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ABSTRACT

A SIMULATION FRAMEWORK FOR PERFORMANCE EVALUATION AND
SECURITY RESEARCH IN MULTI-INTERFACE MULTI-CHANNEL
NETWORKS

by

Heywoong Kim

Texas State University-San Marcos

December 2010

SUPERVISING PROFESSOR QIJUN GU

In wireless networks, devices can be equipped with multiple interfaces to utilize
multiple channels and increase the overall throughput of a network. Various channel
assignment protocols have been developed to better utilize multiple channels and
interfaces However, the research of channel assignment protocols 1s still lack of a
good simulation tool that can content with a variety of requirements and
specifications of channel assignment protocols. This thesis proposes MIMC-SIM, a
generic simulation framework to study channel assignment protocols in
multi-interface and multi-channel networks. The MIMC-SIM framework is built in
OMNeT++ with INET and implements a new layer between the network layer and

the MAC layer The MIMC-SIM framework has a novel structure which supports
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generic features and spectfic behaviors of channel assignment protocols It also
provides a generic and flexible code structure for implementing channel assignment

protocols
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CHAPTER 1

INTRODUCTION

Wireless network is a type of network in which nodes communicate over a distance
using radio signals instead of wires. Since computers became able to communicate
via wireless networks, many efforts have been contributed to increase capacity and
accessibility of wireless networks. Many wireless protocols have been developed,
such as IEEE 802.11, Bluetooth, etc. With such wireless protocols, various wireless
networks have been implemented, for instance, ad hoc network and mesh network.
An ad hoc network is a type of wireless network in which nodes act as independent
routers and forward packets for communication with other nodes. A mesh network is
a type of an ad hoc network. In a mesh network, typically, one of the nodes connects
to another network, such as the Internet, and behaves as a gateway. Most traffic in

the mesh network is directed to/from a gateway [19]. Figure 1.1(a) and 1.1(b) show

(a) Ad Hoc Network (b) Mesh Network

Figure 1.1: Two Types of Wireless Networks



an ad hoc network and a mesh network respectively. Such wireless networks can be
greatly extended by each node without such infrastructure as an access point.

However, the capacity of wireless networks 1s limited compared to wired
networks. In a wireless network, when nodes are close enough to communicate with
each other, 1t 1s said that they are in the communication range. In the
communication range, only one transmission 1s allowed in a single channel at a
moment. When multiple transmissions occur simultaneously in a single channel, the
communications interfere with each other. Such interference incurred by adjomming
nodes aggravates the capacity of a wireless network. In order to prevent such
interference, utihzing multiple channels and multiple network interface cards (NIC)
has been considered.

Many communication protocols, such as IEEE802.11, Bluetooth, and WiMAX,
provide multiple orthogonal channels whose frequencies do not overlap with each
other Utilizing multiple orthogonal channels allows nodes to communicate
simultaneously on different channels without interference. Such stmultaneous
multiple communications can mmprove the total throughput of a network [20]. In
addition, imn order to utihize multiple channels efficiently, multiple interfaces are
equipped 1mn each node and assigned to different channels. Thereby, such a network
is called multi-interfaces multi-channels (MIMC) network, 1n which nodes utilize
multiple channels with multiple interfaces.

Many research have shown that MIMC networks provide much better
performance than single channel wireless networks Ashish et al [19] showed that a

MIMC network can achieve a factor of 6 to 7 throughput improvement compared to



a single channel wireless network Pradeep et al. [17] showed that MIMC networks
have better performance even when the number of interfaces 1s smaller than the
number of channels. Vartika et al [14] also demonstrated that even if frequently
switching channels 1s imited, MIMC networks still achieve good throughput

A MIMC network can achieve such good performance by a carefully designed
channel assignment protocol. A channel assignment (CA) protocol assigns the
multiple channels to nodes so as to better utilize multiple channels and interfaces
and maximize the overall throughput of a network. CA protocols allow nodes to
exchange their channel and traffic information, collaborate on channel assignment
negotiation, and assign channels to nodes to reduce interference 1n transmission
The design of CA protocols has been studied 1n mesh network {19, 16] and ad hoc
networks [26, 18]

However, no good and generic simulation tools are available for studying
problems of channel assignment 1n MIMC networks. The simulation tools developed
by existing research on CA protocols are too specific to the CA protocols and the
network topologies [19, 16, 26, 18]. They are hard to be reused for studymg various
problems 1n MIMC networks and evaluating and comparing performance of
proposed new schemes. Although quite a few emulation testbeds and simulation
tools have been developed for studying wireless networks, they are still not sufficient
yet to satisfy the needs of MIMC network research Several deployed wireless
testbeds [1, 5, 11, 12] can be used to validate some wireless protocols However,
nodes 1n these testbeds mostly have only one radio, even though they use multiple

channels The testbeds can only emulate a network with a limited scale. The



topology of the nodes 1s hard to change, and node mobility can hardly be studied in
these testbeds. Meanwhile, a few simulation tools have been developed [2, 3, 6, 9],
which can address the problems in the wireless testbeds. They can support a
large-scale simulation of various protocols in wireless and mobile networks.
However, to the best of our knowledge, no general simulation framework has been
actually developed for MIMC networks. Even though some simulation tools have
partially added mechanisms for supporting multiple interfaces and multiple
channels, they have not truly examined the needs of MIMC network simulation
which will be discussed shortly in Section 4.

This thesis presents a generic simulation framework, named MIMC-SIM, for
MIMC networks The MIMC-SIM framework 1s built in INET/OMNeT++. The
main purpose of the MIMC-SIM framework 1s to include generic features of CA
protocols and support a variety of CA protocols. To do so, the MIMC-SIM
framework adds a new layer between the network layer and the MAC layer where
CA protocols are adopted The new layer allows CA protocols to work compatibly
with protocols at the network and the MAC layers In addition, the MIMC-SIM
framework provides generic and flexible code structure for easy extension according
to protocol specification The MIMC-SIM framework also adapts a variety of factors
in stmulation, such as network topology and traffic volume. In the MIMC-SIM
framework, two CA protocols are implemented and experimented according to [19]
and [26] Additionally, vulnerability of the two CA protocols 1s tested by placing an
attacking node which manipulates the CA protocols in the network. The

MIMC-SIM framework will contribute to the research and development of MIMC



networks.

The rest of this thesis is organized as follows:
Chapter 2 provides the background of CA protocols.
Chapter 3 discusses OMNeT++ and INET framework.
Chapter 4 discusses design 1ssues of a MIMC network simulator and overviews the
architecture of the MIMC-SIM framework
Chapter 5 and 6 present major modules in the MIMC-SIM framework in detail
Chapter 7 presents adjunct modules in the MIMC-SIM framework 1n detail and
discusses modification in INET.
Chapter 8 presents a generic code structure to implement a state machine.
Chapter 9 shows the implementation of CA protocols in the MIMC-SIM framework
Chapter 10 shows evaluation of CA protocols in the MIMC-SIM framework.
Chpater 11 shows vulnerability of CA protocols in the MIMC-SIM framework

Finally, Chapter 12 provides the conclusion of this thesis.



CHAPTER 2

CA PROTOCOLS

In a MIMC network, CA protocols conduct nodes to assign channels so as to
minimize mnterference among nodes and maximize the overall throughput of a
network. To do so, CA protocols allow nodes to exchange their channel information
and traffic information each other For example, CA protocols usually ask nodes to
scan and hsten local traffic when they just join a network in order to find neighbor
nodes and available channels When a node obtains a channel, the node shall
broadcast its channel and related information to let other neighbor nodes know CA
protocols define how nodes exchange their information with neighbor nodes and
assign channels based on the shared mformation

In a MIMC network, nodes can use multiple channels with multiple interfaces
simultaneously. However, considering the cost and the small size of a node,
normally the number of interfaces, m, of a node should be smaller than the number
of channels, ¢ It 1s shown [17] that the network capacity 1s affected by the ratio of ¢
to m, rather than the number ¢ or m When ¢/m 1s O(log(n)) m a random network,
network capacity will not be degraded Because of m < ¢, CA protocols mostly
focus on deployimg channels to nodes to minimize mnterference and maximize
throughput of a network.

In this chapter, a few CA protocols that aim to improve network capacity by



reducing channel interference are briefly summarized

2.1 CA Protocols

In [18], 1n order to increase network capacity, interfaces of a node are divided mto
two categories fixed interface and switchable mterface A fixed interface is assigned
t0 a particular channel and works on the channel for long time period. A fixed
mterface 1s used to receive packets from other nodes. A node randomly selects a
channel 1 an 1nitial level and assigns the channel to a fixed interface. Later, the
node could change a channel of a fixed interface to a less used channel to reduce
mterference. A switchable interface 1s used to ensure connectivity with other nodes
In other words, nodes frequently switch a channel of its switchable interface to 1ts
neighbor nodes’ fixed channel for sending packets. The drawback of the protocol 1s
that the channel assignment of a fixed interface takes time to converge. In addition,
if the number of channels that nodes can use 1s large, the switching channel delay
may be large when nodes need to switch back and forth to communicate with
different neighbor nodes

In [26], CA algorithms based on s-disjunct superimposed code was proposed to
mitigate co-channel mterference of network capacity maximization For each node,
all orthogonal channels are labeled as either 1 for primary or 0 for secondary via a
binary channel codeword Then, a node, u, first searches a set of primary channels
that are secondary to all interferers in two-hop communication range since these
channels may not be used by the interferers. If the searching fails, u chooses the

secondary channels that are not primary, but also secondary to any of interferers



since the interferers may not use them either If v cannot find such channel, it picks
up the primary channel that is primary to the least number of interferences.

In [16, 19], CA protocols were proposed specifically for a wireless mesh network
[19] considers the channel assignment problem as two sub problems: 1) an mterface
assignment problem where interfaces of a node are divided into two categories:
UP-NICs used for communicating with its parent node, and DOWN-NICs used for
communicating with its child nodes; 2) an interface-channel assignment problem
where the channel assignment of a node’s UP-NIC 1s determined by 1ts parents A
less loaded channel will be assigned to a DOWN-NIC to prevent the interference A
node periodically reevaluates its current channel usage and switches a heavily loaded
channel to a less loaded channel for 1ts DOWN-NIC. The channel assignment of a
node relies on 1ts parents The parents always have higher priority than the children
A node close to a gateway will pick a channel earlier than those farther away.

In [16], a distributed CA protocol 1s proposed for a dual radio mesh network.
[16] considers that the mterfaces using different orthogonal channels from the same
frequency band might mterfere with each other unless they are separated by a
sufficient distance In order to solve the problem, they assume that the number of
interfaces that nodes can equip 1s practically two, and nodes utilize channels in two
different frequency bands on each of their interfaces to reduce mterference. Thereby,
each gateway 1 a mesh network associates a channel sequence presenting channels
m different frequency bands alternatively with each of 1ts interfaces The channel
sequence is propagated along with routing information in periodic route

announcement messages A node obtains channels in two different frequency bands



based on the channel sequence and the distance (hops) to the gateway. The nodes
on the same hops from a gateway share one channel in common, then all paths to
the gateway can operate on distinct channels to eliminate intra-path interference
Compared with [19], the CA approach does not rely on the parent. However, if a
gateway changes 1ts channel sequence, the nodes connected to the gateway need to

change channels accordingly.



CHAPTER 3

SIMULATORS

This chapter introduces OMNeT++ and INET 1n which the MIMC-SIM framework
has been developed and compares OMNeT++ with other simulation tools on

aspects including model design, performance, experiment design, and debugging

3.1 OMNET

OMNeT++ [8] 1s an open-source discrete event simulation environment. It 1s not a
simulator of any particular system, but rather provides a generic and flexible
architecture for writing simulation tools It has been used to model and simulate
communication networks, operating systems, hardware architectures, distributed
systems, and so on. Although OMNeT++ 1s not a network simulator itself, 1t has
been widely utilized as a network simulation platform Moreover, OMNeT++ has
been one of the alternative simulators against open-source research oriented
simulator NS-2 [6] and the commercial software OPNET [9]

The most important feature of OMNeT++ 1s its object-oriented component
architecture In OMNeT++-, network components, such as network layers, network
protocols, or network nodes, are composed hierarchically by modules Modules are
classified mto simple modules and compound modules. A simple module 1s the

lowest level module which implements actual activities of the module. A compound

10
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Network
Simple modules

_—
CompoundM /
e T o

Figure 3.1: Module Structure in OMNeT++ (8]

module does not define actual activities, but combines simple modules to act like a
network component. The compound modules can be combined into an even larger
compound module. Figure 3.1 shows the hierarchy of simple modules and
compound modules. Boxes represent modules, and small squares represent gates
through which modules are connected. Arrows connecting boxes represent
connections between modules. Using this architecture, the logical structure of an
actual system can be efficiently described [21]. In OMNeT++, the structure of
modules are described in the NED language, which is OMNeT++'s high-level
language. NED is used to define simple modules, and combine them into compound
modules. The modules defined in NED can be reused in any other compound
modules. The actual activities of simple modules are written in C++, using the
OMNeT++ simulation class library.

The fundamental ingredient of OMNeT++ making itself distinguished from
other simulators is the message passing mechanism. In OMNeT++, modules do not

call other modules’ functions directly. Instead, modules communicate by exchanging
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messages, where messages may carry arbitrary data structures, for instance, data
packets for network communication Modules usually pass messages along
predefined connections via gates, but it 1s also possible to directly send messages to
destination modules without the predefined connections. Messages can be easily

defined in msg files by using message definition function provided by OMNeT++

3.2 INET

The INET framework 1s an open-source communication network simulation package
built 1n the OMNeT++ simulation environment [3] The INET framework contains
models for various networking protocols, such as UDP, TCP, IP, IEEE802.11, and
etc, and several application models The INET framework also supports wireless
and mobile simulations as well. Protocols are represented as modules, and the
modules are combined to construct hosts and network devices including a router, a
switch, an access point, and so on Using INET with OMNeT++, various types of a
network can be implemented and simulated In fact, various extensions have been
already added mto INET [3] INETMANET [4] 1s a project to model mobile ad hoc
network protocols in the INET framework, and OverSim [10] 1s a project to model
overlay and P2P network protocols The MIMC-SIM framework 1s also an extension
m INET to model MIMC network protocols

Figure 3 2 shows the internal structure of a mobile host which composes a
wireless network i INET The structure of the mobile host 1s founded to develop
the MIMC-SIM framework. In the rest of this section, modules constructing the

mobile host are briefly explained Then, mnteractions among modules are clarified.
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Figure 3.2: Mobile Host Sturcture in INET

3.2.1 Modules

Inside the host of Figure 3.2, some of the modules represent network protocols and
are connected according to their associated layers. For example, the tepApp,
udpApp, pingApp modules at the top represent the application layer. The tcp and
udp modules and the networkLayer module in the middle implement protocols at
the transport layer and the network layer respectively. The wlan module at the
bottom resembles a network interface card in the host and implements protocols at
the link layer and the physical layer. Furthermore, the networkLayer and wlan
modules are compound modules which are embodied in Figure 3.3(a) and Figure
3.3(b) respectively. In Figure 3.3(a), each module represents a protocol as named
for itself. For example, the ip module implements IP protocol. In Figure 3.3(b), the

radio module represents a physical radio, and the mac module implements the MAC
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protocol. And the mgmt module manages those two lower modules for ad-hoc mode.
In addition, in Figure 3.2, a host node includes additional modules which
support other modules to collaborate together, hold data, or move a mobile host
node around. These modules do not implement specific network protocols. For
example, the noti fication Board module allows modules to notify each other about
their events. When a module notifies of an event, the noti fication Board module
disseminates the event to other modules. The inter faceT able module maintains
such information as IP address, MAC address, MTU, etc, of network interfaces in a
node. The inter faceTable module provides such information to other modules. The
routingTable module maintains a routing table. The route of a outgoing packet is
decided according to the routing table in the routingTable module. The mobility

module deals with movement of a mobile node. This module constantly changes the
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position of 1ts host node 1 a network during simulation

3.2.2 Interaction

In INET, modules can interact with each other by three different mechanisms:
message pass, direct access, and notification The first mechanism, message pass, 18
provided m OMNeT++. Modules connected via gates usually pass messages to
communicate with each other. This mechanism is best for the process of packet
transmission For example, in Figure 3 2, when the tcpApp module sends a message
(which 1s referred to a packet in network transmission) to the tcp module, the tcp
module deals with the message according to the TCP protocol and sends 1t to the
networkLayer module Then, the network Layer module deals with the message
according to a network layer protocol, such as the IP protocol, and sends it to the
wlan module

The second mechanism, direct access, 1s to interact with the modules not
connected via gates, such as the noti fication Board, inter faceT able, and
routingTable modules Such modules are directly accessed by calling the access
function built upon the ModuleAccess class mn other modules. Then, all
functionality of such modules can be utilized by other modules. For example,
information of the routing table 1n the routingTable module can be retrieved
through this mechanism

The last mechamsm, notification, 1s for modules to notify each other about therr
events, for instance, NIC configuration change, routing table change, mobile node

position change, a state of a module change, communication failure, and so on The
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notification mechanism 1s handled by the nots fication Board module When a
module wants to notify other modules of an event, the module accesses the

nott frcation Board module and let 1t diffuse the event to modules mnterested in
learning about the event with additional information. Events that can be notified
via, the not: ficatron Board module are referred to notifications The notifications
are identified by their categories which are mamntained 1n the nots frcationBoard
module according to kinds of events Using the notification mechanism, a module

can interact with multiple modules at once.

