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ABSTRACT 

Karst feature inventories provide essential information used to evaluate a site’s 

degree of hydrogeologic connectivity to local and regional flow systems, as well as its 

environmental and ecological sensitivity. For developments proposed on the Edwards 

Aquifer recharge zone, TCEQ rules require a full-coverage karst feature inventory of 

karst features during a geological assessment. However, visual surveys may be 

subjective, depending on the experience of the person performing a survey.  

Considering this, my research focused on whether it is possible to develop an 

independent method for identifying the most sensitive recharge areas for visual surveys, 

when time and resources are limited, as well as provide a means for assessing the 

accuracy of surveys. The question motivating this research is: can relationships be 

identified between predictor variables and karst feature density that allow estimation of 

density without physical surveys?  

A partial, statistically-designed, karst feature survey of the 17 km2 Freeman 

Center of Texas State University in San Marcos, Texas resulted in 60 documented karst 

features, including three sinkholes ground-truthed from a GIS-based sinkhole detection 

method. The survey design used for Freeman was then tested on Camp Bullis, near San 

Antonio, TX, an area with known karst feature density, revealing that random surveying 

does not yield representative karst feature density results, as karst features tend to cluster.  

The entirety of Camp Bullis was analyzed for factors that influence karst feature 

density. An Ordinary Least Squares model determined that slope, distance to nearest 
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flowline, lithology, and apparent resistivity were significant predictors of karst feature 

density (R= 0.30; p<0.01). A Geographically Weighted Regression was also used to 

visualize the nonstationarity of predictor variables (R= 0.81). However, both models 

resulted in spatial autocorrelation of residuals, indicating model misspecification. Despite 

concluding that karst features density is difficult to model, these methods offered a more 

nuanced understanding of factors controlling the distribution of karst features and the 

significance of these factors on Camp Bullis. 
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I. INTRODUCTION 

Karst inventories are used to assess and quantify the number and type of karst 

features distributed on a landscape. These geospatial data can be used in combination 

with existing hydrologic and geologic data to quantify the vulnerability of groundwater 

and karst-adapted species to changes in land use and land cover. These data can then be 

used by managers to better understand connections between local and regional flow 

systems, manage areas of environmental and/or ecological sensitivity, and for mitigating 

hazards. As development expands onto karst areas, associated hazards, impacts 

(Gutiérrez et al., 2014), and potential for groundwater contamination rapidly increase 

(Lindsey et al., 2010). Geographic Information Systems (GIS) have been used 

extensively for analyzing spatial patterns of karst features (i.e., sinkholes or dolines), for 

hazard mapping, and vulnerability modeling. Studies from some USA states, including 

Minnesota (Gao et al., 2005), West Virginia (Doctor and Doctor, 2012), Florida 

(Brinkmann et al., 2008), and Kentucky (Florea et al., 2002) have used GIS to create and 

maintain regional karst data, and to analyze the spatial and morphometric characteristics 

in an objective manner to standardize karst feature detection and prediction for hazard 

and natural resource protection.  

In the state of Texas, USA, the karstic Edwards Aquifer is designated as a sole-

source aquifer for approximately two million people living in the city of San Antonio. 

Regionally, many other smaller towns and cities also depend, in-part, on water from the 

aquifer. Despite the aquifer’s importance, a regional scale database of karst features and 

their distribution does not exist for its recharge zone, which is where nearly all surficial 

karst features occur. These types of data and studies are challenging to obtain or perform 
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in Texas due to the lack of a centralized and formal karst feature geodatabase. Although 

the Texas Commission on Environmental Quality (TCEQ) requires a geological 

assessment prior to all land development on the recharge zone, and that all karst features 

found during the state mandated geological assessments must be reported with 

coordinates to the TCEQ, these data are not made available to the public in an accessible 

format. With state population and water use projected to increase by 73% and 17%, 

respectively, over the next 50 years (TWDB, 2017) a simplified procedure for 

determining or predicting karst feature densities would be a helpful tool for regional land 

and water management, and could mitigate hazards and impacts to the aquifer. 

 

Hydrogeologic Setting of the Edwards Aquifer  

The Edwards Aquifer has three connected but hydrogeologically distinct zones: 

the contributing zone, the recharge zone, and the confined zone (Figure 1). The 

contributing zone is the area where water collects and flows downgradient toward the 

recharge zone. Once on the recharge zone, water quickly enters the aquifer through karst 

features in sinking streams. Sinking streams contribute up to 85% of all recharge to the 

aquifer (Slade et al., 1986), with diffuse upland recharge comprising the remaining 15%. 

The recharge zone is defined as the area where the lower Cretaceous-aged Edwards 

Aquifer hydrostratigraphic units crop out at the surface. These units are heavily 

karstified, faulted, and fractured due to the now-inactive, Oligocene-aged Balcones Fault 

Zone (BFZ) (Sharp and Banner, 1997), which allows meteoric water to quickly infiltrate 

into the subsurface where dissolution of carbonate rock by carbonic acid enlarges the 

faults and fractures to produce cavities and zones of exceptionally high permeability 
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(Barker et al., 1994). The SW-NE structure of the BFZ also controls regional flow in the 

Edwards Aquifer, allowing water to flow along or parallel to these SW-NE trending 

faults (Hunt et al., 2015). Rapid recharge through conduits, faults, and fractures, and high 

subsurface connectivity of conduits, means groundwater is sensitive to contamination 

(Hauwert et al., 2004). 

