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EXISTENCE OF SOLUTIONS FOR QUASISTATIC PROBLEMS
OF UNILATERAL CONTACT WITH NONLOCAL FRICTION

FOR NONLINEAR ELASTIC MATERIALS

TOUZALINE AREZKI, MIGNOT ALAIN

Abstract. This paper shows the existence of a solution of the quasi-static

unilateral contact problem with nonlocal friction law for nonlinear elastic ma-

terials. We set up a variational incremental problem which admits a solution,
when the friction coefficient is small enough, and then by passing to the limit

with respect to time we obtain a solution.

1. Introduction

We consider a Signorini’s quasistatic contact problem with nonlocal friction in
nonlinear elasticity. In linear elasticity the quasistatic problem of unilateral contact
using a normal compliance law has been solved in [1] by considering incremental
problems and in [9] by an other method using a regularisation relative to time. The
quasistatic contact problem with local or nonlocal friction has been solved respec-
tively in [10] and in [4] by using a time-discretization method. In [2] the quasistatic
contact problem with Coulomb friction was solved by the aid of an established
shifting technique used to obtain increased regularity at the contact surface and by
the aid of auxiliary problems involving regularized friction terms and a so-called
normal compliance penalization technique. Signorini ’s problem with friction for
nonlinear elastic materials or viscoelastic materials has been solved in [5] by using
the fixed point’s method. In viscoelasticity, the quasistatic contact problem with a
normal compliance law and friction has been solved in [11] by the same fixed point
arguments. The book [8] introduces generally readers to a mathematical theory
of contact problems involving deformable bodies. In carrying out the variational
analysis, the authors systematically use results on elliptic and evolutionary varia-
tional inequalities, convex analysis, nonlinear equations with monotone operators,
and fixed points of operators.

In this paper we propose a variational formulation using a classical regularization
[6] of the normal stress characterizing the notion of nonlocal friction as in the
linear case. The variational formulation is written in the form of two variational
inequalities as in [4]. By using an implicit scheme as in [4, 10], we are led to solve
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a sequence of incremental static problems and by passing to the limit, we show the
existence of a solution of the quasistatic contact problem for a small enough friction
coefficient.

2. Variational formulation

Let Ω ⊂ Rd (d = 2, 3), be the domain initially occupied by the nonlinear elastic
body. Ω is supposed to be open, bounded, with a sufficiently regular boundary Γ.
Γ is decomposed into three parts Γ = Γ̄1∪ Γ̄2∪ Γ̄3 where Γ1,Γ2,Γ3 are disjoint open
sets and meas(Γ1) > 0. Let T > 0 and let [0, T ] denote the time interval of interest.
The body is clamped on Γ1 and thus the displacement field vanishes there. The
body is acted upon by a volume force of density φ1 on Ω and a surface traction of
density φ2 on Γ2. On Γ3 the body is in unilateral contact with a rigid support and
the conditions of contact are supposed to be as in [4].

Under these conditions the classical formulation of the mechanical problem is
the following.

Problem P1. . Find a displacement field u : Ω× [0, T ] → Rd such that

div σ(u) + φ1 = 0 in Ω× (0, T ), (2.1)

σ(u) = z(ε(u)) in Ω× (0, T ), (2.2)

u = 0 on Γ1 × (0, T ), (2.3)

σn(u) = φ2 on Γ2 × (0, T ), (2.4)

σN (u) ≤ 0, uN ≤ 0, σN (u).uN = 0 on Γ3 × (0, T ), (2.5)
|σT | ≤ µ|RσN (u)|

|σT | < µ|RσN (u)| =⇒ u̇T = 0

|σT | = µ|RσN (u)| =⇒ σT = −λu̇T , λ ≥ 0
on Γ3 × (0, T ), (2.6)

u(0) = u0 in Ω (2.7)

We adopt the following notations as in [7]: Vector n = (ni) is the outer unit normal
vector to Γ; u = (ui) is the displacement field; uN = uini is the normal displacement
on Γ; uT = u− uNn is the tangential displacement on Γ. The strain tensor is

ε(u) = (εij(u)) = (
1
2
(ui,j + uj,i)), i, j ∈ {1, . . . , d} ;

the stress tensor is σ = (σij); div σ = (σij,j) is the divergence of σ, σN = (σn).n
is the normal stress; σT = σn− σNn is the tangential stress. We denote by Sd the
space of second order symmetric tensors on Rd (d = 2, 3).