3.3 Other Simulators

Besides OMNeT++, quite a few open source based simulators have been developed
i the network research area Among all, NS-2 1s the most widely used, and NS-3 1s
the successor of NS-2 with better features. Nevertheless, the MIMC-SIM framework
is developed 1n the environment of OMNeT++ with INET. In this section, the
network simulation tools, NS-2 and NS-3, are briefly introduced and compared to
OMNeT++ with a focus on several views design structure, performance, and

experimental environment 1n order to show that OMNeT++ has better features

3.3.1 NS-2

NS-2 1s the most widely used network simulator in the network research area [23]
NS-2 15 a discrete event simulator that supports the simulation of TCP, routing, and
multicast protocols over wired and wireless networks [6]. NS-2 uses C++ code for

implementing the core part of a simulation, such as behavior of a system, and OTcl
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scripts for configuring the system, such as a network topology This design structure
saves resources from unnecessary recompilations if something has been changed in
the simulation set-up However, the structure has drawbacks: the OTecl script makes

the simulation slow down [24]

3.3.2 NS-3

NS-3 is also a discrete event simulator designed for the network research It 1s the
next generation of NS-2 However, the architecture of NS-3 is much different from
NS-2 [7] In order to abandon the problem caused by using OTcl scripts in NS-2,
NS-3 relies entirely on C++ for implementing the simulation with optional Python
bindings [25] Therefore, models in NS-2 cannot be reused in NS-3 without porting
properly Even though many improvements have been made in NS3 in terms of
performance and scalability, NS-3 1s still under development Since NS-3 does not
provide sufficient models to implement MIMC networks, only NS-2 1s considered to

compare with OMNeT++ 1n the next section

3.4 Comparison

3.4.1 Model management

OMNeT-++ has a clear boundary between the simulation kernel and module
implementation The OMNeT++ simulation kernel consists of a class library on
which modules are implemented [23]. The OMNeT++ kernel generates modules as

executable by compiling and linking them against the class library [21] In this
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structure, the class library does not need to be modified to implement new modules
Hence, OMNeT++ provides good features in terms of integrity and reusability In
NS-2, 1n contrast, the boundary between the simulation kernel and modules 1s
unclear [22] In NS-2, modules are usually generated by modifying the pure kernel a
bit to adapt their activities Because of that, 1t 1s hard to maintain the kernel of
NS-2 constantly In addition, after many modifications of the kernel, 1t will be

difficult for other developers to reuse the kernel. This limits the reusability of NS-2

3.4.2 Programming Model

OMNeT++ separates clearly implementation of activities of modules and
configuration of modules As mentioned 1 Section 3.1, OMNeT++ uses two
different languages C++ and NED C++ 15 used to implement activities of
modules, and NED 1s used to configure modules Since OMNeT++ manages the
two languages 1 different roles clearly, the boundary between two languages 1s
clear. NS-2 also provides the two different languages: C++ and OTecl. In NS-2,
basically, C++ 1s used to implement activities of components, and OTcl 1s used to
configure the network topology. However, NS-2 allows activities of components to
be implemented 1in OTcl This blurs the boundary of the two languages Also, 1t is

difficult for developers to track codes

3.4.3 Performance

Network simulators’ ability to run huge scale networks are considered in terms of

performance. According to [25], OMNeT++ can simulate huge scale networks up to
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the limitation of the virtual memory capacity of a system, whereas NS-2 is not
suitable to simulate the large network topologies. Figure 3.4 shows the simulation
runtime measured at different network sizes for the compared simulators. It shows
that OMNeT++ provides better performance than NS-2 for large size networks.
This is because OMNeT++ maintains the set of future events in a binary heap (8],

while NS-2 maintains it in a linked list.
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Figure 3.4: Simulation runtime [25]

3.4.4 Experiment Design

In order to experiment in various settings efficiently, parameters of experiments
need to be separated from models. OMNeT++ separates experiments from models
by using .ini files (text files) where parameters of a simulation experiment are
written. In NS-2, in contrast, the experiment part mingles with models. For
example, parameters of a simulation experiment are embedded in the OTecl scripts

where the network topology is also defined. Therefore, the way to change the



20

parameters in NS-2 is not easy as in OMNeT++-.

3.4.5 Debugging

Debugging in a network simulation is not only debugging code, but also tracing
variation of a network simulation [21]. OMNeT++ provides very powerful GUI
(Figure 3.5), showing packet transmissions and network status while a simulation is
running. Using the GUI, OMNeT++ allows users to check the process of simulation
of networks visually, and also have ability to control the network by changing
parameters during simulation. In contrast, NS-2 also provides a GUI, called nam, to
allow users to trace the process of a network simulation. However, the process of a
network simulation can be visualized only after a network is completely simulated.
Compared to OMNeT++, NS-2 does not provide functionality to debug during

simulation.
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Figure 3.5: Graphical runtime interface in OMNeT++ [8]



CHAPTER 4

OVERVIEW OF MIMC-SIM

This chapter discusses assumptions used m the MIMC-SIM framework, the main
challenges, and CA 1ssues in designing the MIMC-SIM framework. In addition, this

chapter presents the overall architecture of the MIMC-SIM framework.

4.1 Assumptions

The MIMC-SIM framework assumes that MIMC networks utilize multiple
orthogonal channels In the current implementation of INET, this assumption 1s
well supported by the signal propagation model adapted in the radio module A
signal delivered 1n one channel does not contribute anything to another orthogonal
channel In the future, the radio module can be modified to adapt a better signal
model to capture the major characteristics of signals 1n overlapping channels.

The MIMC-SIM framework assumes all NICs are using the same communication
protocol or compatible protocols in the same protocol family. For example, 1n a
mesh network, a node can be equipped with two NICs One NIC may work on
IEEES802 11b and the other may work on IEEE802.11g The assumption implies
that a packet transmitted in a channel could be delivered to all NICs in that
channel. If different communication protocols with overlapping channels are used, a

signal that one protocol transmits a packet in one channel becomes a noise signal at

21
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other protocols using the same channel The current radio module in INET does
not support concurrent multiple communication protocols.

Even though INET allows nodes to assign multiple IP addresses with multiple
NICs, the MIMC-SIM framework assumes that each node is identified by the unique
IP address In simulation, 1t 1s assumed that all nodes mm a MIMC network are in
the same subnet network, which means all NICs of each node are in the same subnet
network This assumption allows nodes to communicate with one IP address over
multiple MAC addresses For example, although a node sends a ping echo packet
out via one specific NIC, the node can recerve the ping reply packet via another NIC
whose MAC address 1s different from the first one. Mapping a single IP address to
multiple MAC addresses in a node makes a routing algorithm easy to be
implemented m the MIMC-SIM framework

The MIMC-SIM also assumes the number of channels is usually greater than the
number of NICs mn nodes Researchers [16, 13, 15] have shown that multiple NICs of
a node should be separated by at least 18 inches so that their radio transmission
does not interfere with each other even though they use different orthogonal
channels. Hence, given the limit size of most mobile devices, a node could have only
a few NICs (mostly two or three) Whereas, wireless networks often have more
orthogonal channels For example, IEEE801.11b/g has 3 orthogonal channels,

IEEE802.11a has 13, and IEEE802.15 4 has 16.
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4.2 Challenges

Although INET can support partially multiple interfaces and multiple channels n
network simulation, quite a few challenging 1ssues remain unaddressed for MIMC
network simulation due to two major reasons One 1s that the wireless framework in
INET was basically designed for simulating wireless communication in one channel
Even though it allows NICs to use multiple channels, it assumes that all NICs of the
same host use the same channel and work on the same mechanism in simulation
The other reason 1s that INET handles multiple NICs in wireless communication
directly based on the model of wired network, which simply makes the NICs forward
packets over separated communication links. In a MIMC network, such a model
1gnores the collaboration among the NICs, thus, it cannot be used to support

MIMC simulation.

4.3 Issues of Channel Assignment

In order to develop a general framework that adopts various requirements of MIMC
networks, the MIMC-SIM framework 1s designed for addressing four major issues of
simulating CA protocols.

First, CA protocols assign channels to nodes in various ways and assign various
roles to NICs accordingly. The MIMC-SIM framework is designed to support two
major categories of CA protocols. One category 1s node-based channel allocation
[18, 26]. It assigns a set of channels to each node, and nodes usually receive packets

on their assigned channels. In this category, a receiving node guarantees that it
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always recerves packets on a particular channel, and a sending node tunes its channel
to a recewver’s channel to deliver packets The NIC used to receive packets on a
particular channel is known as a receiving-NIC, and the NIC used to send packets 1s
known as a sending-NIC. The other category is link-based channel allocation

[16, 19]. It assigns channels to links, and nodes on a link use the channel assigned
the link In these category, NICs in a node are classified into two different groups,
for example, up-link NICs and down-link NICs, according to the routing topology of
a network. In this type of network, a node assigns its up-link channel according to
its parent node, and assigns its down-link channel according to a CA protocol. The
framework should support nodes to manage their NICs with different roles.

Second, the MIMC-SIM framework needs to handle issues including the mapping
between a MAC address and an assigned channel. In a MIMC network, a NIC is
always uniquely 1dentified by its MAC address, while a node could be 1dentified by a
single IP address. When a node sends a packet, the packet carries the IP addresses
of the destination and the next hop. The sending node needs to resolve the MAC
address of the next hop NIC with the next hop IP address and the associated
channel information with the MAC address. As NICs could switch on different
channels, the CA protocol needs to help nodes maintain channel information
associated with their next hop NICs. Hence, the MIMC-SIM framework needs to
properly mamtain IP addresses of nodes and MAC addresses and channel
information of their NICs to support CA protocols.

Third, a CA protocol needs to interact with other protocols, beyond simply

making NICs forward packets. A CA protocol is placed between the network layer
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and the MAC layer and works with various MAC protocols, IP protocols, routing
protocols, and ARP protocols To achieve this, the framework needs to 1dentify the
components 1n CA protocols that are independent of other protocols Meanwhile,
the framework should provide mechanisms for these protocols to interact so that a
CA protocol can work with a specific MAC protocol or network protocol.
Furthermore, CA protocols do not only interact with other protocols, but also
mtegrate them such as ARP protocols and routing protocols to adopt 1ts own
algorithm.

Fnally, a variety of CA protocols have been proposed in the past. The
MIMC-SIM framework shall provide a coding structure that accommodates common
features shared among these protocols and allows flexible extension to 1mplement
specific protocol behaviors as well Many CA protocols can be modeled by an
operation plane and an algorithm plane The operation plane specifies the
operations which are fundamental activities of CA protocols, such as tuning a
channel to a radio, scanning a particular channel, and transmitting a data packet in
an appropriate channel The algorithm plane manages the way to exchange channel
mformation between nodes, and computes the channel allocation based on the
channel information collected using the operation plane. Although a particular CA
protocol always differs from other CA protocols in many details, they share some
common procedures of executing operations and algorithms. Hence, the MIMC-SIM

framework utilizes these observations to structure 1ts architecutre.
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4.4 Architecture of MIMC-SIM

To address the aforementioned issues of CA protocols in MIMC network simulation,
the MIMC-SIM framework defines a new host structure as shown in Figure 4.1.
Compared with the typical host in INET depicted in Figure 3.2, the MIMC-SIM
framework adds the new module, MIControl (named after multi-interface control),
where CA protocols are adopted. The MIControl module is placed as a new layer
between the networkLayer module and the wlan modules, which represent the
network layer and the MAC layer respectively.

The new structure allows CA protocols to work independently with various
MAC protocols and IP protocols. Since the MIControl module is separate from the

network Layer module and wlan modules, the M IControl module does not

Figure 4.1: Mobile Host Sturcture in the MIMC-SIM Framework
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participate in their process, but cooperates with them by exchanging messages to
perform CA protocols Even if the instances of the networkLayer module and the
wlan module are changed, the M IControl module can still perform its operations
without modification. Moreover, the new structure allows CA protocols to deal with
routing 1ssues for sending packets. When the MIControl module receives packets
from the networkLayer module, it can replace the routing mformation of packets
decided 1n the networkLayer module with new routing information according to
CA protocols

In addition, compared to the original host structure in INET, the new host can
have multiple wlan modules and coordinate them. In the new host structure, CA
protocols can easily coordinate multiple wlan modules by the M IControl module
For example, the M IControl module can forward packets from the networkLayer
module to a particular wlan module for sending, while M IControl uses another
wlan module only for receiving

Figure 4 2 shows the mside structure of the M IControl module. The
MIControl module is constituted with four kinds of modules: mainControl,

subControl, nerghborTable, and nicl able.

4.4.1 mainControl

The marnControl module implements the algorithm plane of CA protocols. It
composes channel management packets, coordinates multiple subControl modules,
collects neighbor nodes’ information and analyzes them, updates routing

information, and decides routes and a proper wlan module for outgoing packets.
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Moreover, the mainControl module manages neigbhorTable by updating neighbor
nodes’ information. A new CA protocol can be adopted into the simulation
framework by implementing a new mainControl module. Researchers can simply

extend the base class of the mainControl module to adopt their own CA protocols.

4.4.2 subControl

The subControl module implements the operation plane of CA protocols. Since the
operation plane is independent to the algorithm plane of CA protocols, the
subC'ontrol module is designed separately from the mainControl module. In
addition, each subControl module corresponds to a specific wlan module because
the process of CA operations is specific to an individual wlan module. The
subControl module controls its corresponding wlan module to perfrom the CA
operations. Thus, the same number of subControl modules are equipped as the
number of wlan modules. The subC'ontrol module does not decide when to conduct

CA operations. Instead, it receives commands from the mainControl module, and
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performs CA operations based on the commands. The subControl module only
decides the order of performing CA operations based on their given priority. In order
to take CA operations from the mainControl module and control a wlan module,
the subC'ontrol module is placed under the mainControl module and connected to
an individual wlan module. The subControl module also guarantees that packets
are transmitted on the correct channel by controlling its wlan module. Since CA
operations the subControl module performs are independent to CA protocols, the

subControl module 1s not required to be re-implemented for a new CA protocol.

4.4.3 neighborTable

In MIMC networks, no matter what CA protocol is used, nodes collect and
maintain the information of their neighbor nodes. The nergbhorTable module is
designed to maintain such information. This module 1s directly accessed by other
modules using the direct access mechanism (Section 3.2.2). Both the mawmControl
module and the subControl module access the nergbhorTable module to update
neighbors’ information or retrieve the information. The neighborTable module does
not participate in forwarding packets in the M IControl module. Since each CA
protocol requires different information for neighbor nodes, this module shall be

extended to store proper information according to a CA protocol

4.4.4 nicTable

The nacTable module is designed to maintain various roles and information of NICs.

CA protocols allow nodes to utilize their NICs in different roles, for instance, upper
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NIC and down NIC [19] Also, CA protocols allow nodes to assign specific channels
to thewr NICs. The ni:cTable module maintains roles and channel information of
NICs defined by a CA protocol. The nicTable module is directly accessed by other
modules using the direct access mechamism (Section 3 2 2) Usually, the
mawnControl module accesses the nicTable module to retrieve the information,
while the subControl module accesses 1t to update Similarly to the neigbhorTable
module, also, the nicTable module does not participate in forwarding packets The
nicT'able module will be extended to define new roles and store proper information

of NICs according to a CA protocol

4.5 Messages

In OMNeT++, modules connected via gates pass messages to communicate with
each other The MIMC-SIM framework classifies those messages into command,
channel management packet, and data packet.

In the MIMC-SIM framework, the mainControl module controls the subConitrol
module to perform CA operations by sending special messages. Such special
messages are referred to CA commands. The MIMC-SIM framework defines the
MICommand class as the base class on which a specific CA command will be
mmplemented In addition, the subControl module sends messages to its wlan
module to configure the channel information of the wlan module. Such messages
that one module sends to another module to use 1ts service are considered as
commands 1 the MIMC-SIM framework

In MIMC networks, nodes exchange their information such as IP address, MAC
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addresses, channel information, traffic information, and so on. In the MIMC-SIM
framework, channel management packets are the messages carrying such information
and transmitted among nodes. Channel management packets are specified by CA
protocols and generated in the mainControl module. In order to handle channel
management packets, the MIMC-SIM framework defines the M I Packet class as the
base class on which any kinds of channel management packets will be implemented.

