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INSTABILITY OF SOLUTIONS OF CERTAIN NONLINEAR
VECTOR DIFFERENTIAL EQUATIONS OF THIRD ORDER

ERCAN TUNÇ

Abstract. In this paper, study the system of differential equations
...
X + F (Ẋ)Ẍ +G(X)Ẋ +H(X, Ẋ, Ẍ) = 0 .

We find sufficient conditions for the zero solution to be unstable, and to be

the only periodic solution.

1. Introduction and Statement of Results

It is well-known that instability and periodic properties for various third-, fourth-
, fifth-, sixth-, seventh- and eighth-order nonlinear differential equations have been
discussed by many authors. In this connection, we refer the reader to the pa-
pers by Bereketoğlu [3, 4, 5, 6], Ezeilo [7, 8], Kipnis [9], Lu [11], Reissig [14], and
Skrapek [16, 17], Tejumola [18], Tiryaki [19, 20, 21], C.Tunç and E.Tunç [25], Tunç
[22, 23, 24, 26] and the references cited therein. However, according to our inves-
tigation of the relevant literature, in the case n = 1, the instability properties of
nonlinear differential equations of the third order have been discussed by discussed
by Bereketoğlu [4], Lu [12], Kipnis [9] and Skrapek [17]. Bereketoğlu [4], Kipnis [9],
and Skrapek [17] studied the third order scalar differential equations

...
x + f(ẋ)ẍ + g(x)ẋ + h(x, ẋ, ẍ) = 0,

...
x + p(t)x = 0,

...
x + f1(ẍ) + f2(ẋ) + f3(x) + f4(x, ẋ, ẍ) = 0 .

We did not find literature relevant to the instability of solutions of nonlinear vector
differential equations of third order. This is perhaps due to the difficulty of con-
structing proper Lyapunov functions for higher-order nonlinear vector differential
equations. The papers mentioned above are the motivation for the present work.
Our purpose is to obtain sufficient conditions under which the trivial solution X = 0
of vector differential equation

...
X + F (Ẋ)Ẍ + G(X)Ẋ + H(X, Ẋ, Ẍ) = 0 (1.1)
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is unstable, and that the nontrivial solutions of equation (1.1) can not be periodic.
It is assumed that X ∈ Rn, that F and G are n × n-symmetric matrix functions;
and that H : Rn × Rn × Rn → Rn with H(0, 0, 0) = 0. Let F,G, H be continuous,
for the uniqueness theorem to be valid.

Equation (1.1) represents a systems of real-valued third-order differential equa-
tions of the form

...
xi +

n∑
k=1

fik(ẋ1, ẋ2, . . . , ẋn)ẍk +
n∑

k=1

gik(x1, x2, . . . , xn)ẋk

+hi(x1, x2, . . . , x; ẋ1, ẋ2, . . . ,
.

xn; ẍ1, ẍ2, . . . , ẍn) = 0,

(i = 1, 2, . . . , n). Let JF (Ẋ) and JG(X) denote the Jacobian matrices corresponding
to F (Ẋ) and G(X) respectively, that is,

JF (Ẋ) =
∂fi

∂ẋj
, JG(X) =

∂gi

∂xj
(i, j = 1, 2, . . . , n),

where (x1, x2, . . . , xn), (ẋ1, ẋ2, . . . , ẋn), (f1, f2, . . . , fn) and (g1, g2, . . . , gn) are com-
ponents of X, Ẋ, F and G, respectively. It will be assumed that the Jacobian
matrices JF (Ẋ), JG(X) exist and are continuous.

Given any X, Y in Rn. The symbol 〈X, Y 〉 will denote the usual scalar product
in Rn, that is, 〈X, Y 〉 =

∑n
i=1 xiyi; thus 〈X, X〉 = ‖X‖2. The matrix A is said

to be negative-definite, when 〈AX, X〉 < 0 for all non-zero X in Rn. λi(A) (i =
1, 2, . . . , n) will denote the eigenvalues of the n× n matrix A.