 Lastly, the confined zone is marked by the presence of the Del Rio clay of the 

upper Cretaceous, which confines the underlying Edwards Aquifer hydrostratigraphic 

units. The Edwards Aquifer is hydrologically bound underneath by a semi-confining unit; 

the upper member of the Glen Rose limestone. Down-dip, the deep boundary of the 

confined zone is marked by a transition from fresh water to brackish and saline waters 

with >1,000 mg/L total dissolved solids (TDS) (Slade et al., 1986). 

 

 

Figure 1. Edwards aquifer zones 
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Protection of the Edwards Aquifer Recharge Zone 

Because several federally-listed as threatened or endangered species live in the 

aquifer or depend on groundwater discharge from large springs, they and their critical 

habitat, the Edwards Aquifer or related spring systems, are protected by the Endangered 

Species Act. Therefore, groundwater levels, spring flows, water quality, and groundwater 

extraction limits are maintained, enforced, and monitored by the Edwards Aquifer 

Authority (EAA, 2016). Because the recharge zone is the most sensitive portion of the 

aquifer system, the TCEQ requires licensed professional geologists to perform full-

coverage geologic assessments before development and some other types of land 

disturbance in the recharge zone (TCEQ, 2008a) and contributing zone (TCEQ, 2008b). 

The main purpose of the surveys is to identify all features that may act as a connection 

between the surface and the aquifer, allowing for appropriate Best Management Practices 

(BMPs) to be applied, ensuring that the integrity of recharge features is maintained and 

impacts are lessened on existing features.  Geological assessments include soil 

descriptions, geologic maps, stratigraphic columns, a general narrative of the site, and a 

geological assessment table, in which features are described based on their type and 

characteristics, and assigned a numerical score based on a list of parameters describing 

their sensitivity. A feature is considered “sensitive” and appropriate BMPs must be taken 

if a feature is assigned a score of >40. Features receive points for feature type, presence 

of lineaments or aligned features, and relative infiltration rates (TCEQ, 2004). 

Although there are specific procedures and detailed descriptions and definitions 

for evaluating features, the nature of these surveys is subjective and depend on the 

experience of the surveyor. Geologists performing karst assessments may interpret and 
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classify karst features differently, depending on skill or experience. Because most of 

Texas is private land, access to land in the recharge zone is often limited or completely 

restricted prior to a development being planned and approved. In light of this, it would be 

it would be useful for planning and watershed/groundwater conservation and 

management purposes to have independent methods for estimating relative karst feature 

densities in different regions of the recharge zone.  

 

Karst Feature and Sinkhole Distribution Analysis 

Most distribution studies in karst areas focus on sinkhole distribution, as they 

present high potential for damage to infrastructure and public safety. In general, the 

typical explanatory variables used in these studies can be classified as hydrologic, 

structural, and anthropogenic. Selection of explanatory variables depends on knowledge 

of local controls for karstification, as well as data availability. 

The typical starting point for any spatial analysis begins with Nearest Neighbor 

Analysis (NNA) which establishes whether any spatial pattern, clustered or dispersed, is 

present (Gao et al., 2005). For most sinkhole susceptibility studies, sinkhole density or 

distance to nearest sinkholes are used as the response variable (Doctor and Doctor, 2012). 

This requires establishing a scale to use as the search radius to calculate the response 

variables. Moreover, most pattern analysis toolsets on ArcGIS require user specification 

of a distance or bandwidth. Ripley’s K function analyzes patterns of clustering/dispersion 

over a range of distances. Doctor et al. (2008) used this tool and its resulting peak 

clustering distance (1,200 m) to create their sinkhole density response variable. After this 

step, an Ordinary Least Squares (OLS) global linear regression model should be analyzed 
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for proper model specification (ESRI, 2019). Doctor and Doctor (2012) used OLS to 

check for collinearity in their explanatory variables. OLS is a global model and creates a 

single regression for the entirety of the study area. This assumes that the predictor 

variable relationships are constant throughout, which is unlikely in processes controlling 

formation of karst features, or sinkhole susceptibility, because the spatial pattern of 

variables controlling these processes are not uniform. As an answer to the issue of 

nonstationarity, the Geographically Weighted Regression (GWR) was created. GWR 

allows variable coefficients to vary through space by weighting them by their proximity 

to points being estimated (Fotheringham et al., 2002). Doctor et al. (2008) created a 

sinkhole susceptibility map for Frederick Valley, Maryland using GWR to model 

sinkhole susceptibility using the variables of proximity to quarries, water bodies, faults, 

fold axes, and groundwater table. Also using GWR, Doctor and Doctor (2012) used 

distance to fault, fold axes, fracture traces oriented along bedrock strike, fracture traces 

oriented across bedrock strike ponds, springs, quarries, depth to groundwater, and others 

to create a predicted sinkhole density map for Jefferson County, West Virginia. One 

crucial step to perform before running GWR is to choose an estimated bandwidth for the 

model. Of the options available in GWR, Doctor and Doctor (2012) determined that the 

best performing model used a fixed bandwidth established by the Ripley’s K tool. That 

bandwidth was more conservative (1,750m, in their study) than the one used in creating 

their response variable to encompass the range of highest clustering and to avoid spatial 

dependence in the models. 
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Remote Sensing Methods for Sinkhole Detection 