Data packets are generated at or above the network layer In the MIMC-SIM
framework, all the messages received in the M IControl module from the
networkLayer module are regarded as data packets. Processing data packets 1s
similar to the processing in INET, but the MIMC-SIM framework ensures that each
data packet 1s transmitted on the correct channel.

Since the MIMC-SIM framework 1s built atop the MAC layer, both channel
management packets and data packets are considered as data frame at the MAC
layer For example, if the underlying MAC protocol 1s IEEES02.11, the two types of
packets will be formatted as IEEE802 11 Data Frame. So, m the MIMC-SIM
framework, channel management packets and data packets are simply referred to

packets.

4.6 State Machine

As any other network protocols, CA protocols can also be modeled n a finite state
machine (or state machine), which is used for computer programs In the
MIMC-SIM framework, to adopt a CA protocol, the mainControl module is

implemented based on a state machine. In addition, the subControl module 1s also
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immplemented based on 1ts own state machine. A state machine can be described
using a state diagram which abstractly describes a state machine To implement a
state machine as described in a state diagram, the MIMC-SIM framework provides
a set of predefined macros, named FSME (named after Enhanced Finite State
Machine). FSME 1s inspired by FSMA, which 1s also a set of predefined macros
handling a state machine in INET FSME provides a generic code style and flexible
extension for implementing a state machine Compared to FSMA, FSME allows
each state in a state machine to be implemented separately. The details of FSME

are explained in Chapfer 8.



CHAPTER 5

MAINCONTROL

In this chapter, the design and basic operations of the mainControl module are
presented based on the state machine of the mainControl module

The mawnControl module is the core module implementing actual CA protocols
in the MIMC-SIM framework. It 1s built upon the MIMainControlBase class, which
implements a set of abstract functions that perform CA operations and a few basic
INET functions that initialize the module and pass messages to proper functions.
Moreover, the MIMainControlBase class defines a set of functions using FSME
functions to deal with a finite state machine. The MIMainControlBase class 1s
designed to support common features of CA protocols so that child classes can
utilize them. As shown in Figure 5.1, the MIMainControlBase class 1s extended
from the cSimpleModule class which provides basic features of a simple module and
the INotifiable class which deals with notification function in INET. Then, the
MIMaimmContrlBase class shall be extended to a child class to implement a specific
CA protocol For example, the DrcaMainControl class and the ScodeMainControl
class extends the MIMainControlBase class to implement the distributed
routing/channel algorithm 1n a MIMC network [19] and the CA protocol based on
superimpose code [26] respectively.

The process of the mainControl module is represented in a state machine.

33
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Figure 5.1 Class Hierarchy Of maimnControl Module

According to a state machine, the mainControl module determines when and how
to perform the following major operations for a CA protocol

e Commanding CA operations

e Handling channel management packets

o Computing channel and route

e Transmitting packets

5.1 State Machine

The mawnControl module implements a state machine to adopt a CA protocol
logically The process of a CA protocol can be represented in a state machine Since
the process of each CA protocol 18 umque, implementation of a state machine 1s
specific to a CA protocol. However, the state machines of CA protocols can be
generalized mto the five states: INIT, SCAN, ASSIGN, SETNIC, and NORM
Figure 5 2 shows the state diagram of the five states in the mainControl module

conceptually. Even though CA protocols have their own specific state diagrams,



35

their state diagrams can be generally described within the five common states.
According to the five states, CA operations are performed in proper manner. The
state diagram of a new CA protocol shall be depicted based on Figure 5.2 in the

MIMC-SIM framework.

INIT
|
wakeUpTimer expired
> SCAN

no valid path scanned

ASSIGN
l
valid path
periodically
SETNIC default
host node
disappeared
NIC setted
NORM

Figure 5.2: State Diagram Of The MamControl Module

In Figure 5 2, INIT is the beginning state when a node 1s initialized and
substantiated itself When a node is in the INIT state, although the node has
already initiated 1n simulation, the node 1s regarded as mactive. As long as a node
stays in the INIT state, a node ignores all the mcoming packets from other nodes
and does not send any packets or perform any operations Thus, other nodes will
not be able to find the inactive node The INIT state is designed for a simulation
reason. When a network 1s initiated 1 simulation, all nodes are initiated at the

same time However, nodes may join a network in arbitrary time point In the
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MIMamControl Base class, the timer, wakeUpTimer, 1s defined and scheduled
when a node 1s imitiated When wakeUpTrimer 1s expired, the node 1s regarded as
active when actually starts performing CA protocols mn a network However, this
state may not be considered 1n real network environment.

The SCAN state comes after the INIT state It is triggered when wakeUpTimer
1s expired 1n the INIT state Basically, CA protocols allow nodes to listen to the
medium to find potential neighbor nodes and gather information from them. The
SCAN state 1s designed for that reason In the SCAN state, the mamControl
module commands the subControl modules to scan channels instead of scanning by
itself. During scanning, the marnControl module receives channel management
packets from neighbor nodes and updates them nto the neighborT able module
When the mawnControl module 1s notified of the completion of scanning by the
subControl modules, the ASSIGN state 1s triggered.

When a node enters the ASSIGN state, a node assumes that sufficient channel
mformation 1s collected m the SCAN state. In the ASSIGN state, based on the
channel information gathered from neighbor nodes, a node computes a channel to
assign and decides a default route according to a CA protocol’s algorithm. With the
computed results, a node tries to jomn a network In some CA protocols, a node may
ask 1ts expected default host node (parent node) to join a network mn this state. If a
node confirms to join a network according to a CA protocol, the node enters the
SETNIC state. Otherwise, the node erther computes the channel and default route
once agam to find another parent node or goes back to the SCAN state to collect

new channel information
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In the SETNIC state, a node sets 1ts NICs into the channel computed in the
ASSIGN state accordingly If a node has encountered this state before since the
node started up, then the node may have a problem to set up 1ts NICs because
there might be an ongoing CA operation or a packet transmission 1n 1ts NICs
Forcing the NICs to change a channel immediately beyond a current work may
cause such problems as a packet loss or a deadlock problem In order to prevent the
concervable problems, the MIMC-SIM framework waits until a NIC completes its
current work and assigns a channel to the NIC The actual work 1s handled m the
subControl module. The mainControl module only commands a subControl
module to set up its NIC and waits for the notification indicating that the
subControl module completes setting the NIC.

When a node sets up 1ts NICs appropriately, the NORM state 1s finally
triggered Fntering the NORM state means that a node joins a network and
becomes ready to communicate via a network. In this state, nodes not only
transmit packets, but also do some CA operations to maintain a CA protocol
Usually, nodes keep their neighbor nodes and collect new channel information from
neighbor nodes. As shown 1 Figure 5 2, the NORM state goes back to the ASSIGN
state periodically, or especially when a node has a broken link with 1ts parent node
Since nodes update information of their neighbor nodes in the NORM state, nodes
need to re-estimate their channels and routing based on the new updated
information periodically In addition, the broken link to a parent node makes a node
unable to connect to a gateway, and 1t decreases the throughput of a network.

Thus, 1t 1s necessary to have the routine to go back to the ASSIGN state so that
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nodes are able to re-estimate their channels and routing for applying new channel

mformation and recovering their default routes

5.2 Commanding CA Operations

In MIMC networks, in order to manage CA protocols, nodes perform such CA
operations as assigning a channel to a NIC, scanning and probing a channel. Both
scanning and probing are to listen to a particular channel, but the difference
between them 1s that probing broadcasts request packets during listening a channel
while scanning does not. In the MIMC-SIM framework, instead of the mainControl
module executes the CA operations, the maimnControl module sends CA commands
to the subControl module Then, the subControl module actually executes the CA
operations according to CA commands. The mainControl module builds CA
commands upon the MICommand class which the subControl module perceives
and executes them accordingly. The MICommand class is defined as shown in

Figure 5.3. In the M ICommand class, when the priority variable is false, the CA

class MICommand public cMessage {

public:
enum MICommandKind{
C.SETNIC,
C_SCAN,
C_PROBE,
}
protected
bool priority;
b

Figure 5.3: The MICommand Class
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MICommand* MIMainControlBase :-
buildSetNicCommand (int channel, double bitRate, bool priority)
{

MICommand *xcmd =
new MICommand(” C_SETNIC” , MICommand:: C.SETNIC, priority),

Channellnfo *chInfo = new Channellnfo{);
chlnfo—>setChannel (channel);
chinfo—>setBitrate (bitRate),

cmd—>setControllnfo (chlnfo),
return cmd;

Figure 5 4: The buildSet NecCommand Function

command has higher priority to be executed The enumeration declaration,
MICommandKind, is used to identify kinds of CA commands. The CA command
does not contain specific information to control CA operations Instead, 1t only
carries control information which the subConirol module performs CA operations
according to. To build CA commands, the MIMainControl Base class provides a
set of functions: butldSetNicCommand, buzldScanCémmand, and
build ProbeCommand.

The buildSet NieCommand function 1s to build a CA Command to assign a

channel to a NIC The CA command is identified as C_.SETNIC. The C_SETNIC

class Channellnfo{
public -
short channel;
double bitrate,

Figure 5.5: The Channellnfo Class
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MICommand* MIMainControlBase
buildScanCommand (int beginChannel, int endChannel,
double bitRate, double duration, bool priority, bool 1sPmode)

if (beginChannel > endChannel)
opp-error(”1llogical .channel.range” ),

MICommand *cmd =
new MICommand(”CSCAN” , MICommand..C.SCAN, priority),

ScanControllnfo #ctrl = new ScanControllnfo{);

for (int 1=beginChannel, 1<=endChannel, 1++){
Channellnfo xchInfo = new Channellnfo (),
chInfo-—>setChannel(i);
chInfo—>setBitrate (bitRate);
ctrl—>addChannellnfo(chInfo),

}

ctrl—>setDuration (duration);

ctrl —>setPromiscuousMode (1sPmode );

cmd->setControllnfo (ctrl),
return cmd;

Figure 56 The burldScanCommand Function

command carries a channel information which is defined in the Channellnfo class
The Channelln fo class 1s declared as shown 1n Figure 5.5 and used to contamn a
channel number and 1ts data rate When the subControl module receives the
C_SETNIC command, 1t retrieves the channel information from the command, and
assigns a channel to 1ts NIC according to the channel information This function 1s
usually called in the SETNIC state Figure 5 4 shows the implementation of the
burldSet NacCommand function

The burldScanCommand function 1s to build a CA command to scan a set of
channels The CA command 1s 1dentified as C.SCAN. The C_.SCAN command

carries a control information defined in the ScanControllnfo class. The
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ScanControlIn fo class 1s defined as shown 1n Figure 5.7 and used to control not
only scanning, but also probing. The control information contains a series of
channels, bit rate of channels, and duration of scanning each channel In addition, 1t
can enable scanning 1n promiscuous mode. The subControl module scans according
to the control information that the C_.SCAN command carries Figure 5 6 shows the

mmplementation of the buildScanCommand function.

class ScanControllnfo{
public.
std -vector<Channellnfo %> ChannellnfoSeq,
bool promiscuousMode;
double duration,
cMessage #probeMsg,
int repeatMsgTime,

Figure 5.7. The ScanControllnfo Class

MICommandx MIMainControlBase .
buildProbeCommand (int beginChannel, int endChannel,
double bitRate, double duration, cMessagex msg,
int repeatMsg, bool priority, bool 1sPmode)

{
MICommand *cmd = buildScanCommand ( beginChannel , endChannel
bitRate, duration, priority, 1sPmode),
cmd—>setName (”CPROBE” );
cmd—>setKind (MICommand CPROBE),
ScanControllnfo *ctrl =
check_and_cast<ScanControllnfo #*>(cmd—>getControllnfo()),
ctrl —setProbeMsg (msg),
ctrl —>setRepeatMsgTime (repeatMsg };
return cmd;
}

Figure 5.8 The build ProbeCommand Function
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The burld ProbeCommand function is to build a CA command to probe a set of
channels. The CA command 1s identified as C_ PROBE. Since probing 1s also to scan
channels, the burld ProbeCommand function simply calls the buildScanCommand
function to set configuration for scanning. Then, it attaches a packet and iteration
number of sending the packet to the control mformation. The subControl module
probes according to the control information. Figure 5.8 shows the code of the
burld ProbeC'ommand function. Both the buildScanCommand and

build ProbeCommand functions are used in the SCAN state usually

5.3 Handling Channel Management Packets

In a MIMC network, the mainControl module builds channel management packets
upon the M Packet class and sends them out according to a CA protocol. Figure
5.9 shows the definition of the M IPacket class It simply extends the cPacket class
and adds one more member variable, type, indicating types of channel management
packets. When the maimnControl module receives channel management packets, it
handles the packets in the handleM I Packet function, which is defined in the
MIManControl Base class. Since CA protocols define and handle channel

management packets differently, the handle M I Packet function is declared as a pure

class MIPacket  public cPacket {
protected
int type;

Figure 59+ The MIPacket Class
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virtual function Then, a child class shall extend the base class and instantiate the
handleM I Packet function to handle channel management packets according to 1ts
CA protocol.

When the mainControl module handles channel management packets, it usually
updates the information into the neighborTable module and the routingT able
module. The neighborTable module can be easily updated using functions provided
by the nesghborTable module. For updating the routingTable module, instead of
using the functions that the routingTable module provides, the mamnControl
module uses 1ts own functions. update Route, removeRoute, update De fault Route,
which are implemented in the MIManControlBase class. Figure 5.10 shows the
declaration of the functions. The updateDe fault Route function updates default
route information and marks a default host node in the neighborT able module as
well. The update Route function adds or updates routing information into the
routingT able module. The removeRoute function removes routing information by
given host IP address. These functions allow developers to utilize the routingTable

module conveniently.

class INET_API MIMainControiBase{

protected

virtual void updateDefaultRoute(const IPAddress& gatewayIP ,
InterfaceEntry xie),

virtual void updateRoute(const IPAddress& hostIP,
const IPAddress& gatewaylP, const IPAddress& netMaskIP ,
InterfaceEntry xie);

virtual void removeRoute(const IPAddress& hostIP );

Figure 5.10: The Declaration Of The Functions Updating The routingTable Module
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5.4 Computing Channel and Route

CA protocols have tlﬂlelr own specific channel assignment algorithm which allows
nodes to find the best channel and route so that CA protocols can accomplish their
goal, maximizing overall throughput of a network. In a MIMC network, when a
node collects sufficient information of traffic and assigned channels from 1ts
neighbors, the node computes better route and a proper channel accordmng to 1ts
CA protocol’s channel assignment algorithm In the MIMC-SIM framework, the
channel assignment algorithm 1s performed in the mainControl module. More
specifically, the assignChannel AndRoute function 1s defined to implement the
algorithm in the M IMawnControlBase class. However, since the channel
assignment algorithm of each CA protocol 1s unique, the assignChannel AndRoute
function 1s declared as a pure virtual function Then, a child class shall extend the
base class and instantiate the assignChannel AndRoute function to mmplement the
channel assignment algorithm according to 1ts CA protocol. The

asstgnChannel AndRoute function is usually executed in the ASSIGN state.

5.5 Transmitting Packets

In a computer network communication, packets are delivered with routing
information which is selected m the network layer In a MIMC network, however,
routing for each packet is usually chosen by a CA protocol. To achieve this, the
MIMC-SIM framework allows the mainControl module to deal with packets for

routing 1n the NORM state. This section presents how the mainControl module
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deals with packets in order of process

When a packet 1s delivered from the Network module for transmission, the
mawnControl module first stores the packet m dataQueue, a queue defined in the
MIManControl Base class, without any routing information In a MIMC network,
CA protocols allow nodes to update the routing table and change a default route
frequently The frequent change of the routing table may cause that a packet
transmission does not reflect the latest routing table For example, suppose that a
route of a packet 1s already chosen, and the packet waits to be delivered in a node
Then, suddenly, the node updates 1ts routing table. Based on the new routing table,
the packet should be delivered on a different route However, because the route of
the packet has been made already, the packet will be still delivered in the original
route, which might cause a packet loss eventually. For this reason, the route of
outgoing packets should be chosen right before they are transmitted. Hence, the
mawnControl module keeps outgoing packets in the queue without routing
imformation until the packets are actually transmitted.

In order to know when the outgoing packets can be actually transmitted, the
mawnControl module tracks the amount of packets that each subControl module
can transmit at once. To do so, first, the MIMamnConirolBase class defines
requestedPacket as a vector whose element index matches to the mndex of
subControl modules, and sets every element of requestedPacket to a certam
amount of packets that a subControl module can transmit at once. When the
mawnControl module sends a packet to a subCotnrol module, the corresponding

element of requestedPacket is decremented. When a subControl module completes
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a cycle of transmitting a packet (finishes transmission of a packet), the subControl
module notifies the mainControl module of the completion, and the mainConitrol
module mecrements the corresponding element of requestedPacket Hence, when an
element of requestedPacket 1s positive, the corresponding subConirol module 18
available to transmit a packet Conversely, when the element 1s zero, the
corresponding subControl module 1s not capable to transmit a packet So, the
mainControl module does not use the subControl module for transmitting packets
Since each subControl module intends to handle one packet at a time, every
element of requested packet 1s set to one and not mmcremented over one. Moreover,
by recerving the notification, the mainControl module 1s able to know when a
particular subControl module becomes ready to transmit another packet.

