
A SIMULATION FRAMEWORK FOR PERFORMANCE EVALUATION AND
SECURITY RESEARCH IN MULTI-INTERFACE MULTI-CHANNEL

NETWORKS

THESIS

Presented to the Graduate Council
of Texas State Umversity-San Marcos

m Partial Fulfillment
of the Reqmrements

for the Degree

Master of SCIENCE

by

Heywoong Kim, B.S

San Marcos, Texas
December 2010

COPYRIGHT

by

Heywoong Kim

2010

FAIR USE AND AUTHORS PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the Umted States (Public Law
94-553, section 107). Consistent with fair use as defined m the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgment. Use of
this material for financial gain without the authors express written permission is not
allowed.

Duplication Permission

As the copyright holder of this work I, Heywoong Kim, authorize duplication of this
work, m whole or m part, for educational or scholarly purposes only.

ACKNOWLEDGMENTS

First of all, I would like to thank Dr. QiJun Gu, the supervisor professor of my

thesis, for his long supervision and contribution. Without his gmdance and

thoughtful support, my research work could not have been completed. I owe a huge

debt of gratitude to his kindness and patience. I would also like to thank Dr. Xiao

Chen and Dr. Mma S. Guirguis for agreemg to be on my committee and for their

msight and help.

In addit10n, my deepest gratitude goes to my family for their unflaggmg love and

support throughout my life, this thesis is simply impossible without them. Also, I

thank to friends of Chi Alpha, Christian Fellowship at Texas State Umversity-San

Marcos, whose presence helps to make my life abundant in San Marcos.

This thesis was supported by NSF under award number 0916469, 0916000, and

0915318.

This manuscript was submitted on November 1, 2010.

V

TABLE OF CONTENTS

ACKNOWLEDGMENTS

LIST OF TABLES .

LIST OF FIGURES

ABSTRACT

1. INTRODUCTION.

2. CA PROTOCOLS .
2.1 CA Protocols

3. SIMULATORS
3.1 OMNET.
3.2 INET

3.2.1 Modules
3.2.2 Interaction .

3.3 Other Simulators
3.3.1 NS-2
3.3.2 NS-3 ...

3.4 Comparison . . .
3.4.1 Model management .
3.4.2 Programming Model
3.4.3 Performance
3.4.4 Experiment Design
3.4.5 Debugging

4. OVERVIEW OF MIMC-SIM .
4.1 Assumptions .
4.2 Challenges

vi

V

X

XI

xv

1

6
7

10
10
12
13
15
16
16
17
17
17
18
18
19
20

21
21
23

4.3 Issues of Channel Assignment
4.4 Architecture of MIMC-SIM

4.4.1 mainControl ..
4.4.2 subControl ...
4.4.3 neighborTable .
4.4.4 nicTable

4.5 Messages
4.6 State Machine .

5. MAINCONTROL
5.1 State Machine
5.2 Commanding CA Operations
5.3 Handling Channel Management Packets
5.4 Computing Channel and Route
5.5 Transmitting Packets

6. SUBCONTROL .. .
6.1 Work Flow .. .
6.2 State Machine .

6.2.1 SLEEP and IDLE.
6.2.2 CONDUCT .. .

6.3 SETNIC
6.4 WAITSCAN and SCAN .
6.5 WAITTRANSMIT, TRANSMIT

7. SUPPORTIVE MODULES
7.1 neighborTable

7.1.1 Access Retrieval Functions .
7.1.2 Maintenance of neighbor nodes
7.1.3 Mapping information of neighbor nodes .

7.2 nicTable
7.3 Modification in INET .

7.3.1 Network
7.3.2 ChannelControl
7.3.3 Radio
7.3.4 Mgmt
7.3.5 Mac .

8. STATE MACHINE
8.1 Enhanced Finite State Machine
8.2 State Definition ..
8.3 State Embodiment

vii

23
26
27
28
29
29
30
31

33
34
38
42
44
44

48
48
51
52
54
57
58
60

63
63
65
66
69
69
73
73
74
74
75
75

76
76
78
80

8.3.1 State Embodiment
8.3.2 Example of State Embodiment

9. IMPLEMENTATION
9.1 Current Implementation
9.2 Superimposed Code Based CA Protocol.

9.2.1 Channel Management Packets
9.2.2 State Transition Diagram
9.2.3 neighborTable .
9.2.4 nicTable
9.2.5 Gateway Node

9.3 Multi-channel Wireless Mesh Network CA protocol
9.3.1 Channel Management Packets
9.3.2 State Transition Diagram
9.3.3 neighborTable .
9.3.4 nicTable
9.3.5 Gateway node .

10. EXPERIMENTS . . .
10.1 SCODE Protocol

10.1.1 Setting ..
10.1.2 Comparison in the original testbed
10.1.3 Performance Study

10.1.3.1 Throughput
10.1.3.2 Channel to get channels
10.1.3.3 Overhead

10.2 Hyacinth Protocol
10.2.1 Comparison in original testbeds

10.2.1.1 Setting .
10.2.1.2 Analysis ...

10.2.2 Performance Study ..
10.2.2.1 Throughput .
10.2.2.2 Channel to get channels
10.2.2.3 Overhead
10.2.2.4 Conflict

11. SECURITY
11.1 Attack in a MIMC Network
11.2 Implementation of Attacking Node
11.3 Experiment

80
85

89
89
90
90
91
95
96
97
97
98

101
106
107
107

109
109
109
111
112
113
114
115
116
116
116
117
118
118
119
120
121

122
122
124
125

12. CONCLUSION AND FUTURE WORK 128

viii

BIBLIOGRAPHY . 130

ix

LIST OF TABLES

Table Page

9.1 Category Of NICs In The nicTable Module Of The SCODE Protocol 97

9.2 Channel Management Packets In The Hyacinth Protocol 98

9.3 Category Of NICs In The nicTable Module Of The Hyacinth Protocol . 107

X

LIST OF FIGURES

Figure

1.1 Two Types of Wireless Networks

3.1 Module Structure in OMNeT++ [8]

3.2 Mobile Host Sturcture in INET . . .

3.3 Inside Architecture of Network Module and Wlan Module

3.4 Simulation runtime [25]

3.5 Graphical runtime interface in OMNeT++ [8] .

4.1 Mobile Host Sturcture in the MIMC-SIM Framework.

4.2 MIControl Module Sturcture

5.1 Class Hierarchy Of mainControl Module

5.2 State Diagram Of The MainControl Module.

5.3 The MICommand Class

5.4 The buildSetNicCommand Function

5.5 The Channellnfo Class

5.6 The buildScanCommand Function .

5.7 The ScanControlinfo Class

5.8 The buildProbeCommand Function

Page

1

11

13

14

19

20

26

28

34

35

38

39

39

40

41

41

5.9 The MI Packet Class 42

5.10 The Declaration Of The Functions Updating The routingTable Module 43

5.11 The Declaration Of The MI PacketCtrl Class . . 47

5.12 Implementation Of The sendDataPacket Function 47

xi

6.1 The Flow Of Commands Among Modules 49

6.2 The sendRadioConfigM sg Function . . 50

6.3 The State Diagram Of The subControl Module . 51

6.4 The Set Of Queues The subControl Maintains 53

6.5 The Set Of Queues The subControl Maintains 54

6.6 Member Variables To Maintain Control Information In The subControl
Module . 55

6. 7 The Inside Structure Of The CONDUCT State In The subControl
Module . 56

6.8 The Inside Structure Of The SCAN State In The subControl Module 59

6.9 Implementation Of The getChannel Function 61

7.1 Declaration Of The MI NbEntryBase And MI NbTableBase Classes 63

7.2 Declaration Of The Niclnfo Class 64

7.3 The Set Of Functions The neighborTable Module Provides To
Update And Retrieve Information Of Neighbor Nodes 65

7.4 Access Function Of The neighborTable Module 66

7.5 Implementation Of The MI NicEntryBase And MI NicTableBase
Classes . 70

7.6 An Example Of The classifyNics Function . 71

7.7 Access Function Of The nicTable Module . . 71

7.8 The Set Of Functions The nicTable Module Provides To Update
And Retrieve Information Of NICs 72

7.9 The Structure Of The network Module In The MIMC-SIM Framework. 73

8.1 Relation Of Definition Function And State Embodiment 77

8.2 Implementation Of The handleWithFSM Function, A State
Definition In The mainControl Module 78

8.3 Definition Of FSME_Switch . 79

8.4 Definition Of FSME_State . 79

xii

8.5 Declaration Of State Embodiments In The mainControl Module 80

8.6 Components Used In A Flow Chart 81

8.7 The Flow Chart Of The SETNIC State In The subControl Module . 81

8.8 A Flow Chart Of The FSME Macros.
(The Dash Arrow Implies That There Might Be More FSME Macros.) 83

8.9 Definition Of The FSME Macros 84

8.10 Simplification Of A Flow Chart
(The Dash Arrow Implies That There Might Be More FSME Functions.) 86

8.11 The Simplified Flow Chart Of The SETNIC State In The subControl
Module . 87

8.12 Implementation Of Figure 8.11 Using FSME 88

9.1 Packet Declaration For Channel Management Packets Of The
Scode Protocol In A .msg File 91

9.2 Handling Channel Management Packets In The SCODE Protocol . 91

9.3 SCAN State Of The SCODE Protocol . . 92

9.4 ASSIGN State Of The SCODE Protocol . 93

9.5 SETNIC State Of The SCODE Protocol . 93

9.6 NORM State Of SCODE Protocol 94

9.7 The Implementation Of The neighborTable Module In The SC ODE
Protocol . 96

9.8 The Implementation Of The nicTable Module In The SCODE Protocol 96

9.9 The NORM State Of A Gateway Node In The SCODE Protocol 98

9.10 Packet Declaration For Channel Management Packets Of The
Hyacinth Protocol In A .msg File 99

9.11 Handling Channel Management Packets In The Hyacinth Protocol 100

9.12 The SCAN State Of The Hyacinth Protocol . . 102

9.13 The ASSIGN State Of The Hyacinth Protocol 103

9.14 The SETNIC State Of The Hyacinth Protocol 104

Xlll

9.15 The NOR~I State Of The Hyacinth Protocol 105

9.16 The Implementation Of The neighborTable Module In The Hy-
acinth Protocol . 106

9.17 The Implementation Of The nicTable Module In The Hyacinth Protocol 107

9.18 The NORM State Of A Gateway Node In The Hyacinth Protocol . 108

10.1 Superimposed Code 110

10.2 Examples Of A Network Topology 110

10.3 The Channel Usage Of Each Channel 111

10.4 Four Different Network Topologies To Study Performance Of The
SCODE Protocol 112

10.5 Throughput In The Topology3 Network 113

10.6 Time To Get Channels 114

10.7 Traffic Of Channel Management Packets Per Node 115

10.8 An Example Of A Network Topology 116

10.9 Throughput 117

10.10 Throughput In The Topology3 Network 118

10.11 Time To Get Channels 119

10.12 Traffic Of Channel Management Packets . 120

10.13 The Number Of Conflict Channels 121

11.1 Steps Of A Link Break Attack . . 123

11.2 State Machine Of An Attacking Node 124

11.3 Implementation Of Manipulating The BEACON Packet In An
Attacking Node . 124

11.4 Network Topology In Which The Link Break Attack Is Tested 125

11.5 Throughput Under The Link Break Attack 126

XIV

ABSTRACT

A SIMULATION FRAMEWORK FOR PERFORMANCE EVALUATION AND
SECURITY RESEARCH IN MULTI-INTERFACE MULTI-CHANNEL

NETWORKS

by

Heywoong Kim

Texas State Umversity-San Marcos

December 2010

SUPERVISING PROFESSOR- QIJUN GU

In wireless networks, devices can be eqmpped with multiple interfaces to utilize

multiple channels and increase the overall throughput of a network. Vanous channel

assignment protocols have been developed to better utilize multiple channels and

mterfaces However, the research of channel assignment protocols is still lack of a

good simulation tool that can content with a variety of reqmrements and

specificat10ns of channel assignment protocols. This thesis proposes MIMC-SIM, a

generic simulation framework to study channel assignment protocols m

multi-mterface and multi-channel networks. The MIMC-SIM framework is built in

OMNeT++ with INET and implements a new layer between the network layer and

the MAC layer The MIMC-SIM framework has a novel structure which supports

xv

generic features and specific behav10rs of channel assignment protocols It also

provides a generic and flexible code structure for 1mplementmg channel assignment

protocols

XVI

CHAPTER 1

INTRODUCTION

Wireless network is a type of network in which nodes communicate over a distance

using radio signals instead of wires. Since computers became able to communicate

via wireless networks, many efforts have been contributed to increase capacity and

accessibility of wireless networks. Many wireless protocols have been developed,

such as IEEE 802.11, Bluetooth, etc. With such wireless protocols, various wireless

networks have been implemented, for instance, ad hoc network and mesh network.

An ad hoc network is a type of wireless network in which nodes act as independent

routers and forward packets for communication with other nodes. A mesh network is

a type of an ad hoc network. In a mesh network, typically, one of the nodes connects

to another network, such as the Internet, and behaves as a gateway. Most traffic in

the mesh network is directed to/from a gateway [19]. Figure 1.l(a) and 1.l(b) show

I

(a) Ad Hoc Network (b) Mesh Network

Figure 1.1: Two Types of Wireless Networks

1

2

an ad hoc network and a mesh network respectively. Such wireless networks can be

greatly extended by each node without such infrastructure as an access point.

However, the capacity of wireless networks 1s limited compared to wired

networks. In a wireless network, when nodes are close enough to communicate with

each other, 1t 1s said that they are m the commumcat1on range. In the

commumcat10n range, only one transm1ss1on 1s allowed in a smgle channel at a

moment. When multiple transmissions occur simultaneously ma smgle channel, the

commumcat10ns mterfere with each other. Such interference mcurred by adJ01mng

nodes aggravates the capacity of a wireless network. In order to prevent such

interference, ut1hzmg multiple channels and multiple network interface cards (NIC)

has been considered.

Many commumcat10n protocols, such as IEEE802.ll, Bluetooth, and W1MAX,

provide multiple orthogonal channels whose frequencies do not overlap with each

other Utihzmg multiple orthogonal channels allows nodes to communicate

simultaneously on different channels without mterference. Such simultaneous

multiple commumcat10ns can improve the total throughput of a network [20]. In

add1t1on, m order to ut1hze multiple channels efficiently, multiple mterfaces are

eqmpped m each node and assigned to different channels. Thereby, such a network

is called multi-mterfaces multi-channels (MIMC) network, m which nodes utilize

multiple channels with multiple interfaces.

Many research have shown that MIMC networks provide much better

performance than smgle channel wireless networks Ash1sh et al [19] showed that a

MIMC network can achieve a factor of 6 to 7 throughput improvement compared to

a single channel wireless network Pradeep et al. [17] showed that MIMC networks

have better performance even when the number of mterfaces 1s smaller than the

number of channels. Vartika et al [14] also demonstrated that even 1f frequently

sw1tchmg channels 1s limited, MIMC networks still achieve good throughput

A MIMC network can achieve such good performance by a carefully designed

channel assignment protocol. A channel assignment (CA) protocol assigns the

multiple channels to nodes so as to better utilize multiple channels and mterfaces

and maximize the overall throughput of a network. CA protocols allow nodes to

exchange their channel and traffic mformation, collaborate on channel assignment

negotiation, and assign channels to nodes to reduce mterference m transmission

The design of CA protocols has been studied m mesh network [19, 16] and ad hoc

networks [26, 18]

3

However, no good and generic simulation tools are available for studying

problems of channel assignment m MIMC networks. The simulation tools developed

by existmg research on CA protocols are too specific to the CA protocols and the

network topologies [19, 16, 26, 18]. They are hard to be reused for studymg various

problems m MIMC networks and evaluatmg and comparmg performance of

proposed new schemes. Although quite a few emulation testbeds and simulation

tools have been developed for studymg wireless networks, they are still not sufficient

yet to satisfy the needs of MIMC network research Several deployed wireless

testbeds [1, 5, 11, 12] can be used to validate some wireless protocols However,

nodes m these testbeds mostly have only one radio, even though they use multiple

channels The testbeds can only emulate a network with a limited scale. The

4

topology of the nodes is hard to change, and node mobility can hardly be studied m

these testbeds. Meanwhile, a few simulation tools have been developed [2, 3, 6, 9],

which can address the problems in the wireless testbeds. They can support a

large-scale simulat10n of various protocols m wireless and mobile networks.

However, to the best of our knowledge, no general simulation framework has been

actually developed for MIMC networks. Even though some simulation tools have

partially added mechanisms for supportmg multiple mterfaces and multiple

channels, they have not truly exammed the needs of MIMC network simulat10n

which will be discussed shortly m Sect10n 4.

This thesis presents a generic simulat10n framework, named MIMC-SIM, for

MIMC networks The MIMC-SIM framework is bmlt in INET/OMNeT++. The

mam purpose of the MIMC-SIM framework is to include generic features of CA

protocols and support a variety of CA protocols. To do so, the MIMC-SIM

framework adds a new layer between the network layer and the MAC layer where

CA protocols are adopted The new layer allows CA protocols to work compatibly

with protocols at the network and the MAC layers In addition, the MIMC-SIM

framework provides generic and flexible code structure for easy extension accordmg

to protocol specification The MIMC-SIM framework also adapts a variety of factors

m simulat10n, such as network topology and traffic volume. In the MIMC-SIM

framework, two CA protocols are implemented and experimented accordmg to [19]

and [26] Addit10nally, vulnerability of the two CA protocols is tested by placmg an

attackmg node which manipulates the CA protocols in the network. The

MIMC-SIM framework will contribute to the research and development of MIMC

networks.

The rest of this thesis is orgamzed as follows·

Chapter 2 provides the background of CA protocols.

Chapter 3 discusses OMNeT++ and INET framework.

Chapter 4 discusses design issues of a MIMC network simulator and overviews the

architecture of the MIMC-SIM framework

Chapter 5 and 6 present maJor modules m the MIMC-SIM framework in detail

Chapter 7 presents adJunct modules m the MIMC-SIM framework m detail and

discusses modification m INET.

Chapter 8 presents a generic code structure to implement a state machme.

5

Chapter 9 shows the implementation of CA protocols m the MIMC-SIM framework

Chapter 10 shows evaluation of CA protocols m the MIMC-SIM framework.

Chpater 11 shows vulnerability of CA protocols in the MIMC-SIM framework

Fmally, Chapter 12 provides the conclusion of this thesis.

CHAPTER 2

CA PROTOCOLS

In a MIMC network, CA protocols conduct nodes to assign channels so as to

mimmize mterference among nodes and maximize the overall throughput of a

network. To do so, CA protocols allow nodes to exchange their channel mformation

and traffic mformat10n each other For example, CA protocols usually ask nodes to

scan and hsten local traffic when they Just Join a network m order to find neighbor

nodes and available channels When a node obtams a channel, the node shall

broadcast its channel and related mformat10n to let other neighbor nodes know CA

protocols define how nodes exchange their mformation with neighbor nodes and

assign channels based on the shared mformation

In a MIMC network, nodes can use multiple channels with multiple mterfaces

simultaneously. However, considermg the cost and the small size of a node,

normally the number of mterfaces, m, of a node should be smaller than the number

of channels, c It is shown [17] that the network capacity is affected by the ratio of c

tom, rather than the number corm When c/m is O(log(n)) ma random network,

network capacity will not be degraded Because of m < c, CA protocols mostly

focus on deploymg channels to nodes to mmimize mterference and maximize

throughput of a network.