To proceed with the variational formulation, we need the function spaces:

H = L2(Ω)d, H1 = (H1(Ω))d,

Q = {τ = (τij); τij = τji ∈ L2(Ω)} = L2(Ω)d×d
s ,

H(div; Ω) = {σ ∈ Q; div σ ∈ H}
Note that H and Q are Hilbert spaces equipped with the respective scalar products

(u, v)H =
∫

Ω

uividx, 〈σ, τ〉Q =
∫

Ω

σijτijdx.

We recall that Green’s formula holds: for σ ∈ H(div; Ω)

〈σ, ε(v)〉Q + (div σ, v)H = 〈σn, v〉
H−

1
2 (Γ)d×H1/2(Γ)d

∀v ∈ H1.
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Let V be the closed subspace of H1 given by

V = {v ∈ H1; v = 0 on Γ1}

and K be the set of admissible displacements given by

K = {v ∈ V ; vN ≤ 0 on Γ3} .

Since meas Γ1 > 0, the following Korn’s inequality holds (see [5]):

‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V (2.8)

where the constant cΩ depends only on Ω and Γ1. We equip V with the scalar
product

(u, v)V = 〈ε(u), ε(v)〉Q
and ‖ · ‖V is the associated norm. It follows from Korn’s inequality (2.8) that the
norms ‖ · ‖H1 and ‖ · ‖V are equivalent on V . Then (V, ‖ · ‖V ) is a Hilbert space.

Moreover, by the Sobolev’s trace theorem, there exists a positive constant dΩ

depending only on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ dΩ‖v‖V ∀v ∈ V (2.9)

For p ∈ [1,∞] , we use the standard norm of Lp(0, T ;V ). We also use the Sobolev
space W 1,∞(0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).

For every real Banach space (X, ‖ · ‖X) and T > 0 we use the notation C([0, T ];X)
for the space of continuous functions from [0, T ] to X; recall that C([0, T ];X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

The forces and tractions are assumed to satisfy

φ1 ∈ W 1,∞(0, T ;H), φ2 ∈ W 1,∞(0, T ;L2(Γ2)d) (2.10)

Let f : [0, T ] → V be given by

(f(t), v)V =
∫

Ω

φ1(t).vdx +
∫

Γ2

φ2(t).vda ∀v ∈ V, t ∈ [0, T ].

We note that conditions (2.10) imply f ∈ W 1,∞(0, T ;V ). Let

H1/2(Γ3) = {w
∣∣
Γ3

: w ∈ H1/2(Γ) and w = 0 on Γ1}.

Let 〈·, ·〉 denote the duality pairing between H−1/2(Γ3) and H1/2(Γ3).
The normal stress σN (u(t)) ∈ H−1/2(Γ3) associated to u(t) ∈ V is defined by

∀w ∈ H1/2(Γ3) :

〈σN (u(t)), w〉 = 〈z(ε(u(t))), ε(v)〉Q − (f(t), v)V

∀v ∈ V : vN = w, wT = 0 on Γ3

(2.11)

R : H−1/2(Γ3) → L2(Γ3) is a linear compact mapping which respects the positivity
(see [6]).
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Hypotheses on the nonlinear elasticity operator. As in [5] we assume z :
Ω× Sd → Sd satisfies the following conditions:

(a) There exists L1 > 0 such that |z(., ε1)−z(., ε2)| ≤ L1|ε1− ε2| for all ε1, ε2

in Sd, a.e in Ω.
(b) There exists L2 > 0 such that (z(., ε1)−z(., ε2)).(ε1 − ε2) ≥ L2|ε1 − ε2|2

for all ε1, ε2 ∈ Sd, a.e in Ω.
(c) For any ε ∈ Sd, the mapping x 7→ z(x, ε) is measurable on Ω.
(d) (x, 0d) = 0 for all x in Ω,

Remark 2.1. z(x, τ(x)) ∈ Q, for all τ ∈ Q and thus it is possible to consider z
as an operator defined from Q to Q.

