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ABSTRACT 

A SIMULATION FRAMEWORK FOR PERFORMANCE EVALUATION AND 
SECURITY RESEARCH IN MULTI-INTERFACE MULTI-CHANNEL 
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by 

Heywoong Kim 
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SUPERVISING PROFESSOR- QIJUN GU 

In wireless networks, devices can be eqmpped with multiple interfaces to utilize 

multiple channels and increase the overall throughput of a network. Vanous channel 

assignment protocols have been developed to better utilize multiple channels and 

mterfaces However, the research of channel assignment protocols is still lack of a 

good simulation tool that can content with a variety of reqmrements and 

specificat10ns of channel assignment protocols. This thesis proposes MIMC-SIM, a 

generic simulation framework to study channel assignment protocols m 

multi-mterface and multi-channel networks. The MIMC-SIM framework is built in 

OMNeT++ with INET and implements a new layer between the network layer and 

the MAC layer The MIMC-SIM framework has a novel structure which supports 

xv 



generic features and specific behav10rs of channel assignment protocols It also 

provides a generic and flexible code structure for 1mplementmg channel assignment 

protocols 
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CHAPTER 1 

INTRODUCTION 

Wireless network is a type of network in which nodes communicate over a distance 

using radio signals instead of wires. Since computers became able to communicate 

via wireless networks, many efforts have been contributed to increase capacity and 

accessibility of wireless networks. Many wireless protocols have been developed, 

such as IEEE 802.11, Bluetooth, etc. With such wireless protocols, various wireless 

networks have been implemented, for instance, ad hoc network and mesh network. 

An ad hoc network is a type of wireless network in which nodes act as independent 

routers and forward packets for communication with other nodes. A mesh network is 

a type of an ad hoc network. In a mesh network, typically, one of the nodes connects 

to another network, such as the Internet, and behaves as a gateway. Most traffic in 

the mesh network is directed to/from a gateway [19]. Figure 1.l(a) and 1.l(b) show 

I 

(a) Ad Hoc Network (b) Mesh Network 

Figure 1.1: Two Types of Wireless Networks 

1 
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an ad hoc network and a mesh network respectively. Such wireless networks can be 

greatly extended by each node without such infrastructure as an access point. 

However, the capacity of wireless networks 1s limited compared to wired 

networks. In a wireless network, when nodes are close enough to communicate with 

each other, 1t 1s said that they are m the commumcat1on range. In the 

commumcat10n range, only one transm1ss1on 1s allowed in a smgle channel at a 

moment. When multiple transmissions occur simultaneously ma smgle channel, the 

commumcat10ns mterfere with each other. Such interference mcurred by adJ01mng 

nodes aggravates the capacity of a wireless network. In order to prevent such 

interference, ut1hzmg multiple channels and multiple network interface cards (NIC) 

has been considered. 

Many commumcat10n protocols, such as IEEE802.ll, Bluetooth, and W1MAX, 

provide multiple orthogonal channels whose frequencies do not overlap with each 

other Utihzmg multiple orthogonal channels allows nodes to communicate 

simultaneously on different channels without mterference. Such simultaneous 

multiple commumcat10ns can improve the total throughput of a network [20]. In 

add1t1on, m order to ut1hze multiple channels efficiently, multiple mterfaces are 

eqmpped m each node and assigned to different channels. Thereby, such a network 

is called multi-mterfaces multi-channels (MIMC) network, m which nodes utilize 

multiple channels with multiple interfaces. 

Many research have shown that MIMC networks provide much better 

performance than smgle channel wireless networks Ash1sh et al [19] showed that a 

MIMC network can achieve a factor of 6 to 7 throughput improvement compared to 



a single channel wireless network Pradeep et al. [17] showed that MIMC networks 

have better performance even when the number of mterfaces 1s smaller than the 

number of channels. Vartika et al [14] also demonstrated that even 1f frequently 

sw1tchmg channels 1s limited, MIMC networks still achieve good throughput 

A MIMC network can achieve such good performance by a carefully designed 

channel assignment protocol. A channel assignment (CA) protocol assigns the 

multiple channels to nodes so as to better utilize multiple channels and mterfaces 

and maximize the overall throughput of a network. CA protocols allow nodes to 

exchange their channel and traffic mformation, collaborate on channel assignment 

negotiation, and assign channels to nodes to reduce mterference m transmission 

The design of CA protocols has been studied m mesh network [19, 16] and ad hoc 

networks [26, 18] 

3 

However, no good and generic simulation tools are available for studying 

problems of channel assignment m MIMC networks. The simulation tools developed 

by existmg research on CA protocols are too specific to the CA protocols and the 

network topologies [19, 16, 26, 18]. They are hard to be reused for studymg various 

problems m MIMC networks and evaluatmg and comparmg performance of 

proposed new schemes. Although quite a few emulation testbeds and simulation 

tools have been developed for studymg wireless networks, they are still not sufficient 

yet to satisfy the needs of MIMC network research Several deployed wireless 

testbeds [1, 5, 11, 12] can be used to validate some wireless protocols However, 

nodes m these testbeds mostly have only one radio, even though they use multiple 

channels The testbeds can only emulate a network with a limited scale. The 
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topology of the nodes is hard to change, and node mobility can hardly be studied m 

these testbeds. Meanwhile, a few simulation tools have been developed [2, 3, 6, 9], 

which can address the problems in the wireless testbeds. They can support a 

large-scale simulat10n of various protocols m wireless and mobile networks. 

However, to the best of our knowledge, no general simulation framework has been 

actually developed for MIMC networks. Even though some simulation tools have 

partially added mechanisms for supportmg multiple mterfaces and multiple 

channels, they have not truly exammed the needs of MIMC network simulat10n 

which will be discussed shortly m Sect10n 4. 

This thesis presents a generic simulat10n framework, named MIMC-SIM, for 

MIMC networks The MIMC-SIM framework is bmlt in INET/OMNeT++. The 

mam purpose of the MIMC-SIM framework is to include generic features of CA 

protocols and support a variety of CA protocols. To do so, the MIMC-SIM 

framework adds a new layer between the network layer and the MAC layer where 

CA protocols are adopted The new layer allows CA protocols to work compatibly 

with protocols at the network and the MAC layers In addition, the MIMC-SIM 

framework provides generic and flexible code structure for easy extension accordmg 

to protocol specification The MIMC-SIM framework also adapts a variety of factors 

m simulat10n, such as network topology and traffic volume. In the MIMC-SIM 

framework, two CA protocols are implemented and experimented accordmg to [19] 

and [26] Addit10nally, vulnerability of the two CA protocols is tested by placmg an 

attackmg node which manipulates the CA protocols in the network. The 

MIMC-SIM framework will contribute to the research and development of MIMC 



networks. 

The rest of this thesis is orgamzed as follows· 

Chapter 2 provides the background of CA protocols. 

Chapter 3 discusses OMNeT++ and INET framework. 

Chapter 4 discusses design issues of a MIMC network simulator and overviews the 

architecture of the MIMC-SIM framework 

Chapter 5 and 6 present maJor modules m the MIMC-SIM framework in detail 

Chapter 7 presents adJunct modules m the MIMC-SIM framework m detail and 

discusses modification m INET. 

Chapter 8 presents a generic code structure to implement a state machme. 

5 

Chapter 9 shows the implementation of CA protocols m the MIMC-SIM framework 

Chapter 10 shows evaluation of CA protocols m the MIMC-SIM framework. 

Chpater 11 shows vulnerability of CA protocols in the MIMC-SIM framework 

Fmally, Chapter 12 provides the conclusion of this thesis. 



CHAPTER 2 

CA PROTOCOLS 

In a MIMC network, CA protocols conduct nodes to assign channels so as to 

mimmize mterference among nodes and maximize the overall throughput of a 

network. To do so, CA protocols allow nodes to exchange their channel mformation 

and traffic mformat10n each other For example, CA protocols usually ask nodes to 

scan and hsten local traffic when they Just Join a network m order to find neighbor 

nodes and available channels When a node obtams a channel, the node shall 

broadcast its channel and related mformat10n to let other neighbor nodes know CA 

protocols define how nodes exchange their mformation with neighbor nodes and 

assign channels based on the shared mformation 

In a MIMC network, nodes can use multiple channels with multiple mterfaces 

simultaneously. However, considermg the cost and the small size of a node, 

normally the number of mterfaces, m, of a node should be smaller than the number 

of channels, c It is shown [17] that the network capacity is affected by the ratio of c 

tom, rather than the number corm When c/m is O(log(n)) ma random network, 

network capacity will not be degraded Because of m < c, CA protocols mostly 

focus on deploymg channels to nodes to mmimize mterference and maximize 

throughput of a network. 

In this chapter, a few CA protocols that aim to improve network capacity by 

6 
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reducmg channel mterference are briefly summarized 

2.1 CA Protocols 

In [18], m order to mcrease network capacity, mterfaces of a node are divided mto 

two categories fixed mterface and switchable mterface A fixed mterface is assigned 

to a particular channel and works on the channel for long time period. A fixed 

mterface 1s used to receive packets from other nodes. A node randomly selects a 

channel m an m1tial level and assigns the channel to a fixed mterface. Later, the 

node could change a channel of a fixed mterface to a less used channel to reduce 

mterference. A switchable mterface 1s used to ensure connectivity with other nodes 

In other words, nodes frequently switch a channel of its switchable interface to its 

neighbor nodes' fixed channel for sendmg packets. The drawback of the protocol is 

that the channel assignment of a fixed mterface takes time to converge. In addition, 

1f the number of channels that nodes can use 1s large, the sw1tchmg channel delay 

may be large when nodes need to switch back and forth to commumcate with 

different neighbor nodes 

In [26], CA algorithms based on s-disJunct superimposed code was proposed to 

mitigate co-channel mterference of network capacity maximization For each node, 

all orthogonal channels are labeled as either 1 for primary or O for secondary via a 

bmary channel codeword Then, a node, u, first searches a set of primary channels 

that are secondary to all mterferers in two-hop communicat10n range smce these 

channels may not be used by the interferers. If the searching fails, u chooses the 

secondary channels that are not primary, but also secondary to any of mterferers 
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srnce the rnterferers may not use them either If u cannot find such channel, it picks 

up the primary channel that is primary to the least number of rnterferences. 

In [16, 19], CA protocols were proposed specifically for a wireless mesh network 

[19] considers the channel assignment problem as two sub problems: 1) an rnterface 

assignment problem where interfaces of a node are divided into two categories· 

UP-NICs used for communicatrng with its parent node, and DOWN-NICs used for 

commumcatrng with its child nodes; 2) an rnterface-channel assignment problem 

where the channel assignment of a node's UP-NIC is determined by its parents A 

less loaded channel will be assigned to a DOWN-NIC to prevent the mterference A 

node periodically reevaluates its current channel usage and switches a heavily loaded 

channel to a less loaded channel for its DOWN-NIC. The channel assignment of a 

node relies on its parents The parents always have higher priority than the children 

A node close to a gateway will pick a channel earlier than those farther away. 

In [16], a distributed CA protocol is proposed for a dual radio mesh network. 

[16] considers that the mterfaces usmg different orthogonal channels from the same 

frequency band might mterfere with each other unless they are separated by a 

sufficient distance In order to solve the problem, they assume that the number of 

mterfaces that nodes can eqmp 1s practically two, and nodes utilize channels m two 

different frequency bands on each of the1r mterfaces to reduce mterference. Thereby, 

each gateway ma mesh network associates a channel sequence presentmg channels 

m different frequency bands alternatively with each of its mterfaces The channel 

sequence is propagated along with routmg mformation in periodic route 

announcement messages A node obtams channels m two different frequency bands 



based on the channel sequence and the distance (hops) to the gateway. The nodes 

on the same hops from a gateway share one channel in common, then all paths to 

the gateway can operate on d1stmct channels to eliminate mtra-path mterference 

Compared with [19], the CA approach does not rely on the parent. However, 1f a 

gateway changes its channel sequence, the nodes connected to the gateway need to 

change channels accordmgly. 

g 



CHAPTER 3 

SIMULATORS 

This chapter mtroduces OMNeT++ and INET m which the MIMC-SIM framework 

has been developed and compares OMNeT++ with other simulation tools on 

aspects mcludmg model design, performance, experiment design, and debuggmg 

3.1 OMNET 

OMNeT++ [8] 1s an open-source discrete event simulation environment. It 1s not a 

simulator of any particular system, but rather provides a generic and flexible 

architecture for writmg s1mulat10n tools It has been used to model and simulate 

commumcat10n networks, operatmg systems, hfl-rdware architectures, distributed 

systems, and so on. Although OMNeT++ 1s not a network simulator itself, 1t has 

been widely utilized as a network simulation platform Moreover, OMNeT++ has 

been one of the alternative simulators agamst open-source research oriented 

simulator NS-2 [6] and the commercial software OPNET [9] 

The most important feature of OMNeT++ 1s its obJect-oriented component 

architecture In OMNeT++, network components, such as network layers, network 

protocols, or network nodes, are composed hierarchically by modules Modules are 

classified mto simple modules and compound modules. A simple module 1s the 

lowest level module which implements actual activities of the module. A compound 

10 
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Network 

Figure 3.1: Module Structure in OMNeT++ [8] 

module does not define actual activities, but combines simple modules to act like a 

network component. The compound modules can be combined into an even larger 

compound module. Figure 3.1 shows the hierarchy of simple modules and 

compound modules . Boxes represent modules, and small squares represent gates 

through which modules are connected. Arrows connecting boxes represent 

connections between modules. Using this architecture, the logical structure of an 

actual system can be efficiently described [21]. In OMNeT++, the structure of 

modules are described in the NED language, which is OMNeT++ 's high-level 

language. NED is used to define simple modules, and combine them into compound 

modules. The modules defined in NED can be reused in any other compound 

modules. The actual activities of simple modules are written in C++, using the 

OMNeT++ simulation class library. 

The fundamental ingredient of OMNeT++ making itself distinguished from 

other simulators is the message passing mechanism. In OMNeT++, modules do not 

call other modules ' functions directly. Instead, modules communicate by exchanging 
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messages, where messages may carry arbitrary data structures, for instance, data 

packets for network commumcation Modules usually pass messages along 

predefined connections via gates, but it is also possible to directly send messages to 

destmation modules without the predefined connections. Messages can be easily 

defined m msg files by usmg message definition function provided by OMNeT++ 

3.2 INET 

The INET framework is an open-source commumcation network simulation package 

bmlt m the OMNeT++ simulation environment [3] The INET framework contams 

models for various networkmg protocols, such as UDP, TCP, IP, IEEE802.11, and 

etc, and several application models The INET framework also supports wireless 

and mobile simulations as well. Protocols are represented as modules, and the 

modules are combmed to construct hosts and network devices mcludmg a router, a 

switch, an access pomt, and so on Usmg INET with OMNeT++, various types of a 

network can be implemented and simulated In fact, various extensions have been 

already added mto INET [3] INETMANET [4] is a proJect to model mobile ad hoc 

network protocols m the INET framework, and OverSim [10] is a proJect to model 

overlay and P2P network protocols The MIMC-SIM framework is also an extension 

m INET to model MIMC network protocols 

Figure 3 2 shows the mternal structure of a mobile host which composes a 

wireless network m INET The structure of the mobile host is founded to develop 

the MIMC-SIM framework. In the rest of this section, modules constructmg the 

mobile host are briefly explamed Then, mteractions among modules are clarified. 
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-\f' MobileHost 

Figure 3.2: Mobile Host Sturcture in INET 

3.2.1 Modules 

Inside the host of Figure 3.2, some of the modules represent network protocols and 

are connected according to their associated layers. For example, the tcpApp, 

udpApp, pingApp modules at the top represent the application layer. The tcp and 

udp modules and the networkLayer module in the middle implement protocols at 

the transport layer and the network layer respectively. The wlan module at the 

bottom resembles a network interface card in the host and implements protocols at 

the link layer and the physical layer. Furthermore, the networkLayer and wlan 

modules are compound modules which are embodied in Figure 3.3(a) and Figure 

3.3(b) respectively. In Figure 3.3( a), each module represents a protocol as named 

for itself. For example, the ip module implements IP protocol. In Figure 3.3(b), the 

radio module represents a physical radio, and the mac module implements the MAC 
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Figure 3.3: Inside Architecture of Network Module and Wlan Module 

protocol. And the mgmt module manages those two lower modules for ad-hoc mode. 

In addition, in Figure 3.2 , a host node includes additional modules which 

support other modules to collaborate together, hold data, or move a mobile host 

node around. These modules do not implement specific network protocols. For 

example, the notif icationBoard module allows modules to notify each other about 

their events . When a module notifies of an event , the notificationBoard module 

disseminates the event to other modules . The inter f aceTable module maintains 

such information as IP address , MAC address, MTU, etc, of network interfaces in a 

node. The inter f aceTable module provides such information to other modules. The 

routingTable module maintains a routing table. The route of a outgoing packet is 

decided according to the routing table in the routingTable module. The mobility 

module deals with movement of a mobile node. This module constantly changes the 
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posit10n of its host node m a network durmg simulation 

3.2.2 Interaction 

In INET, modules can mteract with each other by three different mechamsms· 

message pass, direct access, and notification The first mechamsm, message pass, is 

provided m OMNeT++. Modules connected via gates usually pass messages to 

commumcate with each other. This mechamsm is best for the process of packet 

transmission For example, m Figure 3 2, when the tcpApp module sends a message 

(which is referred to a packet m network transmission) to the tcp module, the tcp 

module deals with the message accordmg to the TCP protocol and sends it to the 

networkLayer module Then, the networkLayer module deals with the message 

accordmg to a network layer protocol, such as the IP protocol, and sends it to the 

wlan module 

The second mechamsm, direct access, is to mteract with the modules not 

connected via gates, such as the notijicationBoard, inter f aceTable, and 

routingTable modules Such modules are directly accessed by callmg the access 

funct10n bmlt upon the M oduleAccess class m other modules. Then, all 

functionality of such modules can be utilized by other modules. For example, 

mformation of the routmg table m the routingTable module can be retrieved 

through this mechamsm 

The last mechamsm, notification, is for modules to notify each other about their 

events, for mstance, NIC configurat10n change, routmg table change, mobile node 

position change, a state of a module change, communicat10n failure, and so on The 



notificat10n mechanism is handled by the notificationBoard module When a 

module wants to notify other modules of an event, the module accesses the 

notificationBoard module and let it diffuse the event to modules mterested in 

learning about the event with add1t10nal mformat1on. Events that can be notrfied 

VIa the notificationBoard module are referred to notifications The notifications 

are identified by their categories which are mamtained m the notificatwnBoard 

module accordmg to kmds of events Usmg the notification mechamsm, a module 

can interact with multiple modules at once. 