In this chapter, a few CA protocols that aim to improve network capacity by

6

7

reducmg channel mterference are briefly summarized

2.1 CA Protocols

In [18], m order to mcrease network capacity, mterfaces of a node are divided mto

two categories fixed mterface and switchable mterface A fixed mterface is assigned

to a particular channel and works on the channel for long time period. A fixed

mterface 1s used to receive packets from other nodes. A node randomly selects a

channel m an m1tial level and assigns the channel to a fixed mterface. Later, the

node could change a channel of a fixed mterface to a less used channel to reduce

mterference. A switchable mterface 1s used to ensure connectivity with other nodes

In other words, nodes frequently switch a channel of its switchable interface to its

neighbor nodes' fixed channel for sendmg packets. The drawback of the protocol is

that the channel assignment of a fixed mterface takes time to converge. In addition,

1f the number of channels that nodes can use 1s large, the sw1tchmg channel delay

may be large when nodes need to switch back and forth to commumcate with

different neighbor nodes

In [26], CA algorithms based on s-disJunct superimposed code was proposed to

mitigate co-channel mterference of network capacity maximization For each node,

all orthogonal channels are labeled as either 1 for primary or O for secondary via a

bmary channel codeword Then, a node, u, first searches a set of primary channels

that are secondary to all mterferers in two-hop communicat10n range smce these

channels may not be used by the interferers. If the searching fails, u chooses the

secondary channels that are not primary, but also secondary to any of mterferers

8

srnce the rnterferers may not use them either If u cannot find such channel, it picks

up the primary channel that is primary to the least number of rnterferences.

In [16, 19], CA protocols were proposed specifically for a wireless mesh network

[19] considers the channel assignment problem as two sub problems: 1) an rnterface

assignment problem where interfaces of a node are divided into two categories·

UP-NICs used for communicatrng with its parent node, and DOWN-NICs used for

commumcatrng with its child nodes; 2) an rnterface-channel assignment problem

where the channel assignment of a node's UP-NIC is determined by its parents A

less loaded channel will be assigned to a DOWN-NIC to prevent the mterference A

node periodically reevaluates its current channel usage and switches a heavily loaded

channel to a less loaded channel for its DOWN-NIC. The channel assignment of a

node relies on its parents The parents always have higher priority than the children

A node close to a gateway will pick a channel earlier than those farther away.

In [16], a distributed CA protocol is proposed for a dual radio mesh network.

[16] considers that the mterfaces usmg different orthogonal channels from the same

frequency band might mterfere with each other unless they are separated by a

sufficient distance In order to solve the problem, they assume that the number of

mterfaces that nodes can eqmp 1s practically two, and nodes utilize channels m two

different frequency bands on each of the1r mterfaces to reduce mterference. Thereby,

each gateway ma mesh network associates a channel sequence presentmg channels

m different frequency bands alternatively with each of its mterfaces The channel

sequence is propagated along with routmg mformation in periodic route

announcement messages A node obtams channels m two different frequency bands

based on the channel sequence and the distance (hops) to the gateway. The nodes

on the same hops from a gateway share one channel in common, then all paths to

the gateway can operate on d1stmct channels to eliminate mtra-path mterference

Compared with [19], the CA approach does not rely on the parent. However, 1f a

gateway changes its channel sequence, the nodes connected to the gateway need to

change channels accordmgly.

g

CHAPTER 3

SIMULATORS

This chapter mtroduces OMNeT++ and INET m which the MIMC-SIM framework

has been developed and compares OMNeT++ with other simulation tools on

aspects mcludmg model design, performance, experiment design, and debuggmg

3.1 OMNET

OMNeT++ [8] 1s an open-source discrete event simulation environment. It 1s not a

simulator of any particular system, but rather provides a generic and flexible

architecture for writmg s1mulat10n tools It has been used to model and simulate

commumcat10n networks, operatmg systems, hfl-rdware architectures, distributed

systems, and so on. Although OMNeT++ 1s not a network simulator itself, 1t has

been widely utilized as a network simulation platform Moreover, OMNeT++ has

been one of the alternative simulators agamst open-source research oriented

simulator NS-2 [6] and the commercial software OPNET [9]

The most important feature of OMNeT++ 1s its obJect-oriented component

architecture In OMNeT++, network components, such as network layers, network

protocols, or network nodes, are composed hierarchically by modules Modules are

classified mto simple modules and compound modules. A simple module 1s the

lowest level module which implements actual activities of the module. A compound

10

11

Network

Figure 3.1: Module Structure in OMNeT++ [8]

module does not define actual activities, but combines simple modules to act like a

network component. The compound modules can be combined into an even larger

compound module. Figure 3.1 shows the hierarchy of simple modules and

compound modules . Boxes represent modules, and small squares represent gates

through which modules are connected. Arrows connecting boxes represent

connections between modules. Using this architecture, the logical structure of an

actual system can be efficiently described [21]. In OMNeT++, the structure of

modules are described in the NED language, which is OMNeT++ 's high-level

language. NED is used to define simple modules, and combine them into compound

modules. The modules defined in NED can be reused in any other compound

modules. The actual activities of simple modules are written in C++, using the

OMNeT++ simulation class library.

The fundamental ingredient of OMNeT++ making itself distinguished from

other simulators is the message passing mechanism. In OMNeT++, modules do not

call other modules ' functions directly. Instead, modules communicate by exchanging

12

messages, where messages may carry arbitrary data structures, for instance, data

packets for network commumcation Modules usually pass messages along

predefined connections via gates, but it is also possible to directly send messages to

destmation modules without the predefined connections. Messages can be easily

defined m msg files by usmg message definition function provided by OMNeT++

3.2 INET

The INET framework is an open-source commumcation network simulation package

bmlt m the OMNeT++ simulation environment [3] The INET framework contams

models for various networkmg protocols, such as UDP, TCP, IP, IEEE802.11, and

etc, and several application models The INET framework also supports wireless

and mobile simulations as well. Protocols are represented as modules, and the

modules are combmed to construct hosts and network devices mcludmg a router, a

switch, an access pomt, and so on Usmg INET with OMNeT++, various types of a

network can be implemented and simulated In fact, various extensions have been

already added mto INET [3] INETMANET [4] is a proJect to model mobile ad hoc

network protocols m the INET framework, and OverSim [10] is a proJect to model

overlay and P2P network protocols The MIMC-SIM framework is also an extension

m INET to model MIMC network protocols

Figure 3 2 shows the mternal structure of a mobile host which composes a

wireless network m INET The structure of the mobile host is founded to develop

the MIMC-SIM framework. In the rest of this section, modules constructmg the

mobile host are briefly explamed Then, mteractions among modules are clarified.

13

-\f' MobileHost

Figure 3.2: Mobile Host Sturcture in INET

3.2.1 Modules

Inside the host of Figure 3.2, some of the modules represent network protocols and

are connected according to their associated layers. For example, the tcpApp,

udpApp, pingApp modules at the top represent the application layer. The tcp and

udp modules and the networkLayer module in the middle implement protocols at

the transport layer and the network layer respectively. The wlan module at the

bottom resembles a network interface card in the host and implements protocols at

the link layer and the physical layer. Furthermore, the networkLayer and wlan

modules are compound modules which are embodied in Figure 3.3(a) and Figure

3.3(b) respectively. In Figure 3.3(a), each module represents a protocol as named

for itself. For example, the ip module implements IP protocol. In Figure 3.3(b), the

radio module represents a physical radio, and the mac module implements the MAC

14

leee802 l 1NicAdhoc

(a) Network Module (b) Wlan Module

Figure 3.3: Inside Architecture of Network Module and Wlan Module

protocol. And the mgmt module manages those two lower modules for ad-hoc mode.

In addition, in Figure 3.2 , a host node includes additional modules which

support other modules to collaborate together, hold data, or move a mobile host

node around. These modules do not implement specific network protocols. For

example, the notif icationBoard module allows modules to notify each other about

their events . When a module notifies of an event , the notificationBoard module

disseminates the event to other modules . The inter f aceTable module maintains

such information as IP address , MAC address, MTU, etc, of network interfaces in a

node. The inter f aceTable module provides such information to other modules. The

routingTable module maintains a routing table. The route of a outgoing packet is

decided according to the routing table in the routingTable module. The mobility

module deals with movement of a mobile node. This module constantly changes the

15

posit10n of its host node m a network durmg simulation

3.2.2 Interaction

In INET, modules can mteract with each other by three different mechamsms·

message pass, direct access, and notification The first mechamsm, message pass, is

provided m OMNeT++. Modules connected via gates usually pass messages to

commumcate with each other. This mechamsm is best for the process of packet

transmission For example, m Figure 3 2, when the tcpApp module sends a message

(which is referred to a packet m network transmission) to the tcp module, the tcp

module deals with the message accordmg to the TCP protocol and sends it to the

networkLayer module Then, the networkLayer module deals with the message

accordmg to a network layer protocol, such as the IP protocol, and sends it to the

wlan module

The second mechamsm, direct access, is to mteract with the modules not

connected via gates, such as the notijicationBoard, inter f aceTable, and

routingTable modules Such modules are directly accessed by callmg the access

funct10n bmlt upon the M oduleAccess class m other modules. Then, all

functionality of such modules can be utilized by other modules. For example,

mformation of the routmg table m the routingTable module can be retrieved

through this mechamsm

The last mechamsm, notification, is for modules to notify each other about their

events, for mstance, NIC configurat10n change, routmg table change, mobile node

position change, a state of a module change, communicat10n failure, and so on The

notificat10n mechanism is handled by the notificationBoard module When a

module wants to notify other modules of an event, the module accesses the

notificationBoard module and let it diffuse the event to modules mterested in

learning about the event with add1t10nal mformat1on. Events that can be notrfied

VIa the notificationBoard module are referred to notifications The notifications

are identified by their categories which are mamtained m the notificatwnBoard

module accordmg to kmds of events Usmg the notification mechamsm, a module

can interact with multiple modules at once.

3.3 Other Simulators

16

Besides OMNeT++, qmte a few open source based simulators have been developed

m the network research area Among all, NS-2 1s the most widely used, and NS-3 1s

the successor of NS-2 with better features. Nevertheless, the MIMC-SIM framework

is developed m the environment of OMNeT++ with INET. In this section, the

network simulation tools, NS-2 and NS-3, are briefly mtroduced and compared to

OMNeT++ with a focus on several views design structure, performance, and

experimental environment m order to show that OMNeT++ has better features

3.3.1 NS-2

NS-2 1s the most widely used network simulator m the network research area [23]

NS-2 1s a discrete event simulator that supports the simulation of TCP, routmg, and

multicast protocols over wired and wireless networks [6]. NS-2 uses C++ code for

implementmg the core part of a simulation, such as behavior of a system, and OTcl

17

scnpts for configurmg the system, such as a network topology This design structure

saves resources from unnecessary recompilations if somethmg has been changed m

the simulation set-up However, the structure has drawbacks· the OTcl script makes

the simulation slow down [24]

3.3.2 NS-3

NS-3 is also a discrete event simulator designed for the network research It is the

next generation of NS-2 However, the architecture of NS-3 is much different from

NS-2 [7] In order to abandon the problem caused by using OTcl scnpts in NS-2,

NS-3 relies entirely on C++ for implementmg the simulation with optional Python

bmdmgs [25] Therefore, models m NS-2 cannot be reused in NS-3 without portmg

properly Even though many improvements have been made in NS3 m terms of

performance and scalability, NS-3 is still under development Since NS-3 does not

provide sufficient models to implement MIMC networks, only NS-2 is considered to

compare with OMNeT++ m the next sect10n

3.4 Comparison

3.4.1 Model management

OMNeT++ has a clear boundary between the simulation kernel and module

implementat10n The 01\iNeT++ simulation kernel consists of a class library on

which modules are implemented [23]. The OMNeT ++ kernel generates modules as

executable by compilmg and lmking them against the class library [21] In this

18

structure, the class library does not need to be modified to implement new modules

Hence, OMNeT++ provides good features in terms of integrity and reusability In

NS-2, m contrast, the boundary between the simulation kernel and modules is

unclear [22] In NS-2, modules are usually generated by modifymg the pure kernel a

bit to adapt their act1v1ties Because of that, 1t 1s hard to mamtam the kernel of

NS-2 constantly In addition, after many modifications of the kernel, 1t will be

difficult for other developers to reuse the kernel. This limits the reusab1hty of NS-2

3.4.2 Programming Model

OMNeT++ separates clearly implementation of activities of modules and

configuration of modules As mentioned m Section 3.1, OMNeT++ uses two

different languages C++ and NED C++ is used to implement activities of

modules, and NED 1s used to configure modules Smee OMNeT++ manages the

two languages m different roles clearly, the boundary between two languages is

clear. NS-2 also provides the two different languages· C++ and OTcl. In NS-2,

basically, C++ 1s used to implement activities of components, and OTcl 1s used to

configure the network topology. However, NS-2 allows activities of components to

be implemented m OTcl This blurs the boundary of the two languages Also, it is

difficult for developers to track codes

3.4.3 Performance

Network simulators' ability to run huge scale networks are considered m terms of

performance. Accordmg to [25], OMNeT++ C8.IJ. simulate huge scale networks up to

19

the limitation of the virtual memory capacity of a system, whereas NS-2 is not

suitable to simulate the large network topologies. Figure 3.4 shows the simulation

runtime measured at different network sizes for the compared simulators. It shows

that OMNeT++ provides better performance than NS-2 for large size networks.

This is because OMNeT ++ maintains the set of future events in a binary heap [8],

while NS-2 maintains it in a linked list.

1400------------------------,
OMNeT++

ns-3
JiST

SimPy
ns-2

1200 -

1000 -

800 -

600 -

/

*
n

Figure 3.4: Simulation runtime [25]

3.4.4 Experiment Design

3500

In order to experiment in various settings efficiently, parameters of experiments

need to be separated from models. OMNeT++ separates experiments from models

by using .ini files (text files) where parameters of a simulation experiment are

written. In NS-2, in contrast, the experiment part mingles with models. For

example, parameters of a simulation experiment are embedded in the OTcl scripts

where the network topology is also defined. Therefore, the way to change the

20

parameters in NS-2 is not easy as in OMNeT++.

3.4.5 Debugging

Debugging in a network simulation is not only debugging code, but also tracing

variation of a network simulation [21]. OMNeT++ provides very powerful GUI

(Figure 3.5) , showing packet transmissions and network status while a simulation is

running. Using the GUI, OMNeT ++ allows users to check the process of simulation

of networks visually, and also have ability to control the network by changing

parameters during simulation. In contrast, NS-2 also provides a GUI , called nam, to

allow users to trace the process of a network simulation. However, the process of a

network simulation can be visualized only after a network is completely simulated.

Compared to OMNeT++ , NS-2 does not provide functionality to debug during

simulation.

Figure 3.5: Graphical runtime interface in OMNeT++ [8]

CHAPTER 4

OVERVIEW OF MIMC-SIM

This chapter discusses assumpt10ns used m the MIMC-SIM framework, the main

challenges, and CA issues m designing the MIMC-SIM framework. In addit10n, this

chapter presents the overall architecture of the MIMC-SIM framework.

4.1 Assumptions

The MIMC-SIM framework assumes that MIMC networks utilize multiple

orthogonal channels In the current implementation of INET, this assumpt10n is

well supported by the signal propagation model adapted m the radio module A

signal delivered m one channel does not contribute anythmg to another orthogonal

channel In the future, the radio module can be modified to adapt a better signal

model to capture the maJor characteristics of signals m overlapping channels.

The MIMC-SIM framework assumes all NICs are usmg the same commumcat10n

protocol or compatible protocols m the same protocol family. For example, m a

mesh network, a node can be eqmpped with two NICs One NIC may work on

IEEE802 llb and the other may work on IEEE802.llg The assumption implies

that a packet transmitted in a channel could be delivered to all NICs m that

channel. If different commumcation protocols with overlapping channels are used, a

signal that one protocol transmits a packet in one channel becomes a noise signal at

21

other protocols usrng the same channel The current radio module rn INET does

not support concurrent multiple communicat10n protocols.

22

Even though INET allows nodes to assign multiple IP addresses with multiple

NICs, the MIMC-SIM framework assumes that each node is identified by the umque

IP address In simulat10n, it is assumed that all nodes rn a MIMC network are m

the same subnet network, which means all NICs of each node are in the same subnet

network This assumption allows nodes to commumcate with one IP address over

multiple MAC addresses For example, although a node sends a pmg echo packet

out via one specific NIC, the node can receive the pmg reply packet via another NIC

whose MAC address is drfferent from the first one. Mapping a smgle IP address to

multiple MAC addresses in a node makes a routing algonthm easy to be

implemented m the MIMC-SIM framework

The MIMC-SIM also assumes the number of channels is usually greater than the

number of NICs m nodes Researchers [16, 13, 15] have shown that multiple NICs of

a node should be separated by at least 18 mches so that the1r rad10 transmission

does not mterfere with each other even though they use different orthogonal

channels. Hence, given the limit size of most mobile devices, a node could have only

a few NICs (mostly two or three) Whereas, w1reless networks often have more

orthogonal channels For example, IEEE801.llb/g has 3 orthogonal channels,

IEEE802.lla has 13, and IEEE802.15 4 has 16.

23

4.2 Challenges

Although INET can support partially multiple interfaces and multiple channels m

network simulat10n, qmte a few challengmg issues remain unaddressed for MIMC

network simulat10n due to two maJor reasons One is that the wireless framework in

INET was basically designed for simulatmg wireless commurncation in one channel

Even though it allows NICs to use multiple channels, it assumes that all NI Cs of the

same host use the same channel and work on the same mechanism in simulation

The other reason is that INET handles multiple NICs in wireless communication

directly based on the model of wired network, which simply makes the NICs forward

packets over separated commumcation links. In a MIMC network, such a model

ignores the collaborat10n among the NICs, thus, it cannot be used to support

MIMC simulation.

4.3 Issues of Channel Assignment

In order to develop a general framework that adopts various requirements of MIMC

networks, the MIMC-SIM framework is designed for addressing four major issues of

simulating CA protocols.

F1rst, CA protocols assign channels to nodes in various ways and assign various

roles to NICs accordmgly. The MIMC-SIM framework is designed to support two

major categones of CA protocols. One category is node-based channel allocation

[18, 26]. It assigns a set of channels to each node, and nodes usually receive packets

on the1r assigned channels. In this category, a receiving node guarantees that it

24

always receives packets on a particular channel, and a sendmg node tunes its channel

to a receiver's channel to deliver packets The NIC used to receive packets on a

particular channel is known as a receiving-NIC, and the NIC used to send packets is

known as a sendmg-NIC. The other category is lmk-based channel allocation

[16, 19]. It assigns channels to lmks, and nodes on a link use the channel assigned

the link In these category, NICs in a node are classified into two different groups,

for example, up-link NICs and down-link NICs, accordmg to the routing topology of

a network. In this type of network, a node assigns its up-link channel accordmg to

its parent node, and assigns its down-link channel accordmg to a CA protocol. The

framework should support nodes to manage their NICs with different roles.

Second, the MIMC-SIM framework needs to handle issues includmg the mapprng

between a MAC address and an assigned channel. In a MIMC network, a NIC is

always uniquely identified by its MAC address, while a node could be identified by a

single IP address. When a node sends a packet, the packet carries the IP addresses

of the destmat10n and the next hop. The sendmg node needs to resolve the MAC

address of the next hop NIC with the next hop IP address and the associated

channel rnformat10n with the MAC address. As NICs could switch on different

channels, the CA protocol needs to help nodes maintain channel mformation

associated with their next hop NICs. Hence, the MIMC-SIM framework needs to

properly mamtarn IP addresses of nodes and MAC addresses and channel

information of their NICs to support CA protocols.

Third, a CA protocol needs to rnteract with other protocols, beyond simply

making NICs forward packets. A CA protocol is placed between the network layer

25

and the MAC layer and works with various MAC protocols, IP protocols, routing

protocols, and ARP protocols To achieve this, the framework needs to identify the

components m CA protocols that are mdependent of other protocols Meanwhile,

the framework should provide mechanisms for these protocols to mteract so that a

CA protocol can work with a specific MAC protocol or network protocol.