We assume that the friction coefficient satisfies

µ ≥ 0 a.e. on Γ3 and µ ∈ L∞(Γ3) (2.12)

Also we assume that the initial data u0 ∈ K satisfies

〈z(ε(u0)), ε(v)− ε(u0)〉Q + j(u0, v − u0) ≥ (f(0), v − u0)V ∀v ∈ K. (2.13)

Now assuming that the solution is sufficiently regular, we formally multiply the
equilibrium equation (2.1) by v − u̇(t) and by using techniques similar to those
exposed in [7] , we show that the problem (P1) has the following variational for-
mulation.

Problem P2. Find a displacement field u : [0, T ] → V , verifying u(0) = u0 in Ω
and u(t) ∈ K a.e. t ∈ [0, T ], and such that a.e. t ∈ [0, T ]:

〈z(ε(u(t))), ε(v)− ε(u̇(t))〉Q + j(u(t), v)− j(u(t), u̇(t))

≥ (f(t), v − u̇(t))V + 〈σN (u(t)), vN − u̇N (t)〉 ≥ 0 ∀v ∈ V
(2.14)

〈σN (u(t)), zN − uN (t)〉 ≥ 0, ∀z ∈ K (2.15)

where
j(u, v) =

∫
Γ3

µ|RσN (u)| |vT |da.

The aim of this paper is to show the following result.

Theorem 2.2. Let (2.10), (2.11), (2.12) and (2.13) hold. Then problem (P2) has
at least a solution u ∈ W 1,∞(0, T ;V ) for a small enough friction coefficient µ.
Moreover, there exists a constant C > 0 such that

‖u‖W 1,∞(0,T ;V ) ≤ C‖f‖W 1,∞(0,T ;V )

For the proof of this theorem, we carry a time-discretization of problem (P2).
For n ∈ N∗, we set ∆t = T

n , and ti = i∆t, i = 0, . . . , (n − 1); denote by uti the
approached solution of the solution u at the time ti and ∆uti = uti+1 − uti . By
using an implicit scheme, we obtain a sequence of incremental problems, for u0 ∈ K,
define as

Problem (P ti
n ). Find uti+1 ∈ K such that

〈z(ε(uti+1)), ε(w)− ε(uti+1)〉Q + j(uti+1 , w − uti+1)− j(uti+1 , uti+1 − uti)

≥ (f ti+1 , w − uti+1)V + 〈σN (uti+1), wN − u
ti+1
N 〉, ∀w ∈ V

〈σN (uti+1), wN − u
ti+1
N 〉 ≥ 0, ∀w ∈ K

where u0 = u0, and f ti+1 = f(ti+1).
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3. Existence of a solution of the incremental problem

Lemma 3.1. Problem (P ti
n ) is equivalent to the problem (Qti

n ) stated below.

Problem (Qti
n ). Find uti+1 ∈ K such that

〈z(ε(uti+1)), ε(w)− ε(uti+1)〉Q + j(uti+1 , w − uti)− j(uti+1 , uti+1 − uti)

≥ (f ti+1 , w − uti+1)V ∀w ∈ K
(3.1)

For the proof of Lemma 3.1 in the linear case, see see [4].

Proposition 3.2. There exists µ0 > 0 such that if ‖µ‖L∞(Γ3) < µ0, then problem
(Qti

n ) admits a unique solution.

To show proposition 3.2 we introduce an intermediate problem. We define the
convex set

C∗+ = {g ∈ L2(Γ3); g ≥ 0 a.e. on Γ3},
and the function

ϕ(w) =
∫

Γ3

µg|wT |da.

Then, we introduce an intermediate problem by replacing in RσN (uti+1) in (3.1)
by for g ∈ C∗+ as follows:

Problem (Qti
ng). Find ug in K such that

〈z(ε(ug)), ε(w)− ε(ug)〉Q + ϕ(w − uti)− ϕ(ug − uti)

≥ (f ti+1 , w − ug)V ∀w ∈ K .
(3.2)

Now, we have the following lemma.

