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ABSTRACT 

 

Electricity grid complexity, together with diversity of critical infrastructures (CIs) 

such as generating units, transportation network, etc. are increasingly driving a 

complicated network that is vulnerable to unpredictable hazards. Disruptive events, 

whether they are natural catastrophes like floods, hurricanes, thunderstorms, or malicious 

cyber-physical attacks or even human-caused faults may have significant impacts on such 

real-time complex power networks composed of numerous interconnected structural and 

functional components. Because in the electric power grid, the electricity generated by 

large-scale power plants is transferred to a variety of commercial, industrial and 

residential customers via distribution and transmission networks, it can be disrupted over 

a vast geographical area when an unpredictable disaster occurs. From the 1980’s to 2014, 

both the frequency and intensity of weather-caused grid outages have been trending 

higher. For instance, due to a hurricane in 2008, more than 2.8 million 

residential/industrial customers in the Greater Houston area were affected by power 

outages, which lasted from a few days to several weeks, resulting in losses estimated at 

$24.9 billion to the U.S. government. With such drastic changes of weather conditions, 

the risk associated with transmission line insulation breakdowns may increase and power 

transformers (and other components) may be stressed and overloaded. Such faults may 

impose a risk to electric safety due to high fault currents, exposed faulted conductors, or 

other unsafe conditions. Therefore, having a proper and predictive resilience-based 
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strategy and corrective plans for dealing with the aftermath of such fatal phenomena is of 

great concern for electric utilities nationwide. 

The task of improving resiliency of the electricity grid in the face of emergencies 

is challenging. While the term “resilience” is increasingly used in research articles, 

government documents, and the media, specific research focuses are still needed on 

quantifying the concept of resilience and making it usable in practice. Planning for 

enhanced system resilience has not been well explored, especially in the context of power 

transmission systems, and thus attention needs to focus on allocation of tangible 

resources, tradeoffs among various dimensions of system resilience, the relationship 

between community resilience and that of the built environment, and data-driven 

standards ensuring resilience. 

There is a national push to model the electric grid in a smarter way as well as to 

introduce advanced technologies and control mechanisms into grid operations. One 

aspect of the smart grid aims at making better use of the current infrastructure. System 

operators may have the opportunity to harness the flexibility of the transmission system 

topology by temporarily removing transmission lines out of the system under authorized 

power system topology control, often called transmission line switching (TLS). By 

changing the way that electricity flows through the system, TLS can be employed either 

in emergency scenarios -to alleviate voltage violations, congestions and overloading 

conditions, and even load shed recovery-, or during normal operating conditions for 

higher economic benefits or loss improvements. 
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This research proposes a resilience-based smart grid application of harnessing the 

full control of transmission assets in the case of emergency scenarios, and the associated 

practical considerations aiming at improving preparedness and mitigation of the electric 

safety risks. Using resilience options concluded in this study, plans could be developed 

ahead of disruption time to provide operators with the opportunity to make the right 

decision at the time of disturbances. 
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1. INTRODUCTION 

 

1.1 Problem Description 

Electricity fuels our existence. Living without electricity in today's technological 

world is difficult to imagine. The electric grid is considered as the backbone of modern 

societies and is one of the most challenging and large-scale human-built systems to date. 

The power grid is a complex, interconnected network of generation, transmission, 

distribution, control, and communication technologies decentralized through a vast range 

of geographical regions and, hence, is widely exposed to external threats. The electricity 

grid can be impacted by natural events including severe storms, hurricanes, earthquakes, 

etc. and/or by malicious events such as cyber or physical attacks, among others [1], [2]. 

Safeguarding the nation’s electric power grid and ensuring a reliable and affordable 

supply of energy are among the top priorities for the electric power industry. The electric 

sector’s approach to protection of the grid critical infrastructure is known as “defense-in-

depth,” which includes preparation, prevention, response, and recovery for a wide variety 

of credible hazards to electric grid operations [3], [4]. The industry commonly recognizes 

that it cannot protect all assets from all threats. Its priorities are, instead, focused on 

protecting the most critical grid components against the credible contingencies: to build 

in system survivability and to develop contingency plans for response and recovery when 

either human-made or natural phenomena adversely affect the grid operations [5].  

While well-known traditional reliability principles have been widely adopted in 

practice to have the grid operate securely and reliably under normal conditions and safely 

withstand credible contingencies (N-1 criterion), the concept of “resilience” to High 
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Impact Low Probability (HILP) incidents has remained less clarified and unfocused. 

HILP incidents include weather-driven natural disasters, as well as cyber security attacks 

with significant consequences. An example of an HILP event occurred on August 14, 

2003, when large portions of the United States and Canada experienced an electrical 

power blackout, resulting in loss of electric power for several days. The outage affected a 

large area with an estimated 50 million people who experienced the loss of electricity. 