Relatively new remote sensing technologies and methods can be used to produce 

highly detailed topographic maps, or surface elevation data, which can be used to detect 

sinkholes using GIS. Light Detection and Ranging (LiDAR is an active remote sensing 

technique that measures range from time between laser light pulse emission and detection 

upon return (NOAA., 2012). A single light pulse can have several return detection times, 

creating what are called point clouds (NOAA, 2012). The high density of light pulses and 

multiple returns allow for penetration between gaps in dense vegetation canopy to the 

ground surface, allowing for karst feature studies in areas where imagery is insufficient to 

detect features on the surface (Kobal et al., 2014). Use of LiDAR has shown great 

success in detecting sinkholes in karst, and airborne LiDAR can produce large swaths of 

high accuracy and high-resolution data for regional scale projects. Its ability to penetrate 

gaps in vegetation canopy enables research that would otherwise have been impossible 

without time consuming and strenuous field work, and LiDAR data used in tandem with 

computer learning methods shows great promise in improving sinkhole-detection success 

rates (Zhu and Pierskalla, 2016). 

Most karst detection methods using LiDAR begin by creating a digital terrain 

model (DTM) from LiDAR ground points (Panno and Luman, 2018). After DTM 

creation, there are a handful of options for detecting sinkholes. Of these, manual 

detection (Zhu et al., 2014), contour tree method (Wu et al., 2016), and sink filled-

difference (Doctor and Young, 2013) are among the most popular. After potential 

sinkholes are extracted from the data, morphological parameters can be calculated and 

used to filter out depressions unlikely to be natural karst depressions (i.e., anthropogenic 
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features). Zhu and Pierskalla (2016) selected 11 parameters that helped detect true 

sinkholes: 3 surficial shape-based variables, 4 depth-based variables, 2 natural and human 

factors, and 2 variables that aided in field observations. Morphological parameters, such 

as a circular index or a conical shape, are common in most published studies.  

 

Case Study: Camp Bullis and Geophysical Methods for Karst Detection 

The Camp Bullis Training Site is military training facility in northern Bexar 

County. Most of the area is dominated by the Glen Rose Limestone, except for the 

southeastern corner where faulting has juxtaposed the younger Kainer Formation from 

the Edwards Group with the older Glen Rose units (Clark, 2003). The Glen Rose 

Limestone typically has lower permeability and porosity than the Edwards limestone but 

in this area, it is uncharacteristically permeable and porous (Veni, 1994).  

A geodatabase of surveyed karst features allowed for creation of karst feature 

density zones (KFDZs) bounded by lithological contacts and faults. A raster of KFDZs 

was compared to results of a USGS helicopter electromagnetic survey at different depths 

and showed high correlation to the KFDZs (Gary et al., 2003).  

Additionally, two caves in Camp Bullis were monitored for five years to study 

vadose recharge during dye traces, and natural and artificial recharge events. Effective 

recharge at KFDZs were calculated by spatially extrapolating the effective recharge at the 

two caves based on a typical rain event for Camp Bullis of 2.7 cm. Recharge rates for a 

typical rain event, with wet antecedent conditions, reached 8.6 L/m2 for the largest cave.  

The degree of detail and wealth of information garnered from this study could not 

have been possible without a robust karst feature geodatabase. In summary, it allowed for 



 

9 

correlation with EM surveys, delineation of karst feature densities, and estimation of 

effective recharge for the entire study area. This study highlights the need for a 

centralized GIS integrated geodatabase for karst features for the Edwards Aquifer 

because it illustrates the power of using mapped karst features to answer hard questions 

such as how much a study area’s recharge features contribute to the local flow system. 

The Camp Bullis study is largely the motivation for this thesis. 

 

Research Objective 

Considering the time and effort required to perform a typical full-coverage 

geologic assessment and karst feature inventory, the objective of this study was to 

investigate potential relationships between karst feature density and hydrologic, geologic, 

and geomorphic factors by surveying an area within the Edwards Aquifer recharge zone. 

The research question addressed in this study is: can karst feature density be predicted 

using geologic, spatial data, and a statistically designed incomplete karst feature 

inventory? If so, this would allow managers to estimate relative vulnerability and karst 

feature densities across the recharge zone prior to (or perhaps instead of) a 

comprehensive on-the-ground survey. 
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II. METHODS 

This study consisted of four parts: 1) a partial karst feature field survey of the 

Freeman Center, an area with unknown karst feature density in the recharge zone. The 

results of the survey were analyzed for relationships between karst feature density and 

possible predictor variables; 2) a sinkhole detection method using LiDAR-derived 

elevation data and GIS that was ground-truthed during the karst feature survey, 3) 

evaluation of the efficacy of a karst feature field survey design for the Freeman Center by 

testing it on existing full-coverage Camp Bullis karst feature data, and 4) exploring the 

spatial patterns of karst features within Camp Bullis. All geospatial methods used were 

performed using ArcGIS 10.5. 