Furthermore, CA protocols do not only mteract with other protocols, but also

mtegrate them such as ARP protocols and routmg protocols to adopt its own

algorithm.

Fmally, a variety of CA protocols have been proposed in the past. The

MIMC-SIM framework shall provide a codmg structure that accommodates common

features shared among these protocols and allows flexible extens10n to implement

specific protocol behaviors as well Many CA protocols can be modeled by an

operation plane and an algorithm plane The operation plane specifies the

operations which are fundamental activities of CA protocols, such as tunmg a

channel to a rad10, scanmng a particular channel, and transmittmg a data packet m

an appropriate channel The algorithm plane manages the way to exchange channel

mformat10n between nodes, and computes the channel allocat10n based on the

channel mformat10n collected usmg the operat10n plane. Although a particular CA

protocol always differs from other CA protocols in many details, they share some

common procedures of executmg operations and algorithms. Hence, the MIMC-SIM

framework utilizes these observat10ns to structure its architecutre.

26

4.4 Architecture of MIMC-SIM

To address the aforementioned issues of CA protocols in MIMC network simulation,

the MIMC-SIM framework defines a new host structure as shown in Figure 4.1.

Compared with the typical host in INET depicted in Figure 3.2, t he MIMC-SIM

framework adds the new module, M !Control (named after multi-interface control) ,

where CA protocols are adopted. The M !Control module is placed as a new layer

between the networkLayer module and the wlan modules , which represent the

network layer and the MAC layer respectively.

The new structure allows CA protocols to work independently with various

MAC protocols and IP protocols. Since the MI Control module is separate from the

networkLayer module and wlan modules, the M !Control module does not

Figure 4.1: Mobile Host Sturcture in the MIMC-SIM Framework

27

participate m their process, but cooperates with them by exchanging messages to

perform CA protocols Even if the instances of the networkLayer module and the

wlan module are changed, the MIControl module can still perform its operations

without modification. Moreover, the new structure allows CA protocols to deal with

routing issues for sendmg packets. When the MIControl module receives packets

from the networkLayer module, it can replace the routing mformation of packets

decided m the networkLayer module with new routing informat10n according to

CA protocols

In addition, compared to the original host structure in INET, the new host can

have multiple wlan modules and coordinate them. In the new host structure, CA

protocols can easily coordmate multiple wlan modules by the M !Control module

For example, the M !Control module can forward packets from the networkLayer

module to a particular wlan module for sending, while M !Control uses another

wlan module only for receivmg

Figure 4 2 shows the mside structure of the M !Control module. The

M !Control module is constituted with four kinds of modules: mainControl,

subControl, neighborTable, and nicTable.

4.4.1 mainControl

The mainControl module implements the algorithm plane of CA protocols. It

composes channel management packets, coordinates multiple subControl modules,

collects neighbor nodes' information and analyzes them, updates routmg

information, and decides routes and a proper wlan module for outgomg packets.

28

Figure 4.2: M !Control Module Sturcture

Moreover, the mainControl module manages neigbhorTable by updating neighbor

nodes ' information. A new CA protocol can be adopted into the simulation

framework by implementing a new mainControl module. Researchers can simply

extend the base class of the mainControl module to adopt their own CA protocols.

4.4.2 subControl

The subControl module implements the operation plane of CA protocols. Since the

operation plane is independent to the algorithm plane of CA protocols, the

subControl module is designed separately from the mainControl module. In

addition, each subControl module corresponds to a specific wlan module because

the process of CA operations is specific to an individual wlan module. The

subControl module controls its corresponding wlan module to perfrom the CA

operations. Thus, the same number of subControl modules are equipped as the

number of wlan modules. The subControl module does not decide when to conduct

CA operations. Instead, it receives commands from the mainControl module, and

29

performs CA operations based on the commands. The subControl module only

decides the order of performmg CA operations based on their given priority. In order

to take CA operations from the mainControl module and control a wlan module,

the subControl module is placed under the mainControl module and connected to

an individual wlan module. The subControl module also guarantees that packets

are transmitted on the correct channel by controlling its wlan module. Smee CA

operations the subControl module performs are mdependent to CA protocols, the

subControl module 1s not required to be re-implemented for a new CA protocol.

4.4.3 neighborTable

In MIMC networks, no matter what CA protocol is used, nodes collect and

maintain the information of their neighbor nodes. The neigbhorTable module is

designed to mamtain such information. This module 1s directly accessed by other

modules usmg the direct access mechanism (Section 3.2.2). Both the mainControl

module and the subControl module access the neigbhorTable module to update

neighbors' mformation or retrieve the information. The neighborTable module does

not participate m forwardmg packets in the MIControl module. Smee each CA

protocol requires different information for neighbor nodes, this module shall be

extended to store proper information accordmg to a CA protocol

4.4.4 nicTable

The nicTable module is designed to mamtam various roles and mformation of NICs.

CA protocols allow nodes to utilize their NICs in different roles, for mstance, upper

30

NIC and down NIC [19] Also, CA protocols allow nodes to assign specific channels

to their NICs. The nicTable module mamtams roles and channel information of

NICs defined by a CA protocol. The nicTable module is directly accessed by other

modules using the direct access mechamsm (Sect10n 3 2 2) Usually, the

mamControl module accesses the nicTable module to retrieve the information,

while the subControl module accesses it to update Similarly to the neigbhorTable

module, also, the nicTable module does not participate m forwardmg packets The

nicTable module will be extended to define new roles and store proper mformat10n

of NICs accordmg to a CA protocol

4.5 Messages

In OMNeT++, modules connected via gates pass messages to commumcate with

each other The MIMC-SIM framework classifies those messages mto command,

channel management packet, and data packet.

In the MIMC-SIM framework, the mamControl module controls the subControl

module to perform CA operations by sendmg special messages. Such special

messages are referred to CA commands. The MIMC-SIM framework defines the

MI Command class as the base class on which a specific CA command will be

implemented In addit10n, the subControl module sends messages to its wlan

module to configure the channel mformat10n of the wlan module. Such messages

that one module sends to another module to use its service are considered as

commands m the MIMC-SIM framework

In MIMC networks, nodes exchange their information such as IP address, MAC

31

addresses, channel information, traffic mformat10n, and so on. In the MIMC-SIM

framework, channel management packets are the messages carrymg such information

and transmitted among nodes. Channel management packets are specified by CA

protocols and generated m the mainControl module. In order to handle channel

management packets, the MIMC-SIM framework defines the MI Packet class as the

base class on which any kinds of channel management packets will be implemented.

Data packets are generated at or above the network layer In the MIMC-SIM

framework, all the messages received in the M !Control module from the

networkLayer module are regarded as data packets. Processmg data packets is

similar to the processmg m INET, but the MIMC-SIM framework ensures that each

data packet is transmitted on the correct channel.

Smee the MIMC-SIM framework is bmlt atop the MAC layer, both channel

management packets and data packets are considered as data frame at the MAC

layer For example, if the underlymg MAC protocol is IEEE802.ll, the two types of

packets will be formatted as IEEE802 11 Data Frame. So, m the MIMC-SIM

framework, channel management packets and data packets are simply referred to

packets.

4.6 State Machine

As any other network protocols, CA protocols can also be modeled m a fimte state

machme (or state machme), which is used for computer programs In the

MIMC-SIM framework, to adopt a CA protocol, the mainControl module is

implemented based on a state machine. In addition, the subControl module 1s also

32

implemented based on its own state machine. A state machme can be described

usmg a state diagram which abstractly describes a state machine To implement a

state machine as described in a state diagram, the MIMC-SIM framework provides

a set of predefined macros, named FSME (named after Enhanced Fimte State

Machine). FSME is inspired by FSMA, which is also a set of predefined macros

handlmg a state machme in INET FSME provides a generic code style and flexible

extension for implementmg a state machme Compared to FSMA, FSME allows

each state in a state machme to be implemented separately. The details of FSME

are explained m Chapter 8.

CHAPTER 5

MAIN CONTROL

In this chapter, the design and basic operations of the mainControl module are

presented based on the state machme of the mainQontrol module

The mainControl module is the core module implementmg actual CA protocols

in the MIMC-SIM framework. It 1s built upon the MIMainControlBase class, which

implements a set of abstract functions that perform CA operations and a few basic

INET functions that mitiahze the module and pass messages to proper functions.

Moreover, the MIMamControlBase class defines a set of functions using FSME

funct10ns to deal with a fimte state machme. The MIMamControlBase class 1s

designed to support common features of CA protocols so that child classes can

utilize them. As shown in Figure 5.1, the MIMainControlBase class 1s extended

from the cSimpleModule class which provides basic features of a simple module and

the !Notifiable class which deals with notification function in INET. Then, the

MIMamContrlBase class shall be extended to a child class to implement a specific

CA protocol For example, the DrcaMainControl class and the ScodeMainControl

class extends the MIMamControlBase class to implement the d1stnbuted

routing/channel algorithm ma MIMC network [19] and the CA protocol based on

superimpose code [26] respectively.

The process of the mainControl module is represented in a state machine.

33

34

cS1mpleModule INobf1able

MIMamControlBase

ScodeMamControl HyacmthMamControl

Figure 5.1 Class Hierarchy Of mainControl Module

Accordmg to a state machme, the mainControl module determmes when and how

to perform the followmg maJor operations for a CA protocol

• Commandmg CA operations

• Handlmg channel management packets

• Computmg channel and route

• Transmittmg packets

5.1 State Machine

The mainControl module implements a state machme to adopt a CA protocol

logically The process of a CA protocol can be represented m a state machme Smee

the process of each CA protocol is umque, implementat10n of a state machme is

specific to a CA protocol. However, the state machines of CA protocols can be

generalized mto the five states: INIT, SCAN, ASSIGN, SETNIC, and NORM

Figure 5 2 shows the state diagram of the five states in the mainControl module

conceptually. Even though CA protocols have their own specific state diagrams,

their state diagrams can be generally described within the five common states.

Accordmg to the five states, CA operat10ns are performed in proper manner. The

state diagram of a new CA protocol shall be depicted based on Figure 5.2 m the

MIMC-SIM framework.

[;]
~~

no valid path scanned

ASSIGN

valid path $ penod1cally

default
host node

disappeared
NIC setted

NORM

Figure 5.2: State Diagram Of The MamControl Module

35

In Figure 5 2, INIT is the beginning state when a node is initialized and

substantiated itself When a node is in the INIT state, although the node has

already imtiated m simulation, the node is regarded as mactive. As long as a node

stays in the INIT state, a node ignores all the mcoming packets from other nodes

and does not send any packets or perform any operations Thus, other nodes will

not be able to find the inactive node The INIT state is designed for a simulation

reason. When a network 1s imtiated m simulation, all nodes are mitiated at the

same time However, nodes may join a network m arbitrary time point In the

MIMainControlBase class, the timer, wakeUpTimer, 1s defined and scheduled

when a node 1s m1tiated When wakeU pTimer 1s expired, the node 1s regarded as

active when actually starts performmg CA protocols ma network However, this

state may not be considered m real network enVIronment.

36

The SCAN state comes after the INIT state It is triggered when wakeUpTimer

1s expired m the INIT state Basically, CA protocols allow nodes to hsten to the

medmm to find potential neighbor nodes and gather mformat10n from them. The

SCAN state 1s designed for that reason In the SCAN state, the mainControl

module commands the subControl modules to scan channels instead of scannmg by

itself. Durmg scanmng, the mainControl module receives channel management

packets from neighbor nodes and updates them mto the neighborTable module

When the mainControl module 1s notified of the completion of scannmg by the

subControl modules, the ASSIGN state 1s tnggered.

When a node enters the ASSIGN state, a node assumes that sufficient channel

mformat1on 1s collected m the SCAN state. In the ASSIGN state, based on the

channel mformation gathered from neighbor nodes, a node computes a channel to

assign and decides a default route accordmg to a CA protocol's algonthm. With the

computed results, a node tries to jam a network In some CA protocols, a node may

ask its expected default host node (parent node) to join a network m this state. If a

node confirms to Jam a network accordmg to a CA protocol, the node enters the

SETNIC state. Otherwise, the node either computes the channel and default route

once agam to find another parent node or goes back to the SCAN state to collect

new channel mformation

37

In the SETNIC state, a node sets its NICs mto the channel computed in the

ASSIGN state accordmgly If a node has encountered this state before since the

node started up, then the node may have a problem to set up its NICs because

there might be an ongomg CA operation or a packet transmission m its NICs

Forcmg the NICs to change a channel immediately beyond a current work may

cause such problems as a packet loss or a deadlock problem In order to prevent the

conceivable problems, the MIMC-SIM framework waits until a NIC completes its

current work and assigns a channel to the NIC The actual work is handled m the

subControl module. The mainControl module only commands a subControl

module to set up its NIC and waits for the notification indicatmg that the

subControl module completes settmg the NIC.

When a node sets up its NICs appropriately, the NORM state is finally

triggered Entermg the NORM state means that a node jams a network and

becomes ready to commumcate via a network. In this state, nodes not only

transmit packets, but also do some CA operations to maintam a CA protocol

Usually, nodes keep their neighbor nodes and collect new channel mformation from

neighbor nodes. As shown m Figure 5 2, the NORM state goes back to the ASSIGN

state periodically, or especially when a node has a broken lmk with its parent node

Since nodes update informat10n of their neighbor nodes m the NORM state, nodes

need to re-estimate their channels and routmg based on the new updated

mformation periodically In addit10n, the broken lmk to a parent node makes a node

unable to connect to a gateway, and it decreases the throughput of a network.

Thus, it is necessary to have the routme to go back to the ASSIGN state so that

nodes are able to re-estimate their channels and routing for applymg new channel

mformation and recovermg their default routes

5.2 Commanding CA Operations

38

In MIMC networks, m order to manage CA protocols, nodes perform such CA

operations as assignmg a channel to a NIC, scanning and probing a channel. Both

scanning and probmg are to listen to a particular channel, but the difference

between them is that probing broadcasts request packets durmg listenmg a channel

while scanmng does not. In the MIMC-SIM framework, instead of the mamControl

module executes the CA operations, the mamControl module sends CA commands

to the subControl module Then, the subControl module actually executes the CA

operations accordmg to CA commands. The mamControl module builds CA

commands upon the M !Command class which the subControl module perceives

and executes them accordingly. The MICommand class is defined as shown in

Figure 5.3. In the MICommand class, when the priority variable is false, the CA

c I ass lVIICommand
public:

public cMessage {

enum MICornrnandKind {
C_SETNIC,
G_.SCAN,
C_FROBE,

},

protected
bool priority;

};

Figure 5.3: The MICommand Class

39

l\AICommand* MIMainControlBase : ·
buildSetN1cCommand (int channel, double bitRate, bool priority)

{

}

l\AICommand *cmd =
new l\AICommand ("C_SETNIC" , l\AICommand : : C_SETNIC, priority) ,

Channellnfo * ch Info = new Channellnfo ();
chlnfo->setChannel (channel);
chlnfo->setBitrate (b1tRate),

cmd->setControllnfo (chlnfo),
return cmd;

Figure 5 4: The buildS etN icC ommand Function

command has higher priority to be executed The enumerat10n declaration,

MIC ommandK ind, is used to identify kmds of CA commands. The CA command

does not contain specific information to control CA operations Instead, it only

carries control mformation which the subControl module performs CA operations

accordmg to. To bmld, CA commands, the MI M ainControlBase class provides a

set of functions: buildSetNicCommand, buildScanCommand, and

buildProbeC ommand.

The buildSetNicCommand function is to build a CA Command to assign a

channel to a NIC The CA command is identified as C.BETNIC. The C_SETNIC

class Channellnfo{
public·

short channel ;
double bitrate,

}

Figure 5.5: The Channellnfo Class

40

l\1ICommand* MIMamControlBase
bmldScanCommand (int begmChannel, int end Channel,
double bitRate, double duration, bool priority, bool ISPmode)

{

}

if (begmChannel > end Channel)
opp_error (" illogical ~channeLrange"),

l\1ICommand *cmd =
new l\1ICommand (" C-8CAN" , l\1ICommand .. C-8CAN, pr 1 or it y) ,

ScanControllnfo * ctrl = new ScanControllnfo ();
for (int 1=begmChannel, 1<=endChannel, 1++){

}

Channellnfo * chinfo = new Channellnfo (),
chinfo->setChannel (i);
chinfo->setBitrate (bitRate);
ctrl->addChannelinfo (chinfo),

ctrl ->setDurat1on (duration);
ctr 1 ->setProm1scuousMode (1sPmode) ;

cmd->setControllnfo (ctrl),
return cmd;

Figure 5 6 The buildScanCommand Function

command carries a channel mformat10n which is defined in the Channellnfo class

The Channellnfo class is declared as shown rn Figure 5.5 and used to contarn a

channel number and its data rate When the subControl module receives the

C_SETNIC command, it retrieves the channel mformat10n from the command, and

assigns a channel to its NIC accordrng to the channel mformat10n This funct10n is

usually called rn the SETNIC state Figure 5 4 shows the implementation of the

buildS etN icC ommand function

The buildScanCommand function is to bmld a CA command to scan a set of

channels The CA command is identified as C_SCAN. The C_SCAN command

carries a control mformation defined rn the ScanControlinfo class. The

41

ScanControllnfo class is defined as shown m Figure 5.7 and used to control not

only scannmg, but also probmg. The control information contams a series of

channels, bit rate of channels, and durat10n of scanning each channel In addition, it

can enable scanning m promiscuous mode. The subControl module scans accordmg

to the control mformat10n that the C_SCAN command carries Figure 5 6 shows the

implementation of the buildScanCommand function.

class ScanControlinfo{
public.

}

std · vector<Channellnfo *> ChannellnfoSeq,
bool promiscuousMode;
double duration,
cMessage *ProbeMsg,
int repeatMsgTime,

Figure 5.7. The ScanControllnfo Class

MlCommand* MIMamControlBase.

{

}

bmldProbeCommand (int begmChannel , int end Channel,
double bitRate, double duration , cMessage* msg,
int repeatMsg, bool priority , bool isPmode)

MlCommand *cmd = buildScanCommand (begin Channel , end Channel
bitRate, duration, priority, 1sPmode),
cmd->setName("C_pRQBE");
cmd->setKind (MICommand c_pRQBE),

ScanControllnfo * ctrl =
check_and_cast <ScanControllnfo *>(cmd->getControlinfo ()),
ctrl ->setProbeMsg (msg),
ctrl ->setRepeatMsgTime (repeatMsg);

return cmd;

Figure 5.8· The buildProbeCommand Function

42

The buildProbeCommand function is to build a CA command to probe a set of

channels. The CA command is identified as C_FROBE. Since probmg is also to scan

channels, the buildProbeCommand function simply calls the buildScanCommand

function to set configuration for scannmg. Then, it attaches a packet and iteration

number of sendmg the packet to the control mformation. The subControl module

probes accordmg to the control information. Figure 5.8 shows the code of the

buildProbeCommand function. Both the buildScanCommand and

buildProbeC ommand functions are used in the SCAN state usually

5.3 Handling Channel Management Packets

In a MIMC network, the mainControl module builds channel management packets

upon the MI Packet class and sends them out accordmg to a CA protocol. Figure

5.9 shows the defimt10n of the MI Packet class It simply extends the cPacket class

and adds one more member variable, type, indicating types of channel management

packets. When the mainControl module receives channel management packets, it

handles the packets m the handleM I Packet function, which is defined m the

MI M ainControlBase class. Smee CA protocols define and handle channel

management packets differently, the handleM I Packet funct10n is declared as a pure

class MIPacket
protected

int type;

}

public cPacket {

Figure 5 9· The MI Packet Class

43

virtual funct10n Then, a child class shall extend the base class and instantiate the

handleM I Packet funct10n to handle channel management packets according to its

CA protocol.