Estimates of the total costs in the US ranged between 4 and 10 billion dollars [6]. 

Another possible threat to the power grid is cyber-physical attacks and the potential 

disastrous impacts on synchrophasors [7]-[10]. One most likely target for terrorists is the 

large-capacity centralized sources of power generation, as a loss of a mother generator 

would heavily cut the electrical capacity. Any disruption on major substations with high-

voltage transformers can also bring about the potentials for major electricity outages. 

In such emergency scenarios, portions of the electric power system can be 

adversely affected with a compromised electrical safety, exposing the network to risk 

under an unstable condition with some equipment out of service. As a consequence of 

such HILP events, strategic centers whose functionality heavily depend on the continued 

supply of electricity (e.g. health centers, military stations, nursing homes, manufacturers, 

etc.) are subject to disruptions that contribute to significant economic loss and, even 

worse, loss of life for many people in need of special health care and nursing facilities at 

homes or hospitals. The question is how we can revive the system performance following 

by a disruptive event to its desirable and normal working condition and thus, improve the 

resiliency of the system in the face of potentially harmful grid disruptions.  
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1.2 Current Research Gaps and Proposal Importance 

 
Many studies have been conducted on evaluating the reliability of bulk electric 

power systems and equipment; several metrics have been defined to measure the system 

and equipment reliability and maintainability over time [11]-[29]. However, the concept 

of reliability traditionally focuses on how to respond to several “known” and “credible” 

contingencies (outages) in the system. Reliability is mostly related to planning and 

maintaining electric operations under "N-1" scenarios, for instance, where "nodes" or 

"components" "fail" more or less one at a time (i.e., cascading), hopefully stopping 

cascading at one or two failures [30]-[33]. Thus reliability is largely about prevention, 

and less so about recovery. It is becoming more and more obvious that more attention is 

needed beyond the classical reliability-based view to have the lights on all the time. This 

need is evidenced by several catastrophic weather-caused grid outages, such as 

thunderstorms, hurricanes, heavy rain, etc. [34].  

A new concept that has recently attracted much research attention is to ensure the 

“system resiliency.” Resiliency is the concept actually referring to the act of system 

recovery and how fast one is able to restore a defected system back to its normal 

operating condition. In the case of disturbances in the electricity grid, which may actually 

originate from extreme weather conditions, malicious cyber-attacks, or even human-

caused faults, some parts of the system are out of service or some equipment might fail as 

a result. Within the context of the electric domain, and as the name implies, the word 

“resiliency” encompasses what actions need to be done to bring the electricity back as 

fast as possible and to have the load outages minimized [35], [36]. 

Resiliency may be thought of as planning and maintaining electric service under 
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circumstances where multiple "nodes" or "components" "fail" more or less 

simultaneously, such as in a storm, and where the "N-1" planning rapidly becomes 

ineffective or irrelevant. Resiliency is somewhat in contrast to reliability in that it is 

generally more about recovery and mitigation of consequences, and less about prevention 

[37]. 

Determining techniques for improving the resiliency of the electricity grid in the 

face of emergencies that take the electricity out of service for a while and push the whole 

system to instability is challenging. Previous studies on this concept are mostly focused 

on the fact that a power system or a part of the network is out of electricity, some 

equipment (transmission lines, transformers, or customers) are out of service for a while, 

and the authors are trying to improve the system resiliency by prioritizing the affected 

equipment in terms of their importance for system resiliency to minimize the cost and 

maximize the system performance. Thus, the restoration plans would be triggered starting 

from the equipment with the highest priority for system resilience down to the rest. This 

will lead the system to be restored back to its reliable and normal condition, through 

prioritized maintenance of the failed equipment, with minimum outage cost. 

 

1.3 Thesis Focuses  

 
The proposed approach in this thesis is different in methodology and perspective 

from the past research. Instead of positioning the operator in a reactive mode in response 

to outages, the suggested decision making tool would help ahead of time to devise 

restorative plans if a given contingency (outage) is expected to happen. In this context, 

weather forecasts and environmental patterns would help the operators to know in 
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advance what is probably going to happen in electric power systems. The work in this 

thesis is focused on improving the power system resiliency in case of emergencies 

through a known concept, called “topology control” through transmission line switching 

(TLS) actions. The suggested approach is to use the existent infrastructure, with 

minimum additional costs, to measure the resilience of the system by corrective TLS 

actions. By changing the topology of the system, the electricity flows change and there 

will be room for new operating states in the system that can recover the load outages very 

quickly. Imagine a system is working in its normal operating state and suddenly an 

unwanted disruption occurs that results in some equipment out of service. Contrary to 

what have been done in previous studies, such as to make a priority list of failed 

equipment based on system resiliency and plan accordingly, the idea is to take out some 

additional elements in the system (here transmission lines), changing the system 

topology, trying to recover the outages, and measuring the system resiliency by rerouting 

the flow in the system. Finally, a resilience-benefit analysis would be pursued to find the 

optimal TLS solution. The operator can then decide which options are the best at the 

moment to gain the highest resilience and impede the extra cost of lost equipment. This 

methodology is applicable when the extreme weather forecast or any other disruptions are 

expected. 
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2.  LITERATURE SURVEY 