When the mawnControl module 1s available to send a packet out, first, the
marnControl module checks requestedPacket to figure out which subControl
module 1s available Then, the maimnControl module retrieves a packet supposed to
be transmitted via the NIC, which associates with the available subControl module,
from dataQueue based on the routing table When a packet 1s retrieved, the
mawnControl module attaches control information built upon the M I PacketCtrl
class, defined as depicted in Figure 5 11 The control information contains routing
information and channel information and indicates importance of a packet The
channel information 1s used when the mainControl module forces a packet to be
transmitted on a particular channel The importance indicates whether a packet 1s a
non failure-free packet When a non failure-free packet transmission fails at the

MAC layer, the subControl module will notify the nerghborT able module of the
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failure. Finally, the mainControl module sends a packet to the subControl module

class MIPacketCtrl{

protected.
cPolymorphic xcontrollnfo,
Channellnfo xchannellnfo;
bool reliance;

Figure 5.11- The Declaration Of The MIPacketCtrl Class

void MIMainControlBase.:sendDataPacket ()
{

if (isEmptyQueue()) return;

for (int 1=0, i<numNics; i++)
if (requestedPacket [1] > 0){
cMessage xmsg = dequeue (i),
if {msg)
sendDown (msg, 1);

Figure 5 12. Implementation Of The sendDataPacket Function

In the MIMamControlBase class, the sendDataPacket function is defined and
implemented to handle packet transmission as the aforementioned process. Figure
5.12 is the implementation of the sendDataPacket function. In Figure 5.12, the
dequeue function 1s to retrieve a packet as explained above. In a child class of the
MIManControl Base class, the sendDataPacket function will be simply called for

a packet transmission.




CHAPTER 6

SUBCONTROL

In this chapter, the design of the subControl module is presented n detail.

6.1 Work Flow

The subControl module 1s designed to perform common CA operations, such as
assigning a channel, scanning and probing a set of channels, and transmitting
packets on the correct channel. Assigning a channel means to tune a NIC into a
certain channel Scanning means to listen to a channel for a certain time Probing 1s
basically similar to scanning, but the subControl module broadcasts packets before
listening to each channel. Transmitting packets on the correct channel means to
ensure that packets are transmitted on the correct channel of the right next hop
node. Since such CA operations are independent to CA protocols, the subControl
module provides such CA operations as tool kits that various CA protocols can
utilize. Developers only need to decide how to use these tool kits in CA protocols,
instead of mixing these operations within CA protocols

In order to perform CA operations, the subControl module interacts with the
manControl module and 1ts corresponding NIC Figure 6 1 shows how the
subControl module mteracts with other modules to perform CA operations

First, the subControl module receives CA commands and packets from the

48
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Figure 6.1: The Flow Of Commands Among Modules

mainControl module to activate CA operations. Although the subControl module
performs the CA operations, it does not decide when to conduct CA operations.
Instead, the subControl module only carries CA operations by receiving CA
commands or packets from the mainControl module. In a MIMC network, CA
operations are determined by a CA protocol. Since the mainControl module
implements a CA protocol, the mainControl module takes charge of sending proper
CA commands and packets in a proper manner according to a CA protocol.
According to the CA commands and packets, the subControl module executes CA
operations.

When the subControl module executes CA operations, it controls its
corresponding NIC by sending a command. The command is to change such channel
information as channel number and bit rate of a NIC. The subControl module

implements the sendRadioCon figM sg function which builds the command. In the



50

void sendRadioConfigMsg(Channellnfo xchannellnfo)

{
if(channellnfo == NULL)
return,
PhyControllnfo sphyCtrl = new PhyControllnfo (),
phyCtrl—setChannelNumber (channellnfo—>getChannel ()),
phyCtrl—>setBitrate (channellnfo—>getBitrate ());
cMessage xmsg =
new cMessage (" RadioConfigMsg” , PHY C_CONFIGURERADIO),
msg—>setControllnfo (phyCtrl),
sendDown (msg ),
}

Figure 6 2° The sendRadioCon figM sg Function

sendRadioCon figM sg function, the command 1s simply built as a message and
identified as PHY .C_.CONFIGURERADIO Such command will be perceived as
a command to change a channel and 1ts bit rate in the mac module However, the
command only carries control information which contains specific channel
mformation The control information 1s built upon the PhyControlInfo class
(provided in INET), which can be correctly executed in the AbstractRadzo class,
implementing the radio module in the wlan module. Figure 6.2 shows the
implementation of the sendRadioCon figM sg function. When a NIC receives the
command, 1t changes its channel information accordingly and notifies a subConirol
module When the subControl module finishes executing a CA operation, 1t notifies

the mainControl module about the completion of a CA operation
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Figure 6 3 The State Diagram Of The subControl Module

6.2 State Machine

The subControl module performs CA operations according to a state machine.
Figure 6 3 shows the state diagram of the subControl module In the SLEEP state,
the subControl module 1s mttialized In the IDLE state, the subControl module 1s
idle In the CONDUCT state, other states are triggered to perform CA operations
accordingly. The SETNIC state 1s to assign a channel. The WAITSCAN and SCAN
states are to perform scanning and probing The WAITTRANSMIT and

TRANSMIT states are to transmit packets on the correct channel
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6.2.1 SLEEP and IDLE

The SLEEP state 1s the beginnming state of the state diagram in Figure 6.3. In the
SLEEP state, the subControl module 1s mitiahized and discards packets from other
modules In simulation, even though the mainControl module 1s 1n 1ts INIT state,
NICs (the wlan modules) still receive packets from other nodes and forward packets
to the M IControl module. If the mamConitrol module starts up while a NIC 1s
recerving a packet, the manControl module should discard the packet because the
packet was received before the actual start time of a node in simulation However,
the mawnControl module still accepts the packet and deals with 1t Such acceptance
may bring maccurate results for the simulation of CA protocols In order to prevent
the problem, the subControl module discards packets ahead of the maimnControl
module However, in other than the SLEEP state, the subControl module forwards
packets to the mamConirol module immediately when packets are received from 1ts
corresponding NIC In the SLEEP state, the subControl module 1s triggered to the
CONDUCT state by receiving a CA command from the maimnControl module.
Once the marnControl module starts, 1t commands the subControl module to
perform a CA operation So, when the subControl module receives a CA command
in the SLEEP state, 1t assumes that the mainControl module has been started,
then starts its process as well

In the IDLE state, the subControl module 1s simply waiting for receiving CA
commands and packets When the subControl control receives them from the

mawnControl module, the subControl module stores them in a queue properly and
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void MISubControl- enqueueOperation (MICommand *cmd)
{
if {cmd—>getPriority ())
$highCommandQueue$. insert (cmd),
else
$lowCommandQueue$ 1nsert (cmd);

Figure 6 4 The Set Of Queues The subControl Maintains

enters the CONDUCT state When the subControl module enters the IDLE state,
it notifies the mainControl module of that, the subControl module 1s m the IDLE
state. This 18 because the mawnControl module will want to know when the
subControl module becomes 1dle.

When the subControl module receives CA commands, regardless of a state, 1t
stores CA commands mto two different queues, hrghCommandQueue and
lowCommandQueue, according to their priorities The subControl maintains
highCommandQueuve and lowCommandQueue to buffer hugh priority CA
commands and low priority CA commands respectively Since high priority CA
commands are supposed to be handled prior to low priority CA commands, the
subControl module executes CA commands buffered in highCommandQueue first
If there 1s no CA commands mn hghCommandQueue, then the subControl module
proceeds CA commands from lowCommandQueue. The priority of a CA command
is determined 1n the mainControl module according to a CA protocol. In the
subControl module, the enqueueOperation function stores CA commands mto a
proper queue as shown in Figure 6.4

In addition, The subControl module maintains two more queues,
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highDataQueue and lowDataQueue, to maintain packets. The subControl module
receives two kinds of packets from the mainControl module channel management
packets and data packets In a MIMC network, for nodes to maintain a CA
protocol, channel management packets should take precedence over data packets In
all states, except the SLEEP state, when the subControl module receives packets, 1t
buffers channel management packets into highDataQueue and data packets mto
lowDataQueue. The subControl module transmits the packets in highDataQueue
before the packets in lowDataQueue Hence, whenever a channel management
packet arrives, the subControl module sends 1t out first, even 1if the packet arrives
later than data packets. In the subConirol module, the engueueData function

stores packets mmto a proper queue as shown i Figure 6 5.

void MISubControl. enqueueData(cMessage *msg)

{
if (dynamic_cast<MIPacket *>(msg))
$highDataQueue$ 1nsert (msg);
else
$lowDataQueue$ 1nsert (msg),
}

Figure 6 5 The Set Of Queues The subControl Mamtains

6.2.2 CONDUCT

In the CONDUCT state, the subControl module checks the aforementioned queues
and leads to a proper state to perform CA operations. The subControl module
handles CA commands prior to packets, because such CA operations as assigning,
scanning, and probing a channel have higher priority than packet transmission to

maintain CA protocols. So, in the CONDUCT state, the subControl module checks
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class MISubControl{

protected
Channellnfo sxnewChannellnfo,
ScanControllnfo xscanCtrlInfo,

Figure 6 6. Member Variables To Maintain Control Information In The subControl
Module

the command queues (highCommandQueue and lowCommandQueue) first and the
data queues (highDataQueue and lowDataQueue) later The subControl module
retrieves a CA command from the command queues, if any If the command 1s the
C_SETNIC command, assigning a channel to a NIC, the subControl module enters
the SETNIC state If the command 1s either a C_SCAN command or a C_.PROBE
command (Section 5.2) to scan or probe channels, the WAITSCAN state 1s
triggered. If no commands are 1 the command queues, the subControl module
retrieves a packet from the data queues, if any. Then, the subControl module
triggers the WAITTRANSMIT state to transmit the packet

When the subControl module leads CA commands to a proper state in the
CONDUCT state, 1t retrieves control imformation from CA commands to perform
CA operations properly CA commands carry control information to control CA
operations (Section 52) The subControl module maintains two variables,
newChannellnfo and scanCtrlInfo, to keep the control information They are
defined as shown mn Figure 6 6 The newChannellnfo variable keeps the control
information of the C_.SETNIC command. The scanControllnfo variable keeps the

control information of both the C_SCAN and C_PROBE commands Such variables
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Figure 6.7: The Inside Structure Of The CONDUCT State In The subControl Module

are used in the SETNIC, WAITSCAN, and SCAN states to perform CA operations
properly.

In addition, the subControl module maintains the channel assigned to its
corresponding NIC in the CONDUCT state. If all the queues are empty, which
means the subControl module does not have any work to do, then the ;ubCOntrol
module tries to preserve an assigned channel of its corresponding NIC before
entering into the IDLE state. After CA operations are performed, a channel of the
NIC might have been changed to a different channel from its assigned channel. The
subControl module retrieves a channel assigned to its corresponding NIC from the
nicTable module and checks whether the NIC’s current channel is equal to the

assigned channel. If they are same, the subControl module enters into the IDLE
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state. Otherwise, the subControl module commands the NIC to change to the
assigned channel and waits until the channel 1s actually assigned to the NIC When
the subControl module 1s notified of that, the channel is correctly assigned to the
NIC, 1t enters the CONDUCT state once again The re-entrance is because the
subControl module could receive CA commands and packets from the mainControl
module while waiting for the assigning a channel operation. However, since a
channel 1s assigned only to a fixed NIC, the subControl module preserves an
assigned channel only 1f 1ts corresponding NIC 1s a fixed NIC Figure 6.7 shows the

inside structure of the CONDUCT state, which is depicted according to Section 8 3

6.3 SETNIC

In the SETNIC state, the CA operation to assign a channel to a NIC 1s performed
This state 1s triggered by the C_.SETNIC command. Once the subControl module
enters the SETNIC state, 1t checks whether the channel, kept mn newChannellnfo,
18 equivalent to the current channel of the NIC. If so, the subControl module
notifies the mawnControl module of that, a channel 1s assigned to a NIC because
the same channel has been already used mn a NIC. Then, 1t goes back to the
CONDUCT state Otherwise, the subControl module sends a command to change a
channel to a NIC and waits until a NIC actually assigns a channel When the
subControl module 1s notified of that a NIC correctly assigns a channel, it updates
the new channel information nto the nicT'able module and notifies the
mamnControl module of that, 1t has assigned a channel. Then, the subControl

module goes back to the CONDUCT state
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6.4 WAITSCAN and SCAN

In the WAITSCAN and SCAN states, the two CA operations, scanning and
probing, are performed. Scanning a channel is to tune a NIC to a particular channel
and listen to the channel. Probing a channel 1s also to tune a NIC to a particular
channel and listen to the channel During probing, packets are sent to probe a
channel before listening However, since the two CA operations have the same
procedure, tuning and listening, both CA operations are performed mn the same
states, WAITSCAN and SCAN.

In the WAITSCAN and SCAN states, the subControl module controls the CA
operations by scanConirolInfo which contams a series of channels, data rate of
channels, duration for listening to each channel, and indication to activate
promiscuous mode In addition, scanControllnfo can contain additional
mformation, such as a packet and iteration number of sending the packet for
probing. With scanControlInfo, the subControl module allows for scanning or
probing a series of channels at once

In the WAITSCAN state, the subControl module tunes 1ts corresponding NIC
to a particular channel. When the subControl module enters in this state, it
compares the current channel of the NIC with the first channel out of channels that
scanControlIn fo contains. If they are same, the subControl module directly enters
the SCAN state. Otherwise, the subControl module sends a command to tune a
NIC to the channel. Then, 1t enters the SCAN state when the subControl module 1s

notified that a NIC correctly tunes the channel
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In the SCAN state, the subControl module actually performs the CA
operations, scanning and probing. Figure 6.8 shows the inside structure of the
SCAN state, which is depicted according to Section 8.3. When the subControl
module enters in the SCAN state, first, it sets a timer to be expired in duration of
listening. For the duration of listening, scanning and probing are performed. For
scanning, the subControl module simply waits to receive packets. For probing, the
subControl module sends the packet, which scanControlInfo contains as many
times as the number that scanControlInfo indicates. After sending enough
packets, the subControl module waits to receive packets. If the subControl module

receives packets, it forwards the packets to the mainControl module. When the
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timer 1s expired, the subControl module checks whether the CA operation 1s
performed on all the series of channels that scanControlln fo indicates. If not, the
subControl module goes back to the WAITSCAN state to perform the same CA
operation for the next channel. Otherwise, it terminates a CA operation and enters

mto the CONDUCT state.

6.5 WAITTRANSMIT, TRANSMIT

In the WAITTRANSMIT and TRANSMIT states, the subControl module
transmits packets on the correct channel In WAITTRANSMIT state, the
subControl module tunes 1ts corresponding NIC to a particular channel for a packet
transmission To do so, first, the subControl module retrieves a proper channel
information on which the packet needs to be transmitted To retrieve a proper
channel mformation, the subControl module implements the getChannellnfo
function as shown i Figure 6 9 In the getChannelln fo function, the subControl
module gets a channel mformation for a packet transmission 1n the following order
First, the subControl module gets the channel information from the control
information of a packet, because the mainControl module can designate a specific
channel for a packet Second, the subConirol module gets the channel information
from the nicTable module for broadcast packets when its NIC 1s a fixed NIC. When
a channel is not specified for a broadcast packet, the subControl module assumes
that a packet is broadcasted on 1ts NIC’s assigned channel. Finally, the subControl
module gets the channel information from the nerghborTable module for unicast

packets. The neirghborTable module provides mapping between destination MAC
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Channellnfox MISubControl:: getChannellnfo{cMessage *msg)
{
MIPacketCtrl *miCtrl =
check_and_cast <MIPacketCtrl x>(msg—>getControllnfo ());
MACAddress macAddr =
getDestMAC (miCtrl-—>getControllnfo ());
Channellnfo sxchInfo = new Channellnfo ();

if (miCtrl—>getChannellnfo ())
xchInfo = *miCtrl->getChannellnfo ();

else if(macAddr.isBroadcast() && nicEntry—>isFixed ())
*chInfo = nicEntry—>getChannellnfo ();

else if (!macAddr.isBroadcast())
*chinfo = nbT—>getChannellnfoByMAC {macAddr);

return chlnfo;

Figure 6.9: Implementation Of The getChannel Function

address and proper channel information. (In most of cases, a proper channel can be
found in the getChannelln fo function. However, if any proper channel could not
be found, a packet will be transmitted in a NIC’s current channel.)

Once the subControl module gets the channel information for a packet, it
compares the current channel of the NIC with the channel. If they are same, the
subControl module directly enters the TRANSMIT state. Otherwise, the
subControl module sends a command to tune a NIC to the channel. Then, it enters
into the TRANSMIT state when the subControl module is notified of that, a NIC
correctly tunes the channel.