When the mainControl module handles channel management packets, it usually

updates the information into the neighborTable module and the routingTable

module. The neighborTable module can be easily updated using functions provided

by the neighborTable module. For updatmg the routingTable module, mstead of

using the functions that the routingTable module provides, the mainControl

module uses its own functions. updateRoute, removeRoute, updateDefaultRoute,

which are implemented in the MIMainControlBase class. Figure 5.10 shows the

declaration of the functions. The updateDefaultRoute function updates default

route informat10n and marks a default host node in the neighborTable module as

well. The updateRoute function adds or updates routing information into the

routingTable module. The removeRoute function removes routing mformation by

given host IP address. These functions allow developers to utilize the routingTable

module convemently.

class INET-.API MIMainControlBase{
protected
virtual void updateDefaultRoute (const IP Address& gateway IP,

InterfaceEntry *ie),
virtual void updateRoute (const IP Address& host IP ,

const IP Address& gatewayIP, const IP Address& netMaskIP,
InterfaceEntry * ie);

virtual void removeRoute (const IP Address& hostIP);

Figure 5.10: The Declarat10n Of The Functions Updating The routingTable Module

44

5.4 Computing Channel and Route

CA protocols have their own specific channel assignment algorithm which allows

nodes to find the best channel and route so that CA protocols can accomplish their

goal, max1m1zmg overall throughput of a network. In a MIMC network, when a

node collects sufficient mformation of traffic and assigned channels from its

neighbors, the node computes better route and a proper channel accordmg to its

CA protocol's channel assignment algorithm In the MIMC-SIM framework, the

channel assignment algorithm 1s performed m the mainCantrol module. More

specifically, the assignChannelAndRoute function 1s defined to implement the

algorithm in the MI M ainControlBase class. However, smce the channel

assignment algorithm of each CA protocol is umque, the assignChannelAndRoute

function 1s declared as a pure virtual function Then, a child class shall extend the

base class and mstantiate the assignChannelAndRoute function to implement the

channel assignment algorithm accordmg to its CA protocol. The

assignChannelAndRoute function 1s usually executed m the ASSIGN state.

5.5 Transmitting Packets

In a computer network commumcation, packets are delivered with routmg

mformation which is selected m the network layer In a MIMC network, however,

routmg for each packet is usually chosen by a CA protocol. To achieve this, the

MIMC-SIM framework allows the mainControl module to deal with packets for

routing m the NORM state. This section presents how the mainControl module

45

deals with packets m order of process

When a packet 1s delivered from the Network module for transmission, the

mainControl module first stores the packet m dataQueue, a queue defined m the

MI M ainControlBase class, without any routmg mformation In a MIMC network,

CA protocols allow nodes to update the routmg table and change a default route

frequently The frequent change of the routing table may cause that a packet

transmission does not reflect the latest routmg table For example, suppose that a

route of a packet 1s already chosen, and the packet waits to be delivered in a node

Then, suddenly, the node updates its routmg table. Based on the new routmg table,

the packet should be delivered on a different route However, because the route of

the packet has been made already, the packet will be still delivered in the origmal

route, which might cause a packet loss eventually. For this reason, the route of

outgomg packets should be chosen right before they are transmitted. Hence, the

mainControl module keeps outgoing packets m the queue without routing

mformation until the packets are actually transmitted.

In order to know when the outgomg packets can be actually transmitted, the

mainControl module tracks the amount of packets that each subControl module

can transmit at once. To do so, first, the MI M ainControlBase class defines

requestedPacket as a vector whose element mdex matches to the mdex of

subControl modules, and sets every element of requestedPacket to a certam

amount of packets that a subControl module can transmit at once. When the

mainControl module sends a packet to a subCotnrol module, the correspondmg

element of requestedPacket is decremented. When a subControl module completes

46

a cycle of transmittmg a packet (fimshes transmission of a packet), the subControl

module notifies the mainControl module of the completion, and the mainControl

module mcrements the corresponding element of requestedPacket Hence, when an

element of requestedPacket is positive, the correspondmg subControl module is

available to transmit a packet Conversely, when the element is zero, the

correspondmg subControl module is not capable to transmit a packet So, the

mainControl module does not use the subControl module for transmittmg packets

Smee each subControl module intends to handle one packet at a time, every

element of requested packet is set to one and not mcremented over one. Moreover,

by receivmg the notification, the mainControl module is able to know when a

particular subControl module becomes ready to transmit another packet.

When the mainControl module is available to send a packet out, first, the

mainControl module checks requestedPacket to figure out which subControl

module is available Then, the mainControl module retrieves a packet supposed to

be transmitted via the NIC, which associates with the available subControl module,

from dataQueue based on the routmg table When a packet is retrieved, the

mainControl module attaches control mformat10n bmlt upon the MI PacketCtrl

class, defined as depicted in Figure 5 11 The control mformation contams routmg

mformat10n and channel mformat10n and mdicates importance of a packet The

channel mformat10n is used when the mainControl module forces a packet to be

transmitted on a particular channel The importance mdicates whether a packet is a

non failure-free packet When a non failure-free packet transmission fails at the

MAC layer, the subControl module will notify the neighborTable module of the

47

failure. Fmally, the mainControl module sends a packet to the subControl module

class MIPacketCtrl{
protected.

}

cPolymorph1c * con trollnfo,
Channellnfo * channellnfo;
bool reliance;

Figure 5.11· The Declarat10n Of The MIPacketCtrl Class

void MIMainControlBase.: sendDataPacket ()
{

if (isErnptyQueue ()) return;

for(int 1=0, i<nurnN1cs; i++)
if(requestedPacket[1] > O){

cMessage *rnsg = dequeue (i),
if (rnsg)

sendDown (rnsg , i) ;
}

}

Figure 5 12. Implementation Of The sendDataPacket Funct10n

In the MI M ainControlBase class, the sendDataPacket function is defined and

implemented to handle packet transmission as the aforementioned process. Figure

5.12 is the implementat10n of the sendDataPacket function. In Figure 5.12, the

dequeue function is to retrieve a packet as explamed above. In a child class of the

MIMainControlBase class, the sendDataPacket funct10n will be simply called for

a packet transmission.

CHAPTER 6

SUB CONTROL

In this chapter, the design of the subControl module is presented m detail.

6.1 Work Flow

The subControl module is designed to perform common CA operat10ns, such as

assignmg a channel, scannmg and probing a set of channels, and transmittmg

packets on the correct channel. Assigmng a channel means to tune a NIC mto a

certam channel Scannmg means to listen to a channel for a certam time Probmg is

basically similar to scanning, but the subControl module broadcasts packets before

listening to each channel. Ttansmittmg packets on the correct channel means to

ensure that packets are transmitted on the correct channel of the nght next hop

node. Smee such CA operations are mdependent to CA protocols, the subControl

module provides such CA operations as tool kits that vanous CA protocols can

utilize. Developers only need to decide how to use these tool kits m CA protocols,

mstead of mixing these operations withm CA protocols

In order to perform CA operations, the subControl module mteracts with the

mainControl module and its correspondmg NIC Figure 6 1 shows how the

subControl module mteracts with other modules to perform CA operations

F1rst, the subControl module receives CA commands and packets from the

48

miControl

mainControl

G)
CA commands

® packets
notification

subControl

®
commands

NIC

®
notification

Figure 6.1: The Flow Of Commands Among Modules

49

mainControl module to activate CA operations. Although the subControl module

performs the CA operations, it does not decide when to conduct CA operations.

Instead, the subControl module only carries CA operations by receiving CA

commands or packets from the mainControl module. In a MIMC network, CA

operations are determined by a CA protocol. Since the mainControl module

implements a CA protocol, the mainControl module takes charge of sending proper

CA commands and packets in a proper manner according to a CA protocol.

According to the CA commands and packets, the subControl module executes CA

operations.

When the subControl module executes CA operations, it controls its

corresponding NIC by sending a command. The command is to change such channel

information as channel number and bit rate of a NIC. The subControl module

implements the sendRadioConfigM sg function which builds the command. In the

void sendRad10Conf1gMsg (Channellnfo * channellnfo)
{

}

if (channellnfo = NULL)
return,

PhyControlinfo *phyCtrl = new PhyControlinfo (),
phyCtrl->setChannelNumber (channelinfo->getChannel ()),
phyCtrl->setB1trate (channelinfo->getBitrate ());

cMessage *msg =
new cMessage (" Rad10ConfigMsg" , PHY_C_CONFIGURERADIO),

msg->setControlinfo (phyCtrl),

sendDown (msg) ,

Figure 6 2· The sendRadwConfigM sg Function

50

sendRadwConfigM sg funct10n, the command is simply bmlt as a message and

identified as PHY_C_CQNFIGURERADIO Such command will be perceived as

a command to change a channel and its bit rate m the mac module However, the

command only carnes control mformation which contains specific channel

mformat10n The control mformation is bmlt upon the PhyControlinfo class

(provided m INET), which can be correctly executed in the AbstractRadw class,

implementmg the radio module m the wlan module. Figure 6.2 shows the

implementation of the sendRadwConf igM sg function. When a NIC receives the

command, it changes its channel mformation accordmgly and notifies a subControl

module When the subControl module fimshes executmg a CA operation, it notifies

the mainControl module about the complet10n of a CA operat10n

9
MICommand

C_SETNIC

SETNIC

NIC setted

IDLE

MICommand
data packets

C_SCAN
C_PROBE

WAITSCAN

NIC setted

empty queues
(no more work)

next
channel

data packets

NIC setted

Figure 6 3 The State Diagram Of The subControl Module

6.2 State Machine

The subControl module performs CA operations accordmg to a state machme.

51

Figure 6 3 shows the state diagram of the subControl module In the SLEEP state,

the subControl module is imtiahzed In the IDLE state, the subControl module is

idle In the CONDUCT state, other states are tnggered to perform CA operations

accordmgly. The SETNIC state is to assign a channel. The WAITSCAN and SCAN

states are to perform scannmg and probmg The WAITTRANSMIT and

TRANSMIT states are to transmit packets on the correct channel

52

6.2.1 SLEEP and IDLE

The SLEEP state 1s the begmnmg state of the state diagram m Figure 6.3. In the

SLEEP state, the subControl module 1s m1tiahzed and discards packets from other

modules In s1mulat10n, even though the mainC antral module 1s m its INIT state,

NICs (the wlan modules) still receive packets from other nodes and forward packets

to the M !Control module. If the mainControl module starts up while a NIC 1s

receiving a packet, the mainControl module should discard the packet because the

packet was received before the actual start time of a node rn simulation However,

the mainControl module still accepts the packet and deals with 1t Such acceptance

may brmg rnaccurate results for the simulat10n of CA protocols In order to prevent

the problem, the subControl module discards packets ahead of the mainControl

module However, mother than the SLEEP state, the subControl module forwards

packets to the mainControl module immediately when packets are received from its

correspondmg NIC In the SLEEP state, the subControl module 1s triggered to the

CONDUCT state by receivmg a CA command from the mainControl module.

Once the mainControl module starts, 1t commands the subControl module to

perform a CA operation So, when the subControl module receives a CA command

m the SLEEP state, 1t assumes that the mainControl module has been started,

then starts its process as well

In the IDLE state, the subControl module 1s simply wa1tmg for receivmg CA

commands and packets When the subC antral control receives them from the

mainControl module, the subControl module stores them ma queue properly and

void MISubControl · enqueueOperat1on (MICommand *Cmd)
{

}

if(cmd->getPriority ())
$h1ghCommandQueue$. insert (cmd),

else
$lowCommand Queue$ rn s er t (cmd) ;

Figure 6 4· The Set Of Queues The subControl Mamtams

53

enters the CONDUCT state When the subControl module enters the IDLE state,

it notifies the mainControl module of that, the subControl module ism the IDLE

state. This is because the mainControl module will want to know when the

subControl module becomes idle.

When the subControl module receives CA commands, regardless of a state, it

stores CA commands mto two different queues, highCommandQueue and

lowCommandQueue, accordmg to their pnonties The subControl maintams

highCommandQueue and lowCommandQueue to buffer high pnonty CA

commands and low priority CA commands respectively Smee high pnonty CA

commands are supposed to be handled pnor to low pnonty CA commands, the

subControl module executes CA commands buffered m highCommandQueue first

If there is no CA commands m highCommandQueue, then the subControl module

proceeds CA commands from lowCommandQueue. The pnonty of a CA command

is determmed m the mainControl module according to a CA protocol. In the

subControl module, the enqueueOperation function stores CA commands mto a

proper queue as shown in Figure 6.4

In addition, The subControl module mamtains two more queues,

54

highDataQueue and lowDataQueue, to maintain packets. The subControl module

receives two kmds of packets from the mainControl module channel management

packets and data packets In a MIMC network, for nodes to mamtam a CA

protocol, channel management packets should take precedence over data packets In

all states, except the SLEEP state, when the subControl module receives packets, it

buffers channel management packets mto highDataQueue and data packets mto

lowDataQueue. The subControl module transmits the packets m highDataQueue

before the packets m lowDataQueue Hence, whenever a channel management

packet arrives, the subControl module sends it out first, even if the packet arrives

later than data packets. In the subControl module, the enqueueData function

stores packets mto a proper queue as shown m Figure 6 5.

void MISubControl. enqueueData (cMessage *msg)
{

}

if (dynam1c_cast<MIPacket *>(msg))
$h1ghDataQueue$ rnsert (msg);

else
$lowDataQueue$ rnsert (msg),

Figure 6 5 The Set Of Queues The subControl Mamtams

6.2.2 CONDUCT

In the CONDUCT state, the subControl module checks the aforementioned queues

and leads to a proper state to perform CA operations. The subControl module

handles CA commands pnor to packets, because such CA operations as assignmg,

scannmg, and probmg a channel have higher pnonty than packet transmission to

maintain CA protocols. So, m the CONDUCT state, the subControl module checks

class MISubControl{
protected

}

Channellnfo *newChannellnfo,
ScanControllnfo *ScanCtrllnfo,

55

Figure 6 6. Member Variables To Mamtam Control Informat10n In The subControl
Module

the command queues (highCommandQueue and lowCommandQueue) first and the

data queues (highDataQueue and lowDataQueue) later The subControl module

retrieves a CA command from the command queues, if any If the command is the

C_SETNIC command, assignmg a channel to a NIC, the subControl module enters

the SETNIC state If the command is either a C_SCAN command or a C_PROBE

command (Section 5.2) to scan or probe channels, the WAITSCAN state is

triggered. If no commands are m the command queues, the subControl module

retrieves a packet from the data queues, if any. Then, the subControl module

triggers the WAITTRANSMIT state to transmit the packet

When the subControl module leads CA commands to a proper state m the

CONDUCT state, it retrieves control mformat10n from CA commands to perform

CA operat10ns properly CA commands carry control informat10n to control CA

operat10ns (Sect10n 5 2) The subControl module mamtams two variables,

newChannellnfo and scanCtrllnfo, to keep the control mformat10n They are

defined as shown m Figure 6 6 The newChannellnfo variable keeps the control

mformation of the C_SETNIC command. The scanControllnfo variable keeps the

control mformation of both the C_SCAN and c_pRQBE commands Such variables

State Entry Point

C_SETNIC C_SCAN
C_PROBE

NIC setted

CONDUCT

N

dequeue
dataQ

SETNIC
state

WAITSCAN WAITTRANSMIT
state state

send
command

y

N

IDLE state

56

Figure 6. 7: The Inside Structure Of The CONDUCT State In The subControl Module

are used in the SETNIC, WAITSCAN, and SCAN states to perform CA operations

properly.

In addition, the subControl module maintains the channel assigned to its

corresponding NIC in the CONDUCT state. If all the queues are empty, which

means the subControl module does not have any work to do, then the subControl

module tries to preserve an assigned channel of its corresponding NIC before

entering into the IDLE state. After CA operations are performed, a channel of the

NIC might have been changed to a different channel from its assigned channel. The

subControl module retrieves a channel assigned to its corresponding NIC from the

nicTable module and checks whether the NIC's current channel is equal to the

assigned channel. If they are same, the subControl module enters into the IDLE

57

state. Otherwise, the subControl module commands the NIC to change to the

assigned channel and waits until the channel is actually assigned to the NIC When

the subControl module is notified of that, the channel is correctly assigned to the

NIC, it enters the CONDUCT state once again The re-entrance is because the

subControl module could receive CA commands and packets from the mainControl

module while waitmg for the assignmg a channel operation. However, smce a

channel is assigned only to a fixed NIC, the subControl module preserves an

assigned channel only if its correspondmg NIC is a fixed NIC Figure 6. 7 shows the

mside structure of the CONDUCT state, which is depicted accordmg to Section 8 3

6.3 SETNIC

In the SETNIC state, the CA operation to assign a channel to a NIC is performed

This state is triggered by the C_SETNIC command. Once the subControl module

enters the SETNIC state, it checks whether the channel, kept m newChannellnfo,

is equivalent to the current channel of the NIC. If so, the subControl module

notifies the mainControl module of that, a channel is assigned to a NIC because

the same channel has been already used ma NIC. Then, it goes back to the

CONDUCT state Otherwise, the subControl module sends a command to change a

channel to a NIC and waits until a NIC actually assigns a channel When the

subControl module is notified of that a NIC correctly assigns a channel, it updates

the new channel mformat10n mto the nicTable module and notifies the

mainControl module of that, it has assigned a channel. Then, the subControl

module goes back to the CONDUCT state

58

6.4 WAITSCAN and SCAN

In the WAITSCAN and SCAN states, the two CA operations, scannmg and

probmg, are performed. Scannmg a channel is to tune a NIC to a particular channel

and hsten to the channel. Probing a channel is also to tune a NIC to a particular

channel and hsten to the channel Durmg probmg, packets are sent to probe a

channel before hstenmg However, smce the two CA operations have the same

procedure, tunmg and hstenmg, both CA operations are performed m the same

states, WAITSCAN and SCAN.

In the WAITSCAN and SCAN states, the subControl module controls the CA

operations by scanControllnfo which contams a senes of channels, data rate of

channels, durat10n for listening to each channel, and mdication to activate

promiscuous mode In addition, scanControllnfo can contam additional

mformation, such as a packet and iterat10n number of sendmg the packet for

probmg. With scanControllnfo, the subControl module allows for scannmg or

probing a senes of channels at once

In the WAITSCAN state, the subControl module tunes its corresponding NIC

to a particular channel. When the subControl module enters m this state, it

compares the current channel of the NIC with the first channel out of channels that

scanControllnfo contams. If they are same, the subControl module directly enters

the SCAN state. Otherwise, the subControl module sends a command to tune a

NIC to the channel. Then, it enters the SCAN state when the subControl module is

notified that a NIC correctly tunes the channel

State Entry Point

set a
scan Timer

LINK_ TRANSMITTED LINK_PROMISCUOUS

N y

send a
probing packet

scan Timer

~N

~
y

CONDUCT WAITSCAN
state state

59

Figure 6.8: The Inside Structure Of The SCAN State In The subControl Module

In the SCAN state, the subControl module actually performs the CA

operations, scanning and probing. Figure 6.8 shows the inside structure of the

SCAN state, which is depicted according to Section 8.3. When the subControl

module enters in the SCAN state, first, it sets a timer to be expired in duration of

listening. For the duration of listening, scanning and probing are performed. For

scanning, the subControl module simply waits to receive packets. For probing, the

subControl module sends the packet, which scanControllnfo contains as many

times as the number that scanControlinf o indicates. After sending enough

packets, the subControl module waits to receive packets. If the subControl module

receives packets, it forwards the packets to the mainControl module. When the

60

timer 1s expired, the subControl module checks whether the CA operation 1s

performed on all the series of channels that scanControlinf o md1cates. If not, the

subControl module goes back to the WAITSCAN state to perform the same CA

operation for the next channel. Otherwise, it termmates a CA operat10n and enters

mto the CONDUCT state.

