖Ḣα(RN ) = 0. By the Sobolev inequality and the Hölder
inequality it follows

‖v0‖Lp(B(0,R1)) ≤ c‖v0‖L2∗ (B(0,R1)) ≤ c‖v0‖L2∗ (RN ) ≤ C‖v0‖Ḣα(RN ) = 0 (2.34)

for 2 ≤ p < 2∗. This contradicts (2.28). So we can deduce that xn/rn is bounded

and v̄n(x) = r
N−2α

2
n vn(rnx).

Define zn(x) = vn(x) − v0( xrn )r
2α−N

2
n , then zn ⇀ 0 in Hα(RN ). It follows from

Lemma 2.2 that {zn} is a Palais-Smale sequence of I satisfying

I(zn) = I(vn)− Is(v0) + o(1), as n→∞. (2.35)

Since v0 satisfies (1.12), from Lemma 4.6, (1.13) and (1.15) there exists ε1 > 0 such
that

v0(x) = ε
2α−N

2
1 U(

x

ε1
), Is(v0) = D0. (2.36)

Let R1
n = rnε1, from (2.36), it follows

r
2α−N

2
n v0(

x

rn
) = (R1

n)
2α−N

2 U(
x

R1
n

) = UR
1
n(x), (2.37)
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with R1
n → 0. Then from (2.22) it follows that

zn(x) = vn(x)− UR
1
n(x) = un(x)− u(x)− UR

1
n(x),

I(zn) = I(vn)−D0 + o(1) = I(un)− I(u)−D0 + o(1)
(2.38)

with R1
n → 0. From Lemma 4.8, letting a = vn, b = UR

1
n , it follows∫

|x|<R

(
z+
n (x)

)2∗s
|x|s

dx =
∫
B̃(0,R)

(
zn(x)

)2∗s
|x|s

dx

≤
∫
B̃(0,R)

(
vn(x)

)2∗s − (UR
1
n(x))2∗s

|x|s
dx

=
∫
B̃(0,R)

(
v+
n (x)

)2∗s
|x|s

dx− C

≤
∫
|x|<R

(
v+
n (x)

)2∗s
|x|s

dx− C

(2.39)

where B̃(0, R) = {x|zn(x) ≥ 0} ∩B(0, R).
If still there exists a δ̄ > 0 such that∫

|x|<R

(
z+
n (x)

)2∗s
|x|s

dx ≥ δ̄ > 0,

then we repeat the previous argument. From (2.39) and the fact∫
|x|<R

(
v+
n (x)

)2∗s
|x|s

dx ≤ ‖vn‖
2∗s
Hα ≤ c,

we deduce that the iteration must stop after finite times. That is to see, there
exist a positive constant l1 and a new Palais-Smale sequence of I, (without loss of
generality) denoted by {vn}, such that as n→∞,

d = I(vn) + I(u) + l1D0, vn(x) = un(x)− u(x)−
l1∑
i=1

UR
i
n(x), (2.40)

with Rin → 0, ∫
|x|<R

(
v+
n (x)

)2∗s
|x|s

dx = o(1) for any 0 < R <∞, (2.41)

vn ⇀ 0 in Hα(RN ). (2.42)

Step 2. Getting rid of the blowing up bubbles caused by unbounded domains.
Suppose there exists 0 < δ <∞ such that(∫

RN
(v+
n (x))qdx

)2/q

≥ δ > 0, for 2 < q < 2∗. (2.43)

By the interpolation inequality, it follows that

‖vn‖Lq ≤ ‖vn‖λL2‖vn‖1−λL2∗ , for 2 < q < 2∗
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where 0 < λ < 1. Thus there exist δ̃ > 0 such that

‖vn‖2L2 ≥ δ̃ > 0.

By Lemma 4.1, there exists a subsequence still denoted by {vn}, such that one of
the following two gathered occurs.