 

2.1 Hazards in Electric Power System Delivery and Associated Consequences 

2.1.1 Vulnerabilities in the Electric Power System 

The power system is composed of extraordinarily interconnected components 

such as transmission and distribution lines, generators, transformers, and control centers 

that are decentralized through a vast number of regions. It is considered as the backbone 

of modern societies and one of the most challenging physical networks due to its complex 

interconnections which make it more vulnerable to possible hazards [1]. Disruptive 

events, whether they are natural catastrophes, e.g., floods, hurricanes, thunderstorms, etc., 

or malicious cyber-attacks or even human-caused faults, may have significant impacts on 

real-time complex power networks composed of numerous interconnected structural and 

functional components. Those emergencies may place the power system in danger, 

disable utilities (generation, transmission and distribution), and endanger lives. In the 

U.S, the infrastructure is extremely dependent on the existence of electricity, and any 

kinds of vulnerabilities in the electric power network results in much more impact 

beyond just keeping the lights turned on, affecting all other aspects of the life e.g. 

economic system, health centers, military stations, fueling infrastructure, data centers, 

and so on [38].  

Figure 1 illustrates the typical power system topology and its vulnerability to  
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Figure 1. Power system topology and its associated vulnerabilities. 

 

possible hazards.  Today the power grid utilizes bulky central generation units which are 

located far from the customers. Using the transmission lines, the electricity is carried long 

distances. To maintain the voltage adjustment, the transformers are located near the 

power plants to increase the voltage level. Then, the voltage is reduced by the substation 

transformers near the end users and the power is carried into the distribution lines for 

delivery to end users. The main constraint is that unlike other forms of energy delivery 
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systems such as natural gas pipelines, electric power cannot simply be sent via specific 

transmission or distribution lines wherever the dispatchers want. In a power grid, the 

electric current flows based on a set of security laws and it needs to be continuously 

adjusted to maintain all components synchronized [39]. Since the power system is a 

complex network with many interconnected components, when electrical imbalances 

occur in the system, the corrections must be done immediately to prevent the possible 

cascading failures from producing a domino effect through the whole network. 

The power system is inherently vulnerable since it covers a vast range of area; 

transmission lines may span hundreds of miles and most critical facilities are unguarded. 

Moreover, many critical facilities and equipment are decades old and lack up-to-date 

technologies that could help mitigate outages. This puts the overall system in stress and 

increasingly vulnerable to the multiple failures that might follow, e.g. an organized attack 

on the power grid by terrorists that could adversely affect the interconnected facilities. If 

such large-scale extended power outages were to occur during times of severe weather 

conditions, they could also lead to hundreds of deaths due to heat stress or extended 

exposure to extreme cold. Following are discussed some of the vulnerabilities that a 

power system might face [38]. 

 Physical Vulnerability 

 Due to the vast geographical area the power system covers, disruption in the 

electric power supply can result from any problem in any part of the bulk power grid, 

including any failures in the transmission lines due to the collapsing of a small number of 

towers. Another vulnerable piece of equipment is large high-voltage transformer which 

can be targeted both from within and from outside the substations where they are located. 
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Usually, these transformers are custom-built, very large, and difficult to move if they 

need to be repaired following by a disruption. 

 Cyber Vulnerability 

 The power system heavily relies on high-speed communication and centralized 

automated control centers. One of the most critical pieces of equipment used in the power 

system is the Supervisory Control and Data Acquisition (SCADA) [40]-[44] and Phasor 

Measurement Units (PMU) [7]-[10] that gather the real time data from the bus stations 

and send that data to the control centers for further security analysis or monitoring of 

system stability. These SCADA and PMU systems are very vulnerable to cyber-attacks. 

Attention must be concentrated in this domain to make sure that the system is secured 

because if they are targeted they can easily be manipulated and transmit wrong data to the 

control centers and thus the operators might implement wrong actions based upon data 

they are trusting. These actions might lead to cascading failures if the operator did not 

notice that the system is being attacked. 

 Human Vulnerability 

 Workforce issues are significantly important to have a reliable supply of 

electricity, particularly if a terrorist action has occurred. Power system managers, 

operators, and line-crew are among the technical employees that must be carefully trained 

and be aware of their surrounding and responsibilities. Another problem is that it is hard 

to recruit enough new qualified workforce as many skilled engineers and technicians are 

close to being retired soon. 
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2.1.2 Electricity Outage Loss and Associated Consequences 

As discussed in the previous section, power systems are very vulnerable to 

predicted and unforeseen hazards. Among those hazards, weather-driven hazards are the 

most common events that the power system might face. Following are some of the 

recently reported electricity outages and their consequences: 

On August 14, 2003, large portions of the United States and Canada experienced 

an electrical power blackout, resulting in loss of electric power for days. Triggered by an 

environmental phenomenon -falling down trees on the power lines-, the outage affected a 

large area with an estimated 50 million people experiencing the loss of electricity. 