Lemma 3.3. For any g ∈ C∗+ problem (Qti
ng) has a unique solution ug. Further-

more, there exists constants ci > 0, i = 1, 2, such that

‖ug‖V ≤ c1‖µ‖L∞(Γ3)‖g‖L2(Γ3) + c2‖f ti+1‖V (3.3)

Proof. Using Riesz’s representation theorem we define the nonlinear operator A :
V → V by

(Av,w)V = 〈z(ε(v)), ε(w)〉Q .

Then hypotheses (a) and and (b) on z imply that A is a strictly monotone, coercive
and lipschitzian operator; on the other hand the functional ϕ is proper, convex and
lower continuous. There results from the theory of elliptic variational inequalities [3]
that the inequality (3.1) has an unique solution ug. Setting w = 0 in the inequality
(3.2) and using both the hypothesis (b) on z and the inequality∣∣|(ug − uti)T | −

∣∣uti

T

∣∣∣∣ ≤ |ugT|

we see that there exist constants ci > 0, i = 1, 2, such that

‖ug‖2
V ≤ c1‖µ‖L∞(Γ3)‖g‖L2(Γ3)‖ug‖V + c2‖f ti+1‖V ‖ug‖V .

Simplifying by the norm ‖ug‖V we have the inequality (3.3). �

Lemma 3.4. Let Ψ : C∗+ → C∗+ be the mapping Ψ(g) = −RσN (ug) there exists
µ0 > 0 such that if ‖µ‖L∞(Γ3) < µ0, then Ψ admits a fixed point g∗ and ug∗ is a
solution of problem (Qti

n ).
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Proof. Using (2.8), (2.11), the hypothesis (b) on z and the continuity of R, we
deduce that there exists a constant C > 0 such that

‖Ψ(g1)−Ψ(g2)‖L2(Γ3) ≤ C‖ug1 − ug2‖V

On the other hand by setting v = ug1 in (Qti
ng2

) and v = ug2 in (Qti
ng1

) and then
adding, we obtain by using the (b) on z and (2.8), that there exists a constant
C1 > 0 such that

‖ug1 − ug2‖V ≤ C1‖µ‖L∞(Γ3)‖g1 − g2‖L2(Γ3)

Hence there exists a constant C2 > 0 such that

‖Ψ(g1)−Ψ(g2)‖L2(Γ3) ≤ C2‖µ‖L∞(Γ3)‖g1 − g2‖L2(Γ3),

and when µ0 = 1/C2, we have for ‖µ‖L∞(Γ3) < µ0, the mapping Ψ is a contraction,
thus it has a fixed point g∗ and ug∗ is the solution of problem (Qti

n ). �

4. Existence of a solution of the quasistatic problem

Lemma 4.1. We have the following estimates: For a positive constant µ1 > 0,
when ‖µ‖L∞(Γ3) < µ1, there exists di > 0, i = 1, 2, such that

‖uti+1‖V ≤ d1‖f ti+1‖V (4.1)

‖∆uti‖V ≤ d2‖∆f ti‖V (4.2)

Proof. By setting w = 0 in the inequality (3.1) and using hypothesis (b) on z and
the properties of j, there exists c1 > 0 such that for ‖µ‖L∞(Γ3) < c1, we deduce
that there exists d1 > 0 such that (4.1) is satisfied.

To show the inequality (4.2) we consider inequality of (3.1) translated at the
time ti that is:

〈z(ε(uti)), ε(w)− ε(uti)〉Q + j(uti , v − uti−1)− j(uti , uti − uti−1)

≥ (f ti , w − uti)V , ∀w ∈ K
(4.3)

By setting w = uti in (3.1) and w = uti+1 in (4.3) and add them up, we obtain the
inequality

− 〈z(ε(uti+1))−z(ε(uti)), ε(∆uti)〉Q − j(uti+1 ,∆uti)

+ j(uti , uti+1 − uti−1)− j(uti , uti − uti−1)

≥ (−∆f ti ,∆uti)V

furthermore using the inequality∣∣∣|uti+1
T − u

ti−1
T | − |uti

T − u
ti−1
T |

∣∣ ≤ |uti+1
T − uti

T |

We have
j(uti , uti+1 − uti−1)− j(uti , uti − uti−1) ≤ j(uti ,∆uti) .

Therefore,

− 〈z(ε(uti+1))−z(ε(uti)), ε(∆uti)〉Q + j(uti ,∆uti)− j(uti+1 ,∆uti)

≥ (−∆f ti ,∆uti)V .