We will use the following differential system which is equivalent to the equation
(1.1):

Ẋ = Y, Ẏ = Z,

Ż = −F (Y )Z −G(X)Y −H(X, Y, Z) .
(1.2)

Which is obtained as usual by setting Ẋ = Y, Ẍ = Z in (1.1).
It should be noted that the Lyapunov’s second (or direct) method, (see [13]), is

used to verify the results established here. This method requires the construction
of an appropriate Lyapunov function for the equation under study. Namely, this
function and its total time derivative satisfy some fundamental inequalities.

2. The main result

We establish the following statements:

Theorem 2.1. Let the functions F,G, H be as defined above, , and assume the
following conditions are fulfilled:

(i) λi(F (Y )) ≤ 0, for all X, Y ∈ Rn

(ii)
∑n

i=1 xihi(X, Y, Z) > 0 for all X, Y, Z ∈ Rn, where

H(X, Y, Z) = (h1(X, Y, Z), h2(X, Y, Z), . . . , hn(X, Y, Z)).

Then the trivial solution X = 0 of the system (1.2) is unstable.

Theorem 2.2. Under the assumptions of Theorem 2.1, equation (1.2) has no pe-
riodic solution other than X = 0.

We need the following algebraic result.
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Lemma 2.3. Let A be a real symmetric n × n-matrix and a′ ≥ λi(A) ≥ a > 0
(i = 1, 2, . . . , n), where a′, a are constants. Then

a′〈X, X〉 ≥ 〈AX, X〉 ≥ a〈X, X〉,
(a′)2〈X, X〉 ≥ 〈AX, AX〉 ≥ a2〈X, X〉.

For the proof of this lemma, see [24].

Preliminaries. The proof of Theorem 2.1 is based on the instability criterion
created by Krasovskiii [10]. According to these criteria it is necessary to show
that there exists a continuously differentiable function V (X, Y, Z) which has the
following there properties:

(P1) In every neighbourhood of (0, 0, 0) there exists a point (ξ, η, ζ) such that
V (ξ, η, ζ) > 0,

(P2) The time derivative d
dtV (X, Y, Z) along solution path of (1.2) is positive-

semidefinite,
(P3) The only solution (X(t), Y (t), Z(t)) of (1.2) which satisfies

V̇ (X(t), Y (t), Z(t)) = 0 (t ≥ 0)

is the trivial solution (0, 0, 0).

Since the zero solution of (1.2) is isolated, the existence of a function V with the
properties (P1), (P2), (P3) is sufficient for the instability of the trivial solution of
(1.2).

Proof of the Theorem 2.1. Consider the continuously differentiable function

V (X, Y, Z) = −
∫ 1

0

〈F (σY )Y,X〉dσ −
∫ 1

0

〈σG(σX)X, X〉dσ − 〈X, Z〉+
1
2
〈Y, Y 〉,

(2.1)
which also plays an essential role in the proof of Theorem 2.2. It is clear that

V (0, ε, 0) =
1
2
〈ε, ε〉 =

1
2
‖ε‖2 > 0

for all arbitrary ε ∈ Rn , ε 6= 0. So, in every neighbourhood of (0, 0, 0) there exists
a point (ξ, η, ζ) such that V (ξ, η, ζ) > 0 for all ξ, η and ζ in Rn. Hence V has the
property (P1).

Now let

(X, Y, Z) = (X(t), Y (t), Z(t))

be any solution of (1.2). An elementary differentiation from (1.2) and (2.1) yields

V̇ (t) =
d

dt
V (X(t), Y (t), Z(t))

= − d

dt

∫ 1

0

〈F (σY )Y, X〉dσ − d

dt

∫ 1

0

〈σG(σX)X, X〉dσ

− 〈Y,Z〉+ 〈X, F (Y )Z〉+ 〈X, G(X)Y 〉+ 〈X, H(X, Y, Z)〉+ 〈Y, Z〉 .