In the TRANSMIT state, the subControl module sends a packet to its NIC for
transmission. If the NIC successfully transmits a packet, it notifies the subControl
module of the success. Then, the subControl module enters into the CONDUCT

state. However, if the NIC notifies the subControl module of failure of a packet
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transmission, the subControl module notifies the nerghborTable module of the
failure depending on the importance of the packet If the packet 1s non failure-free,
the subControl module notifies the nerghborTable module about the failure.
Otherwise, the subControl module does not. Whether a packet transmission
succeeds or not, the subControl module notifies the mainControl module about the
completion of a packet transmission before entering the CONDUCT state

When the CA operation, scanning or probing, 1s commanded 1n the promiscuous
mode, the subControl module notifies the mainControl module with received
packets In INET, when the wlan module receives packets which are not destined to
the wlan module, 1t always sends a notification with the received packets regardless
of the promiscuous mode When the subControl module recerves the notification m
the promiscuous mode, the subControl module notifies a notification to the
mawnControl module with the packets passed with the notification so that the

manControl module can handle the packets.



CHAPTER 7

SUPPORTIVE MODULES

This chapter presents the design of the neighborTable module and the nicTable
module in detail. Also, this chapter discusses the necessary modification in some

modules in INET to add MIMC support.

7.1 neighborTable

In MIMC networks, CA protocols ask nodes to collect information of neighbor

nodes. The neighborTable module is designed to maintain information of neighbor

class INET_API MINbEntryBase
{
protected:

IPAddress ipAddr;

std:: vector<Niclnfo x> nicCache;

int hopDistance;

int mainNiclndex;

}s

class INET_API MINbTableBase
{
protected :
typedef std::vector<MINbEntryBase x> NbVector;
NbVector nbCache;

Figure 7.1: Declaration Of The MINbEntryBase And MINbTable Base Classes
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class Niclnfo{

public:
MACAddress mac;
Channellnfo channellnfo;

Figure 7.2: Declaration Of The NicInfo Class

nodes. The neighborTable module is built upon the MINbTableBase class with the
MINbEntryBase class. Figure 7.1 shows the declaration of the MINbTable Base
class and the MINbFEntryBase class. The MINbTable Base class maintains
information of neighbor nodes in a vector which is composed of instances of the
MINbEntryBase class. The MINbEntryBase class is used to store actual
information of a neighbor node. Basically, the MINbEntryBase class is
implemented to store a neighbor node’s IP address, MAC addresses, assigned
channels, and hop distance. A MAC address and an assigned channel are maintained
together in the NicInfo class defined as shown in Figure 7.2. Since the MIMC-SIM
framework assumes that each node is identified by the unique IP address, the unique
IP address is considered as a primary key to distinguish among neighbor nodes.

In addition, the neighborTable module is designed to include the following
major features. First, the neighborTable module provides a set of functions which
retrieve neighbor information accordingly. Second, the neighborTable module
maintains neighbor nodes properly by collaborating with other modules. Finally,
the neighborTable module maps among IP addresses, MAC addresses, and channel

information.




7.1.1 Access Retrieval Functions

The neighborTable module provides a set of functions to update and retrieve

information of neighbor nodes. Figure 7.3 shows all the functions that the
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class INET_API MINbTableBase

{

public:

}s

virtual

virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual

virtual
virtual

virtual

virtual
virtual

virtual

virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual

int getNumNeighbors(int hop=0);

MINbEntryBasex operator [];

MINbEntryBasex getEntryBylndex(int index);
MINbEntryBasex getEntryByIP (const IPAddress& ip);
MINbEntryBasex getEntryByMAC (const MACAddress& mac);

const IPAddress& getIPBylndex(int index);

const MACAddress& getMACBylIndex(int index);

const Channellnfo& getChannellnfoByIndex{int index);
int getHopDistanceByIndex{int index);

const IPAddress& getlPByMAC(const MACAddress& mac);
const Channellnfo& getChannellnfoByMAC

(const MACAddress& mac);
int getHopDistanceByMAC (const MACAddress& mac);

const MACAddress& getMACByIP(const IPAddress& ip);
const Channellnfo& getChannellnfoByIP

(const IPAddress& ip);
int getHopDistanceByIP (const IPAddress& ip );

MINbEntryBasex getGatewayEntry ();

const IPAddress& getIPOfGatewayEntry ();

const MACAddress& getMACOfGatewayEntry ();

const Channellnfo& getChannellnfoOfGatewayEntry ();

void setGatewayEntry{const IPAddress& ip);
MINbEntryBasex updateEntry (MINbEntryBase xentry );
void addEntry (MINbEntryBase sentry );

void removeEntry (MINbEntryBase xentry );

Figure 7.3: The Set Of Functions The neighborTable Module Provides To Update
And Retrieve Information Of Neighbor Nodes
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netghborTable module provides. For other modules to use the set of functions, the
neighborTable module is directly accessed by calling an access function. The
neighborTable module does not exchange messages to interact with other modules.
Instead, other modules call an access function to access the neighborTable module.
The MIMC-SIM framework defines the MINbT able Access class, which is built
upon the ModuleAccess class. The MINbT able Access class provides the access
function which returns a pointer of the neighborTable module. Once other modules
get the pointer of the neighborTable module, they can use the set of functions that
the neighborTable module provides. Figure 7.4 shows the code of how the

neighborTable module is accessed by calling the access function.

MINbTableBase *nbT;
nbT = MINbTableAccess (). get ();

Figure 7.4: Access Function Of The neighborTable Module

7.1.2 Maintenance of neighbor nodes

The neighborTable module collaborates with the subControl and mainControl
modules to maintain neighbor nodes accordingly and affects the routingT able
module and the mainControl module when a neighbor node is removed. Basically,
the neighborTable updates information of neighbor nodes by the mainControl
module. When the mainControl module receives channel management packets, the
mainControl module updates the information that the packets contain into the
neighborTable module. The neighborTable module removes information of neighbor

nodes in two different cases. One case is when a subControl module fails a packet
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transmission to a specific neighbor node The other case 1s that information of a
neighbor node has not been updated for long period.

The nerghborT able module gets rid of a neighbor node to which the subC'ontrol
module fails to transmit a packet. When the subControl module fails transmission
for a non failure-free packets, 1t notifies the netghborTable module about the failure
When the neighborTable module 1s notified about the failure, 1t removes the
neighbor node which was the next hop node of the faillure transmission. In the
MIMC-SIM framework, the failure of non free-failure packet transmission means
that the link with the next hop node 1s broken, and the next hop node 1s not a
neighbor node any longer. Hence, when the neighborT able module 1s notified about
the failure, 1t evaluates a MAC address of a next hop node and removes a neighbor
node which associates with the MAC address

In addition, the neighborTable module does not keep information of a neighbor
node permanently. Instead, the neighborTable module removes a neighbor node 1f 1t
has pot been updated for a certain time In a MIMC network, nodes exchange
channel management packets with each other frequently Based on the channel
management packets, nodes find and update their neighbor nodes However, if a
node has not received channel management packets from a neighbor node for a
certain time-the default value 1s 180 seconds in the MIMC-SIM framework-since
the last update of the neighbor node, the node regards that the neighbor node
disappeared, and information of the neighbor node is invalid. The neighborTable
module sets a timer for each neighbor node when information 1s entered or updated

When a timer 1s expired, the associatig neighbor node 1s removed from the
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neighborT able module.

When the neighborTable module removes a neighbor node, it updates the
routinglable module accordingly. The routingT'able module maintains a routing
table in which destination IP addresses are corresponding to next hop IP addresses.
Since a next hop node is considered as one of the neighbor nodes in a MIMC
network, next hop IP addresses are also maintained in the neighborTable module,
and a node which is not maintained in the neighborTable module cannot be a next
hop node in a routing table. In other words, next hop node IP addresses in a routing
table must be maintained in the neighborTable module as neighbor nodes’ IP
addresses. Where X is a set of IP addresses of neighbor nodes in the neighborT'able
node, and Y is a set of next hop IP addresses in the routingTable module, the
relation between X and Y is formalized as X D Y. Hence, when the neighborTable
node removes a neighbor node, it also removes the route whose next hop IP address
is the same as the neighbor node’s IP address from the routingTable module.

In addition, when the neighborTable module removes a neighbor node, it notifies
the mainConirol module about the removal, so that the mainControl module can
cope with removals of neighbor nodes, especially a default route node. When the
mainControl module decides new routing, it also indicates which neighbor node is
used for a default route in the neighborT able module. When the neighborTable
module removes a neighbor node, it notifies the removal differently depending on
the neighbor node. If the default route node is removed, the neighborTable module
notifies the mainControl module of the removal in a specific category,

NF_NBTABLE_GWENTRY _DISMISSED. Otherwise, when other neighbor nodes



69

are removed, the neighborTable module notifies the mainControl module mn the

category, NF_ZNBTABLE_ENTRY_DISMISSED

7.1.3 Mapping information of neighbor nodes

The neighborTable module maintains information of neighbor nodes by mapping
between IP addresses and MAC addresses and between MAC addresses and
assigned channels So, such information as a MAC address and an assigned channel
can be retrieved based on an IP address and a MAC address respectively. Since the
netghborTable module associates an IP address with multiple MAC addresses, 1t
maintamms a main MAC address which 1s primarily used to communicate with a
specific neighbor node The MINbEntryBase class defines a member variable,
mawnNicInder, which indicates the index of a mamn NIC The main MAC address

of each neighbor node is determined according to a CA protocol.

7.2 nicTable

The nicTable module 18 designed to maintain such information of NICs as roles,
MAC address, and assigned channel The nicTable module 1s built upon the
MINwTableBase class with the M1 NiwcEntryBase class Figure 7 5 shows the
implementation of the M INicTableBase and MINicEntryBase classes. The
MINwcTable Base class maintamns information of NICs 1n a vector, NicTableCache,
which 1s composed of instances of the MINwcEntryBase class The
MINwcEntryBase class is used to store actual information of a NIC. When the

nacTable module 1s mitialized, the MINwcTableBase class retrieves a MAC address
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class INET_API MINicEntryBase{
protected -

int category,

int type,

NicInfo niclnfo,

|

class INET_API MINicTableBase{
public
typedef std:-vector<MINicEntryBase x> MINicVector,

protected.
MINicVector NicTableCache,

Figure 75: Implementation Of The MINicEntryBase And MINicTableBase
Classes

of each NIC from the wnter faceTable module and generates an instance of the
MINwcEntryBase class based on the MAC addresses

In addition, when the nicTable module is initialized, the classt fyNics function
1s executed to allot roles of NICs. The classtfyNics function is defined in the
MINwcEntryBase class The classtfyNics function allots roles of NICs in two
different member variables of the M INicEntryBase class, category and type The
category variable 1s to categorize NICs into a fixed NIC or a switchable NIC The
type variable 18 to give a specific role that a CA protocol defines to a NIC. When
the nacTable module 1s extended for a specific CA protocol, the class: fyNucs
function shall be re-implemented to allot the category and the type of NICs
according to a CA protocol. Figure 7 6 shows an example of implementation of the

classi fyNucs function
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void classifyNics ()

{
NicTableCache[0]—>setCategory (FIXED);
NicTableCache[0]—>setType (RECV);

NicTableCache[l]—>setCategory (SHIFT);
NicTableCache[l]—>setType (SEND);

Figure 7.6: An Example Of The classifyNics Function

The nicT'able module dose not exchange messages with other modules. Instead,
the nicTable module is accessed by calling an access function. The MIMC-SIM
framework defines the MINicT able Access class, which is built upon the
ModuleAccess class. The MINicTable Access class provides the access function
which returns a pointer of the nicTable module. Figure 7.7 shows the code of how
the nicTable module is accessed by calling the access function. Through the access,
the set of functions that the nicT'able module provides to retrieve information of

NICs (Figure 7.8) can be used.

MINicTableBase #nicT;
nicT = MINicTableAccess (). get ();

Figure 7.7: Access Function Of The nicTable Module
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class INET_API MINicTableBase{
public:
virtual int getNumOfNiecs();

}s

virtual
virtual
virtual
virtual
virtual

virtual
virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual

virtual
virtual

virtual

virtual

MINicEntryBasex
MINicEntryBasex
MINicEntryBasex
MINicEntryBasex
MINicEntryBasex

InterfaceEntryx
InterfaceEntryx

InterfaceEntryx

InterfaceEntry=*

getEntryByIndex (int index);
operator [] (int index);
getEntryByMAC (MACAddress& mac);
getEntryByCategory (int category );
getEntryByType{int type);

getInterfaceEntryByIndex (int index);
getInterfaceEntryByMAC
(MACAddress& mac);
getlnterfaceEntryByCategory
(int category);
getInterfaceEntryByType(int type};

const Niclnfo& getNicInfoByIndex(int index);
const NicInfo& getNicInfoByMAC({MACAddress& mac);
const NicInfo& getNicInfoByCategory(int category );
const NiclInfo& getNicInfoByType(int type);

const MACAddress& getMACByIndex(int index );
const MACAddress& getMACByCategory(int category );
const MACAddress& getMACByType(int type);

const Channellnfo& getChannellnfoByIndex(int index);
const Channellnfo& getChannellnfoByMAC

(MACAddress& mac);

const Channellnfo& getChannellnfoByCategory

(int category);

const Channellnfo& getChannellnfoByType(int type);

Figure 7.8: The Set Of Functions The nicTable Module Provides To Update And
Retrieve Information Of NICs




7.3 Modification in INET

The MIMC-SIM framework modifies some modules in INET to support the MIMC

network simulation.

7.3.1 Network

Although the network module represents the network layer and is not part of the

M IControl module, in order to let the M IControl module handle the ARP
protocol mechanism for CA protocols, the network module needs to be modified
slightly. Since CA protocols replace the ARP protocol with mapping between IP
addresses and MAC addresses, the MIMC-SIM framework does not need to have the
ARP process in the network layer. Thus, in the MIMC-SIM framework, the arp
module is removed from the network module as shown in Figure 7.9. Compared to
the original network module in Figure 3.3(a) where the ip module sends outgoing
packets to the arp module, the ip module in the new network module

communicates with the M IControl module directly.

Net80211.host[0].networkLayer

£

icmp  errorHandling

hol,
i

igmp

Figure 7.9: The Structure Of The network Module In The MIMC-SIM Framework
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7.3.2 ChannelControl

The channelControl module mamtains neighbor nodes m a network. It gets
informed about the location of nodes and determines which nodes are within
communication range This information 1s used by the radio modules at
transmissions. The channelControl module 1s built upon the ChannelControl
class The original class assigns and maintains one channel per node. However, 1n
MIMC networks, multiple channels are assigned to multiple radios (included m
NICs) n a single node. The class 1s modified to give each node a hst of radios, so

that multiple channels and radios can be considered for each node.

7.3.3 Radio

The radio module is built upon the AbstractRadio class which implements wireless
communication at the physical layer When the radio module changes its channel to
a new one while 1t 1s receiving, 1t should clear 1ts past states so that new recerving
and transmitting procedures can be started However, the clearing past states was
not correctly implemented in the AbstractRadio class. In addition, the radio
module shall change the data rate of a channel as well. Even though the

Abstract Radio class implements a function to change the data rate of a channel, 1t
did not execute the function when the radio module 1s asked to change the data
rate of a channel The AbstractRadio class 1s modified to change a channel and 1ts
data rate accordingly.

The Channel Access class 1s a parent class of the AbstractRadio class It 1s
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designed to support packet transmission among neighbor nodes The class retrieves
neighbor nodes from the channelControl module and delivers a packet to the nodes
Since the ChannelControl class is modified to allow nodes to assign multiple
channels, the Channel Access class 1s also modified to coordinate with the
channelControl module The original Channel Access class delivers a packet based
on a node. The modified ChannelAccess class delivers a packet based on a NIC, so

that a packet can be delivered to NICs on the same channel of a sending NIC.

7.3.4 Mgmt

The mgmt module 1s built upon the Ieee80211M gmt class The original class does
not allow for receiving a command However, in MIMC networks, the subControl
module sends a command to the mgmt module to change a channel of a NIC. The
class 18 modified to receive a command and forward it to a lower module, the mac

module

7.3.5 Mac

The mac module 1s built upon the ITeee80211Mac class which implements the
IEEES802.11 MAC protocol. In the original class, it 1s possible that the radio
module 1s asked to change 1ts channel while the mac module 1s still in waiting
states, such as the DEFER and BACKOFF states of the IEEE802 11 MAC
protocol. Apparently, the radio shall only change its channel when no packet 1s
waiting for transmission in MAC, so that a waiting packet can be transmitted n its

expected channel The class is modified accordingly



CHAPTER 8

STATE MACHINE

In this chapter, a set of predefined macros, FSME (Enhanced Finite State
Machine), which 1s used to implement a state machine in the MIMC-SIM framework
18 introduced Also, the actual implementation of a state machine using FSME 18

shown in this chapter.