6.5 WAITTRANSMIT, TRANSMIT

In the WAITTRANSMIT and TRANSMIT states, the subControl module

transmits packets on the correct channel In WAITTRANSMIT state, the

subControl module tunes its corresponding NIC to a particular channel for a packet

transmiss10n To do so, first, the subControl module retrieves a proper channel

mformat1on on which the packet needs to be transmitted To retrieve a proper

channel mformat10n, the subControl module implements the getChannelinfo

funct10n as shown m Figure 6 9 In the getChannellnfo function, the subControl

module gets a channel mformat1on for a packet transm1ss10n m the following order

First,' the subControl module gets the channel mformat10n from the control

mformat10n of a packet, because the maznControl module can designate a specific

channel for a packet Second, the subControl module gets the channel information

from the nicTable module for broadcast packets when its NIC is a fixed NIC. When

a channel is not specified for a broadcast packet, the subControl module assumes

that a packet is broadcasted on its NIC's assigned channel. Fmally, the subControl

module gets the channel mformation from the neighborTable module for umcast

packets. The neighborTable module provides mapping between destmat10n MAC

Channellnfo * MISubControl:: getChannellnfo (cMessage *msg)
{

}

MIPacketCtrl * miCtrl =
check_and_cast <MIPacketCtrl *>(msg->getControllnfo ());

MACAddress macAddr =
getDestMAC(miCtrl->getControllnfo ());

Channellnfo * chlnfo = new Channellnfo ();

if (miCtrl->getChannellnfo ())
* ch Info = * miCtrl->getChannellnfo ();

else if(macAddr. isBroadcast () && nicEntry->isFixed ())
*Chlnfo = nicEntry->getChannellnfo ();

else if (!macAddr. isBroadcast ())
* chlnfo = nbT->getChannellnfoByMAC (macAddr);

return chlnfo;

Figure 6.9: Implementation Of The getChannel Function

61

address and proper channel information. (In most of cases, a proper channel can be

found in the getChannellnf o function. However, if any proper channel could not

be found, a packet will be transmitted in a NI C's current channel.)

Once the subControl module gets the channel information for a packet, it

compares the current channel of the NIC with the channel. If they are same, the

subControl module directly enters the TRANSMIT state. Otherwise, the

subControl module sends a command to tune a NIC to the channel. Then, it enters

into the TRANSMIT state when the subControl module is notified of that, a NIC

correctly tunes the channel.

In the TRANSMIT state, the subControl module sends a packet to its NIC for

transmission. If the NIC successfully transmits a packet, it notifies the subControl

module of the success. Then, the subControl module enters into the CONDUCT

state. However, if the NIC notifies the subControl module of failure of a packet

62

transmission, the subControl module notifies the neighborTable module of the

failure dependmg on the importance of the packet If the packet is non failure-free,

the subControl module notifies the neighborTable module about the failure.

Otherwise, the subControl module does not. Whether a packet transmission

succeeds or not, the subControl module notifies the mainControl module about the

completion of a packet transmission before entering the CONDUCT state

When the CA operation, scannmg or probing, is commanded m the promiscuous

mode, the subControl module notifies the mainControl module with received

packets In INET, when the wlan module receives packets which are not destmed to

the wlan module, it always sends a notificat10n with the received packets regardless

of the promiscuous mode When the subControl module receives the notification m

the promiscuous mode, the subControl module notifies a notificat10n to the

mainControl module with the packets passed with the notification so that the

mainControl module can handle the packets.

CHAPTER 7

SUPPORTIVE MODULES

This chapter presents the design of the neighborTable module and the nicTable

module in detail. Also, this chapter discusses the necessary modification in some

modules in INET to add MIMC support.

7.1 neighborTable

In MIMC networks, CA protocols ask nodes to collect information of neighbor

nodes. The neighborTable module is designed to maintain information of neighbor

class INET_API MINbEntryBase
{
protected:

};

IP Address ipAddr;
std:: vector<Niclnfo *> nicCache;
int hopDistance;
int mainNiclndex;

class INET_API MINbTableBase
{
protected:

}

typedef std:: vector<MINbEntryBase *> Nb Vector;
Nb Vector nbCache;

Figure 7.1: Declaration Of The MI NbEntryBase And MI NbTableBase Classes

63

class Niclnfo {
public:

MACAddress mac;
Channellnfo channellnfo;

}

Figure 7.2: Declaration Of The Niclnfo Class

64

nodes. The neighborTable module is built upon the MI NbTableBase class with the

MINbEntryBase class. Figure 7.1 shows the declaration of the MINbTableBase

class and the MI NbEntryBase class. The MI NbTableBase class maintains

information of neighbor nodes in a vector which is composed of instances of the

MI NbEntryBase class. The MI NbEntryBase class is used to store actual

information of a neighbor node. Basically, the MI NbEntryBase class is

implemented to store a neighbor node's IP address, MAC addresses, assigned

channels, and hop distance. A MAC address and an assigned channel are maintained

together in the Niclnf o class defined as shown in Figure 7.2. Since the MIMC-SIM

framework assumes that each node is identified by the unique IP address, the unique

IP address is considered as a primary key to distinguish among neighbor nodes.

In addition, the neighborTable module is designed to include the following

major features. First, the neighborTable module provides a set of functions which

retrieve neighbor information accordingly. Second, the neighborTable module

maintains neighbor nodes properly by collaborating with other modules. Finally,

the neighborTable module maps among IP addresses, MAC addresses, and channel

information.

7.1.1 Access Retrieval Functions

The neighborTable module provides a set of functions to update and retrieve

information of neighbor nodes. Figure 7.3 shows all the functions that the

class INET_API MINbTableBase
{
public:

};

virtual int getNumNeighbors (int hop=0);

virtual MINbEntryBase* operator[];
virtual MINbEntryBase* get Entry By Index (int index);
virtual MINbEntryBase* getEntryByIP (const IP Address& ip);
virtual MINbEntryBase* getEntryByMAC (const MACAddress& mac);

virtual
virtual
virtual
virtual

virtual
virtual

virtual

virtual
virtual

virtual

virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual

const IP Address& getIPBylndex (int index);
const MACAddress& getMACBylndex(int index);
const Channellnfo& getChannellnfoByindex (int index);
int getHopDistanceBylndex (int index);

const IP Address& getIPByMAC(const MACAddress& mac);
const Channellnfo& getChannellnfoByMAC

(const MACAddress& mac) ;
int getHopDistanceByMAC (const MACAddress& mac);

const MACAddress& getMACByIP(const IP Address& ip);
const Channellnfo& getChannellnfoByIP

(const IP Address& ip);
int getHopDistanceByIP (const IP Address& ip);

MINbEntryBase* getGatewayEntry ();
const IP Address& getIPOfGatewayEntry ();
const MACAddress& getMACOfGatewayEntry ();
const Channellnfo& getChannellnfoOfGatewayEntry ();

void setGatewayEntry (const IP Address& ip);
MINbEntryBase* updateEntry (MINbEntryBase Hntry);
void addEntry (MINbEntryBase Hn try);
void removeEntry(MINbEntryBase *entry);

65

Figure 7.3: The Set Of Functions The neighborTable Module Provides To Update
And Retrieve Information Of Neighbor Nodes

66

neighborTable module provides. For other modules to use the set of functions, the

neighborTable module is directly accessed by calling an access function. The

neighborTable module does not exchange messages to interact with other modules.

Instead, other modules call an access function to access the neighborTable module.

The MIMC-SIM framework defines the MI NbTableAccess class, which is built

upon the M oduleAccess class. The MI NbTableAccess class provides the access

function which returns a pointer of the neighborTable module. Once other modules

get the pointer of the neighborTable module, they can use the set of functions that

the neighborTable module provides. Figure 7.4 shows the code of how the

neighborTable module is accessed by calling the access function.

MINbTableBase *nbT;
nbT = MINbTableAccess (). get ();

Figure 7.4: Access Function Of The neighborTable Module

7.1.2 Maintenance of neighbor nodes

The neighborTable module collaborates with the subControl and mainControl

modules to maintain neighbor nodes accordingly and affects the routingTable

module and the mainControl module when a neighbor node is removed. Basically,

the neighborTable updates information of neighbor nodes by the mainControl

module. When the mainControl module receives channel management packets, the

mainControl module updates the information that the packets contain into the

neighborTable module. The neighborTable module removes information of neighbor

nodes in two different cases. One case is when a subControl module fails a packet

transmission to a specific neighbor node The other case is that mformation of a

neighbor node has not been updated for long penod.

67

The neighborTable module gets rid of a neighbor node to which the subControl

module fails to transmit a packet. When the subControl module fails transmission

for a non failure-free packets, it notifies the neighborTable module about the failure

When the neighborTable module is notified about the failure, it removes the

neighbor node which was the next hop node of the failure transmiss10n. In the

MIMC-SIM framework, the failure of non free-failure packet transmiss10n means

that the link with the next hop node is broken, and the next hop node is not a

neighbor node any longer. Hence, when the neighborTable module is notified about

the failure, it evaluates a MAC address of a next hop node and removes a neighbor

node which associates with the MAC address

In addition, the neighborTable module does not keep mformat10n of a neighbor

node permanently. Instead, the neighborTable module removes a neighbor node if it

has not been updated for a certam time In a MIMC network, nodes exchange
(

channel management packets with each other frequently Based on the channel

management packets, nodes find and update their neighbor nodes However, if a

node has not received channel management packets from a neighbor node for a

certam time-the default value is 180 seconds in the MIMC-SIM framework-smce

the last update of the neighbor node, the node regards that the neighbor node

disappeared, and information of the neighbor node is invalid. The neighborTable

module sets a timer for each neighbor node when informat10n 1s entered or updated

When a timer is expired, the associatmg neighbor node is removed from the

68

neighborTable module.

When the neighborTable module removes a neighbor node, it updates the

routingTable module accordingly. The routingTable module maintains a routing

table in which destination IP addresses are corresponding to next hop IP addresses.

Since a next hop node is considered as one of the neighbor nodes in a MIMC

network, next hop IP addresses are also maintained in the neighborTable module,

and a node which is not maintained in the neighborTable module cannot be a next

hop node in a routing table. In other words, next hop node IP addresses in a routing

table must be maintained in the neighborTable module as neighbor nodes' IP

addresses. Where X is a set of IP addresses of neighbor nodes in the neighborTable

node, and Y is a set of next hop IP addresses in the routingTable module, the

relation between X and Y is formalized as X ;;2 Y. Hence, when the neighborTable

node removes a neighbor node, it also removes the route whose next hop IP address

is the same as the neighbor node's IP address from the routingTable module.

In addition, when the neighborTable module removes a neighbor node, it notifies

the mainControl module about the removal, so that the mainControl module can

cope with removals of neighbor nodes, especially a default route node. When the

mainControl module decides new routing, it also indicates which neighbor node is

used for a default route in the neighborTable module. When the neighborTable

module removes a neighbor node, it notifies the removal differently depending on

the neighbor node. If the default route node is removed, the neighborTable module

notifies the mainControl module of the removal in a specific category,

NF_NBTABLE_GWENTRY_DISMISSED. Otherwise, when other neighbor nodes

are removed, the nezghborTable module notifies the mainControl module m the

category, NF _NBTABLE__ENTRY _DISMISSED

7.1.3 Mapping information of neighbor nodes

69

The nezghborTable module mamtams mformation of neighbor nodes by mappmg

between IP addresses and MAC addresses and between MAC addresses and

assigned channels So, such mformation as a MAC address and an assigned channel

can be retrieved based on an IP address and a MAC address respectively. Smee the

nezghborTable module associates an IP address with multiple MAC addresses, it

mamtams a mam MAC address which is primarily used to commumcate with a

specific neighbor node The MI NbEntryBase class defines a member variable,

mainNzclndex, which indicates the mdex of a mam NIC The mam MAC address

of each neighbor node is determrned accordrng to a CA protocol.

7 .2 nicTable

The nzcTable module is designed to marntarn such mformation of NICs as roles,

MAC address, and assigned channel The nzcTable module 1s bmlt upon the

MINzcTableBase class with the MINicEntryBase class Figure 7 5 shows the

implementation of the MINzcTableBase and MINzcEntryBase classes. The

MINzcTableBase class marntams rnformat10n of NICs ma vector, NicTableCache,

which 1s composed of instances of the MINzcEntryBase class The

MINzcEntryBase class is used to store actual mformation of a NIC. When the

nzcTable module 1s m1tiahzed, the MI NzcTableBase class retrieves a MAC address

class INET_API MIN1cEntryBase{
protected·

} '

int category,
int type,
N1clnfo mclnfo,

class INET_API MIN1cTableBase{,
public

typedef std:· vector<MIN1cEntryBase *> MIN1cVector,

protected.
MIN1cVector NicTableCache,

}

70

Figure 7 5: Implementation Of The MINicEntryBase And MINicTableBase
Classes

of each NIC from the inter faceTable module and generates an mstance of the

MINicEntryBase class based on the MAC addresses

In addition, when the nicTable module is mitialized, the classifyNics funct10n

is executed to allot roles of NICs. The classifyNics funct10n is defined in the

MINicEntryBase class The classifyNics function allots roles of NICs in two

different member variables of the MIN icEntryBase class, category and type The

category variable is to categorize NICs mto a fixed NIC or a switchable NIC The

type variable is to give a specific role that a CA protocol defines to a NIC. When

the nicTable module is extended for a specific CA protocol, the classifyNics

funct10n shall be re-implemented to allot the category and the type of NICs

according to a CA protocol. Figure 7 6 shows an example of 1mplementat10n of the

classifyNics function

void classifyNics ()
{

}

NicTableCache [O]- > set Category (FIXED);
NicTableCache [O]-> set Type (RECV);

NicTableCache [1]-> set Category (SHIFT);
NicTableCache [1]- > set Type (SEND);

Figure 7.6: An Example Of The classifyNics Function

71

The nicTable module dose not exchange messages with other modules. Instead,

the nicTable module is accessed by calling an access function. The MIMC-SIM

framework defines the MI NicTableAccess class, which is built upon the

M oduleAccess class. The MIN icTableAccess class provides the access function

which returns a pointer of the nicTable module. Figure 7.7 shows the code of how

the nicTable module is accessed by calling the access function. Through the access,

the set of functions that the nicTable module provides to retrieve information of

NICs (Figure 7.8) can be used.

MINicTableBase * nicT;
nicT = MINicTableAccess (). get ();

Figure 7.7: Access Function Of The nicTable Module

class INET_API MINicTableBase{
public:

};

virtual int getNumOfNics();

virtual MINicEntryBase* getEntryBylndex (int index);
virtual MINicEntryBase* operator[] (int index);
virtual MINicEntryBase* getEntryByMAC (MACAddress& mac);
virtual MINicEntryBase* getEntry ByCategory (int category);
virtual MINicEntryBase* getEntryByType (int type);

virtual In terfaceEntry * getinterfaceEntryByindex (int index);
virtual In terfaceEntry * get In terfaceEn try By MAC

(MACAddress& mac);
virtual In terfaceEntry * get In terfaceEn try ByC a tegory

(int category);
virtual In terfaceEntry * getinterfaceEntryByType (int type);

virtual const Niclnfo& getNiclnfoByindex (int index);
virtual const Niclnfo& getNiclnfoByMAC (MACAddress& mac);
virtual const Niclnfo& getNiclnfoByCategory (int category);
virtual const Niclnfo& getNiclnfoByType (int type) ;

virtual const MACAddress& getMACByindex(int index);
virtual const MACAddress& getMACByCategory(int category);
virtual const MACAddress& getMACByType(int type);

virtual const Channellnfo& getChannellnfoBylndex (int index);
virtual const Channellnfo& getChannellnfoBy MAC

(MACAddress& mac) ;
virtual const Channellnfo& getChannellnfoByC a tegory

(int category);
virtual const Channellnfo& getChannellnfoByType (int type);

72

Figure 7.8: The Set Of Functions The nicTable Module Provides To Update And
Retrieve Information Of NICs

73

7.3 Modification in INET

The MIMC-SIM framework modifies some modules in INET to support the MIMC

network simulation.

7.3.1 Network

Although the network module represents the network layer and is not part of the

M !Control module , in order to let the M !Control module handle the ARP

protocol mechanism for CA protocols , the network module needs to be modified

slightly. Since CA protocols replace the ARP protocol with mapping between IP

addresses and MAC addresses, the MIMC-SIM framework does not need to have the

ARP process in the network layer. Thus , in the MIMC-SIM framework, the arp

module is removed from the network module as shown in Figure 7.9. Compared to

the original network module in Figure 3.3(a) where the ip module sends outgoing

packets to the arp module, the ip module in the new network module

communicates with the M !Control module directly.

Figure 7.9: The Structure Of The network Module In The MIMC-SIM Framework

7.3.2 ChannelControl

The channelControl module mamtams neighbor nodes ma network. It gets

informed about the location of nodes and determines which nodes are within

commumcat10n range This information is used by the radio modules at

transmissions. The channelControl module is bmlt upon the ChannelControl

class The ongmal class assigns and mamtams one channel per node. However, m

MIMC networks, multiple channels are assigned to multiple radios (mcluded m

NICs) m a smgle node. The class is modified to give each node a list of radios, so

that multiple channels and radios can be considered for each node.

7.3.3 Radio

74

The radio module is built upon the AbstractRadw class which implements wireless

commumcation at the physical layer When the radio module changes its channel to

a new one while it is receivmg, it should clear its past states so that new receivmg

and transmittmg procedures can be started However, the clearmg past states was

not correctly implemented in the AbstractRadw class. In addition, the radio

module shall change the data rate of a channel as well. Even though the

AbstractRadio class implements a funct10n to change the data rate of a channel, it

did not execute the function when the radio module is asked to change the data

rate of a channel The AbstractRadio class is modified to change a channel and its

data rate accordingly.

The ChannelAccess class 1s a parent class of the AbstractRadio class It 1s

75

designed to support packet transm1ss10n among neighbor nodes The class retrieves

neighbor nodes from the channelControl module and delivers a packet to the nodes

Smee the ChannelControl class is modified to allow nodes to assign multiple

channels, the ChannelAccess class 1s also modified to coordmate with the

channelControl module The origmal ChannelAccess class delivers a packet based

on a node. The modified ChannelAccess class delivers a packet based on a NIC, so

that a packet can be delivered to NICs on the same channel of a sendmg NIC.

7.3.4 Mgmt

The mgmt module 1s built upon the J eee80211M gmt class The original class does

not allow for rece1vmg a command However, in MIMC networks, the subControl

module sends a command to the mgmt module to change a channel of a NIC. The

class is modified to receive a command and forward 1t to a lower module, the mac

module

7.3.5 Mac

The mac module 1s bmlt upon the J eee80211M ac class which implements the

IEEE802.11 MAC protocol. In the origmal class, it 1s possible that the radio

module is asked to change its channel while the mac module 1s still m wa1tmg

states, such as the DEFER and BACKOFF states of the IEEE802 11 MAC

protocol. Apparently, the rad10 shall only change its channel when no packet 1s

wa1tmg for transmission in MAC, so that a waiting packet can be transmitted m its

expected channel The class is modified accordmgly

CHAPTER 8

STATE MACHINE

In this chapter, a set of predefined macros, FSME (Enhanced Fmite State

Machme), which is used to implement a state machine in the MIMC-SIM framework

is introduced Also, the actual implementat10n of a state machme usmg FSME is

shown in this chapter.

