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EXPLOSION TIME IN STOCHASTIC DIFFERENTIAL
EQUATIONS WITH SMALL DIFFUSION

PABLO GROISMAN, JULIO D. ROSSI

Abstract. We consider solutions of a one dimensional stochastic differential
equations that explode in finite time. We prove that, under suitable hypothe-

ses, the explosion time converges almost surely to the one of the ODE governed

by the drift term when the diffusion coefficient approaches zero.

1. Introduction

Explosions in one dimensional ODEs is a very well known phenomena. Let u(t)
be the solution of

u̇ = b(u), u(0) = x0. (1.1)
If b(·) > 0, there exists a finite time T such that limt↗T u(t) = +∞ if and only if∫∞ 1/b < +∞. In this case we have an explicit formula for the explosion time T
in terms of b and x0,

T =
∫ ∞

x0

1
b(s)

ds. (1.2)

On the other hand, let us consider the stochastic differential equation

dX = b(X) dt + σ(X) dW, X(0) = x0 > 0, (1.3)

where b and σ are smooth positive functions and W is a (one dimensional) Wiener
process defined on a given probability space (Ω, P).

As happens with (1.1), solutions of (1.3) may explode in finite time, that is,
trajectories may diverge to infinity as t goes to some finite time S that in general
depends on the particular sample path.

This phenomena has been considered, for example, in fatigue cracking (fatigue
failures in solid materials) with b and σ of power type, see [5]. In this case the
explosion time corresponds to the time of ultimate damage or fatigue failure in the
material.

The Feller Test for explosions (see [3, 4]) gives a precise description in terms of b,
σ and x0 of whether explosions in finite time occur with probability zero, positive or
one. For example, if b and σ behave like powers at infinity; i.e., b(s) ∼ sp, σ(s) ∼ sq

as s →∞, applying the Feller test one obtains that solutions to (3.1) explode with
probability one if and only if p > 2q − 1 and p > 1.
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There is no simple formula for the explosion time S as (1.2) (although there exists
some expressions for a version of S that involve the scale function which can be
found in [3]). Hence, to estimate S is a nontrivial task. In order to get information
about the stochastic explosion time one can use adaptive numerical approximations
like the ones described in [1] where the authors provide a numerical method that
can be used to compute a convergent approximation of S.

In this article we find, by theoretical arguments, estimates on the explosion
time S when the diffusion σ is small. That is, we look at (1.3) as a stochastic
perturbation of the ODE (1.1). We prove that, under adequate hypotheses on b
and σ, the stochastic explosion time, S = S(σ), converges to the deterministic one,
T , almost surely when σ goes to zero. This means that the stochastic explosion
times converge to a constant, T given by (1.2), that can be explicitly computed.

In the statement of the theorem we use the Stratonovich integral since the proofs
are simpler. This is not a restriction thanks to the well known conversion formula
(see below). We consider a family of SDE

dX = b(X) dt + σ(X, ε) ◦ dW, X(0) = x0 > 0, (1.4)

where ε > 0 is a parameter and σ(·, ε) → 0 as ε → 0. We introduce a function
H : R × R+ × R+ → R (R+ = [0,+∞)) defined in this way: Let φ = φε(t, x) the
flux associated to the ODE

ẏ = σ(y, ε), y(0) = x. (1.5)

We assume that σ(·, ε) is globally Lipschitz and smooth and therefore φε is globally
defined. Then we define

H(s, x, ε) =
b(φε(s, x))σ(x, ε)

σ(φε(s, x), ε)
.

Theorem 1.1. Assume
(1) b > 0 in R+ and σ(·, ε) > 0 has continuous bounded derivatives in R+;
(2) Given s ∈ R, there exists gs ∈ L1(R+) such that for every x ∈ R+,

1
H(s, x, ε)

≤ gs(x); (1.6)

(3) H(s, x, ε) ≥ H(t, x, ε) if s ≥ t,
(4) limε→0 H(s, x, ε) = b(x);

then for almost every ω the (strong) solution of (1.4) explodes in finite time Sε(ω)
for every ε > 0 and

lim
ε→0

Sε(ω) = T. (1.7)

If in addition H satisfies
(5) For every s ∈ R, there exists fs ∈ L1(R+) such that ∂

∂ε
1

H(s,x,ε) ≤ fs(x) for
every x ∈ R+ and 0 < ε < ε0,

then Sε(ω) is Lipschitz continuous at ε = 0 almost surely, that is, there exist a
random variable C = C(ω) such that with total probability

|T − Sε(ω)| ≤ Cε.