(i) Vanish occurs: for all 0 < R <∞,

sup
y∈RN

∫
B(y,R)

|vn(x)|2dx→ 0 as n→∞.

By Lemma 4.2, (4.10) and Sobolev inequality, it follows∫
RN

(v+
n (x))qdx→ 0 as n→∞, ∀ 2 < q < 2∗,

which contradicts (2.43).
(ii) Nonvanish occurs: there exist β > 0, 0 < R̄ <∞, {yn} ⊂ RN , such that

lim inf
n→∞

∫
yn+BR̄

|vn(x)|2dx ≥ β > 0. (2.44)

We claim that |yn| → ∞ as n→∞. Otherwise, if there exists a constant M > 0
such that |yn| ≤M , then we can choose a R2 > 0 large enough such that∫

yn+BR̄

|vn(x)|2dx ≤ ‖vn‖2L2(B(0,R2)) → 0 as n→∞. (2.45)

which contradicts (2.44).
To proceed, we first construct the Palais-Smale sequences of I∞. Denote v̄n(x) =

vn(x + yn). Since ‖v̄n‖Hα(RN ) = ‖vn‖Hα(RN ) ≤ c, without loss of generality, we
assume that as n→∞,

v̄n ⇀ v0 in Hα(RN ),

v̄n → v0 in Lploc(RN ), for any 1 < p < 2∗.
(2.46)

By (2.41), we have that for all φ ∈ C∞0 (RN ) as n→∞,∫
RN

(v̄+
n (x))2∗s−1φ(x)
|x+ yn|s

dx

=
∫

RN

(v+
n (x))2∗s−1φn(x)

|x|s
dx

=
∫
|x|>r

(v+
n (x))2∗s−1φn(x)

|x|s
dx+ o(1)

≤ 1
rs

(∫
RN
|vn(x)|2

∗
dx
) 2∗s−1

2∗
(∫

RN
|φn(x)|q1dx

)1/q1
+ o(1),

(2.47)

where φn = φ(x− yn) and q1 = 2∗

2∗+1−2∗s
. Obviously∫

RN
|φn(x)|q1dx =

∫
RN
|φ(x)|q1dx ≤ c,

∫
RN
|vn(x)|2

∗
dx ≤ c. (2.48)

Let r →∞, from (2.47) and (2.48), we have∫
RN

(v̄+
n (x))2∗s−1φ(x)
|x+ yn|s

dx = o(1) as n→∞. (2.49)
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Similarly we have ∫
RN

(v̄+
n (x))2∗s

|x+ yn|s
dx = o(1) as n→∞. (2.50)

Since vn ⇀ 0 in Hα(RN ) and limn→∞ a(x+ yn) = ā, we have as n→∞,

o(1) =
∫

RN
a(x)vn(x)φn(x) dx

=
∫

RN
āv̄n(x)φ(x) dx+

∫
RN

[a(x+ yn)− ā]v̄n(x)φ(x) dx

and

|
∫

RN
[a(x+ yn)− ā]v̄n(x)φ(x) dx| ≤ c(

∫
RN
|a(x+ yn)− ā|2φ(x)2dx)1/2 = o(1);

that is,∫
RN

āv̄n(x)φ(x) dx = o(1) =
∫

RN
a(x)vn(x)φn(x) dx as n→∞. (2.51)

Similarly we have∫
RN

k(x)(v+
n (x))q−1φn(x) dx =

∫
RN

k̄(v̄+
n (x))q−1φ(x) dx = o(1) (2.52)

as n → ∞. Recall that vn is a Palais-Smale sequence of I, by (2.46) and (2.49)-
(2.52) we have

o(1) = 〈I ′(vn), φn〉 = 〈I∞′(v̄n), φ〉+ o(1) = 〈I∞′(v0), φ〉+ o(1), (2.53)

as n→∞. This shows that v0 is a weak solution of (1.11).
We claim that v0 6≡ 0. From (2.43), we may assume that there exists a sequence