Estimates of the total costs in the United States ranged between 4 and 10 billion dollars 

[6] . In another case, in 2008, more than 2.8 million residential/industrial customers in the 

Greater Houston area were affected by power outages due to a hurricane, lasting to 

electricity outages of a few days to several weeks. This outage resulted in a huge 

financial loss estimated at $24.9 billion to the U.S. government [45]. During 2011 in the 

U.S., severe weather events resulted in huge economic losses approximating $55 billion. 

Fourteen of these events, each resulted in more than $1 billion in damages [38]. Figure 2 

illustrates the statistics of the severe weather–driven HILP phenomena in 2014 and its 

global consequences regarding the extent, frequency, and duration of power outage [46]. 
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(a) Electricity outage duration 

 

 

(b) Electricity outage frequency 
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(c) Electricity outage consequence 

Figure 2. Power outage statistics of HILP events in 2014. 

 

 Table 1 presents the statistics of the electricity outages regarding the number of 

the people affected, the outage frequency, and the outage duration only in the U.S. in 

2015 [47].  

 

Table 1. U.S. Electric Power Outages in 2015 

 
Total Number of People 

Affected by Power Outages 

Duration Outage 

(Minutes) 

Number of 

Outages 

Average Outage 

Duration (Minutes) 

Average People 

Affected per Outage 

13,263,473 175,821 3571 49 3714 

  

2.2 Power System Resilience 

 Power systems are traditionally reliable during normal conditions and predictable 

incidents, but may not be adequately resilient to high-impact low-probability (HILP) 
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events, such as severe weather phenomena and natural hazards. The term “resilience” is 

increasingly used in research journals, government documents, and the media, but work 

still remains on making resilience assessment usable. Methods for resilience planning are 

still a relatively unexplored area, including tangible resource allocation models, tradeoffs 

among the dimensions of resilience, the relationship between community resilience and 

the resilience of the built environment, and data-driven standards ensuring resilience. 

Resiliency is an ability for a grid (either macro grid or micro grid) to restore itself, 

with little or no human intervention, to normal, reliable operations from any disturbances, 

outages, or blackouts. Resiliency should be enabled by advanced smart hardware and 

software technologies as well as streamlined processes [37]. One significant step in 

evolving the desired safety culture is to expand the operator’s awareness of electrical 

hazards across the system and focus on the recognition of when the system is, or may be, 

exposed to potential electrical hazard. Moreover, the operator’s awareness of weather-

driven hazards to make a right decision effectively in response to the predicted ones is 

indispensable. 

Most of these approaches to resilience interpretation and definition include 

aspects of a system withstanding disturbances, adapting to the disruption, and recovering 

from the state of reduced performance. Some of the recent efforts in resilience concepts 

are addressed as following: 

In [48] a hierarchical outage management strategy is proposed to improve the 

resilience of a distribution system comprised of multi-microgrids against unforeseen 

emergencies. In this regard, having identified the essential elements and requirements for 

a resilient outage management scheme, a comprehensive framework is implemented and 
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the roles and tasks of various management entities in a multi-microgrids power system 

are presented. In this case, by using a predictive control-based module the availability of 

all the resources will be properly scheduled in the first stage. In the second stage, the 

operator manages the possible power flow transfers among the microgrids and exploits 

the available capacities of microgrids’ resources for feeding the unserved loads in stage I. 

The target optimization equation is formulated as a mixed integer linear programming 

(MILP) problem and finally an index is introduced to quantify the performance of the 

proposed method. 

To increase the resilience of the power distribution system, an optimal hardening 

strategy is defined to protect against extreme weather conditions in [49]. This paper has 

used different grid hardening strategies, such as poles upgrading and vegetation 

management. A tri-level optimization algorithm is used to minimize both grid hardening 

cost and load shedding in extreme weather-driven events.  In this regard, the first level is 

to find vulnerable distribution lines and select the corresponding hardening strategies, the 

second level is to identify the set of damaged distribution lines so that the loss caused by 

extreme weather events is maximized, and the last stage is to minimize the load shedding 

cost through the corrective prioritization of load and the set of out-of-service lines.  

In [50], an effective decision-making algorithm is devised to minimize the cost of 

generation, customer load interruptions and restoration operation with the goal of 

proactive restoration plan improvement. In this paper, the authors presented a resource 

management model for repair and restoration of potential outages to the power system 

infrastructure. The goal is to minimize potential damages to power system infrastructure 

in a cost-effective manner. Finally, the results are verified through the standard IEEE 
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118-bus system.  