Remark 1.2. If a SDE is given in Itô form, we can apply the conversion formula:
X(t) solves dX = f(X)dt+g(X)dW if and only if it solves (1.4) with b = f− 1

2σ′σ,
σ = g. In this case we obtain that also b depends on ε but similar results can be
obtained (see the second part of Example 2.3).
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Remark 1.3. If b(x)/σ(x, ε) is increasing in x then the monotonicity of H(s, x, ε)
in s, hypothesis (3), holds.

Remark 1.4. If H(s, x, ε) is increasing (or decreasing) in ε then we can get rid of
hypothesis (2), using the Monotone Convergence Theorem instead of the Dominated
Convergence Theorem in the proof.

2. Some simple examples

In this section we consider some simple examples to illustrate the main ideas
used in the proof of Theorem 1.1 and the principal features of the problem. We
do not invoke Theorem 1.1 to deal with these examples, we prove the results “by
hand”. We are going to make use of Theorem 1.1 in the examples of the last section.

The main idea is to change variables in order to transform the SDE into a random
differential equation. Then we obtain bounds for the explosion time by using sub
and supersolutions given by ODEs.

Example 2.1 (Aadditive noise). Let u(t) be the solution of (1.1) with b increasing
and

∫∞ 1/b < +∞. Let X be a solution of the Itô SDE

dX = b(X)dt + εdW, X(0) = x0.

Note that in this particular case Itô and Stratonovich interpretations are identical.
Let Z = X − εW , then Z solves

dZ = dX − εdW = b(Z + εW )dt, Z(0) = x0.

This gives a non-autonomous ODE for each ω such that W (·, ω) is continuous,

Żω(t) = b(Zω(t) + εW (t, ω)), Zω(0) = x0. (2.1)

In this equation ω is regarded as a parameter.
Given M > 0, we consider z and z the solutions of

ż(t) = b(z(t) + εM), z(0) = x0

and
ż(t) = b(z(t)− εM), z(0) = x0.

These solutions explode in finite time given by

T ε =
∫ ∞

x0

1
b(s + εM)

ds, T ε =
∫ ∞

x0

1
b(s− εM)

ds,

respectively. Since b is increasing, by the Monotone Convergence Theorem we get

lim
ε→0

T ε = lim
ε→0

T ε = T. (2.2)

Let
AM =

{
ω : W (·, ω) is continuous and max

0≤t≤T+1
|W (·, ω)| ≤ M

}
.

For ω ∈ AM , z and z are super and subsolutions of (2.1) for 0 < t < T + 1. Using
(2.2), a comparison argument gives

z(t) ≤ Zω(t) ≤ z(t),

as long as all of them are defined. Hence, for ω ∈ AM ,

T ε ≤ Sε(ω) ≤ T ε.
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Therefore, by (2.2),
lim
ε→0

Sε(ω) = T.

As

P
( ∞⋃

M=1

AM

)
= 1

we get the desired result.

Remark 2.2. In this example the function H involved in Theorem 1.1 is given by

H(s, x, ε) = b(x + εs),

and verifies the hypotheses stated there.

Observe also that in the ODE (1.1), the function b does not need to be increasing
in order to have explosions. In this example, the monotonicity of b is only used
to take limits in (2.2), but we can get rid of this hypothesis if we can ensure that
those limits hold.

Example 2.3 (Multiplicative noise). Let u(t) be as in Example 1. Let X be the
solution of the Stratonovich SDE

dX = b(X)dt + εX ◦ dW, X(0) = x0.

As in the preceding example, we want to get an ODE for each ω. To do that, let
Z = Xe−εW . Hence we get that Z solves

dZ =
(
e−εW b(ZeεW )

)
dt, Z(0) = x0.

As before, this gives a non-autonomous ODE for each ω such that W (·, ω) is con-
tinuous,

Żω(t) = e−εW (t,ω)b(Zω(t)eεW (t,ω)), Zω(0) = x0. (2.3)
Given M > 0, we consider z and z the solutions of

ż(t) = eεMb(z(t)eεM ), z(0) = x0

and
ż(t) = e−εMb(z(t)e−εM ), z(0) = x0.

These solutions explode in finite time given by

T ε =
∫ ∞

x0

1
eεMb(seεM )

ds, T ε =
∫ ∞

x0

1
e−εMb(se−εM )

ds,

respectively. We have
lim
ε→0

T ε = lim
ε→0

T ε = T. (2.4)

Let AM as before. Since b is increasing, for ω ∈ AM , z and z are super and
subsolutions of (2.3) for 0 < t < T +1 and hence, using (2.4), we can compare their
explosion times

T ε ≤ Sε(ω) ≤ T ε.