8.1 Enhanced Finite State Machine

In the MIMC-SIM framework, FSME provides a generic and flexible code structure

to implement a state machme of a CA protocol A process of a protocol can be

represented in a state machme logically A state machine is composed of a number

of states, transitions among states, and actions m states Such components of a

state machine can be described in a state diagram To implement a state machme m

a constant code structure, the MIMC-SIM framework provides an 1mplemental

framework with a set of predefined macros, FSME. FSME 1s mspired by FSMA

(Advanced Fmite State Machme), provided m the INET distributed package [3]

Both FSMA and FSME provide a set of macros that mampulate the variable bmlt

upon the cFSM class, which maintams a state of a state machme. Usmg the

macros, a state machine can be implemented in a constant code structure. However,

FSMA does not provide a complete set of macros to express a complete set of logic

76

77

reqmred by CA protocols For example, when a state is Just entered, FSMA cannot

implement the actions which is executed after a state transit10n fails. Also, FSMA

does not allow each state of a state machme to be implemented separately. In other

words, implementat10n of a whole state machine has to be m one function. This

causes inefficient works for extension For example, if a child class wants to extend

only a specific state of a state machme from its parent class, FSMA cannot support

that but forces a child class to extend a whole state machme at once. In contrast to

FSMA, FSME provides a complete set of macros that can express a complete set of

logic for CA protocols. In addition, FSME allows each state of a state machme to

be implemented in a separate funct10n for flexible extension. In the MIMC-SIM

framework, the state machines of the mainControl module and the subControl

module are implemented usmg FSME

Implementation of a state machine usmg FSME is separated mto two parts: state

defimt10n and state embodiment State defimt10n and state embodiment each can

be represented m a function. A state definition function handles a state transition

A state embodiment function implements actual actions of a specific state. For

implementation of a state machme, only one state defimt10n function exists with the

state
embodiment

state
definition

state
embodiment

state
embodiment

Figure 8.1 · Relation Of Definition Funct10n And State Embodiment

same number of state embodiment functions as the number of states in a state

machine. A state definition function calls a proper state embodiment function

according to a current state. Figure 8.1 shows the relation of a state definition

function and a state embodiment function. In this chapter, to simplify, a state

78

definition function and a state embodiment function are referred to a state definition

and a state embodiment respectively. In rest of this chapter, implementation of a

state definition and a state embodiment using FSME is presented in detail.

8.2 State Definition

In a state definition, each state of a state machine is associated with a specific state

embodiment, and the state embodiments are called according to a current state. To

implement a state definition, two FSME macros are used: FSME_Switch and

FSME_State. A FSME_Switch manages a current state and iterates execution of

FSME_States in the FSME_Switch for a state transition. A FSME_State is

embedded in a FSME_Switch and executes a state embodiment according to a

void MIMainControlBase:: handleWithFSM (cMessage *msg)
{

FSME_Switch (fsm)
{

}
}

FSME_State (INIT, handleStatelni t , msg);
FSME_State (SCAN, handleStateScan , msg);
FSME_State (ASSIGN, handleStateAssign , msg);
FSME_State(SETNIC, handleStateSetnic, msg);
FSME_State (NORM, handleStateNorm, msg);

Figure 8.2: Implementation Of The handleWithFSM Function, A State Definition
In The mainControl Module

current state with an event. Figure 8.2 shows the implementation of a state

definition in the mainControl module using FSME_Switch and FSME_State.

#define FSME_Switch (fsm) \
bool ___ event = true; \
bool ___ transition = false; \
bool ___ counter = O; \
cFSM * ___ fsm = &fsm; \
EV<< "processing~event~in~state~machine~" \

<< ___ fsm ->getName () << endl; \
while (___ counter++ < FSM.MAXT 11 \

(opp_error(eINFLOOP, ___ fsm->getStateName()), 0))

Figure 8.3: Definition Of FSME_Switch

79

Figure 8.3 shows definition of a FSME_Switch. A FSME_Switch takes the

variable built upon the cFSM class as a current state and defines several variables,

such as ___ event and ___ transition, to manage a state transition. The ___ event

variable indicates whether an event has triggered a state transition. The

___ transition variable indicates whether a state transition happens in a state. Such

variables are used for a FSME_State. Then, a FSME_Switch iterates its inside where

FSME_States are embedded.

Figure 8.4 shows definition of a FSME_State. A FSME_State assigns a state, a

#define FSME_State (s, s_func , s_msg) \
if (___ fsm->getState () = s){ \

s_func(___ fsm, ___ event, ___ transition, s_msg); \
if(___ transition){ \

___ event = false; \
___ transition = false; \
continue; \

} else break; \
}

Figure 8.4: Definition Of FSME_State

80

state embodiment, and an event and associates them together. Events are such

messages as commands, channel management packets, timers, and notifications,

which potentially trigger a state transition. At each execution of a FSME_Switch, if

the state assigned in a FSME_State is same as a current state, the FSME_State calls

its assigned state embodiment with an event and the variables managed in a

FSME_Switch. When a state transition happens after execution of a state

embodiment, FSME_Switch iterates its inside to execute the next FSME_State in

which the assigned state is the same as a new current state.

8.3 State Embodiment

8.3.1 State Embodiment

A state embodiment implements actual actions of a state and is called from a state

definition. To interact with a state definition, a state embodiment must be declared

in a certain form as shown in Figure 8.5, which is the declaration of the state

embodiments in Figure 8.2. A state definition is declared with four parameters:

___ fsm, ___ event, ___ transition, and msg. The __ _fsm parameter maintains a current

virtual void handle St a telni t (cFSM *---fsm , bool ___ event ,
bool & ___ transition, cMessage *msg);

virtual void handleS ta teScan (cFSM * ___ fsm , bool ___ event ,
bool & ___ transition , cMessage *msg);

virtual void handleS ta teAssign (cFSM * ___ fsm , bool ___ event ,
bool & ___ transition, cMessage *msg);

virtual void handleS ta te S etnic (cFSM * ___ fsm , bool ___ event ,
bool & ___ transition, cMessage *msg);

virtual void handleStateNorm (cFSM *---fsm, bool ___ event ,
bool & ___ transition, cMessage *msg);

Figure 8.5: Declaration Of State Embodiments In The mainControl Module

81

process

Figure 8.6: Components Used In A Flow Chart

state. The ___ event parameter indicates whether an event has triggered a state

transition. The ___ transition parameter is used to indicate a state transition

happens in a state embodiment. The msg parameter represents an event. A

function declared with such four parameters can be utilized as a state embodiment.

To implement actual actions in a state embodiment, a process of a state should

be represented in a flow chart. To draw a flow chart, four components are defined as

State Entry Point

y

2 notify 5
NF MICTRL

NIC-=-CHANGED

7 update
nicTable

CONDUCT state

event

4 send
Command

Figure 8.7: The Flow Chart Of The SETNIC State In The subControl Module

82

presented in Figure 8 6. The rectangle component represents a process used to

implement act10ns. The diamond component represents a dec1s10n used to

implement conditions The rounded rectangle component represents a state m

which the flow of control stops and waits until the next event occurs The arrow

component shows the flow of control m a flow chart When the arrow component 1s

out from the state component, a specific event can be md1cated on the arrow Smee

the state component represents a state, only one state component 1s allowed m a

flow chart of a state With such components, for example, a flow chart of the

SETNIC state m the subControl module can be depicted as Figure 8 7.

In order to implement a state embodiment as described m a flow chart, four

FSME macros are used FSME_Event_Trans1tion, FSME_No_Event_Trans1t1on,

FSME_Event_Execute and FSME_No_Event_Execute. Figure 8 8 shows flow charts

that each FSME macro can implement conceptually. Basically, all of the FSME

macros assign a condition and actions and execute their assigned actions dependmg

on their cond1t1ons. Among all, the Transition macros (FSME_Event_Trans1tion and

FSME_No__Event_Transition) participate in a state transition, while the Execute

macros (FSME_Event_Execute and FSME_No__Event__Execute) do not In add1t10n,

the Event macros (FSME__Event_Trans1tion and FSME_Event__Execute) are applied

when a state machme stays ma state, and the No__Event macros

(FSME_No_Event_Execute and FSME_No_Event_Execute) 1s applied when a state

machme Just enters in a state In other words, the Event macros are used to

implement the components that occur after a state component, and the No__Event

macros are used to implement the components that occur before a state component

83

For the FSME macros to be executed accordingly, they are defined to interact

with the parameters of a state embodiment. Figure 8.9 shows the actual definition

of the FSME macros. The Transition macros assign a condition, an action, and a

state. They evaluate their conditions, and execute their assigned actions if the

conditions are true. Then, they set the __ _fsm parameter to their assigned state and

0---i
I I
I I

event :
• I

~-NJ
y

new State

(a) FSME_Event_Transition

0--------------------
1
I

event

y

actions

actions

~-------1~----------

(c) FSME_Event_Execute

Figure 8.8: A Flow Chart Of The FSME Macros.

State Entry Point

I
I
I

N
I
I

G

actions

new State

(b) FSME_No_Evcnt_Transition

State Entry Point

y

I
I

G

actions

(d) FSME_N o_EvenLExccute

(The Dash Arrow Implies That There Might Be More FSME Macros.)

84

the ___ transition parameter to true in order to indicate that a state transition is

triggered. Afterward, the Transition macros terminate their state embodiment for a

#define FSME_Event_Transition \
\
\
\

(transition , condition, target , action)
if(___ event && condition){

FSME_Transition (transition, target, action);
}

#define FSME_No_Event_Transition \
\
\
\

(transition , condition, target, action)
if (! ___ event && condition){

FSME_Transition(transition, target, action);
}

#define FSME_Print(exiting) \
(ev << "FSM-" << ___ fsm->getName () \

<< ((exiting)?": leaving-state_" : ":entering-state-") \
<< ___ fsm->getStateName () << endl)

#define FSME_Transition(transition, target, action) \
FSME_Print (true); \
EV<< "firing_"<< #transition<< "-transition-for_" \

<< ___ fsm ->getName () << endl; \
action; \
___ fsm->setState (target , #target); \
___ transition = true; \
FSME_Print (false); \
return;

#define FSME_EvenLExecute (condition , action T , actionF) \
\
\
\
\

if(___ event && condition){
actionT;

} else {
actionF;

}

#define FSME_No_Event_Execute (condition, actionT, actionF) \
if (! ___ event && condition){ \

actionT; \
}else{ \

actionF; \
}

Figure 8.9: Definition Of The FSME Macros

85

state transition to be handled m a state defimt1on. The Execute macros assign a

cond1t1on and two different actions. one for true cond1t10n and the other for false

condition. The Execute macros simply execute their assigned act10ns dependmg on

their conditions. Furthermore, the Event macros are applied to be conducted, 1f

___ event is true. Otherwise, the No_Event macros are applied to be conducted. In

addit10n, all the FSME macros can accept no act10ns So, for example, if a

Transition macro assigns nothmg for an action, 1t simply triggers a state trans1t10n

without execution of any act10ns.

8.3.2 Example of State Embodiment

According to the defimt10n of the FSME macros, the flow charts of each FSME

macros can be simplified Figure 8.10 shows considerable simplifications of the flow

chats depicted m Figure 8.8 (A) First of all, smce consecutive act10ns ma flow

chart can be assigned all together ma FSME macro, they can be represented ma

process component as shown in Figure 8 lO(a). (B) Second, smce FSME macros can

assign no action, a flow chart of a FSME macro can simply omit a process

component for no action. For example, the flow chart of FSME_No_Event_Execute

can be simplified as shown m Figure 8 lO(b) when no action exists for the false

condit10n. (C) Third, cond1t1ons of the Execute macros can be assigned to simply

true or false (Smee a state trans1t1on occurs m a certam cond1t1on m a state

machme, FSME assumes that the Trans1t1on macros do not assign their condition to

simply true or false. So, only the Execute macros are considered m this case.) If

that is the case, the decision component and one of the process components of the

86

Execute macros can be omitted. For example, Figure 8.lO(b) can be even more

simplified as shown in Figure 8.lO(c) when the condition is always true. (D) Finally,

since the Event macros usually evaluate events for their conditions, a decision

component can be replaced with an arrow indicating an specific event that an Event

macro accepts for its condition. For example, FSME_Event_Transition and

simplification

(a) Consecutive actions

State Entry Point
I
I
I

I
I
I
I

B
I
I
I
I
I

G
(c) (d)

0-1
I I
I I

t-------- :
event

new State

FSME_No_EvenLExecute FSME_EvcnLTransition

Figure 8.10: Simplification Of A Flow Chart

(b)

State Entry Point

y

~
I
I

G
FSME_N o_Event_Execute

0-
1
I

t
event

~---

(c) FSME_Event_.Executc

(The Dash Arrow Implies That There Might Be More FSME Functions.)

87

FSME_No_Event_Transition can be simplified as shown in Figure 8.lO(d) and Figure

8.lO(e) respectively.

According to such simplifications, Figure 8.7 can be simplified to Figure 8.11.

Since the component 3 is always true and the component 4 has no actions, they can

be simply omitted according to the simplification (B) and (C). The component 6

can be simplified to the arrow indicating the specific event according to the

simplification (A). The components 7 and 8 can be simplified to one process

component according to the simplification (D).

The simplified flow chart in Figure 8.11 can be applied to FSME macros. For

example, the components A and B can be implemented by

FSME_No_Event_Transition according to Figure 8.3.1. The component C can be

implemented by FSME_No_Event_Execute according to Figure 8.lO(c). The

component D can be implemented by FSME_No_Event_Transition according to

State Entry Point

y

B notify
NF_MICTRL_

NIC_CHANGED

C send
Command

RADID_CHANNEL_CHANGED

DNotify NF _MICTRL_NIC_CHANGED

update nicTable

CONDUCT state

Figure 8.11: The Simplified Flow Chart Of The SETNIC State In The subControl
Module

Figure 8.lO(a) and Figure 8.lO(d). Figure 8.12 shows the actual code structure

implementing Figure 8.11 using the FSME macros. Since the FSME macros allow

for using another FSME macro in their actions, FSME can implement a complete

set of logic in a state embodiment.

void MISubControl:: handleStateSetnic (cFSM * ___ fsm,

{

}

bool ___ event, bool & ___ transition, cMessage *msg)

FSME_No_EvenLTransition (,
currentChannelinfo = *newChannelinfo,
CONDUCT,
delete newChannelinfo;
nb->fireChangeNotification (NF_MICTRL_NIC_CHANGED, this);

) ;

FSME_No_EvenLExecute (true ,
sendRadioConfigMsg (newChannelinfo); ,

) ;

FSME_Event_Transition (,
msg = fsmMsg && msg->getKind () = NIC_CHANGED,
CONDUCT,
updateNicinfo (* newChannelinfo);
delete newChannelinfo;
nb->fireChangeNotification (NF_MICTRL_NIC_CHANGED, this);

) ;

Figure 8.12: Implementation Of Figure 8.11 Using FSME

88

CHAPTER 9

IMPLEMENTATION

In this chapter, the current implementation of two CA protocols m the MIMC-SIM

framework is presented in defining channel management packets and implementmg a

state machine.

9.1 Current Implementation

The MIMC-SIM framework is implemented in INET snapshot 20100323 with

OMNET++ 4.0. In the MIMC-SIM framework, two CA protocols are implemented.

One is node-based channel assignment [18] which computes channels based on

superimposed code according to the CA algorithm proposed in [26] The other CA

protocol is lmk-based channel assignment and computes channels according to the

CA algorithm proposed in [19] Each CA protocol is Implemented by extending the

mainControl module to adopt its own CA algorithm. Mamly, the mainControl

module is extended to handle channel management packets and implement a state

machme. Also, the neighborTable module and the mcTable module are extended

accordingly. In addition, for simulating CA protocols m a mesh network, a gateway

node is implemented for each CA protocol as well. In a mesh network, a gateway

node connects to another network, such as the Internet. So, m simulation, a

gateway node is considered as the node that first provides a network service

89

90

accordmg to a CA protocol.

9.2 Superimposed Code Based CA Protocol

The supenmposed code (SCODE) based CA algorithm is proposed m [26] However,

the implementat10n of the CA protocol is not fully descnbed m the paper. In order

to implement the SCODE protocol m the MIMC-SIM framework, the idea of the

node-based channel assignment as [18] is adopted In a network, nodes eqmp two

NICs and distmgmsh them mto a receiving NIC and a sendmg NIC. The computed

channel accordmg to the SCODE CA algonthm is assigned to the receivmg NIC.

9.2.1 Channel Management Packets

To implement the SCODE protocol, three channel management packets are defined

HELLO, BEACON, and NOTICE The HELLO packet is used to probe channels

When the mainControl module receives the HELLO packet from other nodes, the

mainControl module responds it by broadcastmg the BEACON packet The

HELLO packet contams a node's IP address, MAC address of a receivmg NIC,

channel mformation, and codeword, which 1s used to compute a channel The

BEACON packet is used to advertise a node's information It contams not only the

same mformation of the HELLO packet, but also one hop neighbor nodes' IP

addresses, 'MAC addresses of thelf receiving NIC, channel mformat10n, and

codewords as well. The NOTICE packet is used to notice of new channel

mformation of a node to neighbor nodes. The NOTICE packet contams the IP

address, the MAC address of a receivmg NIC, the new channel mformation, and

packet ScodePacket extends MIPacket{
IP Address ipAddr,

}

int codeword;
int hopPath;
N1clnfo niclnfo,
IP Address nipAddr [] ,
int nCodeword [];
N1clnfo nN1clnfo [],

91

Figure 9.1: Packet Declaration For Channel Management Packets Of The Scode
Protocol In A .msg File

codeword of a node. The NOTICE packet is unicasted to be transmitted to each

neighbor node reliably at MAC layer. When the mainControl module receives all

the three channel management packets, the mainControl module updates the

neighborTable module accordingly Figure 9.1 shows packet declaration rn a .msg

file, on which the channel management packets are bmlt Figure 9 2 shows how the

mainControl module handles the channel management packets ma state machrne

BEACON __j update 11--------► ~ ne1ghborTable

NOTICE--, ne1g~b~~~able 1-1-------►

HELLO update
ne1ghborTable

broadcast
BEACON

Figure 9 2 Handlmg Channel Management Packets In The SCODE Protocol

9.2.2 State Transition Diagram

The state machme of the SCODE CA protocol can be described and implemented m

the mainControl module within the five states proposed m Section 5 1. In the INIT

state, as ment10ned m Section 5 1, the mainControl module is mitiahzed and

92

State Entry Point

NF _MICTRL_SCANNED

ASSIGN State

Figure 9.3: SCAN State Of The SCODE Protocol

substantiated and waits until the wakeUpTimer is expired.

In the SCAN state, the mainControl module sends CA commands with the

HELLO packet to subControl modules to probe all the channels. While the

subControl modules are probing channels, the mainControl module will receive the

channel management packets and update the neighborTable module accordingly.

When all the subControl modules notify the mainControl module of the

completion of probing channels, the mainControl module enters the ASSIGN state.

The inside structure of the SCAN state is depicted in Figure 9.3.

In the ASSIGN state, the mainControl module analyzes the information

gathered in the SCAN state to compute the best channel according to [26] and

decide routing based on the shortest path algorithm. If the node cannot find any

valid route, then the mainControl module goes back to the SCAN state to probe

again until a valid path is detected. The ASSIGN state is depicted in Figure 9.4.