3.3 Other Simulators 
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Besides OMNeT++, qmte a few open source based simulators have been developed 

m the network research area Among all, NS-2 1s the most widely used, and NS-3 1s 

the successor of NS-2 with better features. Nevertheless, the MIMC-SIM framework 

is developed m the environment of OMNeT++ with INET. In this section, the 

network simulation tools, NS-2 and NS-3, are briefly mtroduced and compared to 

OMNeT++ with a focus on several views design structure, performance, and 

experimental environment m order to show that OMNeT++ has better features 

3.3.1 NS-2 

NS-2 1s the most widely used network simulator m the network research area [23] 

NS-2 1s a discrete event simulator that supports the simulation of TCP, routmg, and 

multicast protocols over wired and wireless networks [6]. NS-2 uses C++ code for 

implementmg the core part of a simulation, such as behavior of a system, and OTcl 
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scnpts for configurmg the system, such as a network topology This design structure 

saves resources from unnecessary recompilations if somethmg has been changed m 

the simulation set-up However, the structure has drawbacks· the OTcl script makes 

the simulation slow down [24] 

3.3.2 NS-3 

NS-3 is also a discrete event simulator designed for the network research It is the 

next generation of NS-2 However, the architecture of NS-3 is much different from 

NS-2 [7] In order to abandon the problem caused by using OTcl scnpts in NS-2, 

NS-3 relies entirely on C++ for implementmg the simulation with optional Python 

bmdmgs [25] Therefore, models m NS-2 cannot be reused in NS-3 without portmg 

properly Even though many improvements have been made in NS3 m terms of 

performance and scalability, NS-3 is still under development Since NS-3 does not 

provide sufficient models to implement MIMC networks, only NS-2 is considered to 

compare with OMNeT++ m the next sect10n 

3.4 Comparison 

3.4.1 Model management 

OMNeT++ has a clear boundary between the simulation kernel and module 

implementat10n The 01\iNeT++ simulation kernel consists of a class library on 

which modules are implemented [23]. The OMNeT ++ kernel generates modules as 

executable by compilmg and lmking them against the class library [21] In this 
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structure, the class library does not need to be modified to implement new modules 

Hence, OMNeT++ provides good features in terms of integrity and reusability In 

NS-2, m contrast, the boundary between the simulation kernel and modules is 

unclear [22] In NS-2, modules are usually generated by modifymg the pure kernel a 

bit to adapt their act1v1ties Because of that, 1t 1s hard to mamtam the kernel of 

NS-2 constantly In addition, after many modifications of the kernel, 1t will be 

difficult for other developers to reuse the kernel. This limits the reusab1hty of NS-2 

3.4.2 Programming Model 

OMNeT++ separates clearly implementation of activities of modules and 

configuration of modules As mentioned m Section 3.1, OMNeT++ uses two 

different languages C++ and NED C++ is used to implement activities of 

modules, and NED 1s used to configure modules Smee OMNeT++ manages the 

two languages m different roles clearly, the boundary between two languages is 

clear. NS-2 also provides the two different languages· C++ and OTcl. In NS-2, 

basically, C++ 1s used to implement activities of components, and OTcl 1s used to 

configure the network topology. However, NS-2 allows activities of components to 

be implemented m OTcl This blurs the boundary of the two languages Also, it is 

difficult for developers to track codes 

3.4.3 Performance 

Network simulators' ability to run huge scale networks are considered m terms of 

performance. Accordmg to [25], OMNeT++ C8.IJ. simulate huge scale networks up to 
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the limitation of the virtual memory capacity of a system, whereas NS-2 is not 

suitable to simulate the large network topologies. Figure 3.4 shows the simulation 

runtime measured at different network sizes for the compared simulators. It shows 

that OMNeT++ provides better performance than NS-2 for large size networks. 

This is because OMNeT ++ maintains the set of future events in a binary heap [8], 

while NS-2 maintains it in a linked list. 
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Figure 3.4: Simulation runtime [25] 

3.4.4 Experiment Design 

3500 

In order to experiment in various settings efficiently, parameters of experiments 

need to be separated from models. OMNeT++ separates experiments from models 

by using .ini files ( text files) where parameters of a simulation experiment are 

written. In NS-2, in contrast, the experiment part mingles with models. For 

example, parameters of a simulation experiment are embedded in the OTcl scripts 

where the network topology is also defined. Therefore, the way to change the 



20 

parameters in NS-2 is not easy as in OMNeT++. 

3.4.5 Debugging 

Debugging in a network simulation is not only debugging code, but also tracing 

variation of a network simulation [21]. OMNeT++ provides very powerful GUI 

(Figure 3.5) , showing packet transmissions and network status while a simulation is 

running. Using the GUI, OMNeT ++ allows users to check the process of simulation 

of networks visually, and also have ability to control the network by changing 

parameters during simulation. In contrast, NS-2 also provides a GUI , called nam, to 

allow users to trace the process of a network simulation. However, the process of a 

network simulation can be visualized only after a network is completely simulated. 

Compared to OMNeT++ , NS-2 does not provide functionality to debug during 

simulation. 

Figure 3.5: Graphical runtime interface in OMNeT++ [8] 



CHAPTER 4 

OVERVIEW OF MIMC-SIM 

This chapter discusses assumpt10ns used m the MIMC-SIM framework, the main 

challenges, and CA issues m designing the MIMC-SIM framework. In addit10n, this 

chapter presents the overall architecture of the MIMC-SIM framework. 

4.1 Assumptions 

The MIMC-SIM framework assumes that MIMC networks utilize multiple 

orthogonal channels In the current implementation of INET, this assumpt10n is 

well supported by the signal propagation model adapted m the radio module A 

signal delivered m one channel does not contribute anythmg to another orthogonal 

channel In the future, the radio module can be modified to adapt a better signal 

model to capture the maJor characteristics of signals m overlapping channels. 

The MIMC-SIM framework assumes all NICs are usmg the same commumcat10n 

protocol or compatible protocols m the same protocol family. For example, m a 

mesh network, a node can be eqmpped with two NICs One NIC may work on 

IEEE802 llb and the other may work on IEEE802.llg The assumption implies 

that a packet transmitted in a channel could be delivered to all NICs m that 

channel. If different commumcation protocols with overlapping channels are used, a 

signal that one protocol transmits a packet in one channel becomes a noise signal at 

21 



other protocols usrng the same channel The current radio module rn INET does 

not support concurrent multiple communicat10n protocols. 
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Even though INET allows nodes to assign multiple IP addresses with multiple 

NICs, the MIMC-SIM framework assumes that each node is identified by the umque 

IP address In simulat10n, it is assumed that all nodes rn a MIMC network are m 

the same subnet network, which means all NICs of each node are in the same subnet 

network This assumption allows nodes to commumcate with one IP address over 

multiple MAC addresses For example, although a node sends a pmg echo packet 

out via one specific NIC, the node can receive the pmg reply packet via another NIC 

whose MAC address is drfferent from the first one. Mapping a smgle IP address to 

multiple MAC addresses in a node makes a routing algonthm easy to be 

implemented m the MIMC-SIM framework 

The MIMC-SIM also assumes the number of channels is usually greater than the 

number of NICs m nodes Researchers [16, 13, 15] have shown that multiple NICs of 

a node should be separated by at least 18 mches so that the1r rad10 transmission 

does not mterfere with each other even though they use different orthogonal 

channels. Hence, given the limit size of most mobile devices, a node could have only 

a few NICs (mostly two or three) Whereas, w1reless networks often have more 

orthogonal channels For example, IEEE801.llb/g has 3 orthogonal channels, 

IEEE802.lla has 13, and IEEE802.15 4 has 16. 
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4.2 Challenges 

Although INET can support partially multiple interfaces and multiple channels m 

network simulat10n, qmte a few challengmg issues remain unaddressed for MIMC 

network simulat10n due to two maJor reasons One is that the wireless framework in 

INET was basically designed for simulatmg wireless commurncation in one channel 

Even though it allows NICs to use multiple channels, it assumes that all NI Cs of the 

same host use the same channel and work on the same mechanism in simulation 

The other reason is that INET handles multiple NICs in wireless communication 

directly based on the model of wired network, which simply makes the NICs forward 

packets over separated commumcation links. In a MIMC network, such a model 

ignores the collaborat10n among the NICs, thus, it cannot be used to support 

MIMC simulation. 

4.3 Issues of Channel Assignment 

In order to develop a general framework that adopts various requirements of MIMC 

networks, the MIMC-SIM framework is designed for addressing four major issues of 

simulating CA protocols. 

F1rst, CA protocols assign channels to nodes in various ways and assign various 

roles to NICs accordmgly. The MIMC-SIM framework is designed to support two 

major categones of CA protocols. One category is node-based channel allocation 

[18, 26]. It assigns a set of channels to each node, and nodes usually receive packets 

on the1r assigned channels. In this category, a receiving node guarantees that it 
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always receives packets on a particular channel, and a sendmg node tunes its channel 

to a receiver's channel to deliver packets The NIC used to receive packets on a 

particular channel is known as a receiving-NIC, and the NIC used to send packets is 

known as a sendmg-NIC. The other category is lmk-based channel allocation 

[16, 19]. It assigns channels to lmks, and nodes on a link use the channel assigned 

the link In these category, NICs in a node are classified into two different groups, 

for example, up-link NICs and down-link NICs, accordmg to the routing topology of 

a network. In this type of network, a node assigns its up-link channel accordmg to 

its parent node, and assigns its down-link channel accordmg to a CA protocol. The 

framework should support nodes to manage their NICs with different roles. 

Second, the MIMC-SIM framework needs to handle issues includmg the mapprng 

between a MAC address and an assigned channel. In a MIMC network, a NIC is 

always uniquely identified by its MAC address, while a node could be identified by a 

single IP address. When a node sends a packet, the packet carries the IP addresses 

of the destmat10n and the next hop. The sendmg node needs to resolve the MAC 

address of the next hop NIC with the next hop IP address and the associated 

channel rnformat10n with the MAC address. As NICs could switch on different 

channels, the CA protocol needs to help nodes maintain channel mformation 

associated with their next hop NICs. Hence, the MIMC-SIM framework needs to 

properly mamtarn IP addresses of nodes and MAC addresses and channel 

information of their NICs to support CA protocols. 

Third, a CA protocol needs to rnteract with other protocols, beyond simply 

making NICs forward packets. A CA protocol is placed between the network layer 
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and the MAC layer and works with various MAC protocols, IP protocols, routing 

protocols, and ARP protocols To achieve this, the framework needs to identify the 

components m CA protocols that are mdependent of other protocols Meanwhile, 

the framework should provide mechanisms for these protocols to mteract so that a 

CA protocol can work with a specific MAC protocol or network protocol. 

Furthermore, CA protocols do not only mteract with other protocols, but also 

mtegrate them such as ARP protocols and routmg protocols to adopt its own 

algorithm. 

Fmally, a variety of CA protocols have been proposed in the past. The 

MIMC-SIM framework shall provide a codmg structure that accommodates common 

features shared among these protocols and allows flexible extens10n to implement 

specific protocol behaviors as well Many CA protocols can be modeled by an 

operation plane and an algorithm plane The operation plane specifies the 

operations which are fundamental activities of CA protocols, such as tunmg a 

channel to a rad10, scanmng a particular channel, and transmittmg a data packet m 

an appropriate channel The algorithm plane manages the way to exchange channel 

mformat10n between nodes, and computes the channel allocat10n based on the 

channel mformat10n collected usmg the operat10n plane. Although a particular CA 

protocol always differs from other CA protocols in many details, they share some 

common procedures of executmg operations and algorithms. Hence, the MIMC-SIM 

framework utilizes these observat10ns to structure its architecutre. 
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4.4 Architecture of MIMC-SIM 

To address the aforementioned issues of CA protocols in MIMC network simulation, 

the MIMC-SIM framework defines a new host structure as shown in Figure 4.1. 

Compared with the typical host in INET depicted in Figure 3.2, t he MIMC-SIM 

framework adds the new module, M !Control (named after multi-interface control) , 

where CA protocols are adopted. The M !Control module is placed as a new layer 

between the networkLayer module and the wlan modules , which represent the 

network layer and the MAC layer respectively. 

The new structure allows CA protocols to work independently with various 

MAC protocols and IP protocols. Since the MI Control module is separate from the 

networkLayer module and wlan modules, the M !Control module does not 

Figure 4.1: Mobile Host Sturcture in the MIMC-SIM Framework 
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participate m their process, but cooperates with them by exchanging messages to 

perform CA protocols Even if the instances of the networkLayer module and the 

wlan module are changed, the MIControl module can still perform its operations 

without modification. Moreover, the new structure allows CA protocols to deal with 

routing issues for sendmg packets. When the MIControl module receives packets 

from the networkLayer module, it can replace the routing mformation of packets 

decided m the networkLayer module with new routing informat10n according to 

CA protocols 

In addition, compared to the original host structure in INET, the new host can 

have multiple wlan modules and coordinate them. In the new host structure, CA 

protocols can easily coordmate multiple wlan modules by the M !Control module 

For example, the M !Control module can forward packets from the networkLayer 

module to a particular wlan module for sending, while M !Control uses another 

wlan module only for receivmg 

Figure 4 2 shows the mside structure of the M !Control module. The 

M !Control module is constituted with four kinds of modules: mainControl, 

subControl, neighborTable, and nicTable. 

4.4.1 mainControl 

The mainControl module implements the algorithm plane of CA protocols. It 

composes channel management packets, coordinates multiple subControl modules, 

collects neighbor nodes' information and analyzes them, updates routmg 

information, and decides routes and a proper wlan module for outgomg packets. 
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Figure 4.2: M !Control Module Sturcture 

Moreover, the mainControl module manages neigbhorTable by updating neighbor 

nodes ' information. A new CA protocol can be adopted into the simulation 

framework by implementing a new mainControl module. Researchers can simply 

extend the base class of the mainControl module to adopt their own CA protocols. 

4.4.2 subControl 

The subControl module implements the operation plane of CA protocols. Since the 

operation plane is independent to the algorithm plane of CA protocols, the 

subControl module is designed separately from the mainControl module. In 

addition, each subControl module corresponds to a specific wlan module because 

the process of CA operations is specific to an individual wlan module. The 

subControl module controls its corresponding wlan module to perfrom the CA 

operations. Thus, the same number of subControl modules are equipped as the 

number of wlan modules. The subControl module does not decide when to conduct 

CA operations. Instead, it receives commands from the mainControl module, and 
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performs CA operations based on the commands. The subControl module only 

decides the order of performmg CA operations based on their given priority. In order 

to take CA operations from the mainControl module and control a wlan module, 

the subControl module is placed under the mainControl module and connected to 

an individual wlan module. The subControl module also guarantees that packets 

are transmitted on the correct channel by controlling its wlan module. Smee CA 

operations the subControl module performs are mdependent to CA protocols, the 

subControl module 1s not required to be re-implemented for a new CA protocol. 

4.4.3 neighborTable 

In MIMC networks, no matter what CA protocol is used, nodes collect and 

maintain the information of their neighbor nodes. The neigbhorTable module is 

designed to mamtain such information. This module 1s directly accessed by other 

modules usmg the direct access mechanism (Section 3.2.2). Both the mainControl 

module and the subControl module access the neigbhorTable module to update 

neighbors' mformation or retrieve the information. The neighborTable module does 

not participate m forwardmg packets in the MIControl module. Smee each CA 

protocol requires different information for neighbor nodes, this module shall be 

extended to store proper information accordmg to a CA protocol 

4.4.4 nicTable 

The nicTable module is designed to mamtam various roles and mformation of NICs. 

CA protocols allow nodes to utilize their NICs in different roles, for mstance, upper 
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NIC and down NIC [19] Also, CA protocols allow nodes to assign specific channels 

to their NICs. The nicTable module mamtams roles and channel information of 

NICs defined by a CA protocol. The nicTable module is directly accessed by other 

modules using the direct access mechamsm (Sect10n 3 2 2) Usually, the 

mamControl module accesses the nicTable module to retrieve the information, 

while the subControl module accesses it to update Similarly to the neigbhorTable 

module, also, the nicTable module does not participate m forwardmg packets The 

nicTable module will be extended to define new roles and store proper mformat10n 

of NICs accordmg to a CA protocol 

4.5 Messages 

In OMNeT++, modules connected via gates pass messages to commumcate with 

each other The MIMC-SIM framework classifies those messages mto command, 

channel management packet, and data packet. 

In the MIMC-SIM framework, the mamControl module controls the subControl 

module to perform CA operations by sendmg special messages. Such special 

messages are referred to CA commands. The MIMC-SIM framework defines the 

MI Command class as the base class on which a specific CA command will be 

implemented In addit10n, the subControl module sends messages to its wlan 

module to configure the channel mformat10n of the wlan module. Such messages 

that one module sends to another module to use its service are considered as 

commands m the MIMC-SIM framework 

In MIMC networks, nodes exchange their information such as IP address, MAC 
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addresses, channel information, traffic mformat10n, and so on. In the MIMC-SIM 

framework, channel management packets are the messages carrymg such information 

and transmitted among nodes. Channel management packets are specified by CA 

protocols and generated m the mainControl module. In order to handle channel 

management packets, the MIMC-SIM framework defines the MI Packet class as the 

base class on which any kinds of channel management packets will be implemented. 