{yn} satisfying (2.44) and∫
B(yn,R)

(v+
n (x))qdx = b+ o(1) > 0, as n→∞, (2.54)

where b > 0 is a constant. If v0 ≡ 0, we have∫
B(0,R)

(v̄+
n (x))qdx =

∫
B(yn,R)

(v+
n (x))qdx = o(1) as n→∞ for 0 < R <∞

which contradicts (2.54).
Denote zn(x) = vn(x)− v0(x− yn). Since

I(vn) =
1
2

∫
RN

(
|(−∆)α/2vn(x)|2 + a(x)|vn(x)|2

)
dx

− 1
2∗s

∫
RN

(v+
n (x))2∗s

|x|s
dx− 1

q

∫
RN

k(x)(v+
n (x))q dx

=
1
2

∫
RN

(
|(−∆)α/2v̄n(x)|2 + a(x+ yn)|v̄n(x)|2

)
dx

− 1
2∗s

∫
RN

(v̄+
n (x))2∗s

|x+ yn|s
dx− 1

q

∫
RN

k(x+ yn)(v̄+
n (x))q dx

=
1
2

∫
RN

(
|(−∆)α/2v̄n(x)|2 + ā|v̄n(x)|2

)
dx

− 1
q

∫
RN

k̄(v̄+
n (x))q dx+ o(1),
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where the last equality is a result of (2.50), therefore, as n→∞,

‖zn‖Hα(RN ) = ‖v̄n‖Hα(RN ) − ‖v0‖Hα(RN ) + o(1), (2.55)

I(zn) = I∞(v̄n)− I∞(v0) + o(1) = I(vn)− I∞(v0) + o(1). (2.56)

Hence zn ⇀ 0 in Hα(RN ) as n→∞, and zn is a Palais-Smale sequence of I. From
(4.10) in Lemma 4.5, it follows ‖v−0 ‖Hα = 0, that is v0 ≥ 0 a.e. in RN . Then by
Brezis-Lieb Lemma and (4.10), there exists a constant c > 0 such that∫

RN
(z+
n (x))qdx =

∫
RN

(v+
n (x))qdx−

∫
RN

(v+
0 (x))qdx+ o(1)

≤
∫

RN
(v+
n (x))qdx− c

(2.57)

where the last inequality follows from the fact v0 6≡ 0. If ‖zn‖Lq(RN ) → δ2 > 0 as
n→∞, from (2.57) and the boundedness of ‖vn‖Lq , then one can repeat Step 2 for
finite times (l2 times). Thus from (2.40) and Step 2, we obtain a new Palais-Smale
sequence of I, without loss of generality still denoted by vn, such that

d = I(u) + I(vn) + l1D0 +
l2∑
j=1

I∞(uj) + o(1), (2.58)

vn(x) = un(x)− u(x)−
l1∑
i=1

UR
i
n(x)−

l2∑
j=1

uj(x− yjn), with Rin → 0, (2.59)

‖v+
n ‖Lq(RN ) → 0,

∫
RN

(
v+
n (x)

)2∗s
|x|s

dx→ 0 (2.60)

as n→∞. Then from the fact < I ′(vn), vn >= o(1), it follows that

‖vn‖2Hα(RN ) ≤ c
∫

RN
(|
(
−∆)α/2vn(x)|2 + a(x)|vn(x)|2

)
dx

= c
(∫

RN
k(x)(v+

n (x))qdx+
∫

RN

(
v+
n (x)

)2∗s
|x|s

dx
)
→ 0

(2.61)

as n→∞. From (2.60) and (2.61), it gives

I(vn) = o(1). (2.62)

From (2.58)-(2.62), the proof is complete. �

3. Proof of Theorem 1.3

To this end we use the mountain pass theorem [3] and Theorem 1.1.