 

Study Area - Freeman Center 

The Texas State University Freeman Center (Freeman Center) is an 

approximately 17km2 (4,204-acre) experimental and working ranch that lies entirely 

within the recharge zone of the San Antonio segment of the Edwards Aquifer in Hays 

County, TX (Figure 2). The Freeman Center is nearly undeveloped except for a few 

administrative buildings and shelters for cattle and storage and is used almost entirely for 

grazing rangeland. Land cover consists primarily of dense thickets of Plateau Live Oak 

(Quercus fusiformis) and Ashe Juniper (Juniperus ashei), or open savanna composed of 

mixed grasses and trees. Geologically, the Center (Table 1) lies within the Hueco Springs 

Fault Block and on the San Marcos platform, and is in an area where members of the 

Edwards Limestone dominate the surficial geology (Johnson et al., 2012) and several 

mapped faults cross the study area (Figure 3). 
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Figure 2. Freeman Center location 

 
Table 1. Hydrostratigraphy of surficial geology on the Freeman Center 

Age Formation Member Hydrostratigraphy 

Upper 
Cretaceous 

Kb- 
Buda Limestone undivided Upper Confining 

Units Kdr- 
Del Rio Clay 

Lower 
Cretaceous 

Kg- 
Georgetown 
Formation 

undivided 

Edwards Aquifer 

Person Formation 

Kpcm- 
Cyclic and Marine  

Kpcl- 
Leached and Collapsed  

Kprd- 
Regional Dense 

Kainer Formation 

Kkg- 
Grainstone 

Kkke- 
Kirschberb evaporite 

Kkd- 
Dolomitic 
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Figure 3. Geologic map of the Freeman Center. Note that Sink Creek is normally dry and 
only flows briefly after very large flooding precipitation events. 

 

Freeman Center- Karst Feature Detection 

LiDAR data used for this analysis were retrieved from Capital Area Council of 

Governments (CAPCOG, 2012), and was acquired during a 2008 survey during leaf-off 
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conditions; optimal for creation of a bare earth DTM. The LAS-to-raster tool in ArcGIS 

was used to create a DTM of Freeman using only ground-return LiDAR points, using 

average cell assignment and a natural neighbor interpolation method. Hillshade and 

slopeshade rasters were then derived from the DTM for enhanced visualization of 

topographical features. These rasters, along with the orthoimagery from Texas Natural 

Resources Information System (TNRIS, 2015) were used to manually delineate and 

digitize potential depressions through close visual inspection (Figure 4). Orthoimagery is 

helpful in deciphering whether depressions detected in the DTM are natural or 

anthropogenic. Greyscale and green to red gradient slopeshade rasters help define 

boundaries of depressions. Although manual delineation using high resolution DTMs is a 

step up from traditional, topographic map methods, it is time consuming and somewhat 

subjective. Automated methods have the ability to capture all depressions in a more 

complete way (Wall et al., 2017), within the limitations of data resolution.  

Extracting sinkholes from LiDAR in ArcGIS was relatively simple (Figure 5) and 

followed the sink filled-difference method of Doctor and Young (2013). All operations 

for ArcGIS HydroTools work under the assumption that water flows downslope in the 

direction of least resistance (i.e., steepest gradient). However, it is typical to find ‘sinks’ 

in a DTM. Sinks are cells that are surrounded by other cells of higher elevation, thus 

impeding downgradient flow. The Fill tool was originally created to correct what are 

often simply small errors in elevation, by raising the elevation of all cells in a sink to 

allow flow to continue downgradient to other cells, for the purpose of watershed 

delineation (Maidment, 2002). However, in karst terrain, it is possible for sinks to be real 

depressions or sinkholes and not elevation errors in the DTM. The Fill tool creates a new 
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raster with filled sinks and ‘corrected’ elevations that allow flow downgradient. Before 

use of the Fill tool one must also consider the presence of artificial dams like bridges over 

streams and ditches/excavations, or, in the case of the Freeman Center, a large flood-

control dam that create false sinks. Without reconditioning the DTM to allow streams to 

drain through the dam on Sink Creek at Freeman, the sink raster results in a false sink 

(Figure 6). Doctor and Young (2013) recommend ‘burning the stream channels’ (i.e., 

hydroenforcement) through these features by manually digitizing the stream channels and 

lowering the elevation along them using the DEM Reconditioning tool in ArcGIS.  

  

 

 

 

 

 

 

 

 

 

Figure 4. Example of manual delineation of depressions. Depressions outlined in red 
required toggling between several images: A) orthoimagery, B) greyscale slopeshade 
with darker colors symbolizing steep slope, C) hillshade, and D) green to red gradient 
slopeshade with red symbolizing steep slope 

 

After reconditioning, the Fill tool was used to identify sinks in the DTM, and the 

new filled raster was subtracted from the original DTM using the Raster Algebra tool to 

create a sink raster. Consequently, cells in the sink raster are attributed with elevation 
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differences between the original DTM and the reconditioned DTM and represent sink 

depth. This raster was then reclassified to show values below a vertical depth threshold of 

(0.37m) as ‘NoData’. This step filtered out what were most likely errors in the LiDAR 

and too shallow to be of any hydrological significance. This threshold should be a value 

larger than or equal to the vertical residual mean square error (RMSEz) of the LiDAR 

data used to create it. The RMSEz of this LiDAR in non-vegetated areas is 0.185 meters. 

Finally, the raster to polygon tool was used to change the raster cells with values to 

polygon features. 