Reference [51] focuses on the impact of severe weather to the resilience of power 

systems. To quantify the effect of the stochastic nature of weather parameters, a 

sequential Monte-Carlo-based time-series simulation model is introduced and the 

resilience of critical power system infrastructure is evaluated and tested using the IEEE 

6-bus test system.  

A supporting theory for enhancing resiliency of the critical electric power 

infrastructure in response to the likelihood of natural disasters is investigated in [52]. 

Three models are used to expedite the restoration process with the goal of minimizing the 

associated economic and physical disruptions. First, the outage model is conducted to 

illustrate the impact of weather-driven hazards such as a hurricane on power system 

components. Second, a resource allocation analysis is done and finally a deterministic 

post-hurricane recovery model is considered for managing the resources. 

Reference [53] has described an approach for assessing the real-time operational 

resilience of power systems taking into account the impact of both weather and loading 

conditions, with focus on the impact of these system conditions on the failure probability 

of transmission lines. Operational resilience assessment refers here to the evaluation of 

power systems resilience by considering the effect of the real-time operating conditions 

that the system experiences. 

A multi-systems joint restoration model to support interdependent systems’ 

resilience assessment has been addressed in [54]. This paper provides a framework to 

assess interdependent systems’ resilience and suggests optimum joint restoration 

sequences of interdependent systems, which is claimed as an effective strategy for rapid 
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restoration and infrastructure resilience enhancement. 

In [55], a new definition of system resilience and a resilience optimization 

framework are presented, then two network components importance measures are 

suggested, namely, the optimal repair time and the resilience reduction worth, beneficial 

for prioritizing restoration activities. The two measures quantify: 1) the failed 

components that should be repaired into the system are prioritized, and 2) the potential 

loss due to likelihood time delay in repairing of failed elements in the optimal system 

resilience is considered. This paper exploited a Monte Carlo-based method due to the 

stochastic nature of disruptive incidents and a probabilistic ranking approach using the 

Copeland's pairwise aggregation model to rank components’ importance. This study is 

implemented using the IEEE 30-bus test system. 

Fragility modelling, impact assessment and adaptation measures for power system 

resilience to extreme weather conditions are studied in [56]. Assessment of the resilience 

of transmission networks to extreme wind events is explored in [57], in which a 

sequential Monte Carlo based time-series model for evaluating the effect of weather on 

power system components is utilized, with focus on the wind impact on transmission 

lines and towers. Risk-based defensive islanding is suggested in [58] to boost the power 

grid resilience to extreme weather events, aiming to adaptively mitigate the cascading 

effects that may occur during weather emergencies. The resilience and flexibility of 

power systems to future demand and supply scenarios is studied in [59], where two case 

studies are reported for the Great Britain transmission network and the Cyprus network. 

The concept of demand-side resiliency through deployment of distributed energy 

resources (DER) including onsite generating units, batteries, and microgrids to enable 
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electricity consumers to continue electricity use during power outages is investigated in 

[60]-[71]. Several time-dependent metrics for quantification of operational and 

infrastructure resilience in power systems are introduced in [72] where additional insights 

are provided to capture the degradation and recovery features of critical infrastructures in 

face of weather threats.  

Proactive preparedness to cope with extreme weather events through resilience-

oriented pre-hurricane resource allocation in power distribution systems is proposed in 

[73] using a new mixed-integer stochastic non-linear program. A heuristic to obtain the 

allocation plan by solving a MILP is also suggested and the impacts of resource 

transportation costs, initial distribution of electric buses, and hurricane severity on the 

allocation plans are discussed. The concepts, metrics, and a quantitative framework for 

power system resilience evaluation are suggested in [37], where a load restoration 

framework based on the smart distribution technologies is proposed. The concept of 

networked microgrids for enhanced power system resilience against extreme events is 

introduced in [74], through which an appropriate timely response would be possible in 

emergency conditions. In this study, metrics of the advanced information and 

communication technologies (ICTs) in microgrid-based distributed systems to support the 

power system resilience are proposed.  