Proof of Theorem 1.3. From

I(tu) =
t2

2

[ ∫
RN
|(−∆)α/2u(x)|2dx+

∫
RN

a(x)|u(x)|2 dx
]

− |t|
2∗s

2∗s

∫
RN

(u+(x))2∗s

|x|s
dx− |t|

q

q

∫
RN

k(x)(u+(x))q dx,

we deduce that for a fixed u 6≡ 0 in Hα(RN ), I(tu)→ −∞ if t→∞. Since∫
RN

(u+(x))q dx ≤ C‖u‖q
Hα(RN )

, and
∫

RN

(u+(x))2∗s

|x|s
dx ≤ C‖u‖2

∗
s

Hα(RN )
,
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we have

I(u) ≥ c‖u‖2Hα(RN ) − C(‖u‖q
Hα(RN )

+ ‖u‖2
∗
s

Hα(RN )
).

Hence, there exists r0 > 0 small such that I(u)
∣∣∣
∂B(0,r0)

≥ ρ > 0 for q, 2∗s > 2.

As a consequence, I(u) satisfies the geometry structure of Mountain-Pass The-
orem. Now, we define

c∗ =: inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], Hα(RN )) : γ(0) = 0, γ(1) = ψ0 ∈ Hα(RN )} with I(tψ0) ≤
0 for all t ≥ 1.

To complete the proof of Theorem 1.3, we need to verify that I(u) satisfies the
local Palais-Smale conditions. According to By 1.2, we only need to verify that

c∗ < min{ 2α− s
2(N − s)

S
N−s
2α−s
α,s , J∞}. (3.1)

Set

vε(x) =
Uε(x)

(
∫

RN
|Uε(x)|2∗s
|x|s dx)1/2∗s

.

We claim that

max
t>0

I(tvε) <
2α− s

2(N − s)
S
N−s
2α−s
α,s . (3.2)

In fact, from (1.14) it is easy to calculate the following estimates

‖vε‖2Ḣα(RN )
= Sα,s, (3.3)∫

RN
(vε(x))2dx ≤ cε2α−N

∫
RN

1
(1 + |xε |2)N−2α

dx ≤ O(ε2α), for N > 4α, (3.4)∫
RN

(vε(x))qdx = O(ε
(2α−N)q

2 +N ). (3.5)

Since 2∗ > q > 2, we have

O(ε2α) = o(ε
(2α−N)q

2 +N ). (3.6)

Denote by tε the attaining point of maxt>0 I(tvε), similar to the proof of [6, Lemma
3.5] we can prove that tε is uniformly bounded. In fact, we consider the function

h(t) = I (tvε)

=
t2

2
(‖(−∆)α/2vε‖2L2(RN ) +

∫
RN

a(x)(vε(x))2 dx)

− t2
∗
s

2∗s

∫
RN

(vε(x))2∗s

|x|s
dx− tq

q

∫
RN

(k(x)vε(x))qdx

≥ ct2

2
‖vε‖2Hα(RN ) −

Ct2
∗
s

2∗s
‖vε‖

2∗s
Hα(RN )

− Ctq

q
‖vε‖qHα(RN )

.

(3.7)
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Since limt→+∞ h(t) = −∞ and h(t) > 0 when t is closed to 0, it follows that

maxt>0 h(t) is attained for tε > 0. From the fact
∫

RN
(vε(x))2∗s

|x|s dx = 1, we have

h′(tε) = tε(‖(−∆)α/2vε‖2L2(RN ) +
∫

RN
a(x)(vε(x))2 dx)

− t2
∗
s−1
ε − tq−1

ε

∫
RN

k(x)(vε(x))qdx = 0.
(3.8)

Since k(x) > 0, from (3.3) and (3.4) for ε sufficiently small, we have

t
2∗s−2
ε ≤ ‖(−∆)αvε‖2L2(RN ) +

∫
RN

a(x)(vε(x))2 dx < 2Sα,s. (3.9)

Then

‖(−∆)α/2vε‖2L2(RN ) +
∫

RN
a(x)(vε(x))2 dx

= t
2∗s−2
ε + tq−2

ε

∫
RN

k(x)(vε(x))qdx

≤ t2
∗
s−2
ε + (2Sα,s)

q−2
2∗s−2

∫
RN

k(x)(vε(x))qdx.