 

Figure 5. Workflow for extracting depressions from LiDAR data. Bold steps indicate 
outputs and blue steps indicate tools. 
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Figure 6. Dam impeding flow resulting in a false sink. The channel elevation must be 
lowered (burned) through the dam to allow for drainage and true sinks to be identified. 
Also visible are some of the many natural scour features in the dry Sink Creek channel 
that are detected as ‘sinks’ 

 

Freeman Center Karst Feature Field Survey 

A partial-coverage survey of the Freeman Center was performed. To ensure 

proportional surveying of each geological unit found on the Freeman Center, 202 30m x 

30m survey plots were randomly distributed in proportion to the surface area of each 

geological unit exposed. Of the nine geological units exposed on the Freeman Center, 

three combined cover less than 5% of the study area (Buda, Del Rio, and Georgetown) 

and were therefore pooled for statistical reasons. Pilot tests determined that surveying a 

30 m x 30 m (900m2) plot required approximately 40 minutes, and that ~200 plots could 

be surveyed in three to four months during the summer. Plot locations were determined 

by randomly generating points in ArcGIS using the number of points presented in Table 

2.  

Teams of two people performed field surveys. After locating the survey point 

with GPS, plot boundaries were measured and defined, and surveyors completed a full-
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coverage survey in the 900m2 plot for karst features. Five soil depth measurements per 

plot (one at each corner and the center) were obtained by hammering rebar into the 

ground until refusal.  

For each karst feature identified, its location and attributes were documented in 

the field using the Esri Collector application (Esri, 2017). Collector allows surveyors 

access to a downloaded map with editable layers like karst feature points, lines and 

polygons, and non-editable layers such as survey points, fences, gates, soils, geology, 

hillshade, slopeshade, and 2015 orthoimagery available from Texas Natural Resources 

Information System (TNRIS) at 50cm resolution. Collector was used as a tool for both 

navigation and data collection. After each day of fieldwork, edits were synced to the 

original map in ArcOnline. After field surveying was complete, the resulting edited point 

and line karst feature files were exported to ArcMap and saved. 

 

Table 2. Survey plots in each geologic unit 

Unit  
Abbreviation Unit Name Percent of 

Total Area Calculated Plots Final 
Plots 

Kb 
Kdr 
Kg 

Buda Limestone 
Del Rio Clay 
Georgetown 

2.77% 5.542 6 

Kkd Dolomitic 6.34% 12.675 13 
Kkg Grainstone 27.44% 54.886 55 
Kkke Kirschberg 26.26% 52.528 53 
Kpcm Cyclic and Marine 7.86% 15.725 16 
Kplc Leached and Collapsed 20.95% 41.899 42 
Kprd Regional Dense 8.37% 16.747 17 
 TOTALS 100% 200.002 202 
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Freeman Center - Potential Predictor Variables for Karst Feature Density 

Variables tested for correlation with karst feature density were surface geology, 

slope, soil depth, soil type, distance to nearest fault, and distance to nearest flowline. All 

geological and structural data were accessed from the USGS (Blome et al., 2005). 

Geologic units are defined by differences in rock composition and presence or absence of 

fossils; some of which may be more conducive to dissolution and creation of karst 

features. For example, due to its high evaporite content (nodular gypsum), the Kirschberg 

evaporite member of the Edwards group that encompasses 26% of Freeman is known in 

other areas to have extensive karst feature development (Stein and Ozuna, 1994). Slopes 

can affect karst density if they are steep enough to expose enlarged bedding planes and, 

because steeper slopes also cause higher soil erosion, these areas can expose enlarged 

bedrock fractures or fissures. Karst feature density can be affected by soil depth simply 

because thick soils can cover or fill features that might otherwise manifest on the surface 

in areas with thinner or no soil cover. Two soil types dominate the Freeman Center; the 

Comfort-Rock and Rumple-Comfort soils cover approximately 97% of the Center 

combined (Figure 7). These soils are usually 33-91 cm thick, lie directly on the bedrock, 

and are well-drained residuum weathered from limestone (USDA Soil Conservation 

Service, 1984). Karst density can also be affected by distance to faults due to the 

tendency of faults to control regional and local flow routes in the Edwards Aquifer by 

providing fracture zones where preferential flow and dissolution may occur. 
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Figure 7. Soil map of the Freeman Center (USDA, 2017) 

 

Freeman Center- Statistical Analysis 

After completion of the survey, each plot was attributed with a karst feature 

density (# of features/area), karst feature count, average slope (degrees), dominant soil 

type, surface geology, average soil depth, and Euclidean distance to nearest fault and to 

nearest flowline. Slope and flowline data were derived from the LiDAR-derived DTM. 
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Because the response variable (karst feature count) is non-normal and 78% are zeros, the 

glmmTMB package of RStudio (RStudio, 2017) was used to run a zero-inflated fully 

saturated Poisson model to identify significant predictors. The model statement is below: 

 

Karst feature count= β0 + β1*soil depth + β2*slope + β3*proximity to fault + β4*proximity 

to flowline + β5*geology type + β6*soil type +  ɛ 

 

Testing Efficacy of Freeman Survey Design 

A full-coverage karst feature survey data of Camp Bullis was used in this study to 

test the efficacy of the karst feature survey design utilized on the Freeman Center. Camp 

Bullis is a 113 km2 military training facility, 65 km southwest of the Freeman Center, in 

Bexar County near the city of San Antonio, Texas. Unlike the Freeman Center, which is 

completely within the Edwards recharge zone, only the southeastern corner of Camp 

Bullis is in the recharge zone where the Kirschberg evaporite and dolomitic members of 

the Edwards units crop out (Clark et al., 2016). To make direct comparisons between the 

two sites, only the geologically equivalent areas of Camp Bullis were used to test our 

survey design. A similar proportionate amount of 30 m x 30 m plots (103) were randomly 

distributed within the two geologic units Bullis has in common with Freeman. Each plot 

would then capture known karst feature locations and karst feature density (karst 

features/area) could be calculated.  