Data packets are generated at or above the network layer In the MIMC-SIM 

framework, all the messages received in the M !Control module from the 

networkLayer module are regarded as data packets. Processmg data packets is 

similar to the processmg m INET, but the MIMC-SIM framework ensures that each 

data packet is transmitted on the correct channel. 

Smee the MIMC-SIM framework is bmlt atop the MAC layer, both channel 

management packets and data packets are considered as data frame at the MAC 

layer For example, if the underlymg MAC protocol is IEEE802.ll, the two types of 

packets will be formatted as IEEE802 11 Data Frame. So, m the MIMC-SIM 

framework, channel management packets and data packets are simply referred to 

packets. 

4.6 State Machine 

As any other network protocols, CA protocols can also be modeled m a fimte state 

machme ( or state machme), which is used for computer programs In the 

MIMC-SIM framework, to adopt a CA protocol, the mainControl module is 

implemented based on a state machine. In addition, the subControl module 1s also 
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implemented based on its own state machine. A state machme can be described 

usmg a state diagram which abstractly describes a state machine To implement a 

state machine as described in a state diagram, the MIMC-SIM framework provides 

a set of predefined macros, named FSME (named after Enhanced Fimte State 

Machine). FSME is inspired by FSMA, which is also a set of predefined macros 

handlmg a state machme in INET FSME provides a generic code style and flexible 

extension for implementmg a state machme Compared to FSMA, FSME allows 

each state in a state machme to be implemented separately. The details of FSME 

are explained m Chapter 8. 



CHAPTER 5 

MAIN CONTROL 

In this chapter, the design and basic operations of the mainControl module are 

presented based on the state machme of the mainQontrol module 

The mainControl module is the core module implementmg actual CA protocols 

in the MIMC-SIM framework. It 1s built upon the MIMainControlBase class, which 

implements a set of abstract functions that perform CA operations and a few basic 

INET functions that mitiahze the module and pass messages to proper functions. 

Moreover, the MIMamControlBase class defines a set of functions using FSME 

funct10ns to deal with a fimte state machme. The MIMamControlBase class 1s 

designed to support common features of CA protocols so that child classes can 

utilize them. As shown in Figure 5.1, the MIMainControlBase class 1s extended 

from the cSimpleModule class which provides basic features of a simple module and 

the !Notifiable class which deals with notification function in INET. Then, the 

MIMamContrlBase class shall be extended to a child class to implement a specific 

CA protocol For example, the DrcaMainControl class and the ScodeMainControl 

class extends the MIMamControlBase class to implement the d1stnbuted 

routing/channel algorithm ma MIMC network [19] and the CA protocol based on 

superimpose code [26] respectively. 

The process of the mainControl module is represented in a state machine. 
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Figure 5.1 Class Hierarchy Of mainControl Module 

Accordmg to a state machme, the mainControl module determmes when and how 

to perform the followmg maJor operations for a CA protocol 

• Commandmg CA operations 

• Handlmg channel management packets 

• Computmg channel and route 

• Transmittmg packets 

5.1 State Machine 

The mainControl module implements a state machme to adopt a CA protocol 

logically The process of a CA protocol can be represented m a state machme Smee 

the process of each CA protocol is umque, implementat10n of a state machme is 

specific to a CA protocol. However, the state machines of CA protocols can be 

generalized mto the five states: INIT, SCAN, ASSIGN, SETNIC, and NORM 

Figure 5 2 shows the state diagram of the five states in the mainControl module 

conceptually. Even though CA protocols have their own specific state diagrams, 



their state diagrams can be generally described within the five common states. 

Accordmg to the five states, CA operat10ns are performed in proper manner. The 

state diagram of a new CA protocol shall be depicted based on Figure 5.2 m the 

MIMC-SIM framework. 
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Figure 5.2: State Diagram Of The MamControl Module 
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In Figure 5 2, INIT is the beginning state when a node is initialized and 

substantiated itself When a node is in the INIT state, although the node has 

already imtiated m simulation, the node is regarded as mactive. As long as a node 

stays in the INIT state, a node ignores all the mcoming packets from other nodes 

and does not send any packets or perform any operations Thus, other nodes will 

not be able to find the inactive node The INIT state is designed for a simulation 

reason. When a network 1s imtiated m simulation, all nodes are mitiated at the 

same time However, nodes may join a network m arbitrary time point In the 



MIMainControlBase class, the timer, wakeUpTimer, 1s defined and scheduled 

when a node 1s m1tiated When wakeU pTimer 1s expired, the node 1s regarded as 

active when actually starts performmg CA protocols ma network However, this 

state may not be considered m real network enVIronment. 
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The SCAN state comes after the INIT state It is triggered when wakeUpTimer 

1s expired m the INIT state Basically, CA protocols allow nodes to hsten to the 

medmm to find potential neighbor nodes and gather mformat10n from them. The 

SCAN state 1s designed for that reason In the SCAN state, the mainControl 

module commands the subControl modules to scan channels instead of scannmg by 

itself. Durmg scanmng, the mainControl module receives channel management 

packets from neighbor nodes and updates them mto the neighborTable module 

When the mainControl module 1s notified of the completion of scannmg by the 

subControl modules, the ASSIGN state 1s tnggered. 

When a node enters the ASSIGN state, a node assumes that sufficient channel 

mformat1on 1s collected m the SCAN state. In the ASSIGN state, based on the 

channel mformation gathered from neighbor nodes, a node computes a channel to 

assign and decides a default route accordmg to a CA protocol's algonthm. With the 

computed results, a node tries to jam a network In some CA protocols, a node may 

ask its expected default host node (parent node) to join a network m this state. If a 

node confirms to Jam a network accordmg to a CA protocol, the node enters the 

SETNIC state. Otherwise, the node either computes the channel and default route 

once agam to find another parent node or goes back to the SCAN state to collect 

new channel mformation 
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In the SETNIC state, a node sets its NICs mto the channel computed in the 

ASSIGN state accordmgly If a node has encountered this state before since the 

node started up, then the node may have a problem to set up its NICs because 

there might be an ongomg CA operation or a packet transmission m its NICs 

Forcmg the NICs to change a channel immediately beyond a current work may 

cause such problems as a packet loss or a deadlock problem In order to prevent the 

conceivable problems, the MIMC-SIM framework waits until a NIC completes its 

current work and assigns a channel to the NIC The actual work is handled m the 

subControl module. The mainControl module only commands a subControl 

module to set up its NIC and waits for the notification indicatmg that the 

subControl module completes settmg the NIC. 

When a node sets up its NICs appropriately, the NORM state is finally 

triggered Entermg the NORM state means that a node jams a network and 

becomes ready to commumcate via a network. In this state, nodes not only 

transmit packets, but also do some CA operations to maintam a CA protocol 

Usually, nodes keep their neighbor nodes and collect new channel mformation from 

neighbor nodes. As shown m Figure 5 2, the NORM state goes back to the ASSIGN 

state periodically, or especially when a node has a broken lmk with its parent node 

Since nodes update informat10n of their neighbor nodes m the NORM state, nodes 

need to re-estimate their channels and routmg based on the new updated 

mformation periodically In addit10n, the broken lmk to a parent node makes a node 

unable to connect to a gateway, and it decreases the throughput of a network. 

Thus, it is necessary to have the routme to go back to the ASSIGN state so that 



nodes are able to re-estimate their channels and routing for applymg new channel 

mformation and recovermg their default routes 

5.2 Commanding CA Operations 
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In MIMC networks, m order to manage CA protocols, nodes perform such CA 

operations as assignmg a channel to a NIC, scanning and probing a channel. Both 

scanning and probmg are to listen to a particular channel, but the difference 

between them is that probing broadcasts request packets durmg listenmg a channel 

while scanmng does not. In the MIMC-SIM framework, instead of the mamControl 

module executes the CA operations, the mamControl module sends CA commands 

to the subControl module Then, the subControl module actually executes the CA 

operations accordmg to CA commands. The mamControl module builds CA 

commands upon the M !Command class which the subControl module perceives 

and executes them accordingly. The MICommand class is defined as shown in 

Figure 5.3. In the MICommand class, when the priority variable is false, the CA 

c I ass lVIICommand 
public: 

public cMessage { 

enum MICornrnandKind { 
C_SETNIC, 
G_.SCAN, 
C_FROBE, 

}, 

protected 
bool priority; 

}; 

Figure 5.3: The MICommand Class 
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l\AICommand* MIMainControlBase : · 
buildSetN1cCommand ( int channel, double bitRate, bool priority) 

{ 

} 

l\AICommand *cmd = 
new l\AICommand ( "C_SETNIC" , l\AICommand : : C_SETNIC, priority ) , 

Channellnfo * ch Info = new Channellnfo (); 
chlnfo->setChannel (channel); 
chlnfo->setBitrate (b1tRate), 

cmd->setControllnfo ( chlnfo), 
return cmd; 

Figure 5 4: The buildS etN icC ommand Function 

command has higher priority to be executed The enumerat10n declaration, 

MIC ommandK ind, is used to identify kmds of CA commands. The CA command 

does not contain specific information to control CA operations Instead, it only 

carries control mformation which the subControl module performs CA operations 

accordmg to. To bmld, CA commands, the MI M ainControlBase class provides a 

set of functions: buildSetNicCommand, buildScanCommand, and 

buildProbeC ommand. 

The buildSetNicCommand function is to build a CA Command to assign a 

channel to a NIC The CA command is identified as C.BETNIC. The C_SETNIC 

class Channellnfo{ 
public· 

short channel ; 
double bitrate, 

} 

Figure 5.5: The Channellnfo Class 
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l\1ICommand* MIMamControlBase 
bmldScanCommand ( int begmChannel, int end Channel, 
double bitRate, double duration, bool priority, bool ISPmode) 

{ 

} 

if ( begmChannel > end Channel) 
opp_error (" illogical ~channeLrange"), 

l\1ICommand *cmd = 
new l\1ICommand (" C-8CAN" , l\1ICommand .. C-8CAN, pr 1 or it y ) , 

ScanControllnfo * ctrl = new ScanControllnfo (); 
for ( int 1=begmChannel, 1<=endChannel, 1++){ 

} 

Channellnfo * chinfo = new Channellnfo (), 
chinfo->setChannel ( i); 
chinfo->setBitrate (bitRate); 
ctrl->addChannelinfo ( chinfo), 

ctrl ->setDurat1on (duration); 
ctr 1 ->setProm1scuousMode ( 1sPmode) ; 

cmd->setControllnfo ( ctrl), 
return cmd; 

Figure 5 6 The buildScanCommand Function 

command carries a channel mformat10n which is defined in the Channellnfo class 

The Channellnfo class is declared as shown rn Figure 5.5 and used to contarn a 

channel number and its data rate When the subControl module receives the 

C_SETNIC command, it retrieves the channel mformat10n from the command, and 

assigns a channel to its NIC accordrng to the channel mformat10n This funct10n is 

usually called rn the SETNIC state Figure 5 4 shows the implementation of the 

buildS etN icC ommand function 

The buildScanCommand function is to bmld a CA command to scan a set of 

channels The CA command is identified as C_SCAN. The C_SCAN command 

carries a control mformation defined rn the ScanControlinfo class. The 
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ScanControllnfo class is defined as shown m Figure 5.7 and used to control not 

only scannmg, but also probmg. The control information contams a series of 

channels, bit rate of channels, and durat10n of scanning each channel In addition, it 

can enable scanning m promiscuous mode. The subControl module scans accordmg 

to the control mformat10n that the C_SCAN command carries Figure 5 6 shows the 

implementation of the buildScanCommand function. 

class ScanControlinfo{ 
public. 

} 

std · vector<Channellnfo *> ChannellnfoSeq, 
bool promiscuousMode; 
double duration, 
cMessage *ProbeMsg, 
int repeatMsgTime, 

Figure 5.7. The ScanControllnfo Class 

MlCommand* MIMamControlBase. 

{ 

} 

bmldProbeCommand ( int begmChannel , int end Channel, 
double bitRate, double duration , cMessage* msg, 
int repeatMsg, bool priority , bool isPmode) 

MlCommand *cmd = buildScanCommand ( begin Channel , end Channel 
bitRate, duration, priority, 1sPmode), 
cmd->setName("C_pRQBE"); 
cmd->setKind (MICommand c_pRQBE), 

ScanControllnfo * ctrl = 
check_and_cast <ScanControllnfo *>(cmd->getControlinfo ()), 
ctrl ->setProbeMsg (msg), 
ctrl ->setRepeatMsgTime ( repeatMsg); 

return cmd; 

Figure 5.8· The buildProbeCommand Function 
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The buildProbeCommand function is to build a CA command to probe a set of 

channels. The CA command is identified as C_FROBE. Since probmg is also to scan 

channels, the buildProbeCommand function simply calls the buildScanCommand 

function to set configuration for scannmg. Then, it attaches a packet and iteration 

number of sendmg the packet to the control mformation. The subControl module 

probes accordmg to the control information. Figure 5.8 shows the code of the 

buildProbeCommand function. Both the buildScanCommand and 

buildProbeC ommand functions are used in the SCAN state usually 

5.3 Handling Channel Management Packets 

In a MIMC network, the mainControl module builds channel management packets 

upon the MI Packet class and sends them out accordmg to a CA protocol. Figure 

5.9 shows the defimt10n of the MI Packet class It simply extends the cPacket class 

and adds one more member variable, type, indicating types of channel management 

packets. When the mainControl module receives channel management packets, it 

handles the packets m the handleM I Packet function, which is defined m the 

MI M ainControlBase class. Smee CA protocols define and handle channel 

management packets differently, the handleM I Packet funct10n is declared as a pure 

class MIPacket 
protected 

int type; 

} 

public cPacket { 

Figure 5 9· The MI Packet Class 



43 

virtual funct10n Then, a child class shall extend the base class and instantiate the 

handleM I Packet funct10n to handle channel management packets according to its 

CA protocol. 

When the mainControl module handles channel management packets, it usually 

updates the information into the neighborTable module and the routingTable 

module. The neighborTable module can be easily updated using functions provided 

by the neighborTable module. For updatmg the routingTable module, mstead of 

using the functions that the routingTable module provides, the mainControl 

module uses its own functions. updateRoute, removeRoute, updateDefaultRoute, 

which are implemented in the MIMainControlBase class. Figure 5.10 shows the 

declaration of the functions. The updateDefaultRoute function updates default 

route informat10n and marks a default host node in the neighborTable module as 

well. The updateRoute function adds or updates routing information into the 

routingTable module. The removeRoute function removes routing mformation by 

given host IP address. These functions allow developers to utilize the routingTable 

module convemently. 

class INET-.API MIMainControlBase{ 
protected 
virtual void updateDefaultRoute ( const IP Address& gateway IP, 

InterfaceEntry *ie), 
virtual void updateRoute ( const IP Address& host IP , 

const IP Address& gatewayIP, const IP Address& netMaskIP, 
InterfaceEntry * ie); 

virtual void removeRoute ( const IP Address& hostIP); 

Figure 5.10: The Declarat10n Of The Functions Updating The routingTable Module 
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5.4 Computing Channel and Route 

CA protocols have their own specific channel assignment algorithm which allows 

nodes to find the best channel and route so that CA protocols can accomplish their 

goal, max1m1zmg overall throughput of a network. In a MIMC network, when a 

node collects sufficient mformation of traffic and assigned channels from its 

neighbors, the node computes better route and a proper channel accordmg to its 

CA protocol's channel assignment algorithm In the MIMC-SIM framework, the 

channel assignment algorithm 1s performed m the mainCantrol module. More 

specifically, the assignChannelAndRoute function 1s defined to implement the 

algorithm in the MI M ainControlBase class. However, smce the channel 

assignment algorithm of each CA protocol is umque, the assignChannelAndRoute 

function 1s declared as a pure virtual function Then, a child class shall extend the 

base class and mstantiate the assignChannelAndRoute function to implement the 

channel assignment algorithm accordmg to its CA protocol. The 

assignChannelAndRoute function 1s usually executed m the ASSIGN state. 

5.5 Transmitting Packets 

In a computer network commumcation, packets are delivered with routmg 

mformation which is selected m the network layer In a MIMC network, however, 

routmg for each packet is usually chosen by a CA protocol. To achieve this, the 

MIMC-SIM framework allows the mainControl module to deal with packets for 

routing m the NORM state. This section presents how the mainControl module 
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deals with packets m order of process 

When a packet 1s delivered from the Network module for transmission, the 

mainControl module first stores the packet m dataQueue, a queue defined m the 

MI M ainControlBase class, without any routmg mformation In a MIMC network, 

CA protocols allow nodes to update the routmg table and change a default route 

frequently The frequent change of the routing table may cause that a packet 

transmission does not reflect the latest routmg table For example, suppose that a 

route of a packet 1s already chosen, and the packet waits to be delivered in a node 

Then, suddenly, the node updates its routmg table. Based on the new routmg table, 

the packet should be delivered on a different route However, because the route of 

the packet has been made already, the packet will be still delivered in the origmal 

route, which might cause a packet loss eventually. For this reason, the route of 

outgomg packets should be chosen right before they are transmitted. Hence, the 

mainControl module keeps outgoing packets m the queue without routing 

mformation until the packets are actually transmitted. 

In order to know when the outgomg packets can be actually transmitted, the 

mainControl module tracks the amount of packets that each subControl module 

can transmit at once. To do so, first, the MI M ainControlBase class defines 

requestedPacket as a vector whose element mdex matches to the mdex of 

subControl modules, and sets every element of requestedPacket to a certam 

amount of packets that a subControl module can transmit at once. When the 

mainControl module sends a packet to a subCotnrol module, the correspondmg 

element of requestedPacket is decremented. When a subControl module completes 
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a cycle of transmittmg a packet (fimshes transmission of a packet), the subControl 

module notifies the mainControl module of the completion, and the mainControl 

module mcrements the corresponding element of requestedPacket Hence, when an 

element of requestedPacket is positive, the correspondmg subControl module is 

available to transmit a packet Conversely, when the element is zero, the 

correspondmg subControl module is not capable to transmit a packet So, the 

mainControl module does not use the subControl module for transmittmg packets 

Smee each subControl module intends to handle one packet at a time, every 

element of requested packet is set to one and not mcremented over one. Moreover, 

by receivmg the notification, the mainControl module is able to know when a 

particular subControl module becomes ready to transmit another packet. 