Technologies for early warning systems for timely prediction of disastrous 

weather outages are proposed in [74] and [76] to further enhance the system resilience by 

the use of effective remedial actions and preparedness in the face of severe weather-

driven threats. In order to fulfill an effective emergency plan, reference [77] suggested a 

stochastic integer program aimed at finding the optimal schedule for inspection, damage 
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evaluation, and repair in post-earthquake restoration of electric power systems with the 

objective of minimizing the consumers’ outage duration. Approaches for joint damage 

assessment and restoration of power systems in face of natural disasters are suggested in 

[78] which include an online stochastic combinatorial optimization algorithm to 

dynamically update the restoration decisions after visiting each potentially damaged 

location, a two-stage method to evaluate the damage severity and then pursue the 

restoration plans, and a hybrid algorithm of both approaches that simultaneously 

considers both the damage assessment and system restoration plans. A general multi-

objective linear-integer spatial optimization model for arcs and nodes restoration of 

disrupted networked infrastructure after a disaster is proposed in [79], in which the 

tradeoff between the problem objectives (e.g., system flow maximization and system cost 

minimization) could be optimally captured. An integrated network design and scheduling 

problem for restoration of the interdependent civil infrastructures was proposed in [80] 

through integer programming and was implemented on a realistic dataset of power 

infrastructure corresponding to Lower Manhattan in New York City and New Hanover 

County, North Carolina. Reference [81] investigated the challenges on how to schedule 

and allocate the routes to fleets of repair crews to recover the damaged power system in a 

timely manner. Extension of this work was presented in [82] through deployment of a 

randomized adaptive vehicle decomposition technique in order to improve the scalability 

of the model for large-scale disaster restoration of power networks with more than 24,000 

components. A comprehensive survey of models and algorithms for emergency response 

logistics in electric distribution systems, including reliability planning with fault 

considerations and contingency planning models was presented in [83] and [84]. 
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Many of the methods presented in this section could either mitigate the amount of 

loss outages or could even convert the attack that could lead to significant outages in a 

wide-range area into one with less damage potential. Cascading failures would be limited 

through isolating the affected areas from the other parts of the system. The damage 

intensity would be mitigated by a variety of means such as enhancing the system 

robustness; improving physical and cyber protections to critical parts of the system, 

and/or immunization of the system through splitting the system into microgrids. 

 

2.3 Applications of Electricity Network Reconfiguration 

2.3.1 Emergency Operating Scenarios 

 The TLS approach was employed in 1980s, as an efficient remedy to enhance 

system reliability and mitigate severe operating conditions such as line overloads, voltage 

violations, etc. [85]-[87]. While the benefits of harnessing the control of transmission 

lines have been acknowledged by previous research, the flexibility of the transmission 

grid to co-optimize the generation re-dispatch together with the network topology during 

steady-state operations has not been considered.  Reference [88] provides an overview of 

the application of TLS as a corrective tool in response to a possible contingency. The 

problem formulation is further discussed and a comprehensive overview of the search 

technique to solve the problem is provided. Reference [86] proposes a method to alleviate 

line overloading due to any contingencies through utilizing transmission switching as a 

corrective framework. This method uses a heuristic technique which does not consider all 

TLS solutions and the effect of co-optimization of generation and the network 
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reconfiguration. To find the best switching plan with the optimal number of the switching 

action iteration, a new technique was proposed in [89], which employs a sparse inverse 

algorithm. Reference [90] uses a binary integer programming technique to use switching 

actions as corrective approach to ease voltage violation and line overloads. A mixed 

integer linear program is proposed in [91], which determines the optimal transmission 

topology with the goal of minimizing the system losses, without taking into consideration 

co-optimizing the generation along with the transmission topology. The application of 

TLS with the goal of load-shed recovery in case of severe contingencies is investigated in 

[92] and [93]; A probabilistic robust optimization technique considering various 

uncertainties is utilized in [94] for corrective and in [95] for economic application of 

TLS, respectively. The authors claimed that all the solutions from the output of the 

research are feasible considering the worse uncertainty scenarios for the range of system 

operational states. References [96] and [97] used a real-time contingency analysis to 

address the scalability concerns of corrective TLS implementation on system reliability 

improvement in real-world large-scale networks. 

 The effect of TLS implementation on system transient stability requirements is 

addressed in [98], where application of TLS is considered as one of the last steps before 

the system collapses. In particular, this study proposes a dynamic corrective TLS strategy 

by taking into consideration the right time that TLS should be applied to ensure the 

system stability. The stability concerns of practical TLS implementations such as 

maintaining the system security margins and online stability checking are considered in 

[99]. The authors in [100] suggested a decomposition technique to solve the optimal 

transmission system reconfiguration taking into consideration the transient stability 
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constraints. The impact of TLS applications in ensuring the N-1 reliability criterion and 

system stability requirements is investigated in [101]. More specifically, in this research, 

both the reliability and stability concerns of the robust corrective network reconfiguration 

formulation and solutions are explored. 

2.3.2 Normal Operating Scenario 

Co-optimizing the network topology with the generation dispatch creates the 

opportunity for the operator to simultaneously select the network topology with the 

proper generation unit. Being able to do the network topology optimization, the 

corresponding operator can not only choose any dispatch solution that is given in the 

original topology, but can also select further dispatch solutions that are feasible for other 

topologies. Needless to note that a generation dispatch solution is feasible just for one 

specific topology but not for a different topology since as topology changes, the power 

flow adjust itself in a new meshed network due to the Kirchhoff’s laws. As a result, a 

variety of feasible dispatch solutions are generated by co-optimizing the generation with 

the network topology. The concept of harnessing the grid topology through TLS actions, 

coupled with generation dispatch optimization for the main sake of economic benefits has 

also been introduced and investigated in the literature [102], [103] .  