(3.10)

Choosing ε > 0 small enough, by (3.3)-(3.5), there exists a constant µ > 0 such
that tε > µ > 0. Combining this with (3.9), it implies that tε is bounded for ε > 0
small enough. Then, for ε > 0 small,

max
t>0

I(tvε) = I(tεvε)

≤ max
t>0

{ t2
2

∫
RN
|(−∆)α/2vε(x)|2dx− t2

∗
s

2∗s

∫
RN

(vε(x))2∗s

|x|s
dx
}

−O(ε
(2α−N)q

2 +N ) +O(ε2α),

<
2α− s

2(N − s)
S
N−s
2α−s
α,s (by (3.6)).

This proves (3.2). By the definition of c∗, we have c∗ < 2α−s
2(N−s)S

N−s
2α−s
α,s .

Next we verify that
c∗ < J∞. (3.11)

Let {u0} be the minimizer of J∞, I∞(u0) = J∞ and∫
RN

(
|(−∆)α/2u0(x)|2 + ā|u0(x)|2

)
dx =

∫
RN

k̄(u+
0 (x))q dx.

Let
g(t) = I∞(tu0)

=
1
2
t2
∫

RN

(
|(−∆)α/2u0(x)|2 + ā|u0(x)|2

)
dx− tq

q

∫
RN

k̄(u+
0 (x))q dx,

g′(t) = t

∫
RN

(
|(−∆)α/2u0(x)|2 + ā|u0(x)|2

)
dx− tq−1

∫
RN

k̄(u+
0 (x))q dx.

Thus g′(t) ≥ 0 if t ∈ (0, 1); g′(t) ≤ 0 if t ≥ 1. Then

g(1) = I∞(u0) = max
l
I∞(u), (3.12)

where l = {tu0, t ≥ 0} for a fixed u0.
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Since there exists a t0 > 0 such that supt≥0 I(tu0) = I(t0u0), from (3.12) and
the assumptions on a(x) and k(x), we have

J∞ = I∞(u0) ≥ I∞(t0u0) > I(t0u0) = sup
t≥0

I(tu0).

This proves (3.11). By (3.2) and (3.11) we have (3.1). Then the proof is completed.
�

4. Appendix

In this section, we give some lemmas and detailed proofs for the convenience of
the reader.

Lemma 4.1 ([28, Lemma 2.1]). Let {ρn}n≥1 be a sequence in L1(RN ) satisfying

ρn ≥ 0 on RN , lim
n→∞

∫
RN

ρn(x)dx = λ > 0, (4.1)

where λ > 0 is fixed. Then there exists a subsequence {ρnk} satisfying one of the
following two possibilities:

(1) (Vanishing):

lim
k→∞

sup
y∈RN

∫
B(y,R)

ρnk(x) dx = 0, for all R < +∞. (4.2)

(ii) (Nonvanishing): there exist α > 0, R < +∞ and {yk} ⊂ RN such that

lim inf
k→+∞

∫
yk+BR

ρnk(x)dx ≥ α > 0.

Lemma 4.2 ([12, Lemma 2.2]). If {un} is bounded in Hα(RN ) and for some R > 0,
we have

sup
y∈RN

∫
B(y,R)

|un(x)|2 dx→ 0 as n→∞.

Then un → 0 in Lq(RN ), for 2 < q < 2N
N−2α .