When the mainControl module is available to send a packet out, first, the 

mainControl module checks requestedPacket to figure out which subControl 

module is available Then, the mainControl module retrieves a packet supposed to 

be transmitted via the NIC, which associates with the available subControl module, 

from dataQueue based on the routmg table When a packet is retrieved, the 

mainControl module attaches control mformat10n bmlt upon the MI PacketCtrl 

class, defined as depicted in Figure 5 11 The control mformation contams routmg 

mformat10n and channel mformat10n and mdicates importance of a packet The 

channel mformat10n is used when the mainControl module forces a packet to be 

transmitted on a particular channel The importance mdicates whether a packet is a 

non failure-free packet When a non failure-free packet transmission fails at the 

MAC layer, the subControl module will notify the neighborTable module of the 
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failure. Fmally, the mainControl module sends a packet to the subControl module 

class MIPacketCtrl{ 
protected. 

} 

cPolymorph1c * con trollnfo, 
Channellnfo * channellnfo; 
bool reliance; 

Figure 5.11· The Declarat10n Of The MIPacketCtrl Class 

void MIMainControlBase.: sendDataPacket () 
{ 

if ( isErnptyQueue ()) return; 

for(int 1=0, i<nurnN1cs; i++) 
if(requestedPacket[1] > O){ 

cMessage *rnsg = dequeue ( i), 
if ( rnsg) 

sendDown ( rnsg , i ) ; 
} 

} 

Figure 5 12. Implementation Of The sendDataPacket Funct10n 

In the MI M ainControlBase class, the sendDataPacket function is defined and 

implemented to handle packet transmission as the aforementioned process. Figure 

5.12 is the implementat10n of the sendDataPacket function. In Figure 5.12, the 

dequeue function is to retrieve a packet as explamed above. In a child class of the 

MIMainControlBase class, the sendDataPacket funct10n will be simply called for 

a packet transmission. 



CHAPTER 6 

SUB CONTROL 

In this chapter, the design of the subControl module is presented m detail. 

6.1 Work Flow 

The subControl module is designed to perform common CA operat10ns, such as 

assignmg a channel, scannmg and probing a set of channels, and transmittmg 

packets on the correct channel. Assigmng a channel means to tune a NIC mto a 

certam channel Scannmg means to listen to a channel for a certam time Probmg is 

basically similar to scanning, but the subControl module broadcasts packets before 

listening to each channel. Ttansmittmg packets on the correct channel means to 

ensure that packets are transmitted on the correct channel of the nght next hop 

node. Smee such CA operations are mdependent to CA protocols, the subControl 

module provides such CA operations as tool kits that vanous CA protocols can 

utilize. Developers only need to decide how to use these tool kits m CA protocols, 

mstead of mixing these operations withm CA protocols 

In order to perform CA operations, the subControl module mteracts with the 

mainControl module and its correspondmg NIC Figure 6 1 shows how the 

subControl module mteracts with other modules to perform CA operations 

F1rst, the subControl module receives CA commands and packets from the 
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Figure 6.1: The Flow Of Commands Among Modules 
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mainControl module to activate CA operations. Although the subControl module 

performs the CA operations, it does not decide when to conduct CA operations. 

Instead, the subControl module only carries CA operations by receiving CA 

commands or packets from the mainControl module. In a MIMC network, CA 

operations are determined by a CA protocol. Since the mainControl module 

implements a CA protocol, the mainControl module takes charge of sending proper 

CA commands and packets in a proper manner according to a CA protocol. 

According to the CA commands and packets, the subControl module executes CA 

operations. 

When the subControl module executes CA operations, it controls its 

corresponding NIC by sending a command. The command is to change such channel 

information as channel number and bit rate of a NIC. The subControl module 

implements the sendRadioConfigM sg function which builds the command. In the 



void sendRad10Conf1gMsg ( Channellnfo * channellnfo) 
{ 

} 

if ( channellnfo = NULL) 
return, 

PhyControlinfo *phyCtrl = new PhyControlinfo (), 
phyCtrl->setChannelNumber ( channelinfo->getChannel ()), 
phyCtrl->setB1trate ( channelinfo->getBitrate ()); 

cMessage *msg = 
new cMessage (" Rad10ConfigMsg" , PHY_C_CONFIGURERADIO), 

msg->setControlinfo (phyCtrl), 

sendDown ( msg ) , 

Figure 6 2· The sendRadwConfigM sg Function 
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sendRadwConfigM sg funct10n, the command is simply bmlt as a message and 

identified as PHY_C_CQNFIGURERADIO Such command will be perceived as 

a command to change a channel and its bit rate m the mac module However, the 

command only carnes control mformation which contains specific channel 

mformat10n The control mformation is bmlt upon the PhyControlinfo class 

(provided m INET), which can be correctly executed in the AbstractRadw class, 

implementmg the radio module m the wlan module. Figure 6.2 shows the 

implementation of the sendRadwConf igM sg function. When a NIC receives the 

command, it changes its channel mformation accordmgly and notifies a subControl 

module When the subControl module fimshes executmg a CA operation, it notifies 

the mainControl module about the complet10n of a CA operat10n 
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Figure 6 3 The State Diagram Of The subControl Module 

6.2 State Machine 

The subControl module performs CA operations accordmg to a state machme. 
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Figure 6 3 shows the state diagram of the subControl module In the SLEEP state, 

the subControl module is imtiahzed In the IDLE state, the subControl module is 

idle In the CONDUCT state, other states are tnggered to perform CA operations 

accordmgly. The SETNIC state is to assign a channel. The WAITSCAN and SCAN 

states are to perform scannmg and probmg The WAITTRANSMIT and 

TRANSMIT states are to transmit packets on the correct channel 
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6.2.1 SLEEP and IDLE 

The SLEEP state 1s the begmnmg state of the state diagram m Figure 6.3. In the 

SLEEP state, the subControl module 1s m1tiahzed and discards packets from other 

modules In s1mulat10n, even though the mainC antral module 1s m its INIT state, 

NICs (the wlan modules) still receive packets from other nodes and forward packets 

to the M !Control module. If the mainControl module starts up while a NIC 1s 

receiving a packet, the mainControl module should discard the packet because the 

packet was received before the actual start time of a node rn simulation However, 

the mainControl module still accepts the packet and deals with 1t Such acceptance 

may brmg rnaccurate results for the simulat10n of CA protocols In order to prevent 

the problem, the subControl module discards packets ahead of the mainControl 

module However, mother than the SLEEP state, the subControl module forwards 

packets to the mainControl module immediately when packets are received from its 

correspondmg NIC In the SLEEP state, the subControl module 1s triggered to the 

CONDUCT state by receivmg a CA command from the mainControl module. 

Once the mainControl module starts, 1t commands the subControl module to 

perform a CA operation So, when the subControl module receives a CA command 

m the SLEEP state, 1t assumes that the mainControl module has been started, 

then starts its process as well 

In the IDLE state, the subControl module 1s simply wa1tmg for receivmg CA 

commands and packets When the subC antral control receives them from the 

mainControl module, the subControl module stores them ma queue properly and 



void MISubControl · enqueueOperat1on (MICommand *Cmd) 
{ 

} 

if(cmd->getPriority ()) 
$h1ghCommandQueue$. insert ( cmd), 

else 
$lowCommand Queue$ rn s er t ( cmd ) ; 

Figure 6 4· The Set Of Queues The subControl Mamtams 
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enters the CONDUCT state When the subControl module enters the IDLE state, 

it notifies the mainControl module of that, the subControl module ism the IDLE 

state. This is because the mainControl module will want to know when the 

subControl module becomes idle. 

When the subControl module receives CA commands, regardless of a state, it 

stores CA commands mto two different queues, highCommandQueue and 

lowCommandQueue, accordmg to their pnonties The subControl maintams 

highCommandQueue and lowCommandQueue to buffer high pnonty CA 

commands and low priority CA commands respectively Smee high pnonty CA 

commands are supposed to be handled pnor to low pnonty CA commands, the 

subControl module executes CA commands buffered m highCommandQueue first 

If there is no CA commands m highCommandQueue, then the subControl module 

proceeds CA commands from lowCommandQueue. The pnonty of a CA command 

is determmed m the mainControl module according to a CA protocol. In the 

subControl module, the enqueueOperation function stores CA commands mto a 

proper queue as shown in Figure 6.4 

In addition, The subControl module mamtains two more queues, 
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highDataQueue and lowDataQueue, to maintain packets. The subControl module 

receives two kmds of packets from the mainControl module channel management 

packets and data packets In a MIMC network, for nodes to mamtam a CA 

protocol, channel management packets should take precedence over data packets In 

all states, except the SLEEP state, when the subControl module receives packets, it 

buffers channel management packets mto highDataQueue and data packets mto 

lowDataQueue. The subControl module transmits the packets m highDataQueue 

before the packets m lowDataQueue Hence, whenever a channel management 

packet arrives, the subControl module sends it out first, even if the packet arrives 

later than data packets. In the subControl module, the enqueueData function 

stores packets mto a proper queue as shown m Figure 6 5. 

void MISubControl. enqueueData ( cMessage *msg) 
{ 

} 

if ( dynam1c_cast<MIPacket *>(msg)) 
$h1ghDataQueue$ rnsert (msg); 

else 
$lowDataQueue$ rnsert (msg), 

Figure 6 5 The Set Of Queues The subControl Mamtams 

6.2.2 CONDUCT 

In the CONDUCT state, the subControl module checks the aforementioned queues 

and leads to a proper state to perform CA operations. The subControl module 

handles CA commands pnor to packets, because such CA operations as assignmg, 

scannmg, and probmg a channel have higher pnonty than packet transmission to 

maintain CA protocols. So, m the CONDUCT state, the subControl module checks 



class MISubControl{ 
protected 

} 

Channellnfo *newChannellnfo, 
ScanControllnfo *ScanCtrllnfo, 
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Figure 6 6. Member Variables To Mamtam Control Informat10n In The subControl 
Module 

the command queues (highCommandQueue and lowCommandQueue) first and the 

data queues (highDataQueue and lowDataQueue) later The subControl module 

retrieves a CA command from the command queues, if any If the command is the 

C_SETNIC command, assignmg a channel to a NIC, the subControl module enters 

the SETNIC state If the command is either a C_SCAN command or a C_PROBE 

command (Section 5.2) to scan or probe channels, the WAITSCAN state is 

triggered. If no commands are m the command queues, the subControl module 

retrieves a packet from the data queues, if any. Then, the subControl module 

triggers the WAITTRANSMIT state to transmit the packet 

When the subControl module leads CA commands to a proper state m the 

CONDUCT state, it retrieves control mformat10n from CA commands to perform 

CA operat10ns properly CA commands carry control informat10n to control CA 

operat10ns (Sect10n 5 2) The subControl module mamtams two variables, 

newChannellnfo and scanCtrllnfo, to keep the control mformat10n They are 

defined as shown m Figure 6 6 The newChannellnfo variable keeps the control 

mformation of the C_SETNIC command. The scanControllnfo variable keeps the 

control mformation of both the C_SCAN and c_pRQBE commands Such variables 
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Figure 6. 7: The Inside Structure Of The CONDUCT State In The subControl Module 

are used in the SETNIC, WAITSCAN, and SCAN states to perform CA operations 

properly. 

In addition, the subControl module maintains the channel assigned to its 

corresponding NIC in the CONDUCT state. If all the queues are empty, which 

means the subControl module does not have any work to do, then the subControl 

module tries to preserve an assigned channel of its corresponding NIC before 

entering into the IDLE state. After CA operations are performed, a channel of the 

NIC might have been changed to a different channel from its assigned channel. The 

subControl module retrieves a channel assigned to its corresponding NIC from the 

nicTable module and checks whether the NIC's current channel is equal to the 

assigned channel. If they are same, the subControl module enters into the IDLE 
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state. Otherwise, the subControl module commands the NIC to change to the 

assigned channel and waits until the channel is actually assigned to the NIC When 

the subControl module is notified of that, the channel is correctly assigned to the 

NIC, it enters the CONDUCT state once again The re-entrance is because the 

subControl module could receive CA commands and packets from the mainControl 

module while waitmg for the assignmg a channel operation. However, smce a 

channel is assigned only to a fixed NIC, the subControl module preserves an 

assigned channel only if its correspondmg NIC is a fixed NIC Figure 6. 7 shows the 

mside structure of the CONDUCT state, which is depicted accordmg to Section 8 3 

6.3 SETNIC 

In the SETNIC state, the CA operation to assign a channel to a NIC is performed 

This state is triggered by the C_SETNIC command. Once the subControl module 

enters the SETNIC state, it checks whether the channel, kept m newChannellnfo, 

is equivalent to the current channel of the NIC. If so, the subControl module 

notifies the mainControl module of that, a channel is assigned to a NIC because 

the same channel has been already used ma NIC. Then, it goes back to the 

CONDUCT state Otherwise, the subControl module sends a command to change a 

channel to a NIC and waits until a NIC actually assigns a channel When the 

subControl module is notified of that a NIC correctly assigns a channel, it updates 

the new channel mformat10n mto the nicTable module and notifies the 

mainControl module of that, it has assigned a channel. Then, the subControl 

module goes back to the CONDUCT state 
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6.4 WAITSCAN and SCAN 

In the WAITSCAN and SCAN states, the two CA operations, scannmg and 

probmg, are performed. Scannmg a channel is to tune a NIC to a particular channel 

and hsten to the channel. Probing a channel is also to tune a NIC to a particular 

channel and hsten to the channel Durmg probmg, packets are sent to probe a 

channel before hstenmg However, smce the two CA operations have the same 

procedure, tunmg and hstenmg, both CA operations are performed m the same 

states, WAITSCAN and SCAN. 

In the WAITSCAN and SCAN states, the subControl module controls the CA 

operations by scanControllnfo which contams a senes of channels, data rate of 

channels, durat10n for listening to each channel, and mdication to activate 

promiscuous mode In addition, scanControllnfo can contam additional 

mformation, such as a packet and iterat10n number of sendmg the packet for 

probmg. With scanControllnfo, the subControl module allows for scannmg or 

probing a senes of channels at once 

In the WAITSCAN state, the subControl module tunes its corresponding NIC 

to a particular channel. When the subControl module enters m this state, it 

compares the current channel of the NIC with the first channel out of channels that 

scanControllnfo contams. If they are same, the subControl module directly enters 

the SCAN state. Otherwise, the subControl module sends a command to tune a 

NIC to the channel. Then, it enters the SCAN state when the subControl module is 

notified that a NIC correctly tunes the channel 
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Figure 6.8: The Inside Structure Of The SCAN State In The subControl Module 

In the SCAN state, the subControl module actually performs the CA 

operations, scanning and probing. Figure 6.8 shows the inside structure of the 

SCAN state, which is depicted according to Section 8.3. When the subControl 

module enters in the SCAN state, first, it sets a timer to be expired in duration of 

listening. For the duration of listening, scanning and probing are performed. For 

scanning, the subControl module simply waits to receive packets. For probing, the 

subControl module sends the packet, which scanControllnfo contains as many 

times as the number that scanControlinf o indicates. After sending enough 

packets, the subControl module waits to receive packets. If the subControl module 

receives packets, it forwards the packets to the mainControl module. When the 
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timer 1s expired, the subControl module checks whether the CA operation 1s 

performed on all the series of channels that scanControlinf o md1cates. If not, the 

subControl module goes back to the WAITSCAN state to perform the same CA 

operation for the next channel. Otherwise, it termmates a CA operat10n and enters 

mto the CONDUCT state. 

6.5 WAITTRANSMIT, TRANSMIT 

In the WAITTRANSMIT and TRANSMIT states, the subControl module 

transmits packets on the correct channel In WAITTRANSMIT state, the 

subControl module tunes its corresponding NIC to a particular channel for a packet 

transmiss10n To do so, first, the subControl module retrieves a proper channel 

mformat1on on which the packet needs to be transmitted To retrieve a proper 

channel mformat10n, the subControl module implements the getChannelinfo 

funct10n as shown m Figure 6 9 In the getChannellnfo function, the subControl 

module gets a channel mformat1on for a packet transm1ss10n m the following order 

First,' the subControl module gets the channel mformat10n from the control 

mformat10n of a packet, because the maznControl module can designate a specific 

channel for a packet Second, the subControl module gets the channel information 

from the nicTable module for broadcast packets when its NIC is a fixed NIC. When 

a channel is not specified for a broadcast packet, the subControl module assumes 

that a packet is broadcasted on its NIC's assigned channel. Fmally, the subControl 

module gets the channel mformation from the neighborTable module for umcast 

packets. The neighborTable module provides mapping between destmat10n MAC 



Channellnfo * MISubControl:: getChannellnfo ( cMessage *msg) 
{ 

} 

MIPacketCtrl * miCtrl = 
check_and_cast <MIPacketCtrl *>(msg->getControllnfo ()); 

MACAddress macAddr = 
getDestMAC(miCtrl->getControllnfo ()); 

Channellnfo * chlnfo = new Channellnfo (); 

if ( miCtrl->getChannellnfo ()) 
* ch Info = * miCtrl->getChannellnfo (); 

else if(macAddr. isBroadcast () && nicEntry->isFixed ()) 
*Chlnfo = nicEntry->getChannellnfo (); 

else if (!macAddr. isBroadcast ()) 
* chlnfo = nbT->getChannellnfoByMAC ( macAddr); 

return chlnfo; 

Figure 6.9: Implementation Of The getChannel Function 
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address and proper channel information. (In most of cases, a proper channel can be 

found in the getChannellnf o function. However, if any proper channel could not 

be found, a packet will be transmitted in a NI C's current channel.) 