The theory of dispatchable networks was first introduced in [102] where the 

dispatchable transmission rights were discussed to benefit the electricity market with 

greater economic efficiency and competition. Subsequently, optimal transmission line 

switching, was introduced for the main sake of gaining higher economic benefit in [104]. 

This research modeled a DCOPF formulation as a mixed integer programming (MIP) 

problem, and numerically analyzed the problem under different system loading 
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conditions. Reference [103] made an extension on the work in [104] by conducting 

sensitivity analysis to see the impact of TLS implementation in normal operating 

condition on the nodal prices, load payments, generation revenues, and congestion rents. 

The realization of economic efficiency and market implications of the TLS actions along 

with the optimized generation dispatches are additionally studied in [105]. The N-1 

reliable DCOPF-based topology control is investigated in [106], where TLS solutions are 

found in IEEE 118-bus and Reliability Test System (RTS) 96-test cases satisfying the N-

1 standards while providing a considerable operation cost savings. Analyzing the grid 

controllability using TLS optimizations is investigated in [107] through multi-period N-1 

reliable unit commitment equipped with TLS technology based on the duality concepts. 

The idea of having smart flexible transmission and flowgate bidding is discussed in [108] 

in which the TLS approach is applied allowing the network transmission line flows to 

surpass their rated capacity for a short period for a pre-specified regulatory penalty.  

Because in large-scale systems iterating between DC-based topology control 

algorithms and AC power flow validation of TLS solutions may become intractable, AC-

based topology control algorithms are proposed in [109] and implemented on a real-size 

power system through a Pennsylvania, Jersey, and Maryland (PJM) historical data case 

study. The impact of power system topology control assessment on system reliability 

performance is investigated in [110] to help the operator select the best economically 

TLS solutions under both DC and AC settings. Furthermore, the application of TLS in 

power systems under the normal scenario with the goal of getting economical TLS 

solution is analyzed in [111]. This study used a probabilistic method to evaluate the 

system migration to the system alert and emergency operating state following the TLS 
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actions and assessed the reliability concerns of TLS decision making. 

There are additional literature that have addressed other concerns regarding the 

TLS implementation: real-world TLS practical concerns and impact of frequent TLS 

implementation on circuit breaker reliability are investigated in [112]-[113]. Scalability 

issues of TLS implementation and the economic TLS solutions of the power systems are 

tested in [109], [114], and [115] for PJM transmission system, [116] for European 

electricity grid, [117] for ISO-New England, and [96] for Tennessee Valley Authority 

(TVA) and Electric Reliability Council Of Texas (ERCOT) networks. In [118], a 

decomposition optimization method, namely Alternating Direction Method of Multipliers 

(ADMM), is proposed to solve the scalability concerns of the TLS formulations for real-

world large-scale power networks and some TLS solutions with lower computational cost 

are suggested.  

Finally yet importantly, much literature has addressed the computational 

complexity of the TLS optimization problems aiming to find new algorithms to advance 

optimization technique and reduce the computational costs. In [119], a biddable dynamic 

TLS implementation integrated with the Optimal Power Flow (OPF) problem based on 

heuristic control approaches is introduced, through which it is claimed that the 

computational burden is improved up to four times better than the similar approaches in 

previous researches. Reference [120] suggested two heuristics relaying on the 

transmission line ranking parameters for the computational complexity enhancement of 

the TLS optimization problems. The first one solves a sequence of Linear Programming 

(LPs) equations removing one transmission line at a time and the other solves a sequence 

of Mixed integer programming (MIPs) formulations removing one transmission line at a 
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time but with fewer binary variables. Tractable transmission control strategies that 

contain the sensitivity information from the economic dispatch optimizations to select the 

optimal number of transmission lines sequences are proposed in [121]. The application of 

LPs approximation to the current Alternative Current Optimal Power Flow (ACOPF)-

based TLS formulations is explored in [122], where the TLS results shown much faster 

than the conventional nonlinear ACOPF-based formulations and yet with adequate 

accuracy. 
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3.  POWER SYSTEM RESILIENCE 

 

3.1 On the Concept of Resilience 

Resilience is defined as the flexible ability of the system to reliably restore itself, 

with minimum human intervention, to its normal operating state following by any 

disturbances, outages, or blackouts [123], [124]. The concept of “resilience” mainly 

considers the unforeseen extreme failures of HILP nature, which cause huge damages and 

loss to the system, while the concept of “reliability” takes into account credible and most 

probable contingencies. Within the scope of engineering system resilience, it is always 

crucial to think about the challenges associated with both restoration and repair process in 

response to an electricity outage. For an outage of limited scale and consequence, the 

restoration process can be rapidly conducted, which will then allow sufficient time for the 

repair to bring the system back to its full operability. On the other hand, in widespread 

HILP outages, restoration itself may be a significant barrier. Metrics for the definition of 

power system resilience have not been efficiently explored yet. The most recently used 

terminologies for resilience are risk, hazard, vulnerability, and robustness [125], [126] 

which are discussed in Chapter 2. 