 

 

 



 

21 

Camp Bullis Karst Feature Distribution 

As opposed to only using the Edwards units in the southeastern corner for testing 

Freeman survey efficacy, the following methods were used to study feature distribution 

within the entirety of the Camp Bullis study area. The Average Nearest Neighbor tool on 

ArcGIS was used to determine if any spatial patterns to karst features exist. The NNA 

corroborates what is readily visible from the karst feature map of Camp Bullis (Figure 8), 

which is that karst features on Camp Bullis are clustered (p< 0.01), with a nearest 

neighbor ratio (observed mean distance/expected mean distance) of 0.46.  
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Figure 8. Karst features within Camp Bullis 

 

The next step was to create the response variable of Karst Feature kernel density. 

To run the kernel density tool, a search radius needs to be established. To determine the 
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appropriate radius for clustering and therefore the scale at which factors controlling karst 

feature clustering are operating, the Multi-Distance Spatial Cluster (Ripley’s K Function) 

in ArcGIS was used. Inputs were the Camp Bullis karst feature points feature class with 

the following specifications: starting distance (10 m), distance increment (40 m), number 

of distance bands (100), study area (Camp Bullis boundary polygon feature class), edge 

correction method (simulate outer boundary). If no study area is selected, a minimum-

enclosing rectangle is generated by the tool and is used as the study area polygon. I opted 

against the minimum enclosing rectangle because it would have included areas that were 

not searched and surveyed and could lead to erroneous edge estimates. Another edge 

correction available is the Ripley’s edge correction formula. This method gives extra 

weighting to neighbors whose distance from the point of interest is greater than their 

distance from the edge. This method however is only appropriate for a minimum 

enclosing rectangle study area and therefore inappropriate when using the actual study 

area. 

Results from the Ripley’s K indicate that clustering increases until it reaches peak 

clustering at 1,010 m (Figure 9). The kernel density tool was used to calculate karst 

feature kernel density (KFKD, the response variable) (features/ km2) for each karst 

feature location using the peak clustering distance, independently determined by Ripley’s 

K as 1,010 m, as the search radius (Figure 10). 
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Figure 9. Ripley’s K results. This graph indicates clustering vs lag distance. Diff K is 
equal to Observed K values – Expected K values. Clustering peaks at 1,010 meters and 
then decreases. 

 

Figure 10. Camp Bullis KFKD map (features/km2). Points indicate karst features. 
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Ordinary Least Squares Regression 

KFKD was used as the response variable in the Ordinary Least Squares regression 

tool in ArcGIS to evaluate explanatory variable significance and proper model 

specification. Explanatory variables used were: Euclidean distances to nearest flowline 

(TNRIS, 2014) and fault, slope in degrees, and apparent resistivity (Ohm-meters). The 

model statement is below: 

 

KFKD = β0 + β1*resistivity + β2*slope + β3*proximity to fault +  

β4*proximity to flowline + ɛ 

 

To quantify apparent resistivity, and in an effort to have a continuous variable that 

could distinguish different hydrogeological units, I chose to visually determine apparent 

resistivity from data presented in Smith et al. (2015) who concluded that the highest 

frequency of 115 KHz produces apparent resistivity that is most closely correlated with 

hydrogeological units. The OLS regression in ArcGIS also calculates diagnostics that 

help determine model performance. The model returns a Variance Inflation Factor (VIF) 

for each predictor where a VIF of 7.5 or higher indicates redundancy. The Koenker 

statistic evaluates the stationarity of the model where the null hypothesis is that the model 

exhibits stationarity and therefore that the relationships modeled are consistent across 

space. The Jarque-Bera (JB) statistic evaluates the normality of residuals where the null 

hypothesis is that the residuals are normally distributed. 

Geographically Weighted Regression 

A GWR was used as a tool to visualize the non-stationarity of variable 

relationships. The explanatory variables used to estimate KFKD in the GWR were the 
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same as those used in the OLS regression: euclidean distances to nearest flowline and 

fault, slope, and apparent resistivity. Following methods in Doctor and Doctor (2012), I 

chose a more conservative fixed bandwidth of 1,370 m to run the GWR. This 

encompasses a wider range of the highest clustering and avoids introducing dependence 

into the model, as it differs from the bandwidth used to calculate KFKD. The model 

statement below: 

 

KFKD = β0 + β1*resistivity + β2*slope + β3*proximity to fault + β4*proximity to flowline + ɛ 
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III. RESULTS 

 

Sinkhole Detection on the Freeman Center 

The LiDAR-based sinkhole detection method identified 414 ‘sinks’ deeper than 

0.37 m with an area greater than 16m2 (4 times the cell size). Of these, 81% are within 10 

meters of a flowline (Figure 11) and are likely false positives that reflect the chaotic 

stream bed morphology. In the field, this topography was confirmed and is composed of 

storm debris like large downed trees and boulders, as well as scours and other erosional 

features. This however does not indicate an absence of karst features, as sinking streams 

contribute up to 85% of all recharge to the Edwards Aquifer (Slade et al., 1986). As an 

example of how important small in-stream features can be, at least one 8.5 m deep cover-

collapse sinkhole exists in the Sink Creek channel, and this feature alone has the capacity 

to recharge most of the surface flows in Sink Creek that occur on the Freeman Center 

(pers com – Freeman Ranch Manager). Despite the large number of false positives across 

the study area, three true positive subsidence sinkholes greater than 30 meters in diameter 

were field verified; all of which were previously unknown to Center management.  
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Figure 11. Sinkholes detected at the Freeman Center. These sinkholes have a depth 
greater than 0.37m and area larger than 16m2. Note that most features along drainage 
channels are not actual sinkholes and are the result of erosion and deposition in the 
channel. 