Using the properties of j we have

−j(uti ,∆uti) + j(uti+1 ,∆uti) ≤ j(∆uti ,∆uti) .
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As a consequence we obtain the inequality

〈z(ε(uti+1))−z(ε(uti)), ε(∆uti)〉Q − j(∆uti ,∆uti)− (∆f ti ,∆uti)V ≤ 0. (4.4)

Using the relation (2.11), there exists a constant c3 > 0 such that

‖σN (∆uti)‖
H−

1
2 (Γ3)

≤ c3(‖∆uti‖V + ‖∆f ti‖V ) .

Then using the hypothesis (b) on z and the properties of j we deduce that there
exists d3 > 0 such that

L2‖∆uti‖2
V ≤ d3‖k‖L∞(Γ3)‖∆uti‖2

V + ‖∆f ti‖V ‖∆uti‖V

Setting c2 = L2
2d3

, we deduce that if ‖µ‖L∞(Γ3) < c2, there exists d4 > 0 such that

‖∆uti‖V ≤ d4‖∆f ti‖V

It suffices to take µ1 = min(c1, c2) and the lemma is proved. �

The proof of Theorem 2.2 is done as in [4], but in L∞. For the next proposition,
we define the continuous function un : [0, T ] → V by

un(t) = uti +
(t− ti)

∆t
∆uti on [ti, ti+1], i = 0, . . . , n− 1 .

Proposition 4.2. From the sequence (un) we can extract a subsequence still de-
noted (un) such that (un) converges weakly ∗ in W 1,∞(0, T ;V ) to a function u.

Proof. From (4.1) we deduce that the sequence (un) is bounded in C([0, T ];V ) and
there exists a constant c3 > 0 such that

max
0≤t≤T

‖un(t)‖V ≤ c3‖f‖C([0,T ];V )

From (4.2) we deduce that the sequence (u̇n) is bounded in L∞(0, T ;V ) and there
exists c4 > 0 such that

‖u̇n‖L∞(0,T ;V ) = max
0≤i≤n−1

‖∆uti

∆t
‖V ≤ c4‖ḟ‖L∞(0,T ;V )

Then the sequence (un) is uniformly bounded in W 1,∞(0, T ;V ), and we thus can
extract from it a subsequence still denoted (un) such that un → u in W 1,∞(0, T ;V )
weakly ∗ as n →∞ and satisfying

‖u‖W 1,∞(0,T ;V ) ≤ C‖f‖W 1,∞(0,T.V )

with C = max(c3, c4). �

As in [10] let’s introduce the piecewise constant functions ũn : [0, T ] → V and
f̃n : [0, T ] → V defined by

ũn(t) = uti+1 , f̃n(t) = f(ti+1) ∀t ∈ (ti, ti+1], i = 0, . . . , n− 1 .

Lemma 4.3. From the sequence (ũn) we can extract a subsequence still denoted
(ũn) which satisfies the convergence results:

(i) ũn → u weak ∗ in L∞(0, T ;V ) as n →∞
(ii) ũn(t) → u(t) weakly in V a.e. t ∈ [0, T ]
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Proof. From (4.1) we deduce that the sequence (ũn) is uniformly bounded in
L∞(0, T ;V ). Thus, we can extract from it a subsequence still denoted (ũn) which
converges weakly ∗ in L∞(0, T ;V ). On the other hand as in [8] we thus deduce for
any t ∈ (0, T ) the inequality

‖ũn(t)− un(t)‖V ≤ T

n
‖u̇n(t)‖V , . (4.5)

Since the sequence (u̇n) is bounded in L∞(0, T ;V ), we thus deduce from (4.5) that
ũn → u weak ∗ in L∞(0, T ;V ) as n →∞, whence (i).

For the proof of (ii), since W 1,∞(0, T ;V ) ⊂ C([0, T ];V ), we have un(t) → u(t)
weakly in V , for all t ∈ [0, T ], and from (4.5) we immediately we have the conclusion.