Lemma 4.3. Suppose that 0 < s < 2α and N > 2α. Then there exists C > 0 such
that for any u ∈ Ḣα(RN ),(∫

RN

|u(x)|p

|x|s
dx
)2/p

≤ C‖u‖2
Ḣα(RN )

, (4.3)

i.e., Ḣα(RN ) ↪→ L2∗s (RN , |x|−s) is continuous. In addition, the inclusion

Ḣα(RN ) ↪→ Lploc(RN , |x|−s),
is compact if 2 ≤ p < 2∗s.

Proof. The proof of (4.3) is similar to that of [26, Lemma 3.1]. Now we prove the
compact impeding if 2 ≤ p < 2∗s. Let {un} be a bounded sequence in Ḣα(RN ),
then up to a subsequence (still denoted by {un}),

un ⇀ u in Ḣα(RN ).

Denote vn(x) = un(x)− u(x), then for any B(0, r),

vn ⇀ 0 in Ḣα(RN ), vn → 0 in Lq(B(0, r)), 2 ≤ q < 2∗ =
2N

N − 2α
.
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Fixing r > 0, since (p− s
α )( 2α

2α−s ) < 2∗, it follows that∫
B(0,r)

|vn(x)|p

|x|s
dx

=
∫
B(0,r)

|vn(x)|s/α

|x|s
|vn(x)|p−s/αdx

≤
(∫

B(0,r)

|vn(x)|2

|x|2α
dx
) s

2α
(∫

B(0,r)

|vn(x)|(p−
s
α )( 2α

2α−s )dx
) 2α−s

2α

≤ c‖(−∆)α/2vn(x)‖
s

2α
L2(RN )

(∫
B(0,r)

|vn(x)|(p−
s
α )( 2α

2α−s )dx
) 2α−s

2α → 0.

(4.4)

Then we have
un → u in Lploc(RN , |x|−s),

which completes the proof. �

Lemma 4.4. Let {un} be a Palais-Smale sequence of I at level d ∈ R. Then d ≥ 0
and {un} ⊂ Hα(RN ) is bounded. Moreover, every Palais-Smale sequence for I at
a level zero converges strongly to zero.

Proof. Since a(x) ≥ 0, ā > 0 and infx∈RN a(x) = â > 0, we have

‖un‖2Ḣα(RN )
+
∫

RN
a(x)|un(x)|2dx ≥ c‖un‖2Hα(RN ),

and hence for q ≤ 2∗s,

d+ 1 + o(‖un‖) ≥ I(un)− 1
q
〈I ′(un), un〉

= (
1
2
− 1
q

)
∫

RN

(
|(−∆)α/2un(x)|2 + a(x)|un(x)|2

)
dx

+ (
1
q
− 1

2∗s
)
∫

RN

(u+
n (x))2∗s

|x|s
dx

≥ C‖un‖2Hα(RN ).

(4.5)

For 2∗s < q < 2∗,

d+ 1 + o(‖un‖) ≥ I(un)− 1
2∗s
〈I ′(un), un〉

= (
1
2
− 1

2∗s
)
∫

RN

(
|(−∆)α/2un(x)|2 + a(x)|un(x)|2

)
dx

+ (
1
2∗s
− 1
q

)
∫

RN
k(x)(u+

n (x))q dx

≥ C‖un‖2Hα(RN ).

(4.6)

It follows from (4.5) and (4.6) that {un} is bounded in Hα(RN ) for 2 < q < 2∗.
Since

d = lim
n→∞

I(un)−max{1
q
,

1
2∗s
}〈I ′(un), un〉 ≥ C lim sup

n→∞
‖un‖2Hα(RN ),

we have d ≥ 0. Suppose now that d = 0, we obtain from the above inequality that

lim
n→∞

‖un‖Hα(RN ) = 0.
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�

Lemma 4.5. Let {un} be a Palais-Smale sequence of I at level d ∈ R and u+
n =

max{un, 0}. Then {u+
n } is also a Palais-Smale sequence of I at level d.