Freeman Karst Feature Survey 

Of the 202 plots surveyed, 45 had karst features. Of the 60 karst features found 

within those plots, 34% are subsidence sinkholes, 30% solution cavities, 18% solution 

enlarged fractures, and 3% faults (Table 3). Plots contained 0-3 features. The zero 

inflated fully saturated Poisson model identified slope as the only significant predictor (p 

< 0.05) of karst feature counts in the plots (Table 4). Therefore, surface geology, soil 

type, distance to nearest fault and flowline, and soil thickness were not significant in 

explaining the variation in karst feature count in this model. 
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Table 3. Freeman karst feature survey results within plots 

Feature Type Count Percent 

sinkhole (subsidence) 24 34% 

solution cavity 21 30% 

solution-enlarged fracture 13 18% 

fault 2 3% 

TOTAL 60 100% 

 

Table 4. Poisson model output 

Variable Estimate Standard Error p-value 

Intercept -1.970 e+01 7.469e+03 0.998 

Kkd 1.768 e+01 7.469e+03 0.998 

Kkg 1.805 e+01 7.469e+03 0.998 

Kkke 1.804 e+01 7.469e+03 0.998 

Kpcm 1.862 e+01 7.469e+03 0.998 

Kplc 1.799 e+01 7.469e+03 0.998 

Kprd 1.891e+01 7.469e+03 0.998 

Soil- Rumple Comfort -6.232e-02 3.344e-01 0.852 

Proximity to stream 7.570e-04 2.621e-03 0.773 

Proximity to fault 7.659e-04 9.620e-04 0.426 

Average soil depth 9.430e-03 5.381e-02 0.861 

Average slope 1.534e-01 7.792e-02 0.049 
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An additional 34 features were documented outside of the plots while walking 

along the terrain. 11 non-karst features like burrows were also documented within the 

plots. Neither were used for this analysis. The total amount of features recorded was 105. 

 

Testing Freeman Survey Efficacy 

Freeman results are valid under the assumption that the plots sampled are 

representative of the actual karst feature density in the study area. This assumption was 

tested by applying the same sampling methods to an area with full a coverage karst 

feature survey and a resulting known karst feature density; Camp Bullis. A proportionate 

number of plots (103) were randomly distributed in Camp Bullis within the two 

lithological units it has in common with the Freeman Center. Of those 103 plots, just one 

plot captured two features, resulting in a karst feature density of 21.57 karst features/km2 

for the dolomitic member of the Kainer formation (Kkd). Based on data from the full-

coverage karst feature survey of Camp Bullis, the true density is 27.65 karst features/km2. 

Although the survey design appears to result in similar karst feature densities, the results 

are more than likely random chance given that only one of the randomized plots captured 

two features. Randomizing survey plots in an area where karst features are clustered will 

result in underestimating karst feature density if survey plots miss clusters, or 

overestimating karst feature density if they capture clusters of karst features.  
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Camp Bullis Karst Feature Distribution - Ordinary Least Squares 

Results of the OLS analysis of the full Camp Bullis dataset indicate that all 

predictors are significant (Table 5). The OLS tool on ArcGIS computes standard error, t-

statistic, and probabilities that are robust against non-stationarity. Table 6 presents results 

for diagnostics calculated for the model.  

 

Table 5. OLS regression coefficients  

Variable Coefficient 

Robust 
Standard 

Error 
Robust 

Probability VIF 

Intercept 16.519951 1.008121 p < 0.0001 ------- 

Slope -0.354402 0.048447 p < 0.0001 1.019060 

Flowlines -0.015897 0.002260 p < 0.0001 1.080969 

Faults 0.005090 0.001495 p < 0.0001 1.012003 

Resistivity 0.050770 0.002720 p < 0.0001 1.06793 

 

 

Table 6. OLS diagnostics 

Diagnostic Value Probability 

Adjusted R2 0.303355 ------- 

Joint Wald Statistic 465.631768 p < 0.0001 

Koenker Statistic 61.200504 p < 0.0001 

Jarque-Bera Statistic 48.328784 p < 0.0001 
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The VIF for all explanatory variables were below the critical value, indicating that 

multicollinearity is not an issue. The Koenker statistic was statistically significant, which 

indicates non-stationarity. This test indicates that the GWR model is appropriate, which 

accounts for the non-stationary nature of these relationships by allowing coefficient 

estimates to vary. The Jarque Bera was statistically significant and indicates that the 

model is biased, i.e., the model is missing an explanatory variable. A Spatial 

Autocorrelation (Moran’s I) test on the residuals revealed spatial autocorrelation with a 

Moran’s I Index of 0.60. 

Despite the obvious model misspecification, I ran a GWR model for Camp Bullis 

as an exploratory investigation into the spatial variability of the predictors. 