93

State Entry Point

SCAN State

y

SETNIC State

Figure 9.4: ASSIGN State Of The SCODE Protocol

In the SETNIC state, the mainControl module sends the CA command to

assign the channel computed in the ASSIGN state to the subControl module

associating with the receiving NIC. Once the mainControl module is notified by the

subControl module about the completion of setting a NIC, it sends the NOTICE

State Entry Point

NF _MICTRL_NIC_CHANGED

N

y

send
NOTICE

NORM State

Figure 9.5: SETNIC State Of The SCODE Protocol

packets to one hop neighbor nodes about its channel information change. The

SETNIC state is depicted in Figure 9.5

In the NORM state, the mainControl module first schedules two different

timers: beaconTimer and estTimer. The beaconTimer indicates the next time

point to broadcast the BEACON packets on all the channels. The mainControl

module reschedules the beaconTimer periodically in the NORM state. The

estTimer indicates the time point to go back to the ASSIGN state. Since nodes

would learn new channel information of neighbor nodes in the NORM state, the

mainControl module needs to go back to the ASSIGN state periodically to

State Entry Point

beacon Timer upper layer
estTimer

data packets MIPacket lower layer
NF _NBTABLE_

data packets GWENTRY _DISMISSED
NF_MICTRL_ FAILURE

TRANSMITTED

send handle channel Cancel
data packets

management
All Timers packets

ASSIGN State

Figure 9.6: NORM State Of SCODE Protocol

94

95

re-estimate the channel informat10n and routmg For the same reason, the

mainControl module also goes back to the ASSIGN state when the mainControl

module is notified by the neighborTable module about the link break on a default

route In addit10n, when the mainControl module receives channel management

packets m the NORM state, it handles with them accordmgly. Once the

mainControl module enters into the NORM state, it executes the sendDataPacket
)

function to send data packets m dataQueue. The mainControl module also

executes the sendDataPacket funct10n when it is notified by a subControl module

of the completion of a packet transmission or receives a data packet from the upper

layer. The Figure 9.6 shows the mside structure of the NORM state

In most of states, except the INIT state, the mainControl module receives

channel management packets and data packets from lower modules. When channel

management packets are received, the mainControl module handles them accordmg

to Section 9.2 1. When data packets are received, the mainControl module

immediately forwards them to the upper module.

9.2.3 neighborTable

The neighborTable module for the SCODE protocol extends the base neighborTable

module and is implemented as shown m Figure 9 7 The neighborTable module

stores two more information for each neighbor node codeword and hopPath

Codeword is the 13-bit code used to compute a channel accordmg to the SCODE

CA algorithm [26] HopPath is the hop distance from a gateway node It is used to

decide routmg accordmg to the shortest path. The update function m the Figure

class INET_API ScodeNbEntry . public MINbEntryBase{
protected·

},

int codeword;
int hopPath;

class INET_API ScodeNbTable · public MINbTableBase
{
public:

} '

void update (const IP Address& 1p, const N1clnfo& mclnfo ,
int codeword, int hopPath, int hopD1stance = 1,
bool 1sMainNic = false),

96

Figure 9.7. The Implementation Of The neighborTable Module In The SCODE Pro­
tocol

9. 7 is implemented to update neighbor node's mformation convemently

9.2.4 nicTable

The nicTable module for the SCODE protocol extends the base nicTable module

and is implemented as shown in Figure 9 8. It categorizes two NICs of a node mto a

fixed NIC and a switchable NIC Then, the nicTable module classifies the fixed NIC

and the switchable NIC mto the receivmg NIC and the sendmg NIC respectively

class INET_API ScodeN1cTable
public.

enum nicType{
SEND,
RECV,

} ;

protected

public MIN1cTableBase{

virtual void class1fyN1cs (),
},

Figure 9.8: The Implementation Of The nicTable Module In The SCODE Protocol

97

Table 9 1 shows that m each node, the first NIC is categonzed into a fixed NIC and

set its type to a receiving NIC, and the second NIC is categonzed mto a switchable

NIC and set its type to a sendmg NIC

Category Type
fixed switchable receivmg sendmg

NIC[0] ✓ ✓

NIC[l] ✓ ✓

Table 9.1· Category Of NICs In The nicTable Module Of The SCODE Protocol

9.2.5 Gateway Node

The gateway node is assumed that it 1s connected to a wired network and provides a

network service accordmg to the SCODE protocol. The mainControl module of the

gateway node does not follow the state machme explamed m the previous section

Instead, it always stays m the NORM state and does not try to find either better

channel or route. So, the mainControl module does not schedule the estTimer, and

there is no lmk break on the default route. The mainControl module broadcasts the

BEACON packet penod1cally It also broadcasts the BEACON packet to respond

the HELLO packet When the mainC ontrol module receives channel management

packets from other nodes, it updates them mto the neighborTable module Figure

9.9 shows the mside structure of the NORM state of the gateway node

9.3 Multi-channel Wireless Mesh Network CA protocol

The Hyacmth CA protocol is proposed m [19] To implement the Hyacmth protocol,

each node equips two NICs and categonzes them mto a up NIC and a down NIC

NORM

beacon Timer upper layer
data packets

NF_MICTRL_

TRANSMITTED

send
data packets

MIPacket

handle channel
management

packets

lower layer
data packets

Figure 9.9: The NORM State Of A Gateway Node In The SCODE Protocol

9.3.1 Channel Management Packets

The Hyacinth protocol defines ten channel management packets: HELLO,

ADVERTISE, JOIN, ACCPET, REJECT, LEAVE, RT_ADD, RT_DEL,

CHNL_CHANGE, and FAILURE. To implement the channel management packets

98

accordingly, channel management packets are defined to contain such information as

described in Table 9.2.

In Table 9.2, host IP is the IP address of a node which sends or forwards a

host IP target IP up NIC down NIC priority neighbor info
HELLO ✓ ✓ ✓

ADVERTISE ✓ ✓ ✓ ✓ ✓

JOIN ✓ ✓ ✓ ✓

ACCEPT ✓ ✓ ✓ ✓ ✓

REJECT ✓ ✓

RT_ADD ✓ ✓

RT_DEL ✓ ✓

LEAVE ✓

FAILURE ✓

CHNL_CHANGE ✓ ✓ ✓

Table 9.2: Channel Management Packets In The Hyacinth Protocol

class Neighborlnfo{

}

IP Address ip ;
int priority,
N1clnfo niclnfo [],

packet HyacinthPacket extends MIPacket{
IP Address hostIP Addr ,
IP Address target IP Addr,
int priority = 10000,
N1clnfo upN1clnfo,
N1clnfo downN1cinfo,
Ne1ghborlnfo nblnfo [],

}

99

Figure 9.10 Packet Declaration For Channel Management Packets Of The Hyacmth
Protocol In A .msg File

channel management packet at the last Target IP is the IP address of a node which

ongmally generates a channel management packet or a channel management packet

targets to. For example, the target IP mformation of the JOIN packet is the IP

address of the node which generates the JOIN packet In the ACCEPT packet, the

target IP mformat10n is the IP address of the node to which the ACCEPT packet is

sent. Each of up NIC and down NIC mformation contams a MAC address and

channel informat10n. Priority is a node's hop distance from a gateway node The

neighbor mformation includes one hop neighbor nodes' IP address, mformation of

both up NIC and down NIC, and pnonty. The channel management packets are

bmlt upon HyacmthPacket declared m a msg file as shown m Figure 9 10.

Basically, all channel management packets are used as described m [19] The

HELLO packet is used to probe channels When the mainControl module receives

the HELLO packet, it broadcasts the ADVERTISE packet as response. Also, the

mainControl module broadcasts the ADVERTISE packet periodically. The JOIN

100

packet is used to ask a neighbor node to Jorn the neighbor node's routmg path.

When the mainControl module receives the JOIN packet, it sends the ACCEPT

packet or the REJECT packet back to the node which ongmally sent the JOIN

packet. The ACCEPT packet is used to accept a node to Jorn, and the REJECT

packet is used to reject a node from JOinmg When the mainControl module sends

the ACCEPT packet, it sends the RT _ADD packet to a parent node as well. The

RT_ADD packet is used to announce that a new node jams a routing path The

LEAVE packet is used to notice a parent node that a node leaves from the parent

node's routmg path When the mainControl module receives the LEAVE packet, it

sends the RT _DEL packet to its parent node The RT _DEL packet is used to

HELLO
broadcast update

ADVERTISE ne1ghborTable

ADVERTISE ► 1 update I
ne1ghborTable ►

send either

JOIN ACCEPT and update update
RT_ADD ne1ghborTable routing Table

or REJECT

ACCEPT send update update
RT_ADD ne1ghborTable routmgTable

LEAVE-, send RT_DEL I : routmgTable :
► 1 update ~

RT_ADD forward update
RT-ADD

RT_DEL RT-DEL routing Table

CHNL_CHANGE I update I ► ne1ghborTable ►

FAILURE FAILURE update
to child nodes routing Table

Figure 9.11: Handlmg Channel Management Packets In The Hyacinth Protocol

101

announce that a node left from the routmg path When the mainControl module,

receives the RT_ADD packet or the RTJ)EL packet, it forwards such packets to its

parent node until a gateway node receives the packets The CHNL_CHANGE

packet is used to announce the new channel mformation. The FAILURE packet 1s

used to announce that a routmg path is broken The channel management packets

are handled ma state machme as described m Figure 9 11.

When the mainControl module receives the HELLO, ADVERTISE, JOIN,

ACCEPT, and CHNL_CHANGE packets, the mainControl module updates the

mformation that they contam mto the neighborTable module accordmgly When

the mainControl module receives the JOIN and RT_ADD packets, it adds a route

in which the host IP address is the target IP of the packet, the next hop IP address

1s the host IP of the packet mto the routingTable module When it receives the

LEAVE and RT_DEL packets, it removes a route whose host IP address matches to

the target IP mformation of the packets from the routingTable module When it

receives the ACCEPT and FAILURE packets, it updates the default route of the

routingTable module The ADVERTISE and FAILURE packets are broadcasted,

while other channel management packets are umcasted to a neighbor node for

reliable transmission at MAC layer.

9.3.2 State Transition Diagram

The state machme of the Hyacmth protocol can be described withm the five states

proposed m Section 5 1. In the INIT state, as ment10ned m Sect10n 5.1, the

mainControl module is mitialized and substantiated and waits until the

102

State Entry Point

NF _MICTRL_SCANNED

y

ASSIGN State

Figure 9.12: The SCAN State Of The Hyacinth Protocol

wakeUpTimer is expired.

In the SCAN state, the mainControl module sends CA commands with the

HELLO packet to subControl modules to probe all channels. While subControl

modules are probing channels, the mainControl module will receive the channel

management packets and update the neighborTable module accordingly. When all

the subControl modules notify the mainControl module of the completion of

probing channels, the mainControl module enters the ASSIGN state. The inside

structure of the SCAN state is depicted in Figure 9.12.

In the ASSIGN state, the mainControl module analyzes the information

gathered in the SCAN state and selected the shortest route. If the mainControl

module cannot find any valid route, then the mainControl module goes back to the

SCAN state to gather more neighbor nodes' information until a valid route is

detected in the ASSIGN state. After selecting a valid route, the mainControl

SCAN State

State Entry Point

-+---N

y

send
JOIN

send LEAVE &
CHNL_CHANGE

REJECT
expireWaitTimer

ASSIGN

ACCEPT

N

SETNIC State

Figure 9.13: The ASSIGN State Of The Hyacinth Protocol

103

module sends the JOIN packet to the node providing the route. If the mainControl

module receives the REJECT packet or does not receive either the ACCEPT or

REJECT packet in a certain time-the default value is 5 seconds-, the node fails to

join the route. In such case, the mainControl module re-selects another valid path.

Otherwise, the mainControl module receives the ACCEPT packet and succeeds to

join the route. If a node has a previous route, then the mainControl module sends

the LEAVE packet to its old parent node and the CHNL_CHANGE packets to its

child nodes. Then, the mainControl module enters the SETNIC state. The inside

structure of the ASSIGN state is depicted in Figure 9.13.

104

State Entry Point

NF _MICTRL_NIC_CHANGED

y

NORM State

Figure 9.14: The SETNIC State Of The Hyacinth Protocol

In the SETNIC state, the mainControl module sends CA commands to assign

channels to the up NIC and the down NIC. The up NIC is assigned to the channel

which is used in the down NIC of a parent node. The down NIC is assigned to the

least used channel. The mainControl module enters the NORM state when it is

notified by all the subControl module about the completion of setting their NICs.

The inside structure of the SETNIC state is depicted in Figure 9.14

In the NORM state, the mainControl module first schedules two different

timers: advertiseTimer and estTimer. The advertiseTimer indicates the next time

point to broadcast the ADVERTISE packet on the channel of the down NIC. The

mainControl module reschedules the advertiseTimer periodically in the NORM

state. The estTimer indicates the time point to go back to the ASSIGN state. Since

nodes would learn new channel information of neighbor nodes, the mainControl

module needs to go back to the ASSIGN state periodically to re-estimate the

105

State Entry Point

advertise Timer upper layer estTimer

data packets MIPacket lower layer
NF NBTABLE data packets GWENTRY _DISMISSED

NF_MICTRL_ FAILURE
TRANSMITTED

send forward data Cancel
data packets

packets to
All Timers upper layer

ASSIGN State

Figure 9.15: The NORM State Of The Hyacinth Protocol

channel information and routing. For the same reason, the mainControl module

also goes back to the ASSIGN state when the mainControl module is notified by

the neighborTable module about the link break on a default route or receives the

FAILURE packet. In addition, when the mainControl module receives channel

management packets, it handles with them accordingly. Once the mainControl

module entered into the NORM state, it executes the sendDataPacket function to

send data packets in dataQueue. Then, the mainControl module also executes the

sendDataPacket function when it is notified by a subControl module of the

completion of a data transmission or receives a data packet from the upper layer.

106

The Figure 9.15 shows the inside structure of the NORM state.

In most of states, except the INIT state, the mainControl module receives the

channel management packets and data packets from lower modules. When channel

management packets are received, the mainControl module handles them according

to Section 9.3.1. When data packets are received, the mainControl module

immediately forwards them to the upper module.

9.3.3 neighborTable

The neighborTable module for the Hyacinth protocol extends the base

neighborTable module and is implemented as shown in Figure 9.16. The

neighborTable module stores one more information, priority, for each neighbor

node. Priority represents the hop distance from the a gateway node. The update

function in the Figure 9.16 is implemented to update neighbor node's information

conveniently.

class INET_API DrcaNbEntry
protected:

int priority;

} ;

class INET_API DrcaNbTable
{
public:

pub 1 i c MINbEn try Base {

public MINbTableBase

void update (canst IP Address& ip, canst Niclnfo& niclnfo ,
int priority = MAX.PRJORJTY, int hopDistance = 1,
bool isMainNic = false);

};

Figure 9.16: The Implementation Of The neighborTable Module In The Hyacinth
Protocol

class INET_API DrcaNicTable
public:

enum nicType{
UP,
OOWN,

};

protected:

public MINicTableBase{

virtual void classifyNics ();
};

107

Figure 9.17: The Implementation Of The nicTable Module In The Hyacinth Protocol

9.3.4 nicTable

The nicTable module for the Hyacinth protocol extends the base nicTable module

and is implemented as shown in Figure 9.17. It categorizes both two NICs into fixed

NICs. Then, the nicTable module classifies one for a up NIC and the other one for

a down NIC. Table 9.3 shows that in each node, both NICs are categorized in fixed

NICs. Then, the types of the first NIC and the second NIC are set to a up NIC and

a down NIC respectively.

Category Type
fixed switchable up down

NIC[0] ✓ ✓

NIC[l] ✓ ✓

Table 9.3: Category Of NICs In The nicTable Module Of The Hyacinth Protocol

9.3.5 Gateway node

The gateway node is assumed that it is connected to a wired network and provides a

network service according to the Hyacinth protocol. The mainControl module of

the gateway node does not follow the state machine explained in the previous

108

section. Instead, it always stays in the NORM state and does not try to find either

better channel or route. So, the mainControl module does not schedule the

estTimer, and there is no link break on the default route. The mainControl

module broadcasts the BEACON packet periodically. It also broadcasts the

BEACON packet to respond the HELLO packet. When the mainControl module

receives channel management packets from other nodes, it updates them into the

neighborTable module. Figure 9.9 shows the inside structure of the NORM state of

the gateway node.

NORM

advertise Timer upper layer
data packets

NF_MICTRL_

TRANSMITTED

send
data packets

MIPacket

handle channel
management

packets

lower layer
data packets

forward data
packets to
upper layer

Figure 9.18: The NORM State Of A Gateway Node In The Hyacinth Protocol

CHAPTER 10

EXPERIMENTS

In this chapter, the performance of SCODE and Hyacmth protocols [19, 26] are

evaluated m the MIMC-SIM framework The evaluation uses the same experimental

settmgs as their original papers The experimental results are compared with the

results reported in the ongmal paper to verify the fidelity of MIMC-SIM. The

comparison shows that MIMC-SIM can be used to study CA protocols.

Furthermore, the MIMC-SIM framework is tested to evaluate various performance

metrics of CA protocols, mcludmg throughput, time to obtain channels, channel

management overhead, and the number of conflict channels m two hops

10.1 SCODE Protocol

10.1.1 Setting

The SCODE protocol implemented m the prev10us chapter is experimented

accordmg to the origmal testbed described m [26]. In a lO0xl00 square umts

network, 13 nodes are deployed randomly over 100 different network topologies

where average node degree is 3 Every node eqmps two NICs The number of

available channels ma network is set to 13 The superimpose code as shown m

Figure 10 1 is applied to simulate the SCODE protocol Each node randomly picks

a unique codeword from the superimpose code set Smee the SCODE protocol in

109

110

1 0 0 0 1 () 0 0 0 0 1 0 1
1 1 () 0 0 l () () 0 0 0 l 0
0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 l 0 0 0 0
0 0 l 0 1 1 0 0 0 l 0 0 0
0 0 0 1 0 l 1 () 0 0 1 0 0
0 0 () 0 1 0 l 1 0 0 0 l 0
0 0 0 0 0 l 0 1 0 0 0 1
1 0 0 0 0 0 1 0 1 l 0 0 0
0 1 () 0 0 0 0 1 0 1 0 0

0 0 l 0 0 0 0 0 1 0 l 1 0

1 0 0 1 0 0 0 0 0 1 0 1 1

Figure 10 .1 : Superimposed Code

[26) is experimented in an ad hoc network, a gateway node is not deployed in a

network used to compare with [26) . An example of such network topology is

depicted in Figure 10.2(a) . In addition, data of other metrics , such as throughput ,

time to get channels , and overhead traffic, are collected in a mesh network where a

gateway node is deployed at center. An example of such network topology is

depicted in Figure 10.2(b) . The bandwidth of every link is set to 2 Mbps. Each

(a) An Example Of An Ad Hoc Network (b) An Example Of An Mesh Network

Figure 10.2: Examples Of A Network Topology

node turns on at random between O and 5 seconds Every node broadcasts the

BEACON packet every 30 seconds and re-estimates channel mformation and

111

routing every 60 seconds. Every node, except for a gateway node, starts generatmg

UDP flows to a gateway node after 30s. The average bandwidth of each UDP flow

ma network vanes m 32, 64, 96, and 128 Kbps Each network topology is simulated

for 600 seconds m simulat10n time.

10.1.2 Comparison in the original testbed

The MIMC-SIM framework produces a compatible result with [26]. [26] shows that

the SCODE protocol produces fairly usage of each channel ma network as depicted

m Figure 10.3(a). The similar result is also validated m the MIMC-SIM framework

Figure 10 3(b) depicts the experiment result of the SCODE protocol m the

MIMC-SIM framework. Figure 10 3(a) shows average number of channel usage of

each channel, and Figure 10.3(b) shows average percentage of channel usage of each

channel The comparison between Figure 10.3(a) and 10 3(b) can venfy that the

20---~-----~-~
18

16

'4

,2

J'1ov-

4

2

2 6 B IC 1~
ct,a,.,.;

20

15

[
al, 10

~

5

00 2 4 6 8 10 12

Channel

(a) The Channel Usage Of Each Channel (b) The Channel Usage Of Each Channel Tested In
Tested In [26] The MIMC-SIM Framework

Figure 10.3: The Channel Usage Of Each Channel

112

MIMC-SIM framework is compatible to study the SCODE protocol as described in

is compatible with [26].