Once the subControl module gets the channel information for a packet, it 

compares the current channel of the NIC with the channel. If they are same, the 

subControl module directly enters the TRANSMIT state. Otherwise, the 

subControl module sends a command to tune a NIC to the channel. Then, it enters 

into the TRANSMIT state when the subControl module is notified of that, a NIC 

correctly tunes the channel. 

In the TRANSMIT state, the subControl module sends a packet to its NIC for 

transmission. If the NIC successfully transmits a packet, it notifies the subControl 

module of the success. Then, the subControl module enters into the CONDUCT 

state. However, if the NIC notifies the subControl module of failure of a packet 
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transmission, the subControl module notifies the neighborTable module of the 

failure dependmg on the importance of the packet If the packet is non failure-free, 

the subControl module notifies the neighborTable module about the failure. 

Otherwise, the subControl module does not. Whether a packet transmission 

succeeds or not, the subControl module notifies the mainControl module about the 

completion of a packet transmission before entering the CONDUCT state 

When the CA operation, scannmg or probing, is commanded m the promiscuous 

mode, the subControl module notifies the mainControl module with received 

packets In INET, when the wlan module receives packets which are not destmed to 

the wlan module, it always sends a notificat10n with the received packets regardless 

of the promiscuous mode When the subControl module receives the notification m 

the promiscuous mode, the subControl module notifies a notificat10n to the 

mainControl module with the packets passed with the notification so that the 

mainControl module can handle the packets. 



CHAPTER 7 

SUPPORTIVE MODULES 

This chapter presents the design of the neighborTable module and the nicTable 

module in detail. Also, this chapter discusses the necessary modification in some 

modules in INET to add MIMC support. 

7.1 neighborTable 

In MIMC networks, CA protocols ask nodes to collect information of neighbor 

nodes. The neighborTable module is designed to maintain information of neighbor 

class INET_API MINbEntryBase 
{ 
protected: 

}; 

IP Address ipAddr; 
std:: vector<Niclnfo *> nicCache; 
int hopDistance; 
int mainNiclndex; 

class INET_API MINbTableBase 
{ 
protected: 

} 

typedef std:: vector<MINbEntryBase *> Nb Vector; 
Nb Vector nbCache; 

Figure 7.1: Declaration Of The MI NbEntryBase And MI NbTableBase Classes 
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class Niclnfo { 
public: 

MACAddress mac; 
Channellnfo channellnfo; 

} 

Figure 7.2: Declaration Of The Niclnfo Class 

64 

nodes. The neighborTable module is built upon the MI NbTableBase class with the 

MINbEntryBase class. Figure 7.1 shows the declaration of the MINbTableBase 

class and the MI NbEntryBase class. The MI NbTableBase class maintains 

information of neighbor nodes in a vector which is composed of instances of the 

MI NbEntryBase class. The MI NbEntryBase class is used to store actual 

information of a neighbor node. Basically, the MI NbEntryBase class is 

implemented to store a neighbor node's IP address, MAC addresses, assigned 

channels, and hop distance. A MAC address and an assigned channel are maintained 

together in the Niclnf o class defined as shown in Figure 7.2. Since the MIMC-SIM 

framework assumes that each node is identified by the unique IP address, the unique 

IP address is considered as a primary key to distinguish among neighbor nodes. 

In addition, the neighborTable module is designed to include the following 

major features. First, the neighborTable module provides a set of functions which 

retrieve neighbor information accordingly. Second, the neighborTable module 

maintains neighbor nodes properly by collaborating with other modules. Finally, 

the neighborTable module maps among IP addresses, MAC addresses, and channel 

information. 



7.1.1 Access Retrieval Functions 

The neighborTable module provides a set of functions to update and retrieve 

information of neighbor nodes. Figure 7.3 shows all the functions that the 

class INET_API MINbTableBase 
{ 
public: 

}; 

virtual int getNumNeighbors ( int hop=0); 

virtual MINbEntryBase* operator[]; 
virtual MINbEntryBase* get Entry By Index ( int index); 
virtual MINbEntryBase* getEntryByIP ( const IP Address& ip); 
virtual MINbEntryBase* getEntryByMAC ( const MACAddress& mac); 

virtual 
virtual 
virtual 
virtual 

virtual 
virtual 

virtual 

virtual 
virtual 

virtual 

virtual 
virtual 
virtual 
virtual 

virtual 
virtual 
virtual 
virtual 

const IP Address& getIPBylndex ( int index); 
const MACAddress& getMACBylndex( int index); 
const Channellnfo& getChannellnfoByindex ( int index); 
int getHopDistanceBylndex ( int index); 

const IP Address& getIPByMAC( const MACAddress& mac); 
const Channellnfo& getChannellnfoByMAC 

( const MACAddress& mac) ; 
int getHopDistanceByMAC ( const MACAddress& mac); 

const MACAddress& getMACByIP( const IP Address& ip); 
const Channellnfo& getChannellnfoByIP 

( const IP Address& ip); 
int getHopDistanceByIP ( const IP Address& ip); 

MINbEntryBase* getGatewayEntry (); 
const IP Address& getIPOfGatewayEntry (); 
const MACAddress& getMACOfGatewayEntry (); 
const Channellnfo& getChannellnfoOfGatewayEntry (); 

void setGatewayEntry ( const IP Address& ip); 
MINbEntryBase* updateEntry (MINbEntryBase Hntry); 
void addEntry ( MINbEntryBase Hn try); 
void removeEntry(MINbEntryBase *entry); 
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Figure 7.3: The Set Of Functions The neighborTable Module Provides To Update 
And Retrieve Information Of Neighbor Nodes 
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neighborTable module provides. For other modules to use the set of functions, the 

neighborTable module is directly accessed by calling an access function. The 

neighborTable module does not exchange messages to interact with other modules. 

Instead, other modules call an access function to access the neighborTable module. 

The MIMC-SIM framework defines the MI NbTableAccess class, which is built 

upon the M oduleAccess class. The MI NbTableAccess class provides the access 

function which returns a pointer of the neighborTable module. Once other modules 

get the pointer of the neighborTable module, they can use the set of functions that 

the neighborTable module provides. Figure 7.4 shows the code of how the 

neighborTable module is accessed by calling the access function. 

MINbTableBase *nbT; 
nbT = MINbTableAccess (). get (); 

Figure 7.4: Access Function Of The neighborTable Module 

7.1.2 Maintenance of neighbor nodes 

The neighborTable module collaborates with the subControl and mainControl 

modules to maintain neighbor nodes accordingly and affects the routingTable 

module and the mainControl module when a neighbor node is removed. Basically, 

the neighborTable updates information of neighbor nodes by the mainControl 

module. When the mainControl module receives channel management packets, the 

mainControl module updates the information that the packets contain into the 

neighborTable module. The neighborTable module removes information of neighbor 

nodes in two different cases. One case is when a subControl module fails a packet 



transmission to a specific neighbor node The other case is that mformation of a 

neighbor node has not been updated for long penod. 

67 

The neighborTable module gets rid of a neighbor node to which the subControl 

module fails to transmit a packet. When the subControl module fails transmission 

for a non failure-free packets, it notifies the neighborTable module about the failure 

When the neighborTable module is notified about the failure, it removes the 

neighbor node which was the next hop node of the failure transmiss10n. In the 

MIMC-SIM framework, the failure of non free-failure packet transmiss10n means 

that the link with the next hop node is broken, and the next hop node is not a 

neighbor node any longer. Hence, when the neighborTable module is notified about 

the failure, it evaluates a MAC address of a next hop node and removes a neighbor 

node which associates with the MAC address 

In addition, the neighborTable module does not keep mformat10n of a neighbor 

node permanently. Instead, the neighborTable module removes a neighbor node if it 

has not been updated for a certam time In a MIMC network, nodes exchange 
( 

channel management packets with each other frequently Based on the channel 

management packets, nodes find and update their neighbor nodes However, if a 

node has not received channel management packets from a neighbor node for a 

certam time-the default value is 180 seconds in the MIMC-SIM framework-smce 

the last update of the neighbor node, the node regards that the neighbor node 

disappeared, and information of the neighbor node is invalid. The neighborTable 

module sets a timer for each neighbor node when informat10n 1s entered or updated 

When a timer is expired, the associatmg neighbor node is removed from the 



68 

neighborTable module. 

When the neighborTable module removes a neighbor node, it updates the 

routingTable module accordingly. The routingTable module maintains a routing 

table in which destination IP addresses are corresponding to next hop IP addresses. 

Since a next hop node is considered as one of the neighbor nodes in a MIMC 

network, next hop IP addresses are also maintained in the neighborTable module, 

and a node which is not maintained in the neighborTable module cannot be a next 

hop node in a routing table. In other words, next hop node IP addresses in a routing 

table must be maintained in the neighborTable module as neighbor nodes' IP 

addresses. Where X is a set of IP addresses of neighbor nodes in the neighborTable 

node, and Y is a set of next hop IP addresses in the routingTable module, the 

relation between X and Y is formalized as X ;;2 Y. Hence, when the neighborTable 

node removes a neighbor node, it also removes the route whose next hop IP address 

is the same as the neighbor node's IP address from the routingTable module. 

In addition, when the neighborTable module removes a neighbor node, it notifies 

the mainControl module about the removal, so that the mainControl module can 

cope with removals of neighbor nodes, especially a default route node. When the 

mainControl module decides new routing, it also indicates which neighbor node is 

used for a default route in the neighborTable module. When the neighborTable 

module removes a neighbor node, it notifies the removal differently depending on 

the neighbor node. If the default route node is removed, the neighborTable module 

notifies the mainControl module of the removal in a specific category, 

NF_NBTABLE_GWENTRY_DISMISSED. Otherwise, when other neighbor nodes 



are removed, the nezghborTable module notifies the mainControl module m the 

category, NF _NBTABLE__ENTRY _DISMISSED 

7.1.3 Mapping information of neighbor nodes 
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The nezghborTable module mamtams mformation of neighbor nodes by mappmg 

between IP addresses and MAC addresses and between MAC addresses and 

assigned channels So, such mformation as a MAC address and an assigned channel 

can be retrieved based on an IP address and a MAC address respectively. Smee the 

nezghborTable module associates an IP address with multiple MAC addresses, it 

mamtams a mam MAC address which is primarily used to commumcate with a 

specific neighbor node The MI NbEntryBase class defines a member variable, 

mainNzclndex, which indicates the mdex of a mam NIC The mam MAC address 

of each neighbor node is determrned accordrng to a CA protocol. 

7 .2 nicTable 

The nzcTable module is designed to marntarn such mformation of NICs as roles, 

MAC address, and assigned channel The nzcTable module 1s bmlt upon the 

MINzcTableBase class with the MINicEntryBase class Figure 7 5 shows the 

implementation of the MINzcTableBase and MINzcEntryBase classes. The 

MINzcTableBase class marntams rnformat10n of NICs ma vector, NicTableCache, 

which 1s composed of instances of the MINzcEntryBase class The 

MINzcEntryBase class is used to store actual mformation of a NIC. When the 

nzcTable module 1s m1tiahzed, the MI NzcTableBase class retrieves a MAC address 



class INET_API MIN1cEntryBase{ 
protected· 

} ' 

int category, 
int type, 
N1clnfo mclnfo, 

class INET_API MIN1cTableBase{, 
public 

typedef std:· vector<MIN1cEntryBase *> MIN1cVector, 

protected. 
MIN1cVector NicTableCache, 

} 
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Figure 7 5: Implementation Of The MINicEntryBase And MINicTableBase 
Classes 

of each NIC from the inter faceTable module and generates an mstance of the 

MINicEntryBase class based on the MAC addresses 

In addition, when the nicTable module is mitialized, the classifyNics funct10n 

is executed to allot roles of NICs. The classifyNics funct10n is defined in the 

MINicEntryBase class The classifyNics function allots roles of NICs in two 

different member variables of the MIN icEntryBase class, category and type The 

category variable is to categorize NICs mto a fixed NIC or a switchable NIC The 

type variable is to give a specific role that a CA protocol defines to a NIC. When 

the nicTable module is extended for a specific CA protocol, the classifyNics 

funct10n shall be re-implemented to allot the category and the type of NICs 

according to a CA protocol. Figure 7 6 shows an example of 1mplementat10n of the 

classifyNics function 



void classifyNics () 
{ 

} 

NicTableCache [O]- > set Category (FIXED); 
NicTableCache [O]-> set Type (RECV); 

NicTableCache [1]-> set Category (SHIFT); 
NicTableCache [1 ]- > set Type (SEND); 

Figure 7.6: An Example Of The classifyNics Function 
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The nicTable module dose not exchange messages with other modules. Instead, 

the nicTable module is accessed by calling an access function. The MIMC-SIM 

framework defines the MI NicTableAccess class, which is built upon the 

M oduleAccess class. The MIN icTableAccess class provides the access function 

which returns a pointer of the nicTable module. Figure 7.7 shows the code of how 

the nicTable module is accessed by calling the access function. Through the access, 

the set of functions that the nicTable module provides to retrieve information of 

NICs (Figure 7.8) can be used. 

MINicTableBase * nicT; 
nicT = MINicTableAccess (). get (); 

Figure 7.7: Access Function Of The nicTable Module 



class INET_API MINicTableBase{ 
public: 

}; 

virtual int getNumOfNics(); 

virtual MINicEntryBase* getEntryBylndex ( int index); 
virtual MINicEntryBase* operator[] (int index); 
virtual MINicEntryBase* getEntryByMAC (MACAddress& mac); 
virtual MINicEntryBase* getEntry ByCategory ( int category); 
virtual MINicEntryBase* getEntryByType ( int type); 

virtual In terfaceEntry * getinterfaceEntryByindex ( int index); 
virtual In terfaceEntry * get In terfaceEn try By MAC 

(MACAddress& mac); 
virtual In terfaceEntry * get In terfaceEn try ByC a tegory 

( int category); 
virtual In terfaceEntry * getinterfaceEntryByType ( int type); 

virtual const Niclnfo& getNiclnfoByindex ( int index); 
virtual const Niclnfo& getNiclnfoByMAC (MACAddress& mac); 
virtual const Niclnfo& getNiclnfoByCategory ( int category); 
virtual const Niclnfo& getNiclnfoByType ( int type) ; 

virtual const MACAddress& getMACByindex( int index); 
virtual const MACAddress& getMACByCategory( int category); 
virtual const MACAddress& getMACByType( int type); 

virtual const Channellnfo& getChannellnfoBylndex ( int index); 
virtual const Channellnfo& getChannellnfoBy MAC 

( MACAddress& mac) ; 
virtual const Channellnfo& getChannellnfoByC a tegory 

( int category); 
virtual const Channellnfo& getChannellnfoByType ( int type); 
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Figure 7.8: The Set Of Functions The nicTable Module Provides To Update And 
Retrieve Information Of NICs 
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7.3 Modification in INET 

The MIMC-SIM framework modifies some modules in INET to support the MIMC 

network simulation. 

7.3.1 Network 

Although the network module represents the network layer and is not part of the 

M !Control module , in order to let the M !Control module handle the ARP 

protocol mechanism for CA protocols , the network module needs to be modified 

slightly. Since CA protocols replace the ARP protocol with mapping between IP 

addresses and MAC addresses, the MIMC-SIM framework does not need to have the 

ARP process in the network layer. Thus , in the MIMC-SIM framework, the arp 

module is removed from the network module as shown in Figure 7.9. Compared to 

the original network module in Figure 3.3(a) where the ip module sends outgoing 

packets to the arp module, the ip module in the new network module 

communicates with the M !Control module directly. 

Figure 7.9: The Structure Of The network Module In The MIMC-SIM Framework 



7.3.2 ChannelControl 

The channelControl module mamtams neighbor nodes ma network. It gets 

informed about the location of nodes and determines which nodes are within 

commumcat10n range This information is used by the radio modules at 

transmissions. The channelControl module is bmlt upon the ChannelControl 

class The ongmal class assigns and mamtams one channel per node. However, m 

MIMC networks, multiple channels are assigned to multiple radios (mcluded m 

NICs) m a smgle node. The class is modified to give each node a list of radios, so 

that multiple channels and radios can be considered for each node. 

7.3.3 Radio 
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The radio module is built upon the AbstractRadw class which implements wireless 

commumcation at the physical layer When the radio module changes its channel to 

a new one while it is receivmg, it should clear its past states so that new receivmg 

and transmittmg procedures can be started However, the clearmg past states was 

not correctly implemented in the AbstractRadw class. In addition, the radio 

module shall change the data rate of a channel as well. Even though the 

AbstractRadio class implements a funct10n to change the data rate of a channel, it 

did not execute the function when the radio module is asked to change the data 

rate of a channel The AbstractRadio class is modified to change a channel and its 

data rate accordingly. 

The ChannelAccess class 1s a parent class of the AbstractRadio class It 1s 
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designed to support packet transm1ss10n among neighbor nodes The class retrieves 

neighbor nodes from the channelControl module and delivers a packet to the nodes 

Smee the ChannelControl class is modified to allow nodes to assign multiple 

channels, the ChannelAccess class 1s also modified to coordmate with the 

channelControl module The origmal ChannelAccess class delivers a packet based 

on a node. The modified ChannelAccess class delivers a packet based on a NIC, so 

that a packet can be delivered to NICs on the same channel of a sendmg NIC. 