Proof. From the definition of I we have that as n→∞,

I(un) =
1
2

∫
RN

(
|(−∆)α/2un(x)|2 + a(x)|un(x)|2

)
dx− 1

2∗s

∫
RN

(u+
n (x))2∗s

|x|s
dx

− 1
q

∫
RN

k(x)(u+
n (x))q dx→ d,

and

〈I ′(un), φ〉

=
∫

RN

∫
RN

(un(x)− un(y))(φ(x)− φ(y))
|x− y|N+2α

dx dy +
∫

RN
a(x)un(x)φ(x) dx

−
∫

RN

(u+
n (x))2∗s−1φ(x)
|x|s

dx−
∫

RN
k(x)(u+

n (x))q−1φ(x)dx→ 0,

(4.7)

for all φ ∈ Hα(RN ).
Taking φ = −u−n = min{un, 0}, from

un(x) = u+
n (x)− u−n (x), u+

n (x)u−n (x) = 0, (4.8)

we have

〈I ′(un),−u−n 〉 = −
∫

RN

∫
RN

(un(x)− un(y))(u−n (x)− u−n (y))
|x− y|N+2α

dx dy

−
∫

RN
a(x)un(x)u−n (x) dx+

∫
RN

(u+
n (x))2∗s−1u−n (x)

|x|s
dx

+
∫

RN
k(x)(u+

n (x))q−1u−n (x)dx

=
∫

RN

∫
RN

(u−n (x)− u−n (y))2

|x− y|N+2α
dx dy

+
∫

RN

∫
RN

u+
n (x)u−n (y) + u+

n (y)u−n (x)
|x− y|N+2α

dx dy

+
∫

RN
a(x)(u−n (x))2 dx→ 0 .

(4.9)

From (4.9), u+
n (x) ≥ 0, u−n (x) ≥ 0 and a(x) > 0, it follows that

‖u−n ‖Hα → 0, (4.10)

and ∫
RN

∫
RN

2(u+
n (x)− u+

n (y))(u−n (x)− u−n (y))
|x− y|N+2α

dx dy → 0. (4.11)
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Then from (4.8) and (4.10)-(4.11), we have∫
RN

∫
RN

(un(x)− un(y))2

|x− y|N+2α
dx dy

=
∫

RN

∫
RN

(
(u+
n (x)− u+

n (y))2 + (u−n (x)− u−n (y))2

− 2(u+
n (x)− u+

n (y))(u−n (x)− u−n (y))
)/
|x− y|N+2α dx dy

=
∫

RN

∫
RN

(u+
n (x)− u+

n (y))2

|x− y|N+2α
dx dy + o(1).

(4.12)

That is
‖un‖Ḣα = ‖u+

n ‖Ḣα + o(1). (4.13)
Therefore

lim
n→∞

I(u+
n ) = lim

n→∞
I(un) = d,

I ′(u+
n , φ) = I ′(un, φ)→ 0

as n→∞. This complete the proof. �

Lemma 4.6. All nontrivial critical points of Is are positive solutions of (1.12).

Proof. Let u 6≡ 0 and u ∈ Hα(RN ) be a nontrivial critical point of Is. First,
arguing as in the proof of Lemma 4.5 (similar to (4.9) and (4.10)), we can obtain
that ‖u−‖Hα = 0 which gives that

u ≥ 0 a.e. in RN . (4.14)

Then for any x0 ∈ RN ,

(−∆)αu =
|u|2∗s−2u

|x|s
≥ 0, a.e. in B(x0, 1),∫

RN

|u(x)|
1 + |x|N+2α

dx ≤ c‖u‖L2 ≤ c .
(4.15)

From [22, Proposition 2.2.6], we have u is lower semicontinuous in B(x0, 1). Com-
bining this with (4.14), it follows u(x0) ≥ 0. Then u(x) ≥ 0 pointwise in RN .