8.1 Enhanced Finite State Machine

In the MIMC-SIM framework, FSME provides a generic and flexible code structure
to implement a state machine of a CA protocol A process of a protocol can be
represented in a state machine logically A state machine is composed of a number
of states, transitions among states, and actions in states Such components of a
state machine can be described in a state diagram To implement a state machine mn
a constant code structure, the MIMC-SIM framework provides an implemental
framework with a set of predefined macros, FSME. FSME 1s inspired by FSMA
(Advanced Finite State Machine), provided in the INET distributed package [3]
Both FSMA and FSME provide a set of macros that manipulate the varnable built
upon the cF'SM class, which maintains a state of a state machime. Using the
macros, a state machine can be implemented in a constant code structure. However,

FSMA does not provide a complete set of macros to express a complete set of logic
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required by CA protocols For example, when a state 1s just entered, FSMA cannot
implement the actions which 1s executed after a state transition fails. Also, FSMA
does not allow each state of a state machine to be implemented separately. In other
words, implementation of a whole state machine has to be 1n one function. This
causes inefficient works for extension For example, 1f a child class wants to extend
only a specific state of a state machine from 1ts parent class, FSMA cannot support
that but forces a child class to extend a whole state machine at once. In contrast to
FSMA, FSME provides a complete set of macros that can express a complete set of
logic for CA protocols. In addition, FSME allows each state of a state machine to
be implemented in a separate function for flexible extension. In the MIMC-SIM
framework, the state machines of the mainControl module and the subControl
module are implemented using FSME

Implementation of a state machine using FSME is separated mnto two parts: state
definition and state embodiment State definition and state embodiment each can
be represented 1n a function. A state definition function handles a state transition
A state embodiment function implements actual actions of a specific state. For

implementation of a state machine, only one state defimition function exists with the

state

definition
state state ... state
embodiment embodiment embodiment

Figure 8.1' Relation Of Definition Function And State Embodiment

A
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same number of state embodiment functions as the number of states in a state
machine. A state definition function calls a proper state embodiment function
according to a current state. Figure 8.1 shows the relation of a state definition
function and a state embodiment function. In this chapter, to simplify, a state
definition function and a state embodiment function are referred to a state definition
and a state embodiment respectively. In rest of this chapter, implementation of a

state definition and a state embodiment using FSME is presented in detail.

8.2 State Definition

In a state definition, each state of a state machine is associated with a specific state
embodiment, and the state embodiments are called according to a current state. To
implement a state definition, two FSME macros are used: FSME_Switch and
FSME_State. A FSME_Switch manages a current state and iterates execution of
FSME_States in the FSME_Switch for a state transition. A FSME_State is

embedded in a FSME_Switch and executes a state embodiment according to a

void MIMainControlBase :: handleWithFSM (cMessage *msg)

{
FSME_Switch { fsm )

{
FSME_State (INIT, handleStatelnit, msg);
FSME_State (SCAN, handleStateScan, msg);
FSME_State (ASSIGN, handleStateAssign, msg);
FSME _State (SETNIC, handleStateSetnic, msg);
FSME _State (NORM, handleStateNorm , msg);

Figure 8.2: Implementation Of The handleWithFSM Function, A State Definition
In The mainControl Module
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current state with an event. Figure 8.2 shows the implementation of a state

definition in the mainControl module using FSME_Switch and FSME_State.

#define FSME_Switch(fsm)
bool ___event = true;
bool ___transition = false;
bool ___counter = 0;

cFSM * ___fsm = &fsm;
EV << "processing.event.in_state._.machine.”
<< ___fsm->getName () << endl;
while(___counter++ < FSMMAXT ||
{(opp-error (eINFLOOP, ___fsm—>getStateName()}), 0))

P P

Figure 8.3: Definition Of FSME_Switch

Figure 8.3 shows definition of a FSME_Switch. A FSME_Switch takes the
variable built upon the cF'SM class as a current state and defines several variables,
such as ___event and ___transition, to manage a state transition. The ___event
variable indicates whether an event has triggered a state transition. The
___transition variable indicates whether a state transition happens in a state. Such
variables are used for a FSME_State. Then, a FSME_Switch iterates its inside where
FSME _States are embedded.

Figure 8.4 shows definition of a FSME State. A FSME State assigns a state, a

#define FSME_State(s, s_func, s_msg) \
if(___fsm->getState() = s){ \
s_func(___fsm, ___event, ___transition , s.msg); \
if(___transition){ \
___event = false; \
___-transition = false; \

continue; \

}else break; \

Figure 8.4: Definition Of FSME_State
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state embodiment, and an event and associates them together. Events are such
messages as commands, channel management packets, timers, and notifications,
which potentially trigger a state transition. At each execution of a FSME_Switch, if
the state assigned in a FSME_State is same as a current state, the FSME_State calls
its assigned state embodiment with an event and the variables managed in a
FSME_Switch. When a state transition happens after execution of a state
embodiment, FSME_Switch iterates its inside to execute the next FSME_State in

which the assigned state is the same as a new current state.

8.3 State Embodiment

8.3.1 State Embodiment

A state embodiment implements actual actions of a state and is called from a state
definition. To interact with a state definition, a state embodiment must be declared
in a certain form as shown in Figure 8.5, which is the declaration of the state
embodiments in Figure 8.2. A state definition is declared with four parameters:

__fsm, ___event, ___transition, and msg. The ___fsm parameter maintains a current

virtual void handleStatelnit (cFSM x___fsm , bool ___event,
bool &___transition , cMessage *msg);
virtual void handleStateScan (cFSM *___fsm , bool ___event,
bool &.___transition , cMessage *msg);
virtual void handleStateAssign (cFSM x___fsm , bool ___event,
bool &___transition , cMessage *msg);
virtual void handleStateSetnic(cFSM x___fsm , bool ___event,
bool &___transition , cMessage *msg);
virtual void handleStateNorm (¢cFSM *___fsm, bool ___event,
bool &___transition , cMessage *msg);

Figure 8.5: Declaration Of State Embodiments In The mainControl Module
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process

Figure 8.6: Components Used In A Flow Chart

state. The ___event parameter indicates whether an event has triggered a state
transition. The ___transition parameter is used to indicate a state transition
happens in a state embodiment. The msg parameter represents an event. A
function declared with such four parameters can be utilized as a state embodiment.
To implement actual actions in a state embodiment, a process of a state should
be represented in a flow chart. To draw a flow chart, four components are defined as

State Entry Point

1 _~ 3 4
Is same Send
Y Y
Y 4
2 notify 5
—1  NF_MICTRL_ send
NIC_CHANGED Command
7 RADIO
update =
nicTable  [€Y e
8 notify
NF_MICTRL_
NIC_CHANGED
v
CONDUCT state

Figure 8.7: The Flow Chart Of The SETNIC State In The subControl Module
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presented in Figure 8 6. The rectangle component represents a process used to
implement actions. The diamond component represents a decision used to
implement conditions The rounded rectangle component represents a state in
which the flow of control stops and waits until the next event occurs The arrow
component shows the flow of control in a flow chart When the arrow component 1s
out from the state component, a specific event can be indicated on the arrow Since
the state component represents a state, only one state component 1s allowed 1 a
flow chart of a state With such components, for example, a flow chart of the
SETNIC state in the subControl module can be depicted as Figure 8 7.

In order to implement a state embodiment as described 1n a flow chart, four
FSME macros are used FSME_Event Transition, FSME _No_Event_Transition,
FSME_Event_Execute and FSME_No_Event_Execute. Figure 8 8 shows flow charts
that each FSME macro can implement conceptually. Basically, all of the FSME
macros assign a condition and actions and execute their assigned actions depending
on their conditions. Among all, the Transition macros (FSME_Event_Transition and
FSME_No_Event_Transition) participate in a state transition, while the Execute
macros (FSME_Event_Execute and FSME_No_Event_Execute) do not In addition,
the Event macros (FSME_Event_Transition and FSME_Event_Execute) are applied
when a state machine stays in a state, and the No_Event macros
(FSME_No_Event_Execute and FSME_No_Event_Execute) 1s applhed when a state
machine just enters in a state In other words, the Event macros are used to
immplement the components that occur after a state component, and the No_Event

macros are used to implement the components that occur before a state component
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For the FSME macros to be executed accordingly, they are defined to interact
with the parameters of a state embodiment. Figure 8.9 shows the actual definition
of the FSME macros. The Transition macros assign a condition, an action, and a
state. They evaluate their conditions, and execute their assigned actions if the

conditions are true. Then, they set the ___fsm parameter to their assigned state and

State Entry Point
ate - |
event E
: : Y—  actions
--N»-: :
N
Y ;
\ 4
v v
new State new State
(a) FSME_Event_Transition {b) FSME_No_Event_Transition
State Entry Point
--------------------- ‘ I
' ! @ N—»  actions
event i
| E Y
)
N—> actions E ¢
v E actions
! | L
actions E E‘
;
s
"--__---_--_:
(c) FSME_Event_Execute (d) FSME_No_Event_Exccute

Figure 8.8: A Flow Chart Of The FSME Macros.
(The Dash Arrow Implies That There Might Be More FSME Macros.)



84

the ___transition parameter to true in order to indicate that a state transition is

triggered. Afterward, the Transition macros terminate their state embodiment for a

#define FSME_Event_Transition \
(transition, condition, target, action) \
if(_.._event && condition){ \
FSME_Transition(transition , target, action); \

}
#define FSME_No_Event_Transition \
(transition , condition, target, action) \
if (! ___event && condition){ \
FSME _Transition{transition , target, action); \

}

#define FSME_Print(exiting)
{ev << "FSM."” << ___fsm—>getName()
<< ((exiting)?”:leaving.state.” : ”:entering._state.”)
<< ___fsm-—>getStateName () << endl)

T

#define FSME_Transition(transition, target, action)
FSME _Print (true );
EV << "firing.” << #transition << "_transition_for.”
<< ___fsm-—>getName() << endl;
action;
___fsm->setState (target , #target);
___transition = true;
FSME_Print(false);
return;

Pl

#define FSME_Event_Execute(condition, actionT, actionF)
if(_.__event && condition){
actionT ;
telse{
actionF ;
}

#define FSME_No_Event_Execute(condition, actionT, actionF)
if (! ___event && condition){
actionT;
telse{
actionF;
}

e

Pl

Figure 8.9: Definition Of The FSME Macros
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state transition to be handled in a state definition. The Execute macros assign a
condition and two different actions. one for true condition and the other for false
condition. The Execute macros simply execute their assigned actions depending on
their conditions. Furthermore, the Event macros are apphed to be conducted, 1f
——event is true. Otherwise, the No_Event macros are applied to be conducted. In
addition, all the FSME macros can accept no actions So, for example, if a
Transition macro assigns nothing for an action, 1t simply triggers a state transition

without execution of any actions.

8.3.2 Example of State Embodiment

According to the definition of the FSME macros, the flow charts of each FSME
macros can be simplified Figure 8.10 shows considerable simplifications of the flow
chats depicted n Figure 8.8 (A) First of all, since consecutive actions m a flow
chart can be assigned all together in a FSME macro, they can be represented n a
process component as shown in Figure 8 10(a). (B) Second, since FSME macros can
assign no action, a flow chart of a FSME macro can simply omit a process
component for no action. For example, the flow chart of FSME_No_Event_Execute
can be simplhfied as shown in Figure 8 10(b) when no action exists for the false
condition. (C) Third, conditions of the Execute macros can be assigned to sumply
true or false (Since a state transition occurs mn a certain condition 1n a state
machine, FSME assumes that the Transition macros do not assign their condition to
simply true or false. So, only the Execute macros are considered in this case.) If

that is the case, the decision component and one of the process components of the
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Execute macros can be omitted. For example, Figure 8.10(b) can be even more
simplified as shown in Figure 8.10(c) when the condition is always true. (D) Finally,
since the Event macros usually evaluate events for their conditions, a decision
component can be replaced with an arrow indicating an specific event that an Event

macro accepts for its condition. For example, FSME_Event_Transition and

l State Entry Point
]
¥
3
action :
action l Y N
¢ simplification actions ¢
N l actions
i v
3
action
l

{(a) Consecutive actions {b}
FSME_No_Event_Execute

State Entry Point
S
: State -1
; : State -3
! 3 1 N
actions ¥ ......... ' + '
v event event E
1
’ ;
' ; actions !
actions !
3
E
;
y i Eemmmmmees !
new State
{c) (d) (¢) FSME _Event_Execute

FSME_No_Event_Execute  FSME_Event_Transition

Figure 8.10: Simplification Of A Flow Chart
(The Dash Arrow Implies That There Might Be More FSME Functions.)
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FSME_No_Event_Transition can be simplified as shown in Figure 8.10(d) and Figure
8.10(e) respectively.

According to such simplifications, Figure 8.7 can be simplified to Figure 8.11.
Since the component 3 is always true and the component 4 has no actions, they can
be simply omitted according to the simplification (B) and (C). The component 6
can be simplified to the arrow indicating the specific event according to the
simplification (A). The components 7 and 8 can be simplified to one process
component according to the simplification (D).

The simplified flow chart in Figure 8.11 can be applied to FSME macros. For
example, the components A and B can be implemented by
FSME_No_Event_Transition according to Figure 8.3.1. The component C can be
implemented by FSME_No_Event_Execute according to Figure 8.10(c). The
component D can be implemented by FSME_No_Event_Transition according to

State Entry Point

- [o
send
is same N
channel? Command
Y
\ 4 y
B notify
——  NF_MICTRL_ SETNIC
NIC_CHANGED
RADIO_CHANNEL_CHANGED
DNotify NF_MICTRL_NIC_CHANGED
update nicTable
»

v

CONDUCT state

Figure 8.11: The Simplified Flow Chart Of The SETNIC State In The subControl
Module
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Figure 8.10(a) and Figure 8.10(d). Figure 8.12 shows the actual code structure
implementing Figure 8.11 using the FSME macros. Since the FSME macros allow
for using another FSME macro in their actions, FSME can implement a complete

set of logic in a state embodiment.

void MISubControl:: handleStateSetnic (¢cFSM *___fsm ,

bool ___event, bool &___transition , cMessage *msg)
{
FSME _No_Event_Transition{,
currentChannellnfo = *newChannellnfo ,
CONDUCT,

delete newChannellnfo;
nb—>fireChangeNotification (NFMICTRLNIC_.CHANGED, this);

)

FSME_No_Event_Execute(true,
sendRadioConfigMsg (newChannellnfo };,

)s

FSME_Event_Transition(,
msg — fsmMsg && msg—>getKind () == NIC.CHANGED,
CONDUCT,
updateNicInfo (*newChannellnfo);
delete newChannellnfo;
nb—>fireChangeNotification (NFMICTRLNIC_.CHANGED, this);

Figure 8.12: Implementation Of Figure 8.11 Using FSME




CHAPTER 9

IMPLEMENTATION

In this chapter, the current implementation of two CA protocols in the MIMC-SIM
framework is presented in defining channel management packets and implementing a

state machine.

9.1 Current Implementation

The MIMC-SIM framework is implemented in INET snapshot 20100323 with
OMNET+++ 4.0. In the MIMC-SIM framework, two CA protocols are implemented.
One is node-based channel assignment [18] which computes channels based on
superimposed code according to the CA algorithm proposed in [26] The other CA
protocol is link-based channel assignment and computes channels according to the
CA algorithm proposed in [19] Each CA protocol is implemented by extending the
manControl module to adopt its own CA algorithm. Mainly, the mainConitrol
module 1s extended to handle channel management packets and implement a state
machine. Also, the neighborTable module and the nicTable module are extended
accordingly. In addition, for simulating CA protocols in a mesh network, a gateway
node 1s implemented for each CA protocol as well. In a mesh network, a gateway
node connects to another network, such as the Internet. So, in simulation, a

gateway node is considered as the node that first provides a network service

89
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according to a CA protocol.

9.2 Superimposed Code Based CA Protocol

The superimposed code (SCODE) based CA algorithm 1s proposed 1n [26] However,
the implementation of the CA protocol 1s not fully described in the paper. In order
to mmplement the SCODE protocol in the MIMC-SIM framework, the 1dea of the
node-based channel assignment as [18] is adopted In a network, nodes equip two
NICs and distinguish them mnto a recerving NIC and a sending NIC. The computed

channel according to the SCODE CA algorithm is assigned to the receiving NIC.