7.3.4 Mgmt 

The mgmt module 1s built upon the J eee80211M gmt class The original class does 

not allow for rece1vmg a command However, in MIMC networks, the subControl 

module sends a command to the mgmt module to change a channel of a NIC. The 

class is modified to receive a command and forward 1t to a lower module, the mac 

module 

7.3.5 Mac 

The mac module 1s bmlt upon the J eee80211M ac class which implements the 

IEEE802.11 MAC protocol. In the origmal class, it 1s possible that the radio 

module is asked to change its channel while the mac module 1s still m wa1tmg 

states, such as the DEFER and BACKOFF states of the IEEE802 11 MAC 

protocol. Apparently, the rad10 shall only change its channel when no packet 1s 

wa1tmg for transmission in MAC, so that a waiting packet can be transmitted m its 

expected channel The class is modified accordmgly 



CHAPTER 8 

STATE MACHINE 

In this chapter, a set of predefined macros, FSME (Enhanced Fmite State 

Machme), which is used to implement a state machine in the MIMC-SIM framework 

is introduced Also, the actual implementat10n of a state machme usmg FSME is 

shown in this chapter. 

8.1 Enhanced Finite State Machine 

In the MIMC-SIM framework, FSME provides a generic and flexible code structure 

to implement a state machme of a CA protocol A process of a protocol can be 

represented in a state machme logically A state machine is composed of a number 

of states, transitions among states, and actions m states Such components of a 

state machine can be described in a state diagram To implement a state machme m 

a constant code structure, the MIMC-SIM framework provides an 1mplemental 

framework with a set of predefined macros, FSME. FSME 1s mspired by FSMA 

(Advanced Fmite State Machme), provided m the INET distributed package [3] 

Both FSMA and FSME provide a set of macros that mampulate the variable bmlt 

upon the cFSM class, which maintams a state of a state machme. Usmg the 

macros, a state machine can be implemented in a constant code structure. However, 

FSMA does not provide a complete set of macros to express a complete set of logic 
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reqmred by CA protocols For example, when a state is Just entered, FSMA cannot 

implement the actions which is executed after a state transit10n fails. Also, FSMA 

does not allow each state of a state machme to be implemented separately. In other 

words, implementat10n of a whole state machine has to be m one function. This 

causes inefficient works for extension For example, if a child class wants to extend 

only a specific state of a state machme from its parent class, FSMA cannot support 

that but forces a child class to extend a whole state machme at once. In contrast to 

FSMA, FSME provides a complete set of macros that can express a complete set of 

logic for CA protocols. In addition, FSME allows each state of a state machme to 

be implemented in a separate funct10n for flexible extension. In the MIMC-SIM 

framework, the state machines of the mainControl module and the subControl 

module are implemented usmg FSME 

Implementation of a state machine usmg FSME is separated mto two parts: state 

defimt10n and state embodiment State defimt10n and state embodiment each can 

be represented m a function. A state definition function handles a state transition 

A state embodiment function implements actual actions of a specific state. For 

implementation of a state machme, only one state defimt10n function exists with the 

state 
embodiment 

state 
definition 

state 
embodiment 

state 
embodiment 

Figure 8.1 · Relation Of Definition Funct10n And State Embodiment 



same number of state embodiment functions as the number of states in a state 

machine. A state definition function calls a proper state embodiment function 

according to a current state. Figure 8.1 shows the relation of a state definition 

function and a state embodiment function. In this chapter, to simplify, a state 
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definition function and a state embodiment function are referred to a state definition 

and a state embodiment respectively. In rest of this chapter, implementation of a 

state definition and a state embodiment using FSME is presented in detail. 

8.2 State Definition 

In a state definition, each state of a state machine is associated with a specific state 

embodiment, and the state embodiments are called according to a current state. To 

implement a state definition, two FSME macros are used: FSME_Switch and 

FSME_State. A FSME_Switch manages a current state and iterates execution of 

FSME_States in the FSME_Switch for a state transition. A FSME_State is 

embedded in a FSME_Switch and executes a state embodiment according to a 

void MIMainControlBase:: handleWithFSM ( cMessage *msg) 
{ 

FSME_Switch ( fsm) 
{ 

} 
} 

FSME_State (INIT, handleStatelni t , msg); 
FSME_State (SCAN, handleStateScan , msg); 
FSME_State (ASSIGN, handleStateAssign , msg); 
FSME_State(SETNIC, handleStateSetnic, msg); 
FSME_State (NORM, handleStateNorm, msg); 

Figure 8.2: Implementation Of The handleWithFSM Function, A State Definition 
In The mainControl Module 



current state with an event. Figure 8.2 shows the implementation of a state 

definition in the mainControl module using FSME_Switch and FSME_State. 

#define FSME_Switch ( fsm) \ 
bool ___ event = true; \ 
bool ___ transition = false; \ 
bool ___ counter = O; \ 
cFSM * ___ fsm = &fsm; \ 
EV<< "processing~event~in~state~machine~" \ 

<< ___ fsm ->getName () << endl; \ 
while ( ___ counter++ < FSM.MAXT 11 \ 

(opp_error(eINFLOOP, ___ fsm->getStateName()), 0)) 

Figure 8.3: Definition Of FSME_Switch 
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Figure 8.3 shows definition of a FSME_Switch. A FSME_Switch takes the 

variable built upon the cFSM class as a current state and defines several variables, 

such as ___ event and ___ transition, to manage a state transition. The ___ event 

variable indicates whether an event has triggered a state transition. The 

___ transition variable indicates whether a state transition happens in a state. Such 

variables are used for a FSME_State. Then, a FSME_Switch iterates its inside where 

FSME_States are embedded. 

Figure 8.4 shows definition of a FSME_State. A FSME_State assigns a state, a 

#define FSME_State ( s, s_func , s_msg) \ 
if ( ___ fsm->getState () = s ){ \ 

s_func( ___ fsm, ___ event, ___ transition, s_msg); \ 
if( ___ transition){ \ 

___ event = false; \ 
___ transition = false; \ 
continue; \ 

} else break; \ 
} 

Figure 8.4: Definition Of FSME_State 
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state embodiment, and an event and associates them together. Events are such 

messages as commands, channel management packets, timers, and notifications, 

which potentially trigger a state transition. At each execution of a FSME_Switch, if 

the state assigned in a FSME_State is same as a current state, the FSME_State calls 

its assigned state embodiment with an event and the variables managed in a 

FSME_Switch. When a state transition happens after execution of a state 

embodiment, FSME_Switch iterates its inside to execute the next FSME_State in 

which the assigned state is the same as a new current state. 

8.3 State Embodiment 

8.3.1 State Embodiment 

A state embodiment implements actual actions of a state and is called from a state 

definition. To interact with a state definition, a state embodiment must be declared 

in a certain form as shown in Figure 8.5, which is the declaration of the state 

embodiments in Figure 8.2. A state definition is declared with four parameters: 

___ fsm, ___ event, ___ transition, and msg. The __ _fsm parameter maintains a current 

virtual void handle St a telni t ( cFSM *---fsm , bool ___ event , 
bool & ___ transition, cMessage *msg); 

virtual void handleS ta teScan ( cFSM * ___ fsm , bool ___ event , 
bool & ___ transition , cMessage *msg); 

virtual void handleS ta teAssign ( cFSM * ___ fsm , bool ___ event , 
bool & ___ transition, cMessage *msg); 

virtual void handleS ta te S etnic ( cFSM * ___ fsm , bool ___ event , 
bool & ___ transition, cMessage *msg); 

virtual void handleStateNorm (cFSM *---fsm, bool ___ event , 
bool & ___ transition, cMessage *msg); 

Figure 8.5: Declaration Of State Embodiments In The mainControl Module 
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process 

Figure 8.6: Components Used In A Flow Chart 

state. The ___ event parameter indicates whether an event has triggered a state 

transition. The ___ transition parameter is used to indicate a state transition 

happens in a state embodiment. The msg parameter represents an event. A 

function declared with such four parameters can be utilized as a state embodiment. 

To implement actual actions in a state embodiment, a process of a state should 

be represented in a flow chart. To draw a flow chart, four components are defined as 

State Entry Point 

y 

2 notify 5 
NF MICTRL 

NIC-=-CHANGED 

7 update 
nicTable 

CONDUCT state 

event 

4 send 
Command 

Figure 8.7: The Flow Chart Of The SETNIC State In The subControl Module 
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presented in Figure 8 6. The rectangle component represents a process used to 

implement act10ns. The diamond component represents a dec1s10n used to 

implement conditions The rounded rectangle component represents a state m 

which the flow of control stops and waits until the next event occurs The arrow 

component shows the flow of control m a flow chart When the arrow component 1s 

out from the state component, a specific event can be md1cated on the arrow Smee 

the state component represents a state, only one state component 1s allowed m a 

flow chart of a state With such components, for example, a flow chart of the 

SETNIC state m the subControl module can be depicted as Figure 8 7. 

In order to implement a state embodiment as described m a flow chart, four 

FSME macros are used FSME_Event_Trans1tion, FSME_No_Event_Trans1t1on, 

FSME_Event_Execute and FSME_No_Event_Execute. Figure 8 8 shows flow charts 

that each FSME macro can implement conceptually. Basically, all of the FSME 

macros assign a condition and actions and execute their assigned actions dependmg 

on their cond1t1ons. Among all, the Transition macros (FSME_Event_Trans1tion and 

FSME_No__Event_Transition) participate in a state transition, while the Execute 

macros (FSME_Event_Execute and FSME_No__Event__Execute) do not In add1t10n, 

the Event macros (FSME__Event_Trans1tion and FSME_Event__Execute) are applied 

when a state machme stays ma state, and the No__Event macros 

(FSME_No_Event_Execute and FSME_No_Event_Execute) 1s applied when a state 

machme Just enters in a state In other words, the Event macros are used to 

implement the components that occur after a state component, and the No__Event 

macros are used to implement the components that occur before a state component 
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For the FSME macros to be executed accordingly, they are defined to interact 

with the parameters of a state embodiment. Figure 8.9 shows the actual definition 

of the FSME macros. The Transition macros assign a condition, an action, and a 

state. They evaluate their conditions, and execute their assigned actions if the 

conditions are true. Then, they set the __ _fsm parameter to their assigned state and 

0---i 
I I 
I I 

event : 
• I 

~-NJ 
y 

new State 

(a) FSME_Event_Transition 

0--------------------
1 
I 

event 
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actions 

actions 
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(c) FSME_Event_Execute 

Figure 8.8: A Flow Chart Of The FSME Macros. 
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the ___ transition parameter to true in order to indicate that a state transition is 

triggered. Afterward, the Transition macros terminate their state embodiment for a 

#define FSME_Event_Transition \ 
\ 
\ 
\ 

(transition , condition, target , action) 
if( ___ event && condition){ 

FSME_Transition (transition, target, action); 
} 

#define FSME_No_Event_Transition \ 
\ 
\ 
\ 

( transition , condition, target, action) 
if (! ___ event && condition){ 

FSME_Transition( transition, target, action); 
} 

#define FSME_Print(exiting) \ 
( ev << "FSM-" << ___ fsm->getName () \ 

<< ((exiting)?": leaving-state_" : ":entering-state-") \ 
<< ___ fsm->getStateName () << endl) 

#define FSME_Transition(transition, target, action) \ 
FSME_Print (true); \ 
EV<< "firing_"<< #transition<< "-transition-for_" \ 

<< ___ fsm ->getName () << endl; \ 
action; \ 
___ fsm->setState ( target , #target); \ 
___ transition = true; \ 
FSME_Print (false); \ 
return; 

#define FSME_EvenLExecute ( condition , action T , actionF) \ 
\ 
\ 
\ 
\ 

if( ___ event && condition){ 
actionT; 

} else { 
actionF; 

} 

#define FSME_No_Event_Execute (condition, actionT, actionF) \ 
if (! ___ event && condition){ \ 

actionT; \ 
}else{ \ 

actionF; \ 
} 

Figure 8.9: Definition Of The FSME Macros 
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state transition to be handled m a state defimt1on. The Execute macros assign a 

cond1t1on and two different actions. one for true cond1t10n and the other for false 

condition. The Execute macros simply execute their assigned act10ns dependmg on 

their conditions. Furthermore, the Event macros are applied to be conducted, 1f 

___ event is true. Otherwise, the No_Event macros are applied to be conducted. In 

addit10n, all the FSME macros can accept no act10ns So, for example, if a 

Transition macro assigns nothmg for an action, 1t simply triggers a state trans1t10n 

without execution of any act10ns. 

8.3.2 Example of State Embodiment 

According to the defimt10n of the FSME macros, the flow charts of each FSME 

macros can be simplified Figure 8.10 shows considerable simplifications of the flow 

chats depicted m Figure 8.8 (A) First of all, smce consecutive act10ns ma flow 

chart can be assigned all together ma FSME macro, they can be represented ma 

process component as shown in Figure 8 lO(a). (B) Second, smce FSME macros can 

assign no action, a flow chart of a FSME macro can simply omit a process 

component for no action. For example, the flow chart of FSME_No_Event_Execute 

can be simplified as shown m Figure 8 lO(b) when no action exists for the false 

condit10n. (C) Third, cond1t1ons of the Execute macros can be assigned to simply 

true or false (Smee a state trans1t1on occurs m a certam cond1t1on m a state 

machme, FSME assumes that the Trans1t1on macros do not assign their condition to 

simply true or false. So, only the Execute macros are considered m this case.) If 

that is the case, the decision component and one of the process components of the 
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Execute macros can be omitted. For example, Figure 8.lO(b) can be even more 

simplified as shown in Figure 8.lO(c) when the condition is always true. (D) Finally, 

since the Event macros usually evaluate events for their conditions, a decision 

component can be replaced with an arrow indicating an specific event that an Event 

macro accepts for its condition. For example, FSME_Event_Transition and 

simplification 
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FSME_No_Event_Transition can be simplified as shown in Figure 8.lO(d) and Figure 

8.lO(e) respectively. 

According to such simplifications, Figure 8.7 can be simplified to Figure 8.11. 

Since the component 3 is always true and the component 4 has no actions, they can 

be simply omitted according to the simplification (B) and (C). The component 6 

can be simplified to the arrow indicating the specific event according to the 

simplification (A). The components 7 and 8 can be simplified to one process 

component according to the simplification (D). 

The simplified flow chart in Figure 8.11 can be applied to FSME macros. For 

example, the components A and B can be implemented by 

FSME_No_Event_Transition according to Figure 8.3.1. The component C can be 

implemented by FSME_No_Event_Execute according to Figure 8.lO(c). The 

component D can be implemented by FSME_No_Event_Transition according to 

State Entry Point 

y 

B notify 
NF_MICTRL_ 

NIC_CHANGED 

C send 
Command 

RADID_CHANNEL_CHANGED 

DNotify NF _MICTRL_NIC_CHANGED 

update nicTable 

CONDUCT state 

Figure 8.11: The Simplified Flow Chart Of The SETNIC State In The subControl 
Module 



Figure 8.lO(a) and Figure 8.lO(d). Figure 8.12 shows the actual code structure 

implementing Figure 8.11 using the FSME macros. Since the FSME macros allow 

for using another FSME macro in their actions, FSME can implement a complete 

set of logic in a state embodiment. 

void MISubControl:: handleStateSetnic (cFSM * ___ fsm, 

{ 

} 

bool ___ event, bool & ___ transition, cMessage *msg) 

FSME_No_EvenLTransition (, 
currentChannelinfo = *newChannelinfo, 
CONDUCT, 
delete newChannelinfo; 
nb->fireChangeNotification (NF_MICTRL_NIC_CHANGED, this); 

) ; 

FSME_No_EvenLExecute ( true , 
sendRadioConfigMsg ( newChannelinfo); , 

) ; 

FSME_Event_Transition (, 
msg = fsmMsg && msg->getKind () = NIC_CHANGED, 
CONDUCT, 
updateNicinfo ( * newChannelinfo); 
delete newChannelinfo; 
nb->fireChangeNotification (NF_MICTRL_NIC_CHANGED, this); 

) ; 

Figure 8.12: Implementation Of Figure 8.11 Using FSME 
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CHAPTER 9 

IMPLEMENTATION 

In this chapter, the current implementation of two CA protocols m the MIMC-SIM 

framework is presented in defining channel management packets and implementmg a 

state machine. 

9.1 Current Implementation 

The MIMC-SIM framework is implemented in INET snapshot 20100323 with 

OMNET++ 4.0. In the MIMC-SIM framework, two CA protocols are implemented. 

One is node-based channel assignment [18] which computes channels based on 

superimposed code according to the CA algorithm proposed in [26] The other CA 

protocol is lmk-based channel assignment and computes channels according to the 

CA algorithm proposed in [19] Each CA protocol is Implemented by extending the 

mainControl module to adopt its own CA algorithm. Mamly, the mainControl 

module is extended to handle channel management packets and implement a state 

machme. Also, the neighborTable module and the mcTable module are extended 

accordingly. In addition, for simulating CA protocols m a mesh network, a gateway 

node is implemented for each CA protocol as well. In a mesh network, a gateway 

node connects to another network, such as the Internet. So, m simulation, a 

gateway node is considered as the node that first provides a network service 

89 
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accordmg to a CA protocol. 

9.2 Superimposed Code Based CA Protocol 

The supenmposed code (SCODE) based CA algorithm is proposed m [26] However, 

the implementat10n of the CA protocol is not fully descnbed m the paper. In order 

to implement the SCODE protocol m the MIMC-SIM framework, the idea of the 

node-based channel assignment as [18] is adopted In a network, nodes eqmp two 

NICs and distmgmsh them mto a receiving NIC and a sendmg NIC. The computed 

channel accordmg to the SCODE CA algonthm is assigned to the receivmg NIC. 