Next we claim that u > 0 in RN . Otherwise there exist x1 ∈ RN such that
u(x1) = 0. Then u is lower semicontinuous in B(x1, 1/2). From [22, Proposition
2.2.8], it follows u ≡ 0 in RN . This contradicts the assumption u is nontrivial. �

Let {un} be a Palais-Smale sequence at level d. Up to a subsequence, we assume
that

un ⇀ u in Hα(RN ) as n→∞.
Obviously, we have I ′(u) = 0. Let vn(x) = un(x) − u(x), from Lemma 4.3 as
n→∞,

vn ⇀ 0 in Hα(RN ), (4.16)

vn → 0 in Lploc(RN , |x|−s) for all 2 ≤ p < 2∗s, (4.17)

vn → 0 in Lqloc(RN ) for all 2 < q < 2∗, (4.18)

vn → 0, a.e. in RN . (4.19)

As a consequence, we have the following Lemma.
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Lemma 4.7. {vn} is a Palais-Smale sequence for I at level d0 = d− I(u).

Proof. For φ(x) ∈ C∞0 (RN ), there exists a B(0, r) such that suppφ ⊂ B(0, r). Then
as n→∞,∣∣ ∫

RN
k(x)(v+

n (x))q−1φ(x) dx
∣∣ ≤ c∣∣ ∫

B(0,r)

(v+
n (x))q−1φ(x)dx

∣∣ = o(1), (4.20)

and from Lemma 4.3,∣∣ ∫
RN

(v+
n (x))2∗s−1φ(x)
|x|s

dx
∣∣ ≤ ∣∣ ∫

|x|≤r

(v+
n (x))2∗s−1φ(x)
|x|s

dx
∣∣

≤ c
∫
|x|≤r

(v+
n (x))2∗s−1

|x|s
dx = o(1).

(4.21)

By (4.16), (4.20) and (4.21), we have 〈φ, I ′(vn)〉 = o(1) as n→∞. Then similar to
(4.10), we have

‖v−n ‖Ḣα → 0, ‖u−‖Ḣα = 0. (4.22)

By Sobolev inequality, (4.10) and (4.22) it follows that

‖un‖Lq = ‖u+
n ‖Lq + o(1), ‖vn‖Lq = ‖v+

n ‖Lq + o(1), ‖u‖Lq = ‖u+‖Lq .

Then by the Brézis-Lieb Lemma in [3] as n→∞, we have∫
RN

(v+
n (x))qdx =

∫
RN

(u+
n (x))qdx−

∫
RN

(u+(x))qdx+ o(1) (4.23)

for all 2 ≤ q ≤ 2∗s. Similarly∫
RN

(
v+
n (x)

)2∗s
|x|s

dx =
∫

RN

(
u+
n (x)

)2∗s
|x|s

dx−
∫

RN

(u+(x))2∗(s)

|x|s
dx+ o(1), (4.24)∫

RN

∫
RN

|un(x)− un(y)|2

|x− y|N+2α
dx dy

=
∫

RN

∫
RN

|(vn(x) + u(x))− (vn(y) + u(y))|2

|x− y|N+2α
dx dy

=
∫

RN

∫
RN

(
|vn(x)− vn(y)|2 + |u(x)− u(y)|2

+ 2(vn(x)− vn(y))(u(x)− u(y))
)/
|x− y|N+2α dx dy

=
∫

RN

∫
RN

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy +

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy + o(1).

(4.25)

Then from (4.23)-(4.25), it follows that I(vn) = I(un) − I(u) + o(1) = d − I(u) +
o(1). �

Lemma 4.8. Assume t ≥ b > 0 and q > 1, then tq − (t− b)q ≥ bq.

Proof. Let f(t) = tq − (t− b)q, it follows

f ′(t) = qtq−1 − q(t− b)q−1 > 0 for t ≥ b > 0, q > 1.

Then f(t) = tq − (t− b)q ≥ f(b) = bq. �
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