9.2.1 Channel Management Packets

To implement the SCODE protocol, three channel management packets are defined
HELLO, BEACON, and NOTICE The HELLO packet 1s used to probe channels
When the mainConirol module receives the HELLO packet from other nodes, the
mawnControl module responds 1t by broadcasting the BEACON packet The
HELLO packet contains a node’s IP address, MAC address of a receiving NIC,
channel information, and codeword, which 1s used to compute a channel The
BEACON packet is used to advertise a node’s information It contains not only the
same mformation of the HELLO packet, but also one hop neighbor nodes’ IP
addresses, MAC addresses of their recerving NIC, channel information, and
codewords as well. The NOTICE packet 1s used to notice of new channel
mformation of a node to neighbor nodes. The NOTICE packet contains the IP

address, the MAC address of a receiving NIC, the new channel information, and
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packet ScodePacket extends MIPacket{

IPAddress ipAddr,

int codeword;

int hopPath;

Niclnfo niclnfo,

IPAddress nIpAddr|],

int nCodeword [];

NicInfo nNiclnfo [],

Figure 9.1: Packet Declaration For Channel Management Packets Of The Scode
Protocol In A .msg File

codeword of a node. The NOTICE packet is unicasted to be transmitted to each
neighbor node reliably at MAC layer. When the masnControl module receives all
the three channel management packets, the mainControl module updates the
netghborTable module accordingly Figure 9.1 shows packet declaration n a .msg
file, on which the channel management packets are built Figure 9 2 shows how the

manControl module handles the channel management packets in a state machine

update

BEACON neighborTable

v

update

NOTICE ) neighborTable

v

update broadcast

HELLO > neighborTable BEACON

v

Figure 9 2 Handling Channel Management Packets In The SCODE Protocol

9.2.2 State Transition Diagram

The state machine of the SCODE CA protocol can be described and implemented 1n
the mainControl module within the five states proposed in Section 5 1. In the INIT

state, as mentioned 1n Section 5 1, the mamnControl module 1s initiahzed and
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State Entry Point

ASSIGN State

Figure 9.3: SCAN State Of The SCODE Protocol

substantiated and waits until the wakeUpTimer is expired.

In the SCAN state, the mainControl module sends CA commands with the
HELLO packet to subControl modules to probe all the channels. While the
subControl modules are probing channels, the mainControl module will receive the
channel management packets and update the neighborTable module accordingly.
When all the subConitrol modules notify the mainControl module of the
completion of probing channels, the mainControl module enters the ASSIGN state.
The inside structure of the SCAN state is depicted in Figure 9.3.

In the ASSIGN state, the mainControl module analyzes the information
gathered in the SCAN state to compute the best channel according to [26] and
decide routing based on the shortest path algorithm. If the node cannot find any
valid route, then the mainControl module goes back to the SCAN state to probe

again until a valid path is detected. The ASSIGN state is depicted in Figure 9.4.
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State Entry Point

compute routing
and channel

SCAN State «——N valid path?
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l

|

SETNIC State

Figure 9.4: ASSIGN State Of The SCODE Protocol

In the SETNIC state, the mainControl module sends the CA command to
assign the channel computed in the ASSIGN state to the subControl module
associating with the receiving NIC. Once the mainControl module is notified by the
subControl module about the completion of setting a NIC, it sends the NOTICE

State Entry Point

send
C_SETNIC

SETNIC

NF_MICTRL_NIC_CHANGED

fixed
ic set?

send
NOTICE

Pﬂé

NORM State

Figure 9.5: SETNIC State Of The SCODE Protocol
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packets to one hop neighbor nodes about its channel information change. The
SETNIC state is depicted in Figure 9.5

In the NORM state, the mainControl module first schedules two different
timers: beaconTimer and estTimer. The beaconTimer indicates the next time
point to broadcast the BEACON packets on all the channels. The mainControl
module reschedules the beaconTimer periodically in the NORM state. The
estTimer indicates the time point to go back to the ASSIGN state. Since nodes
would learn new channel information of neighbor nodes in the NORM state, the
mainControl module needs to go back to the ASSIGN state periodically to

State Entry Point

y

schedule
all timers

send
data packets

\ 4

NORM
I . | l estTlimer
beaconTimer upper layer
data packets MIPacket lower layer NF NBTABLE
NF MIGTRL data packets  swenTRy DIsMISSED
E - FAILURE
broadcast TRANSMITTED
BEACON
send handle channel forward data Cancel
management packets to .
data packets packets upper layer All Timers
schedule
beaconTimer
v y ,

v
ASSIGN State

Figure 9.6: NORM State Of SCODE Protocol
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re-estimate the channel information and routing For the same reason, the
mawnControl module also goes back to the ASSIGN state when the mainControl
module 1s notified by the nesghborTable module about the link break on a default
route In addition, when the mainControl module receives channel management
packets in the NORM state, 1t handles with them accordingly. Once the
mawnControl module enters into the NORM state, 1t executes the sendDataPacket
function to send data packets in dataQueue. The mainControl module also
executes the sendDataPacket function when it 1s notified by a subControl module
of the completion of a packet transmission or receives a data packet from the upper
layer. The Figure 9.6 shows the mside structure of the NORM state

In most of states, except the INIT state, the mainControl module receives
channel management packets and data packets from lower modules. When channel
management packets are recerved, the mainControl module handles them according
to Section 9.2 1. When data packets are received, the mainControl module

mmediately forwards them to the upper module.

9.2.3 neighborTable

The nerghborTable module for the SCODE protocol extends the base nerghborTable
module and 1s implemented as shown in Figure 9 7 The newghborTable module
stores two more information for each neighbor node codeword and hopPath
Codeword is the 13-bit code used to compute a channel according to the SCODE
CA algorithm [26] HopPath 1s the hop distance from a gateway node It 1s used to

decide routing according to the shortest path. The update function in the Figure
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class INET_API ScodeNbEntry . public MINbEntryBase{
protected -

int codeword;

int hopPath;

}7

class INET_API ScodeNbTable - public MINbTableBase

{

public:

void update(const IPAddress& 1p, const NicInfo& niclnfo,

int codeword, int hopPath, int hopDistance = 1,
bool 1sMainNic = false),

}’

Figure 9.7. The Implementation Of The nexwghborTable Module In The SCODE Pro-
tocol

9.7 is implemented to update neighbor node’s information conveniently

9.2.4 nicTable

The nicTable module for the SCODE protocol extends the base nicTable module
and is implemented as shown in Figure 9 8. It categorizes two NICs of a node mto a
fixed NIC and a switchable NIC Then, the nicT'able module classifies the fixed NIC

and the switchable NIC into the receiving NIC and the sending NIC respectively

class INET_API ScodeNicTable public MINicTableBase{
public.
enum nicType{
SEND,
RECV,
b

protected
virtual void classifyNics (),
b

Figure 9.8: The Implementation Of The nicT'able Module In The SCODE Protocol
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Table 9 1 shows that i each node, the first NIC 1s categonized into a fixed NIC and
set 1ts type to a receiving NIC, and the second NIC 1s categorized into a switchable

NIC and set 1ts type to a sending NIC

Category Type
fixed | switchable | receiving | sending
NIC[0] | v v
NIC[1] v v

Table 9.1+ Category Of NICs In The nwcTable Module Of The SCODE Protocol

9.2.5 Gateway Node

The gateway node is assumed that 1t 1s connected to a wired network and provides a
network service according to the SCODE protocol. The mainControl module of the
gateway node does not follow the state machine explained in the previous section
Instead, 1t always stays in the NORM state and does not try to find either better
channel or route. So, the mawnControl module does not schedule the estTemer, and
there 1s no link break on the default route. The mainControl module broadcasts the
BEACON packet periodically It also broadcasts the BEACON packet to respond
the HELLO packet When the mainControl module receives channel management
packets from other nodes, it updates them mto the neighborTable module Figure

9.9 shows the nside structure of the NORM state of the gateway node

9.3 Multi-channel Wireless Mesh Network CA protocol

The Hyacinth CA protocol 1s proposed 1 [19] To implement the Hyacinth protocol,

each node equips two NICs and categorizes them into a up NIC and a down NIC
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Figure 9.9: The NORM State Of A Gateway Node In The SCODE Protocol

9.3.1 Channel Management Packets

The Hyacinth protocol defines ten channel management packets: HELLO,
ADVERTISE, JOIN, ACCPET, REJECT, LEAVE, RT_ADD, RT_DEL,
CHNL_CHANGE, and FAILURE. To implement the channel management packets
accordingly, channel management packets are defined to contain such information as
described in Table 9.2.

In Table 9.2, host IP is the IP address of a node which sends or forwards a

host IP | target IP | up NIC | down NIC | priority | neighbor info

HELLO v

ADVERTISE v v

JOIN

SENENEN

v
v
ACCEPT v v

REJECT

RT_ADD

SNENENENEN

RT_DEL

LEAVE

FAILURE

SNENENENENENENENENEN

CHNL_CHANGE v v

Table 9.2: Channel Management Packets In The Hyacinth Protocol
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class NeighborInfo{
IPAddress ip;
int priority,
NicInfo niclInfo [],
}

packet HyacinthPacket extends MIPacket{
IPAddress hostIPAddr,
IPAddress targetIPAddr,
int priority = 10000,
NicInfo upNicInfo,
NicInfo downNiclnfo,
NeighborInfo nblnfo[],

Figure 9.10 Packet Declaration For Channel Management Packets Of The Hyacmnth
Protocol In A .msg File

channel management packet at the last Target IP 1s the IP address of a node which
origmally generates a channel management packet or a channel management packet
targets to. For example, the target IP information of the JOIN packet is the IP
address of the node which generates the JOIN packet In the ACCEPT packet, the
target IP information is the IP address of the node to which the ACCEPT packet 1s
sent. Each of up NIC and down NIC information contains a MAC address and
channel information. Priority 1s a node’s hop distance from a gateway node The
neighbor mformation includes one hop neighbor nodes’ IP address, information of
both up NIC and down NIC, and priority. The channel management packets are
bwlt upon HyacinthPacket declared in a msg file as shown in Figure 9 10.
Basically, all channel management packets are used as described mn [19] The
HELLO packet 18 used to probe channels When the mainControl module receives
the HELLO packet, it broadcasts the ADVERTISE packet as response. Also, the

mawnControl module broadcasts the ADVERTISE packet periodically. The JOIN
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packet is used to ask a neighbor node to join the neighbor node’s roﬁtmg path.
When the mamnControl module receives the JOIN packet, 1t sends the ACCEPT
packet or the REJECT packet back to the node which originally sent the JOIN
packet. The ACCEPT packet 1s used to accept a node to jomn, and the REJECT
packet 18 used to reject a node from joining When the mainControl module sends
the ACCEPT packet, it sends the RT_ADD packet to a parent node as well. The
RT_ADD packet 1s used to announce that a new node joins a routing path The
LEAVE packet is used to notice a parent node that a node leaves from the parent
node’s routing path When the maimnControl module receives the LEAVE packet, 1t

sends the RT _DEL packet to 1ts parent node The RT_DEL packet 1s used to

broadcast update -
HELLO > ADVERTISE neighborTable 4
update o
ADVERTISE neighborTable 4
send either
ACCEPT and update o update
JOIN ——> o1 ADD neighborTable || routingTable >
or REJECT
send update update )
ACCEPT RT_ADD neighborTable routingTable
update
LEAVE —— send RT_DEL  routingTable —>
RT_ADD iyl update >
RT_DEL iy "} routingTable
CHNL_CHANGE p|  update >
- neighborTable
FAILURE R update
FAILURE to child nodes "1 routingTable

Figure 9.11: Handling Channel Management Packets In The Hyacinth Protocol
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announce that a node left from the routing path When the mainControl module.
recetves the RT_ADD packet or the RT_DEL packet, 1t forwards such packets to 1its
parent node until a gateway node receives the packets The CHNL_.CHANGE
packet is used to announce the new channel information. The FAILURE packet 1s
used to announce that a routing path is broken The channel management packets
are handled n a state machine as described in Figure 9 11.

When the mainControl module recerves the HELLO, ADVERTISE, JOIN,
ACCEPT, and CHNL_CHANGE packets, the maimnControl module updates the
information that they contain into the neighborTable module accordingly When
the mainControl module receives the JOIN and RT_ADD packets, 1t adds a route
in which the host IP address 1s the target IP of the packet, the next hop IP address
1s the host IP of the packet mto the routingTable module When 1t receives the
LEAVE and RT_DEL packets, it removes a route whose host IP address matches to
the target IP information of the packets from the routingTable module When 1t
receives the ACCEPT and FAILURE packets, it updates the default route of the
routingTable module The ADVERTISE and FAILURE packets are broadcasted,
while other channel management packets are unicasted to a neighbor node for

reliable transmission at MAC layer.

9.3.2 State Transition Diagram

The state machine of the Hyacinth protocol can be described within the five states
proposed 1 Section 5 1. In the INIT state, as mentioned 1 Section 5.1, the

mainControl module 1s mmitialized and substantiated and waits until the
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State Entry Point
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Figure 9.12: The SCAN State Of The Hyacinth Protocol

wakeUpTimer is expired.

In the SCAN state, the mainControl module sends CA commands with the
HELLO packet to subControl modules to probe all channels. While subControl
modules are probing channels, the mainControl module will receive the channel
management packets and update the neighborTable module accordingly. When all
the subControl modules notify the mainControl module of the completion of
probing channels, the mainControl module enters the ASSIGN state. The inside
structure of the SCAN state is depicted in Figure 9.12.

In the ASSIGN state, the mainControl module analyzes the information
gathered in the SCAN state and selected the shortest route. If the mainControl
module cannot find any valid route, then the mainControl module goes back to the
SCAN state to gather more neighbor nodes’ information until a valid route is

detected in the ASSIGN state. After selecting a valid route, the mainControl
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Figure 9.13: The ASSIGN State Of The Hyacinth Protocol

module sends the JOIN packet to the node providing the route. If the mainControl
module receives the REJECT packet or does not receive either the ACCEPT or
REJECT packet in a certain time the default value is 5 seconds , the node fails to
join the route. In such case, the mainControl module re-selects another valid path.
Otherwise, the mainControl module receives the ACCEPT packet and succeeds to
join the route. If a node has a previous route, then the mainControl module sends
the LEAVE packet to its old parent node and the CHNL_CHANGE packets to its
child nodes. Then, the mainControl module enters the SETNIC state. The inside

structure of the ASSIGN state is depicted in Figure 9.13.
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State Entry Point

NORM State

Figure 9.14: The SETNIC State Of The Hyacinth Protocol

In the SETNIC state, the mainControl module sends CA commands to assign
channels to the up NIC and the down NIC. The up NIC is assigned to the channel
which is used in the down NIC of a parent node. The down NIC is assigned to the
least used channel. The mainControl module enters the NORM state when it is
notified by all the subControl module about the completion of setting their NICs.
The inside structure of the SETNIC state is depicted in Figure 9.14

In the NORM state, the mainControl module first schedules two different
timers: advertiselimer and estTimer. The advertiseT'imer indicates the next time
point to broadcast the ADVERTISE packet on the channel of the down NIC. The
mainControl module reschedules the advertiseTimer periodically in the NORM
state. The estTimer indicates the time point to go back to the ASSIGN state. Since
nodes would learn new channel information of neighbor nodes, the mainControl

module needs to go back to the ASSIGN state periodically to re-estimate the
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Figure 9.15: The NORM State Of The Hyacinth Protocol

channel information and routing. For the same reason, the mainControl module
also goes back to the ASSIGN state when the mainControl module is notified by
the neighborTable module about the link break on a default route or receives the
FAILURE packet. In addition, when the mainControl module receives channel
management packets, it handles with them accordingly. Once the mainControl
module entered into the NORM state, it executes the sendDataPacket function to
send data packets in dataQueue. Then, the mainControl module also executes the
sendDataPacket function when it is notified by a subControl module of the

completion of a data transmission or receives a data packet from the upper layer.
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The Figure 9.15 shows the inside structure of the NORM state.

In most of states, except the INIT state, the mainControl module receives the
channel management packets and data packets from lower modules. When channel
management packets are received, the mainControl module handles them according
to Section 9.3.1. When data packets are received, the mainControl module

immediately forwards them to the upper module.

9.3.3 neighborTable

The neighborTable module for the Hyacinth protocol extends the base
neighborTable module and is implemented as shown in Figure 9.16. The
neighborTable module stores one more information, priority, for each neighbor
node. Priority represents the hop distance from the a gateway node. The update
function in the Figure 9.16 is implemented to update neighbor node’s information

conveniently.

class INET_API DrcaNbEntry : public MINbEntryBase{
protected:
int priority;

}s

class INET_API DrcaNbTable : public MINbTableBase

{

public:
void update{const IPAddress& ip, const Niclnfo& niclnfo ,
int priority = MAXPRIORITY, int hopDistance = 1,
bool isMainNic = false);

}s

Figure 9.16: The Implementation Of The neighborTable Module In The Hyacinth
Protocol
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class INET_API DrcaNicTable : public MINicTableBase{
public:
enum nicType{
UP,
DOWN,
b

protected:
virtual void classifyNics (};
}s

Figure 9.17: The Implementation Of The nicT'able Module In The Hyacinth Protocol

9.3.4 nicTable

The nicTable module for the Hyacinth protocol extends the base nicTable module
and is implemented as shown in Figure 9.17. It categorizes both two NICs into fixed
NICs. Then, the nicT'able module classifies one for a up NIC and the other one for
a down NIC. Table 9.3 shows that in each node, both NICs are categorized in fixed
NICs. Then, the types of the first NIC and the second NIC are set to a up NIC and

a down NIC respectively.