Therefore
lim
ε→0

Sε(ω) = T.

and we get the desired result. In this case H(s, x, ε) = e−εsb(xeεs).
Now, let us consider the same equation but in Itô sense. Let X be the solution

of the Itô SDE
dX = b(X)dt + εXdW, X(0) = x0.
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As before, we want to get an ODE for each ω. To do that, let Z = Xe−εW . Using
Itô’s rule we get

dZ =
(
e−εW b(ZeεW )− 1

2
ε2Z

)
dt, Z(0) = x0.

Again this gives a non-autonomous ODE for each ω such that W (·, ω) is continuous,

Żω(t) = e−εW (t,ω)b(Zω(t)eεW (t,ω))− 1
2
ε2Zω(t), Zω(0) = x0. (2.5)

Given M > 0, we consider z and z the solutions of

ż(t) = eεMb(z(t)eεM )− 1
2
ε2z(t), z(0) = x0

and
ż(t) = e−εMb(z(t)e−εM )− 1

2
ε2z(t), z(0) = x0.

These solutions explode in finite time given by

T ε =
∫ ∞

x0

1
eεMb(seεM )− 1

2ε2s
ds, T ε =

∫ ∞

x0

1
e−εMb(se−εM )− 1

2ε2s
ds,

respectively. Since 1/b is integrable these times are finite and we can apply domi-
nated convergence we obtain

lim
ε→0

T ε = lim
ε→0

T ε = T. (2.6)

From this point the limit
lim
ε→0

Sε(ω) = T

follows exactly as before.
In this example the function H is

H(s, x, ε) = e−εsb(xeεs)− 1
2
ε2x.

Observe that since b is superlinear H is increasing in time. However this hypothesis
is not required in this case. The result can also be obtained since we can bound H
from above and from below by functions that converge to b as ε → 0.

3. Proof of the main result

Pathwise solutions of the SDE. We want to apply the same ideas used in the
previous examples, that is, to transform the SDE in a non-autonomous ODE where
ω plays the role of a parameter. This is easier when the equation is understood in
Stratonovich sense.

The study of pathwise solutions to stochastic differential equations via an ap-
propriate reduction to an ODE was first done in [2, 6]. We refer to those works and
to [3] for details.

Consider a solution of the Stratonovich SDE

dX = b(X)dt + σ(X) ◦ dW. (3.1)

This solution may explode in finite time or may be globally defined.
Let y be a solution of the ODE

ẏ = σ(y), y(0) = x, (3.2)

and let φ(t, x) the flux associated to (3.2) which is globally defined and has contin-
uous derivatives, since σ is smooth and globally Lipschitz.
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Consider Zω = Zω(t) the solution of the random differential equation

dZω(t) =
b(φ(W (t, ω), Zω(t)))
φx(W (t, ω), Zω(t))

dt,

Zω(0) = x0.

(3.3)

Then X(t, ω) = φ(W (t, ω), Zω(t)) is a strong solution of (3.1) up to a possible
explosion time Sε. In fact, since (3.1) is interpreted in Stratonovich sense, we have

dX = φt(W,Zω) dW + φx(W,Zω) dZω = σ(X) dW + b(X) dt,

X(0) = x0.

Note that the explosion time Sε(ω) is the maximal existence time of (3.3) for each
ω. We are going to use this fact to prove Theorem 1.1.

Proof of Theorem 1.1. First of all observe that assumptions (1) and (2) ensure on
the one hand that solutions to (1.1),(1.4) are positive and on the other hand that
solutions to (1.1) explodes in finite time T given by (1.2). Applying the Feller Test
for explosions one can see that these hypotheses also ensure that (1.4) explodes in
finite time with probability one. Nevertheless we are going to show this fact in the
course of the proof.

For each ω such that W (·, ω) is continuous, consider the ODE

Żω(t) =
b(φε(W (t, ω), Zω(t)))
(φε)x(W (t, ω), Zω(t))

, Zω(0) = x0. (3.4)

Here φε is the flux associated to the ODE (1.5). The equation (3.4) can be written
in terms of H as

Żω(t) = H(W (t, ω), Zω(t), ε), Zω(0) = x0. (3.5)

In fact, integrating (1.5) we get∫ φε(t,x)

x

dτ

σ(τ, ε)
= t.

Differentiating with respect to x we obtain

(φε)x(t, x)
σ(φε(t, x), ε)

− 1
σ(x, ε)

= 0,

hence

(φε)x(t, x) =
σ(φε(t, x), ε)

σ(x, ε)
and so

H(s, x, ε) =
b(φε(s, x))
(φε)x(s, x)

.

Given M > 0, we consider z and z the solutions of

ż(t) = H(M, z(t), ε), z(0) = x0

and
ż(t) = H(−M, z(t), ε), z(0) = x0.