9.2.1 Channel Management Packets 

To implement the SCODE protocol, three channel management packets are defined 

HELLO, BEACON, and NOTICE The HELLO packet is used to probe channels 

When the mainControl module receives the HELLO packet from other nodes, the 

mainControl module responds it by broadcastmg the BEACON packet The 

HELLO packet contams a node's IP address, MAC address of a receivmg NIC, 

channel mformation, and codeword, which 1s used to compute a channel The 

BEACON packet is used to advertise a node's information It contams not only the 

same mformation of the HELLO packet, but also one hop neighbor nodes' IP 

addresses, 'MAC addresses of thelf receiving NIC, channel mformat10n, and 

codewords as well. The NOTICE packet is used to notice of new channel 

mformation of a node to neighbor nodes. The NOTICE packet contams the IP 

address, the MAC address of a receivmg NIC, the new channel mformation, and 



packet ScodePacket extends MIPacket{ 
IP Address ipAddr, 

} 

int codeword; 
int hopPath; 
N1clnfo niclnfo, 
IP Address nipAddr [] , 
int nCodeword []; 
N1clnfo nN1clnfo [], 
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Figure 9.1: Packet Declaration For Channel Management Packets Of The Scode 
Protocol In A .msg File 

codeword of a node. The NOTICE packet is unicasted to be transmitted to each 

neighbor node reliably at MAC layer. When the mainControl module receives all 

the three channel management packets, the mainControl module updates the 

neighborTable module accordingly Figure 9.1 shows packet declaration rn a .msg 

file, on which the channel management packets are bmlt Figure 9 2 shows how the 

mainControl module handles the channel management packets ma state machrne 

BEACON __j update 11--------► ~ ne1ghborTable 

NOTICE--, ne1g~b~~~able 1-1-------► 

HELLO update 
ne1ghborTable 

broadcast 
BEACON 

Figure 9 2 Handlmg Channel Management Packets In The SCODE Protocol 

9.2.2 State Transition Diagram 

The state machme of the SCODE CA protocol can be described and implemented m 

the mainControl module within the five states proposed m Section 5 1. In the INIT 

state, as ment10ned m Section 5 1, the mainControl module is mitiahzed and 
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State Entry Point 

NF _MICTRL_SCANNED 

ASSIGN State 

Figure 9.3: SCAN State Of The SCODE Protocol 

substantiated and waits until the wakeUpTimer is expired. 

In the SCAN state, the mainControl module sends CA commands with the 

HELLO packet to subControl modules to probe all the channels. While the 

subControl modules are probing channels, the mainControl module will receive the 

channel management packets and update the neighborTable module accordingly. 

When all the subControl modules notify the mainControl module of the 

completion of probing channels, the mainControl module enters the ASSIGN state. 

The inside structure of the SCAN state is depicted in Figure 9.3. 

In the ASSIGN state, the mainControl module analyzes the information 

gathered in the SCAN state to compute the best channel according to [26] and 

decide routing based on the shortest path algorithm. If the node cannot find any 

valid route, then the mainControl module goes back to the SCAN state to probe 

again until a valid path is detected. The ASSIGN state is depicted in Figure 9.4. 
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Figure 9.4: ASSIGN State Of The SCODE Protocol 

In the SETNIC state, the mainControl module sends the CA command to 

assign the channel computed in the ASSIGN state to the subControl module 

associating with the receiving NIC. Once the mainControl module is notified by the 

subControl module about the completion of setting a NIC, it sends the NOTICE 
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NF _MICTRL_NIC_CHANGED 
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send 
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Figure 9.5: SETNIC State Of The SCODE Protocol 



packets to one hop neighbor nodes about its channel information change. The 

SETNIC state is depicted in Figure 9.5 

In the NORM state, the mainControl module first schedules two different 

timers: beaconTimer and estTimer. The beaconTimer indicates the next time 

point to broadcast the BEACON packets on all the channels. The mainControl 

module reschedules the beaconTimer periodically in the NORM state. The 

estTimer indicates the time point to go back to the ASSIGN state. Since nodes 

would learn new channel information of neighbor nodes in the NORM state, the 

mainControl module needs to go back to the ASSIGN state periodically to 

State Entry Point 

beacon Timer upper layer 
estTimer 

data packets MIPacket lower layer 
NF _NBTABLE_ 

data packets GWENTRY _DISMISSED 
NF_MICTRL_ FAILURE 

TRANSMITTED 

send handle channel Cancel 
data packets 

management 
All Timers packets 

ASSIGN State 

Figure 9.6: NORM State Of SCODE Protocol 
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re-estimate the channel informat10n and routmg For the same reason, the 

mainControl module also goes back to the ASSIGN state when the mainControl 

module is notified by the neighborTable module about the link break on a default 

route In addit10n, when the mainControl module receives channel management 

packets m the NORM state, it handles with them accordmgly. Once the 

mainControl module enters into the NORM state, it executes the sendDataPacket 
) 

function to send data packets m dataQueue. The mainControl module also 

executes the sendDataPacket funct10n when it is notified by a subControl module 

of the completion of a packet transmission or receives a data packet from the upper 

layer. The Figure 9.6 shows the mside structure of the NORM state 

In most of states, except the INIT state, the mainControl module receives 

channel management packets and data packets from lower modules. When channel 

management packets are received, the mainControl module handles them accordmg 

to Section 9.2 1. When data packets are received, the mainControl module 

immediately forwards them to the upper module. 

9.2.3 neighborTable 

The neighborTable module for the SCODE protocol extends the base neighborTable 

module and is implemented as shown m Figure 9 7 The neighborTable module 

stores two more information for each neighbor node codeword and hopPath 

Codeword is the 13-bit code used to compute a channel accordmg to the SCODE 

CA algorithm [26] HopPath is the hop distance from a gateway node It is used to 

decide routmg accordmg to the shortest path. The update function m the Figure 



class INET_API ScodeNbEntry . public MINbEntryBase{ 
protected· 

}, 

int codeword; 
int hopPath; 

class INET_API ScodeNbTable · public MINbTableBase 
{ 
public: 

} ' 

void update ( const IP Address& 1p, const N1clnfo& mclnfo , 
int codeword, int hopPath, int hopD1stance = 1, 
bool 1sMainNic = false), 

96 

Figure 9.7. The Implementation Of The neighborTable Module In The SCODE Pro­
tocol 

9. 7 is implemented to update neighbor node's mformation convemently 

9.2.4 nicTable 

The nicTable module for the SCODE protocol extends the base nicTable module 

and is implemented as shown in Figure 9 8. It categorizes two NICs of a node mto a 

fixed NIC and a switchable NIC Then, the nicTable module classifies the fixed NIC 

and the switchable NIC mto the receivmg NIC and the sendmg NIC respectively 

class INET_API ScodeN1cTable 
public. 

enum nicType{ 
SEND, 
RECV, 

} ; 

protected 

public MIN1cTableBase{ 

virtual void class1fyN1cs (), 
}, 

Figure 9.8: The Implementation Of The nicTable Module In The SCODE Protocol 
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Table 9 1 shows that m each node, the first NIC is categonzed into a fixed NIC and 

set its type to a receiving NIC, and the second NIC is categonzed mto a switchable 

NIC and set its type to a sendmg NIC 

Category Type 
fixed switchable receivmg sendmg 

NIC[0] ✓ ✓ 

NIC[l] ✓ ✓ 

Table 9.1· Category Of NICs In The nicTable Module Of The SCODE Protocol 

9.2.5 Gateway Node 

The gateway node is assumed that it 1s connected to a wired network and provides a 

network service accordmg to the SCODE protocol. The mainControl module of the 

gateway node does not follow the state machme explamed m the previous section 

Instead, it always stays m the NORM state and does not try to find either better 

channel or route. So, the mainControl module does not schedule the estTimer, and 

there is no lmk break on the default route. The mainControl module broadcasts the 

BEACON packet penod1cally It also broadcasts the BEACON packet to respond 

the HELLO packet When the mainC ontrol module receives channel management 

packets from other nodes, it updates them mto the neighborTable module Figure 

9.9 shows the mside structure of the NORM state of the gateway node 

9.3 Multi-channel Wireless Mesh Network CA protocol 

The Hyacmth CA protocol is proposed m [19] To implement the Hyacmth protocol, 

each node equips two NICs and categonzes them mto a up NIC and a down NIC 
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Figure 9.9: The NORM State Of A Gateway Node In The SCODE Protocol 

9.3.1 Channel Management Packets 

The Hyacinth protocol defines ten channel management packets: HELLO, 

ADVERTISE, JOIN, ACCPET, REJECT, LEAVE, RT_ADD, RT_DEL, 

CHNL_CHANGE, and FAILURE. To implement the channel management packets 
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accordingly, channel management packets are defined to contain such information as 

described in Table 9.2. 

In Table 9.2, host IP is the IP address of a node which sends or forwards a 

host IP target IP up NIC down NIC priority neighbor info 
HELLO ✓ ✓ ✓ 

ADVERTISE ✓ ✓ ✓ ✓ ✓ 

JOIN ✓ ✓ ✓ ✓ 

ACCEPT ✓ ✓ ✓ ✓ ✓ 

REJECT ✓ ✓ 

RT_ADD ✓ ✓ 

RT_DEL ✓ ✓ 

LEAVE ✓ 

FAILURE ✓ 

CHNL_CHANGE ✓ ✓ ✓ 

Table 9.2: Channel Management Packets In The Hyacinth Protocol 



class Neighborlnfo{ 

} 

IP Address ip ; 
int priority, 
N1clnfo niclnfo [], 

packet HyacinthPacket extends MIPacket{ 
IP Address hostIP Addr , 
IP Address target IP Addr, 
int priority = 10000, 
N1clnfo upN1clnfo, 
N1clnfo downN1cinfo, 
Ne1ghborlnfo nblnfo [], 

} 

99 

Figure 9.10 Packet Declaration For Channel Management Packets Of The Hyacmth 
Protocol In A .msg File 

channel management packet at the last Target IP is the IP address of a node which 

ongmally generates a channel management packet or a channel management packet 

targets to. For example, the target IP mformation of the JOIN packet is the IP 

address of the node which generates the JOIN packet In the ACCEPT packet, the 

target IP mformat10n is the IP address of the node to which the ACCEPT packet is 

sent. Each of up NIC and down NIC mformation contams a MAC address and 

channel informat10n. Priority is a node's hop distance from a gateway node The 

neighbor mformation includes one hop neighbor nodes' IP address, mformation of 

both up NIC and down NIC, and pnonty. The channel management packets are 

bmlt upon HyacmthPacket declared m a msg file as shown m Figure 9 10. 

Basically, all channel management packets are used as described m [19] The 

HELLO packet is used to probe channels When the mainControl module receives 

the HELLO packet, it broadcasts the ADVERTISE packet as response. Also, the 

mainControl module broadcasts the ADVERTISE packet periodically. The JOIN 
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packet is used to ask a neighbor node to Jorn the neighbor node's routmg path. 

When the mainControl module receives the JOIN packet, it sends the ACCEPT 

packet or the REJECT packet back to the node which ongmally sent the JOIN 

packet. The ACCEPT packet is used to accept a node to Jorn, and the REJECT 

packet is used to reject a node from JOinmg When the mainControl module sends 

the ACCEPT packet, it sends the RT _ADD packet to a parent node as well. The 

RT_ADD packet is used to announce that a new node jams a routing path The 

LEAVE packet is used to notice a parent node that a node leaves from the parent 

node's routmg path When the mainControl module receives the LEAVE packet, it 

sends the RT _DEL packet to its parent node The RT _DEL packet is used to 

HELLO 
broadcast update 

ADVERTISE ne1ghborTable 

ADVERTISE ► 1 update I 
ne1ghborTable ► 

send either 

JOIN ACCEPT and update update 
RT_ADD ne1ghborTable routing Table 

or REJECT 

ACCEPT send update update 
RT_ADD ne1ghborTable routmgTable 

LEAVE-, send RT_DEL I : routmgTable : 
► 1 update ~ 

RT_ADD forward update 
RT-ADD 

RT_DEL RT-DEL routing Table 

CHNL_CHANGE I update I ► ne1ghborTable ► 

FAILURE FAILURE update 
to child nodes routing Table 

Figure 9.11: Handlmg Channel Management Packets In The Hyacinth Protocol 



101 

announce that a node left from the routmg path When the mainControl module, 

receives the RT_ADD packet or the RTJ)EL packet, it forwards such packets to its 

parent node until a gateway node receives the packets The CHNL_CHANGE 

packet is used to announce the new channel mformation. The FAILURE packet 1s 

used to announce that a routmg path is broken The channel management packets 

are handled ma state machme as described m Figure 9 11. 

When the mainControl module receives the HELLO, ADVERTISE, JOIN, 

ACCEPT, and CHNL_CHANGE packets, the mainControl module updates the 

mformation that they contam mto the neighborTable module accordmgly When 

the mainControl module receives the JOIN and RT_ADD packets, it adds a route 

in which the host IP address is the target IP of the packet, the next hop IP address 

1s the host IP of the packet mto the routingTable module When it receives the 

LEAVE and RT_DEL packets, it removes a route whose host IP address matches to 

the target IP mformation of the packets from the routingTable module When it 

receives the ACCEPT and FAILURE packets, it updates the default route of the 

routingTable module The ADVERTISE and FAILURE packets are broadcasted, 

while other channel management packets are umcasted to a neighbor node for 

reliable transmission at MAC layer. 

9.3.2 State Transition Diagram 

The state machme of the Hyacmth protocol can be described withm the five states 

proposed m Section 5 1. In the INIT state, as ment10ned m Sect10n 5.1, the 

mainControl module is mitialized and substantiated and waits until the 
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Figure 9.12: The SCAN State Of The Hyacinth Protocol 

wakeUpTimer is expired. 

In the SCAN state, the mainControl module sends CA commands with the 

HELLO packet to subControl modules to probe all channels. While subControl 

modules are probing channels, the mainControl module will receive the channel 

management packets and update the neighborTable module accordingly. When all 

the subControl modules notify the mainControl module of the completion of 

probing channels, the mainControl module enters the ASSIGN state. The inside 

structure of the SCAN state is depicted in Figure 9.12. 

In the ASSIGN state, the mainControl module analyzes the information 

gathered in the SCAN state and selected the shortest route. If the mainControl 

module cannot find any valid route, then the mainControl module goes back to the 

SCAN state to gather more neighbor nodes' information until a valid route is 

detected in the ASSIGN state. After selecting a valid route, the mainControl 
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Figure 9.13: The ASSIGN State Of The Hyacinth Protocol 
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module sends the JOIN packet to the node providing the route. If the mainControl 

module receives the REJECT packet or does not receive either the ACCEPT or 

REJECT packet in a certain time-the default value is 5 seconds-, the node fails to 

join the route. In such case, the mainControl module re-selects another valid path. 

Otherwise, the mainControl module receives the ACCEPT packet and succeeds to 

join the route. If a node has a previous route, then the mainControl module sends 

the LEAVE packet to its old parent node and the CHNL_CHANGE packets to its 

child nodes. Then, the mainControl module enters the SETNIC state. The inside 

structure of the ASSIGN state is depicted in Figure 9.13. 



104 

State Entry Point 

NF _MICTRL_NIC_CHANGED 

y 

NORM State 

Figure 9.14: The SETNIC State Of The Hyacinth Protocol 

In the SETNIC state, the mainControl module sends CA commands to assign 

channels to the up NIC and the down NIC. The up NIC is assigned to the channel 

which is used in the down NIC of a parent node. The down NIC is assigned to the 

least used channel. The mainControl module enters the NORM state when it is 

notified by all the subControl module about the completion of setting their NICs. 

The inside structure of the SETNIC state is depicted in Figure 9.14 

In the NORM state, the mainControl module first schedules two different 

timers: advertiseTimer and estTimer. The advertiseTimer indicates the next time 

point to broadcast the ADVERTISE packet on the channel of the down NIC. The 

mainControl module reschedules the advertiseTimer periodically in the NORM 

state. The estTimer indicates the time point to go back to the ASSIGN state. Since 

nodes would learn new channel information of neighbor nodes, the mainControl 

module needs to go back to the ASSIGN state periodically to re-estimate the 
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Figure 9.15: The NORM State Of The Hyacinth Protocol 

channel information and routing. For the same reason, the mainControl module 

also goes back to the ASSIGN state when the mainControl module is notified by 

the neighborTable module about the link break on a default route or receives the 

FAILURE packet. In addition, when the mainControl module receives channel 

management packets, it handles with them accordingly. Once the mainControl 

module entered into the NORM state, it executes the sendDataPacket function to 

send data packets in dataQueue. Then, the mainControl module also executes the 

sendDataPacket function when it is notified by a subControl module of the 

completion of a data transmission or receives a data packet from the upper layer. 
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The Figure 9.15 shows the inside structure of the NORM state. 

In most of states, except the INIT state, the mainControl module receives the 

channel management packets and data packets from lower modules. When channel 

management packets are received, the mainControl module handles them according 

to Section 9.3.1. When data packets are received, the mainControl module 

immediately forwards them to the upper module. 

9.3.3 neighborTable 

The neighborTable module for the Hyacinth protocol extends the base 

neighborTable module and is implemented as shown in Figure 9.16. The 

neighborTable module stores one more information, priority, for each neighbor 

node. Priority represents the hop distance from the a gateway node. The update 

function in the Figure 9.16 is implemented to update neighbor node's information 

conveniently. 

class INET_API DrcaNbEntry 
protected: 

int priority; 

} ; 

class INET_API DrcaNbTable 
{ 
public: 

pub 1 i c MINbEn try Base { 

public MINbTableBase 

void update ( canst IP Address& ip, canst Niclnfo& niclnfo , 
int priority = MAX.PRJORJTY, int hopDistance = 1, 
bool isMainNic = false); 

}; 

Figure 9.16: The Implementation Of The neighborTable Module In The Hyacinth 
Protocol 



class INET_API DrcaNicTable 
public: 

enum nicType{ 
UP, 
OOWN, 

}; 

protected: 

public MINicTableBase{ 

virtual void classifyNics (); 
}; 
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Figure 9.17: The Implementation Of The nicTable Module In The Hyacinth Protocol 

9.3.4 nicTable 

The nicTable module for the Hyacinth protocol extends the base nicTable module 

and is implemented as shown in Figure 9.17. It categorizes both two NICs into fixed 

NICs. Then, the nicTable module classifies one for a up NIC and the other one for 

a down NIC. Table 9.3 shows that in each node, both NICs are categorized in fixed 

NICs. Then, the types of the first NIC and the second NIC are set to a up NIC and 

a down NIC respectively. 