�

Remark 4.4. Since ũn(t) ∈ K a.e. t in [0, T ] then u(t) ∈ K a.e. t in [0, T ]. On
the other hand, since f ∈ W 1,∞(0, T ;V ), we deduce that

f̃n → f strongly in L2(0, T ;V ) (4.6)

Proposition 4.5. The sequence (ũn) converges strongly to u in L2(0, T ;V ) and u
is a solution of problem (P2) for a small enough friction coefficient.

Proof. From inequality (3.1) we deduce the inequality

〈z(ε(uti+1)), ε(v)− ε(uti+1)〉Q + j(uti+1 , v − uti+1) ≥ (f ti+1 , v − uti+1)V ∀v ∈ K

whence
〈z(ε(ũn(t))), ε(v)− ε(ũn(t))〉Q + j(ũn(t), v − ũn(t))

≥ (f̃n(t), v − ũn(t))V ∀v ∈ K, a. e. t ∈ [0, T ],
(4.7)

we also have the inequality

〈z(ε(ũn+m(t))), ε(v)− ε(ũn+m(t))〉Q + j(ũn+m(t), v − ũn+m(t))

≥ (f̃n+m(t), v − ũn+m(t))V ∀v ∈ K, a.e. t ∈ [0, T ] .
(4.8)

Setting v = ũn(t) in (4.7) and v = ũn+m(t) in (4.8) and adding them, we obtain
the inequality

〈z(ε(ũn+m(t)))−z(ε(ũn(t))), ε(ũn(t))− ε(ũn+m(t))〉Q

+
∫

Γ3

µ(|RσN (ũn+m(t))|+ |RσN (ũn(t))|)|ũn+m
T (t)− ũn

T (t)|da

≥ −(f̃n+m(t)− f̃n(t), ũn+m(t)− ũn(t))V

Then using (2.10) and that the mapping R is compact, we deduce that

‖RσN (ũn(t))‖L2(Γ3) ≤ C‖σN (ũn(t))‖
H−

1
2 (Γ3)

≤ C1( sup
t∈(0,T )

‖ũn(t)‖V + sup
t∈(0,T )

‖f̃n(t)‖V )

Since

‖ũn(t)‖V ≤ ‖un(t)‖V +
T

n
sup

t∈(0,T )

‖u̇n(t)‖V ,

we have
sup

t∈(0,T )

‖ũn(t)‖V ≤ max
t∈[0,T ]

‖un(t)‖V + T sup
t∈(0,T )

‖u̇n(t)‖V
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So we deduce that there exists a constant C ′ > 0 such that

sup
t∈(0,T )

‖ũn(t)‖V ≤ C ′‖f‖W 1,∞(0,T ;V )

Whence we deduce also that there exits a constant C2 > 0 such that

‖ũn+m(t)− ũn(t)‖2
V

≤ C2(‖µ‖L∞(Γ3)‖ũ
n+m
T (t)− ũn

T(t)‖L2(Γ3)d + ‖f̃n+m(t)− f̃n(t)‖2
V ).

Having in mind that

‖ũn+m
T (t)− ũn

T (t)‖L2(Γ3)d ≤ ‖ũn+m
T (t)− un+m

T (t)‖L2(Γ3)d

+ ‖un+m
T (t)− un

T (t)‖L2(Γ3)d + ‖un
T(t)− ũn

T (t)‖L2(Γ3)d ,

since (un) is bounded in W 1,∞(0, T ;V ), the sequence (un|Γ3) is relatively compact
in C([0, T ];L2(Γ3)d) and there exists a subsequence still denoted (un) such that for
all η > 0 there exists n1 ∈ N , so that for all n ≥ n1 and all t ∈ [0, T ],

‖un+m
T (t)− un

T (t)‖L2(Γ3)d ≤ η .

On the other hand we have

‖un
T (t)− ũn

T (t)‖L2(Γ3)d ≤ c‖un(t)− ũn(t)‖V ≤ c
T

n
‖u̇n(t)‖V ,

where (u̇n) is bounded in L∞(0, T ;V ). Combining these results we obtain that
there exists a positive constant C3 such that∫ T

0

‖ũn+m
T (t)− ũn

T (t)‖2
L2(Γ3)ddt ≤ C3(

1
n2

+ η2).