These solutions explode in finite time given by

T ε =
∫ ∞

x0

1
H(M,x, ε)

dx, T ε =
∫ ∞

x0

1
H(−M,x, ε)

dx,
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respectively. By assumption (1.6) we can apply the Dominated Convergence The-
orem to get

lim
ε→0

T ε = lim
ε→0

T ε = T. (3.6)

Let AM be as in the examples. Since H(s, x, ε) is increasing in the s variable,
for any ω ∈ AM , z and z are super and subsolutions of (3.5) for 0 < t < T + 1.
Using this fact and (3.6), their explosion times can be compared. Since X(t) =
φε(W (t), Zω(t)) and φε is globally defined, the explosion times of X and Zω coincide
a.s. Then we obtain

T ε ≤ Sε(ω) ≤ T ε.

Therefore
lim
ε→0

Sε(ω) = T.

As

P
( ∞⋃

M=1

AM

)
= 1,

we have proved (1.7). It remains to show the Lipschitz continuity. To do this
observe that the Taylor expansion of 1/H(±M,x, ε) at ε = 0 gives for some ηε with
0 < ηε < ε,

|Sε(ω)− T | ≤
∣∣ ∫ ∞

x0

1
H(±M,x, ε)

dx− T
∣∣

=
∣∣ ∫ ∞

x0

1
b(x)

dx +
∫ ∞

x0

ε
∂

∂ε

1
H(±M,x, ηε)

dx− T
∣∣

=
∣∣ ∫ ∞

x0

ε
∂

∂ε

1
H(±M,x, ηε)

dx
∣∣

≤ ε
∣∣ ∫ ∞

x0

fM (x) dx
∣∣

≤ Cε.

This completes the proof. �

4. More Examples

In this section we present two additional examples where the result can be ap-
plied.

Example 4.1 (Unbounded diffusion). Let u(t) be the solution of (1.1) and consider
the SDE

dX = b(X)dt + εσ(X) ◦ dW, X(0) = x0,

with
b(x) ∼ xp, σ(x) ∼ xq, 0 < q < 1 < p,

for large x and bounded below away from zero. In this case we have

φε(t, x) ∼
(
x1−q + (1− q)εt

) 1
1−q ,

for x large and t > 0. Hence, the behavior of H(s, x, ε) at infinity is given by

H(s, x, ε) =
b(φε(s, x))σ(x, ε)

σ(φε(s, x), ε)
∼

(
x1−q + (1− q)εs

) p−q
1−q xq ∼ Cxp.
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From these expressions it is easy to check hypotheses (1), (2) and (4). If we assume
(3), then we can apply our theorem to get Sε → T almost surely. Note that (3)
holds if we take, for example, b(x) = (1 + |x|)p, σ(x) = ε(1 + |x|)q. In fact, for
x ≥ 0 we have

H(s, x, ε) =
(
εs(1− q) + (1 + x)1−q

) p−q
1−q (1 + xq).

In this case ,(5) also holds and so Sε is Lipschitz at ε = 0 almost surely.

Example 4.2 (Bounded diffusion). In this example we consider

dX = b(X)dt + εσ(X) ◦ dW, X(0) = x0,

with a bounded σ, 0 < c1 ≤ σ ≤ C2 and b such that
∫∞ 1/b < +∞. We have

1
H(s, x, ε)

≤ gs(x) :=
C

b(x)
.

If we assume that (3) holds (the rest of the hypotheses can be easily checked) we
obtain again that Sε → T almost surely.

Example 4.3. In this example we consider

dX = eaXdt + εebX ◦ dW, X(0) = x0,

with a > b > 0. In this case we have that the solution of

ẏ = σ(y, ε), y(0) = x

is given by

y(s) = φε(s, x) =
ln(−bεs + e−bx)

−b
.

Therefore, we obtain
H(s, x, ε) = eax|1− bsεebx|1− a

b

and we can conclude as before that Sε → T almost surely.
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Poincaré, 13(2):99–125, 1977.

[3] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.

[4] H. P. McKean, Jr. Stochastic integrals. Probability and Mathematical Statistics, No. 5. Aca-
demic Press, New York, 1969.

[5] K. Sobczyk and B. F. Spencer, Jr. Random fatigue. Academic Press Inc., Boston, MA, 1992.

From data to theory.
[6] H. J. Sussmann. On the gap between deterministic and stochastic ordinary differential equa-

tions. Ann. Probability, 6(1):19–41, 1978.



EJDE-2007/140 EXPLOSION TIME 9

Pablo Groisman

Instituto de Cálculo, FCEyN, Universidad de Buenos Aires, Pabellón II, Ciudad Uni-

versitaria (1428), Buenos Aires, Argentina
E-mail address: pgroisma@dm.uba.ar

URL: http://mate.dm.uba.ar/∼pgroisma

Julio D. Rossi
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