Category Type 
fixed switchable up down 

NIC[0] ✓ ✓ 

NIC[l] ✓ ✓ 

Table 9.3: Category Of NICs In The nicTable Module Of The Hyacinth Protocol 

9.3.5 Gateway node 

The gateway node is assumed that it is connected to a wired network and provides a 

network service according to the Hyacinth protocol. The mainControl module of 

the gateway node does not follow the state machine explained in the previous 
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section. Instead, it always stays in the NORM state and does not try to find either 

better channel or route. So, the mainControl module does not schedule the 

estTimer, and there is no link break on the default route. The mainControl 

module broadcasts the BEACON packet periodically. It also broadcasts the 

BEACON packet to respond the HELLO packet. When the mainControl module 

receives channel management packets from other nodes, it updates them into the 

neighborTable module. Figure 9.9 shows the inside structure of the NORM state of 

the gateway node. 

NORM 

advertise Timer upper layer 
data packets 

NF_MICTRL_ 

TRANSMITTED 

send 
data packets 

MIPacket 

handle channel 
management 

packets 

lower layer 
data packets 

forward data 
packets to 
upper layer 

Figure 9.18: The NORM State Of A Gateway Node In The Hyacinth Protocol 



CHAPTER 10 

EXPERIMENTS 

In this chapter, the performance of SCODE and Hyacmth protocols [19, 26] are 

evaluated m the MIMC-SIM framework The evaluation uses the same experimental 

settmgs as their original papers The experimental results are compared with the 

results reported in the ongmal paper to verify the fidelity of MIMC-SIM. The 

comparison shows that MIMC-SIM can be used to study CA protocols. 

Furthermore, the MIMC-SIM framework is tested to evaluate various performance 

metrics of CA protocols, mcludmg throughput, time to obtain channels, channel 

management overhead, and the number of conflict channels m two hops 

10.1 SCODE Protocol 

10.1.1 Setting 

The SCODE protocol implemented m the prev10us chapter is experimented 

accordmg to the origmal testbed described m [26]. In a lO0xl00 square umts 

network, 13 nodes are deployed randomly over 100 different network topologies 

where average node degree is 3 Every node eqmps two NICs The number of 

available channels ma network is set to 13 The superimpose code as shown m 

Figure 10 1 is applied to simulate the SCODE protocol Each node randomly picks 

a unique codeword from the superimpose code set Smee the SCODE protocol in 

109 



110 

1 0 0 0 1 () 0 0 0 0 1 0 1 
1 1 () 0 0 l () () 0 0 0 l 0 
0 1 1 0 0 0 1 0 0 0 0 0 1 
1 0 1 1 0 0 0 1 0 0 0 0 0 
0 1 0 1 1 0 0 0 l 0 0 0 0 
0 0 l 0 1 1 0 0 0 l 0 0 0 
0 0 0 1 0 l 1 () 0 0 1 0 0 
0 0 () 0 1 0 l 1 0 0 0 l 0 
0 0 0 0 0 l 0 1 0 0 0 1 
1 0 0 0 0 0 1 0 1 l 0 0 0 
0 1 () 0 0 0 0 1 0 1 0 0 

0 0 l 0 0 0 0 0 1 0 l 1 0 

1 0 0 1 0 0 0 0 0 1 0 1 1 

Figure 10 .1 : Superimposed Code 

[26) is experimented in an ad hoc network, a gateway node is not deployed in a 

network used to compare with [26) . An example of such network topology is 

depicted in Figure 10.2(a) . In addition, data of other metrics , such as throughput , 

time to get channels , and overhead traffic, are collected in a mesh network where a 

gateway node is deployed at center. An example of such network topology is 

depicted in Figure 10.2(b) . The bandwidth of every link is set to 2 Mbps. Each 

(a) An Example Of An Ad Hoc Network (b) An Example Of An Mesh Network 

Figure 10.2: Examples Of A Network Topology 



node turns on at random between O and 5 seconds Every node broadcasts the 

BEACON packet every 30 seconds and re-estimates channel mformation and 
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routing every 60 seconds. Every node, except for a gateway node, starts generatmg 

UDP flows to a gateway node after 30s. The average bandwidth of each UDP flow 

ma network vanes m 32, 64, 96, and 128 Kbps Each network topology is simulated 

for 600 seconds m simulat10n time. 

10.1.2 Comparison in the original testbed 

The MIMC-SIM framework produces a compatible result with [26]. [26] shows that 

the SCODE protocol produces fairly usage of each channel ma network as depicted 

m Figure 10.3(a). The similar result is also validated m the MIMC-SIM framework 

Figure 10 3(b) depicts the experiment result of the SCODE protocol m the 

MIMC-SIM framework. Figure 10 3(a) shows average number of channel usage of 

each channel, and Figure 10.3(b) shows average percentage of channel usage of each 

channel The comparison between Figure 10.3(a) and 10 3(b) can venfy that the 
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MIMC-SIM framework is compatible to study the SCODE protocol as described in 

is compatible with [26]. 

10.1.3 Performance Study 

The MIMC-SIM framework studies performance of the SCODE protocol in a mesh 

network with such metrics as throughput, time to get channels, and overhead traffic. 

(Since there is no conflict channel during simulation of the SCODE protocol, the 

number of conflict channels is not studied.) To study performance of the SCODE 

(a) Topology 1 (b) Topology2 

( c) Topology3 ( d) Topology4 

Figure 10.4: Four Different Network Topologies To Study Performance Of The 
SCODE Protocol 
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protocol in such metrics, four specific network topologies are picked as depicted in 

Figure 10.4. 

10.1.3.1 Throughput 

Figure 10.5 shows throughput in the topology3 network when the average 

bandwidth of each UDP flow varies in 32, 64, 96, and 128 Kbps. (The network 

topology3 is picked because nodes are most evenly distributed in the network out of 

the four topologies.) The throughput of the network is measured by the sum of all 

useful bandwidth between traffic generating nodes and the gateway node in the 

network. In Figure 10.5, when the traffic load is bigger, average deviation of 

throughput is increased. This is because only one channel is used to receive packets 

at each node, and it causes the hidden terminal problem more often. The hidden 
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termmal problem is that when two nodes not m the same commumcation range try 

to send packets to the same node on the same channel at the same time, the two 

transmiss10ns are mterfered with each other. This suddenly aggravates throughput 

of a network. Smee the throughput of the network is stable with better performance 

when the average bandwidth of each UDP flow is 64 Kbps, other metrics are studied 

in the situat10n 

10.1.3.2 Channel to get channels 

Figure 10 6 shows the cumulative distnbut10n funct10n (CDF) of the time to get the 

channels m the four network topologies In the SCODE protocol, the time to get 

channels means the time that nodes spend to obtam steady channels for their 

receivmg NICs and will not change the channels no longer In Figure 10.6, after 300 

0.2 

100 200 300 
Time (s) 
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Figure 10 6- Time To Get Channels 
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seconds, approximately 90 percent of nodes get their final channels and stay on their 

channels 

10.1.3.3 Overhead 

Figure 10. 7 shows the traffic volume of channel management packets that each node 

generates m a network. The traffic volume of channel management packets can be 

considered as overhead traffic m a MIMC networksFigure 10 7 represents that the 

average traffic of channel management packets becomes stable after 250 seconds 

when most of nodes found their final channels as depicted m Figure 10 6. 
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10.2 Hyacinth Protocol 

10.2.1 Comparison in original testbeds 

10.2.1.1 Setting 

The Hyacinth protocol implemented in the previous chapter is experimented 

according to the original testbed described in [19]. 64 nodes are evenly distributed 

in the 8x8 square grid network where each node could communicate with up to 4 

neighbor nodes. In such network, 4 gateway nodes are uniformly deployed. An 

example of such network topology is depicted in Figure 10.8 . Every node equips two 

NICs. The number of available channels in the network is set to 13. The bandwidth 

of every link is set to 54 Mbps. Each node turns on at random between O and 5 

seconds . Every node broadcasts the ADVERTISE packet every 30 seconds and 

re-estimates the channel information and routing every 60 seconds. For 10 different 

traffic profiles, 20 different nodes are randomly chosen to generate UDP flows to 

Figure 10.8: An Example Of A Network Topology 
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their correspondmg gateway nodes m a skewed manner, specially closer to two of 

the gateway nodes In Figure 10 8, the circled nodes represents the nodes chosen to 

generate UDP flows. The average bandwidth for each fl.ow is set to 1 5 Mbps Each 

traffic profile network is simulated for 600 seconds m simulat10n time 

10.2.1.2 Analysis 

The MIMC-SIM framework produces a compatible result with [19] In Figure 

10 9(a), [19] shows throughput of a network that the Hyacmth protocol produces 

with the shortest path routmg The similar result is also validated m the 

MIMC-SIM framework Figure 10 9(b) depicts the experiment result of the 

Hyacmth protocol m the MIMC-SIM framework. The throughput m the two graphs 

are presented withm between about 7 to 14 Mbps. Both graphs retrieve eqmvalent 

average throughput. The comparison between Figure 10.9(a) and 10.9(b) can verify 

that the MIMC-SIM framework is compatible to study the Hyacmth protocol as 

described m [19] 
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10.2.2 Performance Study 

The MIMC-SIM framework studies performance of the Hyacmth protocol m such 

metrics as throughput, time to get channels, overhead traffic, and the number of 

conflict channels. To study performance of the Hyacmth protocol m different 

network topologies, the testbed described m Section 10 11 is used Moreover, the 

four network topologies depicted m Figure 10.4 are used for simulation of the 

Hyacmth protocol. 

10.2.2.1 Throughput 

Figure 10.10 shows throughput of a network when the average bandwidth of each 

UDP flow vanes m 4, 8, 12, 16 Kbps. The throughput of a network is measured by 

the sum of all useful bandwidth between traffic generatmg nodes and the gateway 
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node m the topology3 network as depicted m Figure 10.4(c) (The network 

topology3 is picked by the same reason descnbed m Sect10n 10 1 3 l.) Figure 10 10 

shows that the throughput of the network is stable This is because two different 

channels are used to receive packets at each node, and the hidden termmal problem 

less occurs m the network In addit10n, even though the throughput of the network 

is stable, the throughput can not exceed over about O 7 Mbps Smee the throughput 

of the network is stable with better performance when the average bandwidth of 

each UDP fl.ow is 64 Kbps, other metncs are studied m the situation 

10.2.2.2 Channel to get channels 

Figure 10.11 shows the cumulative distnbution function (CDF) of the time to get 

the channels m the four network topologies In the Hyacmth protocol, the time to 
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get channels means the time that nodes spend to obtam steady channels for their 

DOWN NICs and will not change the channels no longer In Figure 10 11, after 90 

seconds, all the nodes get their final channels and stay on their channels. 

10.2.2.3 Overhead 

Figure 10.12 shows the traffic volume of channel management packets that each 

node generates in a network. Figure 10 12 represents that the traffic volume of 

channel management packets becomes stable after 90 seconds when all the nodes 

found their final channels depicted m Figure 10.11. 
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10.2.2.4 Conflict 

Figure 10.13 shows that the number of conflict channels per node In the Hyacmth 

protocol, when two nodes withm two hops use the same channel for their DOWN 

NICs, the channel is considered as a conflict channel Figure 10.13 represents no 

conflict channels occur after 90 seconds 
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CHAPTER 11 

SECURITY 

This chapter shows that the MIMC-SIM framework can be used to study 

vulnerability of CA protocols To study vulnerability, an attackmg node is 

implemented to break a lmk between nodes Then, this chapter shows that the 

attacking node can aggravate throughput of a network 

11.1 Attack in a MIMC Network 

One of the possible attacks in a MIMC network is a link break attack between 
( 

nodes. In a MIMC network, for nodes to commumcate with each other, they must 

tune their NICs to the same channel In order to tune the same channel among 

nodes, nodes maintam the channel mformat10n of their neighbor nodes by 

exchangmg channel management packets However, if nodes mamtam mcorrect 

channel mformation about their neighbor nodes, the neighbormg nodes lose 

connection among themselves. An attacker can exploit this discrepancy by sendmg 

manipulated channel management packets which contam mcorrect channel 

mformation of neighbor nodes 

Figure 11 1 shows the steps that an attackmg node M breaks a link between the 

nodes A and B. Nodes A and Bare neighbor nodes and already established a lmk 

between them accordmg to the same CA protocol. Also, node M knows the CA 
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protocol. In Figure 11.1 (a), node A broadcasts channel management packets 

containing channel information of itself and its one-hop neighbor node, B. Also, 

node B broadcasts the same information in Figure 11.l(b). When node M receives 

the channel management packets from both nodes, it can get the channel 

information being used on the link between the two nodes. Node M manipulates the 

channel management packet to pretend node A and contain an incorrect channel 

information. In Figure 11.l(c), node M sends the manipulated channel management 

packet to node B. Node B is deceived to change its channel to the incorrect channel 

information for node A. After all, node B is not able to communicate with node A 

as shown in Figure 11.l(d). In simulation, node A is referred to a gateway node, 

and node B is referred to an one-hop neighbor node of the gateway node. Node Mis 

referred to an attacking node. 

(a) (b) 

0 

0 
(c) (d) 

Figure 11.1: Steps Of A Link Break Attack 
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NORM 

BEACON beacon Timer 

Figure 11.2: State Machine Of An Attacking Node 

11.2 Implementation of Attacking Node 

Two attacking nodes are implemented to study vulnerability of the two CA 

protocols, SCODE and Hyacinth, respectively. The attacking nodes intend to break 

a link between a gateway node and its one-hop neighbor nodes. Each attacking 

node implements its attacking mechanism in the mainControl module. Although 

the two attacking nodes manipulate different channel management packets, the 

structure of them can be simply generalized. Figure 11.2 shows the state machine of 

the attacking nodes. The state machine does not follow the state machine proposed 

in Section 5.1. Instead, an attacking node simply stays in the NORM state. An 

ScodePacket *Pk = new ScodePacket (); 
pk->setlpAddr (nbT->getIPOfGatewayEntry ()); 

Niclnfo niclnfo = * (nbT->getMACOfGatewayEntry ()); 
niclnfo. getChannellnfo (). set Channel ( 

( niclnfo. getChannellnfo (). getChannel () + 1) % numChannels); 

pk->setNiclnfo ( niclnfo); 
pk->setHopPath ( 0); 

Figure 11.3: Implementation Of Manipulating The BEACON Packet In An Attacking 
Node 
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attacking node simply waits to receive channel management packets, especially the 

BEACON packet for SCODE protocol and the ADVERTISEMENT packet for 

Hyacinth protocol respectively. After sufficient channel information is collected, an 

attacking node manipulates the channel management packet to pretend a gateway 

node and contain incorrect channel information. Figure 11.3 shows the 

implementation of manipulating the BEACON packet in an attacking node. Then, 

an attacking node sends the manipulated channel management packet to gateway's 

one-hop neighbor nodes periodically. 

11.3 Experiment 

A few experiments are conducted to test vulnerability of the two CA protocols. To 

test the link break attack in a stable network, a testbed network is picked from 

Figure 10.4(c) and is set as described in Section 10.1.1. The average of each UDP 

flow is set to 64 Kbps (when the network shows better and stable throughput). 

Then, an attacking node is deployed close to the gateway node as depicted in Figure 

Figure 11.4: Network Topology In Which The Link Break Attack Is Tested 



114 In the network, the attackmg node can affect the hosts 4, 5, 8 and 9. In 

simulation, the attackmg node sends the mampulated packet to its victim nodes 

every 15 seconds, while the gateway node sends the BEACON/ ADVERTISE 

packets every 60 seconds 

Figure ll.5(a) 'and 11.5(b) show the throughput of the SCODE and Hyacmth 
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protocols under the lmk break attack respectively Both Figures show that the lmk 

break attack can reduce the throughput of a MIMC network Smee the lmk break 

attack is caused by mampulatmg channel management packets, and the packets are 

maintamed by a CA protocol, CA protocols should carefully design their 

mechamsms against such attack. Hence, such experimental result venfy that the 

MIMC framework can be used to study vulnerability of CA protocols 



CHAPTER 12 

CONCLUSION AND FUTURE WORK 

In this thesis, a generic simulation framework, MIMC-SIM, is designed and 

developed to study CA protocols m MIMC networks The MIMC-SIM framework is 

implemented m INET/OMNeT++ which provides great features for network 

simulations. In the MIMC-SIM framework, a new module is added as a new layer 

between the network layer and the MAC layer The new module is constructed· 

mainControl, subControl, neighborTable, and nicTable modules The 

mainControl module handles the operat10ns accordmg to the specification of CA 

protocols, such as handling channel management packets and computmg channel 

and routmg Also, the mainControl module handles packet transmission for CA 

protocols New CA protocols will be implemented m the mainControl module by 

extending its base class The subControl module performs command CA operations 

for all CA protocols, such as assigning channels to a NIC and scanning and probing 

channels. It also ensures that packets are transmitted on correct channels The 

neighborTable module mamtains various mformation of neighbor nodes The 

nicTable module mamtams mformation of NICs accordmg to their roles Both 

neighborTable and nicTable modules are extended according to a new CA protocol 

In addit10n, the MIMC-SIM framework provides FSME to implement a state 

machme of CA protocols m generic and flexible code structure In the MIMC-SIM 
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framework, the SCODE and Hyacmth protocols are implemented and evaluated 

The experimental results show that the MIMC-SIM framework can be used for 

research and development of CA protocols Furthermore, the vulnerability of CA 

protocols can also be studied in the framework. 
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For the future work, the activities of the NORM state m the mainControl 

module can be generalized. Accordmg to the implementations of the SCODE 

protocol and the Hyacmth protocol, they have very similar mternal structure m the 

NORM state. Basically, in the NORM state, both protocols allow nodes to 

broadcast their information, transmit packets, handle packets from lower layer and 

channel management packets, and go back to the ASSIGN state periodically 

Generahzmg such operat10ns m the NORM state will make the implementation of 

CA protocols more efficiently. 
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