(2.2)
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Note that
d

dt

∫ 1

0

σ〈G(σX)X, X〉dσ

=
∫ 1

0

〈σG(σX)Y,X〉dσ +
∫ 1

0

σ2〈JG(σX)XY,X〉dσ +
∫ 1

0

σ〈G(σX)X, Y 〉dσ

=
∫ 1

0

〈σG(σX)Y,X〉dσ +
∫ 1

0

σ
∂

∂σ
〈σG(σX)Y,X〉dσ

= σ2〈G(σX)Y, X〉
∣∣1
0

= 〈G(X)Y,X〉.
(2.3)

and
d

dt

∫ 1

0

〈F (σY )Y, X〉dσ

=
d

dt

∫ 1

0

〈F (σY )X, Y 〉dσ

=
∫ 1

0

〈F (σY )X, Z〉dσ +
∫ 1

0

σ〈JF (σY )XZ, Y 〉dσ +
∫ 1

0

〈F (σY )Y, Y 〉dσ

=
∫ 1

0

〈F (σY )X, Z〉dσ +
∫ 1

0

σ
∂

∂σ
〈F (σY )X, Z〉dσ +

∫ 1

0

〈F (σY )Y, Y 〉dσ

= σ〈F (σY )X, Z〉
∣∣1
0

+
∫ 1

0

〈F (σY )Y, Y 〉dσ

= 〈F (Y )X, Z〉+
∫ 1

0

〈F (σY )Y, Y 〉dσ.

(2.4)

Using estimates (2.3) and (2.4) in (2.2), we obtain

V̇ = −
∫ 1

0

〈F (σY )Y, Y 〉dσ + 〈X, H(X, Y, Z)〉.

From (i) and (ii), V̇ (t) ≥ 0 for all X, Y, Z. Therefore, V̇ (t) is positive-semidefinite
so that the property (P2) holds.

Again by (i) and (ii) it is clear that

V̇ (X(t), Y (t), Z(t)) = 0 (t ≥ 0)

implies X = 0 for all t ≥ 0. So by (1.2), we have

Y ≡ Ẋ = 0, Z ≡ Ẏ = 0, Ż = 0 for all t ≥ 0.

Thus V̇ (x, y, z) = 0 (t ≥ 0) implies

(X(t), Y (t), Z(t)) = (0, 0, 0) for all t ≥ 0,

which proves the property (P3).
Hence, the function V has the Krasovskii’s properties (P1)-(P3), which completes

the proof of Theorem 2.1.

Proof of Theorem 2.2. To prove the theorem it is sufficient to show that every
ω-periodic solution (X(t), Y (t), Z(t)) of (1.2), that is (X(t), Y (t), Z(t)) = (X(t +
ω), Y (t + ω), Z(t + ω)), satisfies

(X(t), Y (t), Z(t)) = (0, 0, 0) for all t. (2.5)
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To verify (2.5), again we employ the function V (X, Y, Z) which is defined by (2.1).
Let (X1, Y1, Z1) ≡ (X1(t), Y1(t), Z1(t)) be an arbitrary ω-periodic solution of (1.2)
and consider the function V (t) ≡ V (X1(t), Y1(t), Z1(t)) corresponding to this solu-
tion. Differentiating V (t), we have

V̇ (t) = −
∫ 1

0

〈F (σY1)Y1, Y1〉dσ + 〈X1,H(X1, Y1, Z1)〉. (2.6)

By (i) and (ii),
V̇ (t) ≥ 0 (2.7)

for all t which implies V (t) is monotone in t. Since V (t) is monotone and periodic,
it must be constant. Therefore,

V̇ (t) = 0 for all t. (2.8)

Considering (2.6) and (2.8) together, and then using (i) and (ii) we obtain

X1 = 0 for all t. (2.9)

Because of Ẋ1 = Y1 and Ẏ1 = Z1, (2.9) in turn implies that

Ẋ1 = Y1 = Z1 = Ż1 = 0 for all t. (2.10)

Hence, we get
(X1(t), Y1(t), Z1(t)) = (0, 0, 0)for all t

which completes the proof.

Remark. Our results give n-dimensional extensions for the results established in
[4].
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