On the other hand from (4.6), we have: For all η > 0 there exists n2 in N such
that for all n ≥ n2 and all m ∈ N,∫ T

0

‖f̃n+m(t)− f̃n(t)‖2
V dt ≤ η.

Then we obtain that there exists a constant C4 > 0 such that for all η > 0 there
exists n3 in N such that for all n ≥ n3 = max(n1, n2) and all m ∈ N ,∫ T

0

‖ũn+m(t)− ũn(t)‖2
V dt ≤ C4(2η +

1
n

)

On the other hand for all η > 0 there exists n4 in N such that for all n ≥ n4, 1
n ≤ η.

We thus deduce that for all η > 0 there exists n5 = max(n4, n3) such that for all
n ≥ n5, ∫ T

0

‖ũn+m(t)− ũn(t)‖2
V dt ≤ 3C4η.

So we conclude that
ũn → u strongly in L2(0, T ;V ) (4.9)

Now to prove that u is a solution of problem, in the inequality of problem (P ti
n ),

for v ∈ V set w = uti + v∆t and divide by ∆t; we obtain the inequality

〈z(ε(uti+1)), ε(v)− ε(
∆utt

∆t
)〉Q + j(uti+1 , v)− j(uti+1 ,

∆uti

∆t
)

≥ (f(ti+1), v −
∆uti

∆t
)V + 〈σN (uti+1), vN −

∆uti

N

∆t
〉 ∀v ∈ V
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Whence for any v ∈ L2(0, T ;V ), we have

〈z(ε(ũn(t))), ε(v(t))− ε
( d

dt
un(t)

)
〉Q + j(ũn(t), v(t))− j

(
ũn(t),

d

dt
un(t)

)
≥ (f̃n(t), v(t)− d

dt
un(t))V + 〈σN (ũn(t)), vN (t)− d

dt
un

N (t)〉

Integrating both sides of the previous inequality on (0, T ), we obtain the inequality∫ T

0

〈z(ε
(
ũn(t)

)
), ε(v(t))− ε(

d

dt
un(t))〉Qdt

+
∫ T

0

j(ũn(t), v(t))dt−
∫ T

0

j(ũn(t),
d

dt
un(t))dt

≥
∫ T

0

(f̃n(t), v − d

dt
un(t))V dt +

∫ T

0

〈σN (ũn(t)), vN − d

dt
un

N (t)〉dt

(4.10)

�

Lemma 4.6. For any v ∈ L2(0, T ;V ) we have the following properties:

lim
n→∞

∫ T

0

〈z(ε(ũn(t))), ε(v(t))− ε(
d

dt
un(t))〉Qdt

=
∫ T

0

〈z(ε(u(t))), ε(v(t))− ε(u̇(t))〉Qdt

(4.11)

lim inf
n→∞

∫ T

0

j(ũn(t),
d

dt
un(t))dt ≥

∫ T

0

j(u(t), u̇(t))dt (4.12)

lim
n→∞

∫ T

0

j(ũn(t), v(t))dt =
∫ T

0

j(u(t), v(t))dt (4.13)

lim
n→∞

∫ T

0

(f̃n(t), v(t)− d

dt
un(t))V dt =

∫ T

0

(f(t), v(t)− u̇(t))V dt (4.14)

Proof. For proving (4.11), we write∫ T

0

〈z(ε(ũn(t))), ε(v(t))− ε(
d

dt
un(t))〉Qdt

=
∫ T

0

〈z(ε(ũn(t)))−z(ε(u(t))), ε(v(t))− ε(
d

dt
un(t))〉Qdt

+
∫ T

0

〈z(ε(u(t))), ε(v(t))− ε(
d

dt
un(t))〉Qdt

Using (4.9) and the hypothesis (a) on z, we have∣∣∣ ∫ T

0

〈z(ε(ũn(t)))−z(ε(u(t)), ε(v(t))− ε(
d

dt
un(t))〉Qdt

∣∣∣
≤ c‖ũn − u‖L2(0,T ;V )(‖v‖L2(0,T ;V ) + ‖u̇n‖L2(0,T ;V )) → 0

We deduce that

lim
n→∞

∫ T

0

〈z(ε(ũn(t)))−z(ε(u(t))), ε(v(t))− ε(
d

dt
un(t))〉Qdt = 0.
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On the other hand, we have∫ T

0

〈z(ε(u(t))), ε(v(t))− ε(
d

dt
un(t))〉Qdt =

∫ T

0

(Au(t), v(t)− d

dt
un(t))V dt

which approaches∫ T

0

(Au(t), v(t)− d

dt
u(t))V dt =

∫ T

0

〈z(ε(u(t))), ε(v(t))− ε(u̇(t))〉Qdt.