10.1.3 Performance Study

The MIMC-SIM framework studies performance of the SCODE protocol in a mesh

network with such metrics as throughput, time to get channels, and overhead traffic.

(Since there is no conflict channel during simulation of the SCODE protocol, the

number of conflict channels is not studied.) To study performance of the SCODE

(a) Topology 1 (b) Topology2

(c) Topology3 (d) Topology4

Figure 10.4: Four Different Network Topologies To Study Performance Of The
SCODE Protocol

113

protocol in such metrics, four specific network topologies are picked as depicted in

Figure 10.4.

10.1.3.1 Throughput

Figure 10.5 shows throughput in the topology3 network when the average

bandwidth of each UDP flow varies in 32, 64, 96, and 128 Kbps. (The network

topology3 is picked because nodes are most evenly distributed in the network out of

the four topologies.) The throughput of the network is measured by the sum of all

useful bandwidth between traffic generating nodes and the gateway node in the

network. In Figure 10.5, when the traffic load is bigger, average deviation of

throughput is increased. This is because only one channel is used to receive packets

at each node, and it causes the hidden terminal problem more often. The hidden

,,-...

"' Os
.0
:E
'-'
:::l
Os ..c::
on
:::l
0
I-<

..c::
E-<

1.2

1

0.8

0.6

0.4

0.2

100 200 300
Time (s)

32Kbp, I
64Kbps
96Kbps

128Kbps

400 500

Figure 10.5: Throughput In The Topology3 Network

600

114

termmal problem is that when two nodes not m the same commumcation range try

to send packets to the same node on the same channel at the same time, the two

transmiss10ns are mterfered with each other. This suddenly aggravates throughput

of a network. Smee the throughput of the network is stable with better performance

when the average bandwidth of each UDP flow is 64 Kbps, other metrics are studied

in the situat10n

10.1.3.2 Channel to get channels

Figure 10 6 shows the cumulative distnbut10n funct10n (CDF) of the time to get the

channels m the four network topologies In the SCODE protocol, the time to get

channels means the time that nodes spend to obtam steady channels for their

receivmg NICs and will not change the channels no longer In Figure 10.6, after 300

0.2

100 200 300
Time (s)

topologyl I
topology2
topology3
topology4

400 500

Figure 10 6- Time To Get Channels

600

115

seconds, approximately 90 percent of nodes get their final channels and stay on their

channels

10.1.3.3 Overhead

Figure 10. 7 shows the traffic volume of channel management packets that each node

generates m a network. The traffic volume of channel management packets can be

considered as overhead traffic m a MIMC networksFigure 10 7 represents that the

average traffic of channel management packets becomes stable after 250 seconds

when most of nodes found their final channels as depicted m Figure 10 6.

240

~ 220
°" e 200
~
8 180
~ °" 160 u

~ 140
~

120

1000 100 200 300
Time (s)

topologyl I
topology2
topology3
topology4

400 500 600

Figure 10.7: Traffic Of Channel Management Packets Per Node

116

10.2 Hyacinth Protocol

10.2.1 Comparison in original testbeds

10.2.1.1 Setting

The Hyacinth protocol implemented in the previous chapter is experimented

according to the original testbed described in [19]. 64 nodes are evenly distributed

in the 8x8 square grid network where each node could communicate with up to 4

neighbor nodes. In such network, 4 gateway nodes are uniformly deployed. An

example of such network topology is depicted in Figure 10.8 . Every node equips two

NICs. The number of available channels in the network is set to 13. The bandwidth

of every link is set to 54 Mbps. Each node turns on at random between O and 5

seconds . Every node broadcasts the ADVERTISE packet every 30 seconds and

re-estimates the channel information and routing every 60 seconds. For 10 different

traffic profiles, 20 different nodes are randomly chosen to generate UDP flows to

Figure 10.8: An Example Of A Network Topology

117

their correspondmg gateway nodes m a skewed manner, specially closer to two of

the gateway nodes In Figure 10 8, the circled nodes represents the nodes chosen to

generate UDP flows. The average bandwidth for each fl.ow is set to 1 5 Mbps Each

traffic profile network is simulated for 600 seconds m simulat10n time

10.2.1.2 Analysis

The MIMC-SIM framework produces a compatible result with [19] In Figure

10 9(a), [19] shows throughput of a network that the Hyacmth protocol produces

with the shortest path routmg The similar result is also validated m the

MIMC-SIM framework Figure 10 9(b) depicts the experiment result of the

Hyacmth protocol m the MIMC-SIM framework. The throughput m the two graphs

are presented withm between about 7 to 14 Mbps. Both graphs retrieve eqmvalent

average throughput. The comparison between Figure 10.9(a) and 10.9(b) can verify

that the MIMC-SIM framework is compatible to study the Hyacmth protocol as

described m [19]

G--0 Sh01 tc,t P Jlh Rouhn_g

Tr•lflc Profile :-.umt>e,

(a) Throughput Tested In [19]

24

-;;- 20
P.

~ 16

¾
~ 1

~ 8

4 1 2 3 4 5 6 7 8 9 10
Traffic Prof!le Number

(b) Throughput Tested In The MIMC-SIM Frame­
work

Figure 10 9 Throughput

118

10.2.2 Performance Study

The MIMC-SIM framework studies performance of the Hyacmth protocol m such

metrics as throughput, time to get channels, overhead traffic, and the number of

conflict channels. To study performance of the Hyacmth protocol m different

network topologies, the testbed described m Section 10 11 is used Moreover, the

four network topologies depicted m Figure 10.4 are used for simulation of the

Hyacmth protocol.

10.2.2.1 Throughput

Figure 10.10 shows throughput of a network when the average bandwidth of each

UDP flow vanes m 4, 8, 12, 16 Kbps. The throughput of a network is measured by

the sum of all useful bandwidth between traffic generatmg nodes and the gateway

1.2
32Kbps I

1 64Kbps
,......, 96Kbps

Cl) 128Kbps 0..

~ 0.8 --...... ::s 0.6 ..§'
bI)
::s

0.4 0
.El
E-s

0.2

00 100 200 300 400 500 600
Time (s)

Figure 10.10· Throughput In The Topology3 Network

119

node m the topology3 network as depicted m Figure 10.4(c) (The network

topology3 is picked by the same reason descnbed m Sect10n 10 1 3 l.) Figure 10 10

shows that the throughput of the network is stable This is because two different

channels are used to receive packets at each node, and the hidden termmal problem

less occurs m the network In addit10n, even though the throughput of the network

is stable, the throughput can not exceed over about O 7 Mbps Smee the throughput

of the network is stable with better performance when the average bandwidth of

each UDP fl.ow is 64 Kbps, other metncs are studied m the situation

10.2.2.2 Channel to get channels

Figure 10.11 shows the cumulative distnbution function (CDF) of the time to get

the channels m the four network topologies In the Hyacmth protocol, the time to

0.4

0.2

100 200 300
Time (s)

topologyl I
topology2
topology3
topology4

400 500

Figure 10.11: Time To Get Channels

600

120

get channels means the time that nodes spend to obtam steady channels for their

DOWN NICs and will not change the channels no longer In Figure 10 11, after 90

seconds, all the nodes get their final channels and stay on their channels.

10.2.2.3 Overhead

Figure 10.12 shows the traffic volume of channel management packets that each

node generates in a network. Figure 10 12 represents that the traffic volume of

channel management packets becomes stable after 90 seconds when all the nodes

found their final channels depicted m Figure 10.11.

600~-~--~--~--~--~--~

,....._ 500
Cl)

e 400
Q)

'O
0

i:: 300
~
0..
u

~
~

100 200 300
Time (s)

topology! I
topology2
topology3
topology4

400 500 600

Figure 10.12. Traffic Of Channel Management Packets

121

10.2.2.4 Conflict

Figure 10.13 shows that the number of conflict channels per node In the Hyacmth

protocol, when two nodes withm two hops use the same channel for their DOWN

NICs, the channel is considered as a conflict channel Figure 10.13 represents no

conflict channels occur after 90 seconds

2.5 .----,-----,---,----,-----,---,---~~

2

1.5

1

0.5

Time (s)

topologyl I
topology2
topology3
topology4

Figure 10.13. The Number Of Conflict Channels

CHAPTER 11

SECURITY

This chapter shows that the MIMC-SIM framework can be used to study

vulnerability of CA protocols To study vulnerability, an attackmg node is

implemented to break a lmk between nodes Then, this chapter shows that the

attacking node can aggravate throughput of a network

11.1 Attack in a MIMC Network

One of the possible attacks in a MIMC network is a link break attack between
(

nodes. In a MIMC network, for nodes to commumcate with each other, they must

tune their NICs to the same channel In order to tune the same channel among

nodes, nodes maintam the channel mformat10n of their neighbor nodes by

exchangmg channel management packets However, if nodes mamtam mcorrect

channel mformation about their neighbor nodes, the neighbormg nodes lose

connection among themselves. An attacker can exploit this discrepancy by sendmg

manipulated channel management packets which contam mcorrect channel

mformation of neighbor nodes

Figure 11 1 shows the steps that an attackmg node M breaks a link between the

nodes A and B. Nodes A and Bare neighbor nodes and already established a lmk

between them accordmg to the same CA protocol. Also, node M knows the CA

122

123

protocol. In Figure 11.1 (a), node A broadcasts channel management packets

containing channel information of itself and its one-hop neighbor node, B. Also,

node B broadcasts the same information in Figure 11.l(b). When node M receives

the channel management packets from both nodes, it can get the channel

information being used on the link between the two nodes. Node M manipulates the

channel management packet to pretend node A and contain an incorrect channel

information. In Figure 11.l(c), node M sends the manipulated channel management

packet to node B. Node B is deceived to change its channel to the incorrect channel

information for node A. After all, node B is not able to communicate with node A

as shown in Figure 11.l(d). In simulation, node A is referred to a gateway node,

and node B is referred to an one-hop neighbor node of the gateway node. Node Mis

referred to an attacking node.

(a) (b)

0

0
(c) (d)

Figure 11.1: Steps Of A Link Break Attack

124

NORM

BEACON beacon Timer

Figure 11.2: State Machine Of An Attacking Node

11.2 Implementation of Attacking Node

Two attacking nodes are implemented to study vulnerability of the two CA

protocols, SCODE and Hyacinth, respectively. The attacking nodes intend to break

a link between a gateway node and its one-hop neighbor nodes. Each attacking

node implements its attacking mechanism in the mainControl module. Although

the two attacking nodes manipulate different channel management packets, the

structure of them can be simply generalized. Figure 11.2 shows the state machine of

the attacking nodes. The state machine does not follow the state machine proposed

in Section 5.1. Instead, an attacking node simply stays in the NORM state. An

ScodePacket *Pk = new ScodePacket ();
pk->setlpAddr (nbT->getIPOfGatewayEntry ());

Niclnfo niclnfo = * (nbT->getMACOfGatewayEntry ());
niclnfo. getChannellnfo (). set Channel (

(niclnfo. getChannellnfo (). getChannel () + 1) % numChannels);

pk->setNiclnfo (niclnfo);
pk->setHopPath (0);

Figure 11.3: Implementation Of Manipulating The BEACON Packet In An Attacking
Node

125

attacking node simply waits to receive channel management packets, especially the

BEACON packet for SCODE protocol and the ADVERTISEMENT packet for

Hyacinth protocol respectively. After sufficient channel information is collected, an

attacking node manipulates the channel management packet to pretend a gateway

node and contain incorrect channel information. Figure 11.3 shows the

implementation of manipulating the BEACON packet in an attacking node. Then,

an attacking node sends the manipulated channel management packet to gateway's

one-hop neighbor nodes periodically.

11.3 Experiment

A few experiments are conducted to test vulnerability of the two CA protocols. To

test the link break attack in a stable network, a testbed network is picked from

Figure 10.4(c) and is set as described in Section 10.1.1. The average of each UDP

flow is set to 64 Kbps (when the network shows better and stable throughput).

Then, an attacking node is deployed close to the gateway node as depicted in Figure

Figure 11.4: Network Topology In Which The Link Break Attack Is Tested

114 In the network, the attackmg node can affect the hosts 4, 5, 8 and 9. In

simulation, the attackmg node sends the mampulated packet to its victim nodes

every 15 seconds, while the gateway node sends the BEACON/ ADVERTISE

packets every 60 seconds

Figure ll.5(a) 'and 11.5(b) show the throughput of the SCODE and Hyacmth

1 .-------.---,----,-------.---,------,

,;;-- 08
k
6 06
'El
]'
~ 0.4

! 02

1

,-... 0.8
"' I 0.6
'El
§ 04 ::l

! 0.2

00

Time (s)

NoAttack ~
Attack -B-

(a) Throughput Of SCODE Protocol

100 200 300
Time (s)

NoAttack ~
Attack -B-

400 500

(b) Throughput Of Hyacmth Protocol

600

Figure 11.5: Throughput Under The Lmk Break Attack

126

127

protocols under the lmk break attack respectively Both Figures show that the lmk

break attack can reduce the throughput of a MIMC network Smee the lmk break

attack is caused by mampulatmg channel management packets, and the packets are

maintamed by a CA protocol, CA protocols should carefully design their

mechamsms against such attack. Hence, such experimental result venfy that the

MIMC framework can be used to study vulnerability of CA protocols

CHAPTER 12

CONCLUSION AND FUTURE WORK

In this thesis, a generic simulation framework, MIMC-SIM, is designed and

developed to study CA protocols m MIMC networks The MIMC-SIM framework is

implemented m INET/OMNeT++ which provides great features for network

simulations. In the MIMC-SIM framework, a new module is added as a new layer

between the network layer and the MAC layer The new module is constructed·

mainControl, subControl, neighborTable, and nicTable modules The

mainControl module handles the operat10ns accordmg to the specification of CA

protocols, such as handling channel management packets and computmg channel

and routmg Also, the mainControl module handles packet transmission for CA

protocols New CA protocols will be implemented m the mainControl module by

extending its base class The subControl module performs command CA operations

for all CA protocols, such as assigning channels to a NIC and scanning and probing

channels. It also ensures that packets are transmitted on correct channels The

neighborTable module mamtains various mformation of neighbor nodes The

nicTable module mamtams mformation of NICs accordmg to their roles Both

neighborTable and nicTable modules are extended according to a new CA protocol

In addit10n, the MIMC-SIM framework provides FSME to implement a state

machme of CA protocols m generic and flexible code structure In the MIMC-SIM

128

framework, the SCODE and Hyacmth protocols are implemented and evaluated

The experimental results show that the MIMC-SIM framework can be used for

research and development of CA protocols Furthermore, the vulnerability of CA

protocols can also be studied in the framework.

129

For the future work, the activities of the NORM state m the mainControl

module can be generalized. Accordmg to the implementations of the SCODE

protocol and the Hyacmth protocol, they have very similar mternal structure m the

NORM state. Basically, in the NORM state, both protocols allow nodes to

broadcast their information, transmit packets, handle packets from lower layer and

channel management packets, and go back to the ASSIGN state periodically

Generahzmg such operat10ns m the NORM state will make the implementation of

CA protocols more efficiently.

BIBLIOGRAPHY

[1] EmuLab, 2010. Available at http //www.emulab net/.

[2] GloMoSim, 2010. Available at http //pcl cs.ucla edu/proJects/glomosim.

[3] INET, 2010 Available at http //met omnetpp org/

[4] INETMANET, 2010 Available at
http.//github com/inetmanet/metmanet/wiki.

[5] MAP, 2010. Available at https-J /engmeermg purdue edu/MESH.

[6] NS2, 2010. Available at http'/ /www is1.edu/nsnam/ns/

[7] NS3, 2010. Available at http·//www.nsnam org/.

[8] OMNET, 2010. Available at http://www.omnet org/

[9] OPNET, 2010 Available at http //www.opnet com/.

[10] OverSim, 2010. Available at http.//www.oversim org/

[11] UCR-Testbed, 2010. Available at http'/ /networks cs ucr edu/testbed/

[12] WINLAB, 2010 Available at http.//www.winlab rutgers edu/

[13] A. Adya, P. Bahl, J Padhye, A Wolman, and L Zhou A multi-radio
umfication protocol for ieee 802 11 wireless networks In Proceedings of IEEE
BROADNETS, pages 344-354, 2004

[14] V. Bhandari and N. H Vaidya. Capacity of multi-channel wireless networks
with random (c, f) assignment. In Proceedings of the 8th ACM international
symposium on Mobile ad hoc networking and computing, pages 229-238 ACM,
2007.

[15] C. M. Cheng, P. H. Hsiao, H Kung, and D. Vlah. AdJacent channel
mterference m dual-radio 802 11 a nodes and its impact on multi-hop
networkmg. In Proc. of IEEE Globecom, pages 1-6 Citeseer, 2006.

[16] A DhananJay, H. Zhang, J. Li, and L Subramaman Practical, distributed
channel assignment and routmg m dual-rad10 mesh networks ACM SIGCOMM
Computer Communication Review, 39(4)·99-110, 2009.

130

131

[17] P. Kyasanur and N. H. Vaidya Capacity of multi-channel wireless networks·
impact of number of channels and mterfaces In Proceedings of the 11th annual
international conference on Mobile computing and networking, page 57 ACM,
2005.

[18] P. Kyasanur and N. H Vaidya Routmg and lmk-layer protocols for
multi-channel mult1-mterface ad hoc wireless networks ACM SIGMOBILE
Mobile Computing and Communications Review, 10(1) 43, 2006

[19] A Ramwala and T. Chmeh Architecture and algorithms for an ieee
802.11-based multi-channel wireless mesh network In IEEE INFOCOM,
volume 3, page 2223. INSTITUTE OF ELECTRICAL ENGINEERS INC
(IEEE), 2005.

[20] A Ramwala, K. Gopalan, and T Chmeh Centralized alogrithms for
muth-channel wireless mesh networks. In Proceedings of ACM Mobile
Computing and Commnunications Review, April 2004

[21] T. Rasheed. Techmcal Report N 200700017, CREATE-NET Techmcal Report,
2007

[22] A Varga. Omnetppcomparison
http //ctieware eng monash.edu au/tw1k1/bm/view/S1mulat10n/
OMNeTppComparison?skm=prmt, 2006

[23] A Varga and R. Hormg An overview of the omnet s1mulat1on environment In
Proceedings of the 1st international conference on Simulation tools and
techniques for communications, networks and systems & workshops, page 60
ICST (Institute for Computer Sciences, Soc1al-Informat1cs and
Telecommumcat1ons Engineermg), 2008

[24] H vom Lehn, E Weingartner, and K Wehrle. Comparmg recent network
simulators: A performance evaluation study Techmcal Report AIB 2008-16,
RWTH Aachen Umvers1ty, 2008.

[25] E Wemgartner, H. vom Lehn, and K Wehrle A performance comparison of
recent network simulators In IEEE International Conference on
Communications, 2009 ICC'09, pages 1-5, 2009

[26] K Xmg, X. Cheng, L. Ma, and Q Liang Superimposed code based channel
assignment m mult1-rad10 multi-channel wireless mesh networks In Proceedings
of the 13th annual ACM international conference on Mobile computing and
networking, page 26 ACM, 2007

VITA

Heywoong Kim was born m JeonJu, South Korea on January 14, 1982, the son of

Gil3ung Kim and KanJa Lee. In 2004, he received the degree of Bachelor of Science

from Hanshin University in Korea. In 2008, he entered the Graduate College of

Texas State Umversity-San Marcos Together with Dr Qi3un Gu, he published "A

Simulation Framework for Performance Analysis of Multi-Interface and

Multi-Channel Wireless Networks m INET/OMNeT++" m 2010 He mtends to

graduate m the fall of 2010, with the degree of Master of Science

Permanent Address: Kangnam Apt 101-1601, Sungbok

Suji, Yongm, Kyunggi, South Korea

,This thesis was typed by Heywoong Kim.