 

Camp Bullis - Geographic Weighted Regression 

The overall adjusted R2 for the GWR is 0.81, compared to the global OLS 

adjusted R2 of 0.30. I ran a Spatial Autocorrelation (Moran’s I) on the residuals with a 

fixed distance band of the peak clustering distance (1,010 m) and it again determined 

clustering of residuals (p <0.01) with a Moran’s Index of 0.15. To investigate sensitivity 

to scale I re-ran the Spatial Autocorrelation tool at a bandwidth of 1,370m, the same used 

in the GWR, and it also determined clustering of residuals (p<0.01) with a Moran’s Index 

of 0.06.  Figure 12 shows local R2 values indicating better model performance with 

warming colors. Figure 13 shows explanatory variable coefficient value rasters with local 

R2 points.  
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Figure 12. GWR local R2 map. Values are mapped above KFKD. 
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Figure 13. Local coefficient estimates of GWR model 

 

Where coefficient estimates for distance from flowlines and faults (Figure 13) are 

negative, it indicates that areas with high KFKD can be found hear faults and flowlines. 

In areas where slope coefficient is negative (grays and black), areas with high KFKD 

were found near flatter slopes, and vice versa (Figure 13). For resistivity, areas with 

positive coefficients indicate that KFKD and resistivity are directly correlated.  
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IV. DISCUSSION 

Camp Bullis data were not available at the start of this project and therefore not 

available to help guide the Freeman Center karst survey design. Ideally, with prior access 

to this full-coverage data set, sampling strategies and designs could have been 

experimentally tested prior to data collection in the field. Unfortunately, this was not the 

case during this study, and the Camp Bullis data were only available for a retrospective 

analysis. The ideal case was to create a predicted karst feature kernel density map for 

Freeman so that future research would have areas to focus survey efforts on. However, 

GWR results from Bullis are not applicable to Freeman because GWR is a local model 

and predictions are applicable only within the study area. I also considered applying the 

global OLS model to Freeman but decided against it because the model performance was 

minimal (R2= 0.30) due to missing explanatory variables and the high non-stationarity of 

the explanatory variables. Another factor that could affect model performance is the 

locations of the high KFKD clusters being near the edges of the Bullis boundary. 

Coefficient estimates and model performance near edges could be spurious. 

The model misspecification deserves more study. In the Doctor and Doctor (2012) 

and Doctor et al. (2008) sinkhole occurrence studies, the GWR models performed well 

with only proximity variables (proximity to nearest factor) and both of the study areas 

exhibit extensive structural features like fold axes and fracture traces. However, for the 

Camp Bullis models, proximity factors have smaller coefficients than slope and 

resistivity, which could indicate that geomorphology and geologic materials influence 

karst feature occurrence more than structural factors like faults in this area. As previously 

mentioned, most spatial studies focus on large and easily-detected sinkholes for hazard 
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mapping and sinkhole potential studies. These features are larger and therefore might be 

more affected by regional processes like structure, geologic materials, and hydrological 

factors. Poor performance and misspecification of the models for karst feature density 

could be the result of complex factors affecting smaller scale karst features, suggesting 

that modeling this process could be difficult. 

For future karst feature surveys on the Freeman Center, or in other areas of the 

Edwards Recharge Zone, we suggest testing additional methods, such as surveying 

transects instead of distributed plots. In addition to requiring less effort logistically, this 

method covers more distance and more diverse terrain characteristics, therefore 

increasing possibility of finding karst features.  

Of the 37 total subsidence sinkholes recorded during surveying, none were 

reflected in the resulting 414 sinks from the procedure because the area cutoff was 16m2 

and the average diameter for the subsidence sinkholes was approximately 1 meter. In 

order to find smaller scale, subsidence sinkholes higher horizontal accuracy LiDAR data 

should be used with the Filled-Sink Difference procedure. This would ultimately increase 

total sinks found, both false and true sinkholes. To remove false sinkholes, diagnostic 

morphometric parameters for sinkholes within the Edwards Aquifer Recharge Zone such 

as depth, diameter, and circularity should be identified and used as criteria for selection in 

future studies to improve the detection of true sinkhole diversity, therefore increasing the 

possibility of finding smaller scale karst features.  

It bears mentioning that an exploratory study on karst feature distribution of this 

kind should not be misinterpreted as providing estimates of probability of karst feature or 

sinkhole formation because risk assessments require study of development through time 
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(Doctor and Doctor, 2012). The results of this exploratory study are not meant to provide 

a replacement for visual inspection and field verification that are required by TCEQ rules. 

However, further investigation of the factors influencing karst feature presence could be 

helpful in developing land conservation and acquisition decision models. 
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V. CONCLUSION 

This study tested a statistically-designed partial karst feature inventory method 

using geologic and other spatial data to determine that, with this particular method, a 

representative karst feature density could not be estimated with a partial survey. The 

primary reason is because karst features tend to cluster, which precludes accurate results 

using random survey points. Although more time and resource-intensive, full coverage 

surveys ensure proper characterization of an area’s karst feature density and sensitivity. 

Variables significant in explaining karst feature density in a full-coverage model were 

slope, apparent resistivity, distance to nearest flowline, and location within Edwards 

Aquifer hydrostratigraphical units. These controlling factors, however, still resulted in 

models that exhibit spatial autocorrelation in residuals and were misspecified; indicating 

a missing explanatory variable. Despite this, these methods provided a better 

understanding of factors controlling karst feature density and can be used as a starting 

point in future research.  
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