To prove (4.12) we write

j(ũn(t),
d

dt
un(t)) = j(ũn(t)− u(t),

d

dt
un(t)) + j(u(t),

d

dt
un(t))

then we have∣∣ ∫ T

0

j(ũn(t)− u(t),
d

dt
un(t))dt

∣∣
≤ c‖µ‖L∞(Γ3)‖RσN (ũn − u)‖L2(0,T ;L2(Γ3))‖u̇

n
T ‖L2(0,T ;L2(Γ3)d) .

Since the mapping R is compact, we have

lim
n→∞

‖RσN (ũn − u)‖L2(0,T :L2(Γ3)) = 0 (4.15)

and

lim inf
n→∞

∫ T

0

j(u(t),
d

dt
un(t))dt ≥

∫ T

0

j(u(t), u̇(t))dt ,

see [4]. To prove (4.13) it suffices to use (4.15). From (4.6) we deduce for any
v ∈ L2(0, T ;V ):

lim
n→∞

∫ T

0

(f̃n(t), v(t)− d

dt
un(t))V dt =

∫ T

0

(f(t), v(t)− u̇(t))V dt.

whence (4.14) is proved. �

Passaging to the limit in inequality (4.8), we obtain the inequality∫ T

0

〈z(ε(u(t))), ε(v(t))− ε(u̇(t))〉Qdt

+
∫ T

0

j(u(t), v(t))dt−
∫ T

0

(j(u(t), u̇(t)))dt

≥
∫ T

0

(f(t), v(t)− u̇(t))V dt +
∫ T

0

〈σN (u(t)), vN (t)− u̇N (t)〉dt

(4.16)

In this inequality we set

v(s) =

{
z for s ∈ (t, t + λ)
u̇(s) elsewhere

to obtain the inequality

1
λ

∫ t+λ

t

(〈z(ε(u(s))), ε(z)− ε(u̇(s))〉Q + j(u(s), z)− j(u(s), u̇(s)))ds

≥ 1
λ

∫ t+λ

t

(f(s), z − u̇(s))V ds +
1
λ

∫ t+λ

t

〈σN (u(s)), zN − u̇N (s)〉ds .
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Passing to the limit, one obtains that u satisfies the inequality (2.14). To complete
the proof, integrate on (0, T ) both sides of (3.1); that is,∫ T

0

〈z(ε(ũn(t))), ε(v(t))− ε(ũn(t))〉Qdt +
∫ T

0

j(ũn(t), v(t)− ũn(t)))dt

≥
∫ T

0

(f̃n(t), v(t)− ũn(t))V dt ∀v ∈ L2(0, T ;V )

such that v(t) ∈ K, a.e. t ∈ [0, T ]. Passaging to the limit in the above inequality,
and using (4.6), (4.9), we obtain the inequality∫ T

0

(〈z(ε(u(t))), ε(v(t))− ε(u(t))〉Q + j(u(t), v(t)− u(t))))dt

≥
∫ T

0

(f(t), v(t)− u(t))V ∀v ∈ L2(0, T ;V ); v(t) ∈ K, a.e. t ∈ [0, T ]

Following the same reasoning as previously done, we deduce that u satisfies the
inequality

〈z(ε(u(t))), ε(w)− ε(u(t))〉Q + j(u(t), w − u(t))

≥ (f(t), w − u(t))V ∀w ∈ K, a.e. t ∈ [0, T ].

Using Green’s formula in the above inequality, as in [4], we obtain that u satisfies
the inequality (2.15) and consequently u is a solution of problem (P2).

Conclusion. In this article we have shown the existence of a solution to the qua-
sistatic unilateral contact problem with nonlocal friction for nonlinear elastic mate-
rials for a small enough friction coefficient . As well known the problem of unique-
ness of the solution still remains open.
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