Category Type
fixed | switchable | up | down
NIC[0} | v v
NIC[1} | Vv v

Table 9.3: Category Of NICs In The nicTable Module Of The Hyacinth Protocol

9.3.5 Gateway node

The gateway node is assumed that it is connected to a wired network and provides a
network service according to the Hyacinth protocol. The mainControl module of

the gateway node does not follow the state machine explained in the previous
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section. Instead, it always stays in the NORM state and does not try to find either
better channel or route. So, the mainControl module does not schedule the
estTimer, and there is no link break on the default route. The mainControl
module broadcasts the BEACON packet periodically. It also broadcasts the
BEACON packet to respond the HELLO packet. When the mainControl module
receives channel management packets from other nodes, it updates them into the
neighborT able module. Figure 9.9 shows the inside structure of the NORM state of

the gateway node.

NORM
. l \
advertiseTimer upper layer
data packets MiPacket lower fayer
data packets
broad NF_MICTRL_
A Dr\(;g RCT&IISStE TRANSMITTED
send handle channel forward data
management packets to
A data packets packets upper layer
schedule
advertiseTimer
v :

Figure 9.18: The NORM State Of A Gateway Node In The Hyacinth Protocol



CHAPTER 10

EXPERIMENTS

In this chapter, the performance of SCODE and Hyacinth protocols [19, 26] are
evaluated m the MIMC-SIM framework The evaluation uses the same experimental
settings as their original papers The experimental results are compared with the
results reported in the original paper to verify the fidehity of MIMC-SIM. The
comparison shows that MIMC-SIM can be used to study CA protocols.
Furthermore, the MIMC-SIM framework is tested to evaluate various performance
metrics of CA protocols, mncluding throughpﬁt, time to obtain channels, channel

management overhead, and the number of conflict channels in two hops

10.1 SCODE Protocol

10.1.1 Setting

The SCODE protocol implemented 1n the previous chapter 1s experimented
according to the original testbed described n [26]. In a 100x100 square units
network, 13 nodes are deployed randomly over 100 different network topologies
where average node degree 18 3 Every node equips two NICs The number of
available channels in a network 1s set to 13 The superimpose code as shown 1n
Figure 10 1 1s applied to simulate the SCODE protocol Each node randomly picks

a unique codeword from the superimpose code set Since the SCODE protocol in
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1000100000101
1100010000010
0110001000001
1011000100000
0101100010000
0010110001000
0001011000100
0000101100071 0
0000010110001
1000001011000
0100000101100
0010000010110
\1 00100000101 1)

Figure 10.1: Superimposed Code

[26] is experimented in an ad hoc network, a gateway node is not deployed in a
network used to compare with [26]. An example of such network topology is
depicted in Figure 10.2(a). In addition, data of other metrics, such as throughput,
time to get channels, and overhead traffic, are collected in a mesh network where a
gateway node is deployed at center. An example of such network topology is

depicted in Figure 10.2(b). The bandwidth of every link is set to 2 Mbps. Each
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Figure 10.2: Examples Of A Network Topology
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node turns on at random between 0 and 5 seconds Every node broadcasts the
BEACON packet every 30 seconds and re-estimates channel information and
routing every 60 seconds. Every node, except for a gateway nodé, starts generating
UDP flows to a gateway node after 30s. The average bandwidth of each UDP flow
mn a network varies in 32, 64, 96, and 128 Kbps FEach network topology is simulated

for 600 seconds 1n simulation time.

10.1.2 Comparison in the original testbed

The MIMC-SIM framework produces a compatible result with [26]. [26] shows that
the SCODE protocol produces fairly usage of each channel in a network as depicted
in Figure 10.3(a). The sumilar result is also validated in the MIMC-SIM framework
Figure 10 3(b) depicts the experiment result of the SCODE protocol 1n the
MIMC-SIM framework. Figure 10 3(a) shows average number of channel usage of
each channel, and Figure 10.3(b) shows average percentage of channel usage of each

channel The comparison between Figure 10.3(a) and 10 3(b) can verify that the
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Figure 10.3: The Channel Usage Of Each Channel
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MIMC-SIM framework is compatible to study the SCODE protocol as described in

is compatible with [26].

10.1.3 Performance Study

The MIMC-SIM framework studies performance of the SCODE protocol in a mesh
network with such metrics as throughput, time to get channels, and overhead traffic.
(Since there is no conflict channel during simulation of the SCODE protocol, the

number of conflict channels is not studied.) To study performance of the SCODE

(a) Topologyl (b) Topology?2

(c) Topology3 (d) Topology4

Figure 10.4: Four Different Network Topologies To Study Performance Of The
SCODE Protocol
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protocol in such metrics, four specific network topologies are picked as depicted in

Figure 10.4.

10.1.3.1 Throughput

Figure 10.5 shows throughput in the topology3 network when the average
bandwidth of each UDP flow varies in 32, 64, 96, and 128 Kbps. (The network
topology3 is picked because nodes are most evenly distributed in the network out of
the four topologies.) The throughput of the network is measured by the sum of all
useful bandwidth between traffic generating nodes and the gateway node in the
network. In Figure 10.5, when the traffic load is bigger, average deviation of
throughput is increased. This is because only one channel is used to receive packets

at each node, and it causes the hidden terminal problem more often. The hidden
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Figure 10.5: Throughput In The Topology3 Network
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terminal problem 1s that when two nodes not in the same communication range try
to send packets to the same node on the same channel at the same time, the two
transmissions are mterfered with each other. This suddenly aggravates throughput
of a network. Since the throughput of the network 1s stable with better performance
when the average bandwidth of each UDP flow 1s 64 Kbps, other metrics are studied

in the situation

10.1.3.2 Channel to get channels

Figure 10 6 shows the cumulative distribution function (CDF) of the time to get the
channels 1n the four network topologies In the SCODE protocol, the time to get
channels means the time that nodes spend to obtain steady channels for their

receiving NICs and will not change the channels no longer In Figure 10.6, after 300

CDF

topology1

02 H topology2 R
topology3
, topology4

1 I

100 ZbO 360 400 500 600
Time (s)

Figure 10 6° Time To Get Channels
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seconds, approximately 90 percent of nodes get their final channels and stay on their

channels

10.1.3.3 Overhead

Figure 10.7 shows the traffic volume of channel management packets that each node

generates 1 a network. The traffic volume of channel management packets can be

considered as overhead traffic in a MIMC networksFigure 10 7 represents that the

average traffic of channel management packets becomes stable after 250 seconds

when most of nodes found their final channels as depicted i Figure 10 6.
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10.2 Hyacinth Protocol

10.2.1 Comparison in original testbeds

10.2.1.1 Setting

The Hyacinth protocol implemented in the previous chapter is experimented
according to the original testbed described in [19]. 64 nodes are evenly distributed
in the 8x8 square grid network where each node could communicate with up to 4
neighbor nodes. In such network, 4 gateway nodes are uniformly deployed. An
example of such network topology is depicted in Figure 10.8. Every node equips two
NICs. The number of available channels in the network is set to 13. The bandwidth
of every link is set to 54 Mbps. Each node turns on at random between 0 and 5
seconds. Every node broadcasts the ADVERTISE packet every 30 seconds and
re-estimates the channel information and routing every 60 seconds. For 10 different
traffic profiles, 20 different nodes are randomly chosen to generate UDP flows to
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Figure 10.8: An Example Of A Network Topology
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their corresponding gateway nodes in a skewed manner, speaially closer to two of
the gateway nodes In Figure 10 8, the circled nodes represents the nodes chosen to
generate UDP flows. The average bandwidth for each flow 1s set to 1 5 Mbps Each

traffic profile network 1s simulated for 600 seconds 1n simulation time

10.2.1.2 Analysis

The MIMC-SIM framework produces a compatible result with [19] In Figure

10 9(a), [19] shows throughput of a network that the Hyacinth protocol produces
with the shortest path routing The similar result 1s also validated in the
MIMC-SIM framework Figure 10 9(b) depicts the experiment result of the
Hyacmth protocol in the MIMC-SIM framework. The throughput in the two graphs
are presented within between about 7 to 14 Mbps. Both graphs retrieve equivalent
average throughput. The comparison between Figure 10.9(a) and 10.9(b) can verify
that the MIMC-SIM framework is compatible to study the Hyacinth protocol as

described 1n [19]
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10.2.2 Performance Study

The MIMC-SIM framework studies performance of the Hyacinth protocol in such
metrics as throughput, time to get channels, overhead traffic, and the number of
conflict channels. To study performance of the Hyacinth protocol in different
network topologies, the testbed described in Section 10 1 1 1s used Moreover, the
four network topologies depicted in Figure 10.4 are used for simulation of the

Hyacinth protocol.

10.2.2.1 Throughput

Figure 10.10 shows throughput of a network when the average bandwidth of each
UDP flow varies in 4, 8, 12, 16 Kbps. The throughput of a network is measured by

the sum of all useful bandwidth between traffic generating nodes and the gateway
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node 1n the topology3 network as depicted in Figure 10.4(c) (The network
topology3 1s picked by the same reason described in Section 101 3 1.) Figure 10 10
shows that the throughput of the network 1s stable This 1s because two different
channels are used to receive packets at each node, and the hmidden terminal problem
less occurs 1n the network In addition, even though the throughput of the network
1s stable, the throughput can not exceed over about 0 7 Mbps Since the throughput
of the network is stable with better performance when the average bandwidth of

each UDP flow is 64 Kbps, other metrics are studied in the situation

10.2.2.2 Channel to get channels

Figure 10.11 shows the cumulative distribution function (CDF) of the time to get

the channels in the four network topologies In the Hyacinth protocol, the time to
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get channels means the time that nodes spend to obtain steady channels for their
DOWN NICs and will not change the channels no longer In Figure 10 11, after 90

seconds, all the nodes get their final channels and stay on their channels.

10.2.2.3 Overhead

Figure 10.12 shows the traffic volume of channel management packets that each
node generates in a network. Figure 10 12 represents that the traffic volume of
channel management packets becomes stable after 90 seconds when all the nodes

found their final channels depicted in Figure 10.11.
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10.2.2.4 Conflict

Figure 10.13 shows that the number of conflict channels per node In the Hyacinth
protocol, when two nodes within two hops use the same channel for their DOWN
NICs, the channel is considered as a conflict channel Figure 10.13 represents no

conflict channels occur after 90 seconds
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CHAPTER 11

SECURITY

This chapter shows that the MIMC-SIM framework can be used to study
vulnerability of CA protocols To study vulnerability, an attacking node is
implemented to break a hink between nodes Then, this chapter shows that the

attacking node can aggravate throughput of a network

11.1 Attack in a MIMC Network

One of the pgssible attacks in a MIMC network 1s a link break attack between
nodes. In a MIMC network, for nodes to communicate with each other, they must
tune their NICs to the same channel In order to tune the same channel among
nodes, nodes maintain the channel information of their neighbor nodes by
exchanging channel management packets However, if nodes maintain mcorrect
channel information about thewr neighbor nodes, the neighboring nodes lose
connection among themselves. An attacker can exploit this discrepancy by sending
manipulated channel management packets which contain incorrect channel
information of neighbor nodes

Figure 11 1 shows the steps that an attacking node M breaks a link between the
nodes A and B. Nodes A and B are neighbor nodes and already established a link

between them according to the same CA protocol. Also, node M knows the CA
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protocol. In Figure 11.1(a), node A broadcasts channel management packets
containing channel information of itself and its one-hop neighbor node, B. Also,
node B broadcasts the same information in Figure 11.1(b). When node M receives
the channel management packets from both nodes, it can get the channel
information being used on the link between the two nodes. Node M manipulates the
channel management packet to pretend node A and contain an incorrect channel
information. In Figure 11.1(c), node M sends the manipulated channel management
packet to node B. Node B is deceived to change its channel to the incorrect channel
information for node A. After all, node B is not able to communicate with node A
as shown in Figure 11.1(d). In simulation, node A is referred to a gateway node,
and node B is referred to an one-hop neighbor node of the gateway node. Node M is

referred to an attacking node.

(2) (b)

ORNONORN0
©

(d)
Figure 11.1: Steps Of A Link Break Attack
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NORM

BEACON beaconTimer
update Send
neighborTable m;gfggtﬁd

Yy

Figure 11.2: State Machine Of An Attacking Node

11.2 Implementation of Attacking Node

Two attacking nodes are implemented to study vulnerability of the two CA
protocols, SCODE and Hyacinth, respectively. The attacking nodes intend to break
a link between a gateway node and its one-hop neighbor nodes. Each attacking
node implements its attacking mechanism in the mainControl module. Although
the two attacking nodes manipulate different channel management packets, the
structure of them can be simply generalized. Figure 11.2 shows the state machine of
the attacking nodes. The state machine does not follow the state machine proposed

in Section 5.1. Instead, an attacking node simply stays in the NORM state. An

ScodePacket xpk = new ScodePacket ();
pk—>setIpAddr (nbT—>getIPOfGatewayEntry () );

NicInfo niclInfo = *{nbT-—>getMACOfGatewayEntry ());
niclnfo.getChannellnfo ().setChannel(
{(nicInfo.getChannellnfo (). getChannel() + 1) % numChannels);

pk—>setNicInfo (nicInfo);
pk—>setHopPath {0);

Figure 11.3: Implementation Of Manipulating The BEACON Packet In An Attacking
Node
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attacking node simply waits to receive channel management packets, especially the
BEACON packet for SCODE protocol and the ADVERTISEMENT packet for
Hyacinth protocol respectively. After sufficient channel information is collected, an
attacking node manipulates the channel management packet to pretend a gateway
node and contain incorrect channel information. Figure 11.3 shows the
implementation of manipulating the BEACON packet in an attacking node. Then,
an attacking node sends the manipulated channel management packet to gateway’s

one-hop neighbor nodes periodically.

11.3 Experiment

A few experiments are conducted to test vulnerability of the two CA protocols. To
test the link break attack in a stable network, a testbed network is picked from
Figure 10.4(c) and is set as described in Section 10.1.1. The average of each UDP
flow is set to 64 Kbps (when the network shows better and stable throughput).

Then, an attacking node is deployed close to the gateway node as depicted in Figure

host[3]
host{7] -
ey L4
o 'y
hostl1] host{12]

Figure 11.4: Network Topology In Which The Link Break Attack Is Tested
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11 4 In the network, the attacking node can affect the hosts 4, 5, 8 and 9. In
simulation, the attacking node sends the manipulated packet to 1ts victim nodes
every 15 seconds, while the gateway node sends the BEACON/ADVERTISE

packets every 60 seconds

Figure 11.5(a) and 11.5(b) show the throughput of the SCODE and Hyacinth
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protocols under the hnk break attack respectively Both Figures show that the link
break attack can reduce the throughput of a MIMC network Since the link break
attack 1s caused by manipulating channel management packets, and the packets are
maintained by a CA protocol, CA protocols should carefully design thewr
mechanisms against such attack. Hence, such experimental result verify that the

MIMC framework can be used to study vulnerability of CA protocols



CHAPTER 12

CONCLUSION AND FUTURE WORK

In this thesis, a generic simulation framework, MIMC-SIM, 1s designed and
developed to study CA protocols n MIMC networks The MIMC-SIM framework 1s
implemented 1n INET/OMNeT++ which provides great features for network
stmulations. In the MIMC-SIM framework, a new module 1s added as a new layer
between the network layer and the MAC layer The new module 1s constructed:
manControl, subControl, neighborTable, and nicT'able modules The
masnControl module handles the operations according to the specification of CA
protocols, such as handling channel management packets and computing channel
and routing Also, the mainControl module handles packet transmission for CA
protocols New CA protocols will be implemented 1n the maimnControl module by
extending 1ts base class The subControl module performs command CA operations
for all CA protocols, such as assigning channels to a NIC and scanning and probing
channels. It also ensures that packets are transmitted on correct channels The
netghborTable module maintains various imnformation of neighbor nodes The

nicT able module maintains information of NICs according to thewr roles Both
nerghborTable and nicTable modules are extended according to a new CA protocol
In addition, the MIMC-SIM framework provides FSME to implement a state

machine of CA protocols 1n generic and flexible code structure In the MIMC-SIM
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framework, the SCODE and Hyacinth protocols are implemented and evaluated
The experimental results show that the MIMC-SIM framework can be used for
research and development of CA protocols Furthermore, the vulnerability of CA
protocols can also be studied in the framework.

For the future work, the activities of the NORM state in the mamConitrol
module can be generalized. According to the implementations of the SCODE
protocol and the Hyacimth protocol, they have very similar mternal structure in the
NORM state. Basically, in the NORM state, both protocols allow nodes to
broadcast their information, transmit packets, handle packets from lower layer and
channel management packets, and go back to the ASSIGN state periodically
Generalizing such operations in the NORM state will make the implementation of

CA protocols more efficiently.
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