Figure 3 illustrates the notion of resilience in case of disturbances and 

corresponding indicators. The functional definition of resilience can be represented using 

categorized districts of this curve as follows [127].  
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Figure 3. System interaction states in the face of a critical HILP disruption. 

 
 

I. Phase 1: Normal State 

During the normal operating state ( 0 it t t  ), the system fully functions as 

expected. The main concern in dealing with a power system in this interval is 

continuous assurance of the grid stability and reliability. Having a sufficient estimation 

of the possible threats and predictive actions accurately planned could enhance the pre-

disturbance resilience of the grid in case a contingency happens. 

II. Phase 2: Disruption State 

At the incident time ti, an extreme HILP event strikes the system, affecting the 

grid with one (or several) component(s) out of the service resulting in degradation of 

the system performance ( i dt t t  ). The level of performance reduction depends on the 

outage severity and system architectural design where the concepts of robustness and 

asset utilization matter. Robust grids regarding connectivity and resourcefulness, 

supported by smart grid technologies, can benefit from the operational flexibility 
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required for limiting the resilience degradation when the disturbance is in progress 

during i dt t t  .    

III. Phase 3: Preparation State: 

The system operators conduct a fast damage assessment in this state (
d pt t t  ) to 

initiate the crew management plans, corrective actions (such as generation re-dispatch, 

repair and corrective maintenance, defensive islanding, etc.). 

IV. Phase 4: Recovery/ Repair State: 

It is considered as the process of restoring the system performance back to its 

normal and stable state ( p rt t t  ). How fast the system resilience can be improved to 

its maximum level mainly depends on the network connectivity and flexibility, 

disturbance severity, recovery plans taken, and the operators’ training. When the 

system restores from the disruptive event in the post-disturbance state ( rt t ), the 

impacts of the disruption on the system performance and resilience need to be assessed 

and fully analyzed. Such studies allow design and development of adaptive plans that 

can be taken to enhance the resilience of the critical infrastructure during similar 

unforeseen events that may happen in future. 

3.2 Task Management for Power System Resilience Improvement 

Under the resilience premises, Figure 4 demonstrates the critical task management 

chart for system resilience in the face of a disruptive event. Following steps should be 

considered to ensure the safety and resilience of the grid against disruptions. 

 Identifying the Goals and Metrics: 

To maximize the grid resilience and minimize the load outages following a 
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contingency, the first step is to define the metrics for quantifying the system resilience. 

 Characterizing the Threats: 

One significant step in evolving the system to a desired safety and resilience 

culture is to expand the operators’ awareness of electrical hazards across the system 

(arisen from natural disasters, cyber-attacks, human faults, etc.) and focus on how to 

make a right decision in a timely manner in response to the predicted vulnerabilities and 

outages. 

 Grid Vulnerability and Risk Assessment: 

A quantification method based on risk analysis should be attempted to understand 

the grid operational and infrastructure vulnerability in the face of the hazardous threats 

with the imposed consequence metrics assessed. 

 Operational Recovery Decision Making: 

Depending on the type and severity of the hazards and the risk metrics quantified, 

an optimal recovery model should be selected and implemented. A recovery model can 

include the corrective maintenance actions, replacement of damaged equipment, or 

operational decisions that use the inherent built-in flexibility of the grid. 

 As demonstrated in Figure 4, the resilience of the electricity grid to disruptive 

events can be enhanced through strategic actions in two chronological paradigms as 

follows [127]: 
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Figure 4. Short-term and long-term plan management for enhanced resilience of power 

systems in the face of probable disruptions. 

 

 Long-Term Hardening: 

Due to the continuous exposure of the power grid to the external environment and 

hazardous conditions, it is crucial to plan for strengthening the network resilience over 

time and making design adjustments if needed. In so doing, the following strategies are 

reported in literature: power grid infrastructure upgrade [128]-[130]; tagging the 

components [131], [132]; vegetation management [133]; asset management [134], [135]; 

monitoring technologies [136]-[138], and crew training and education [139], [140] (see 

Figure 4.) 

 Short-Term Recovery: 

Short term recovery includes the temporary remedial solutions in response to a 

given contingency or threat in power systems. Outage statistics in 2015 reveal that only 

33.1% of firms worldwide owned or could share backup generators in case of 

emergencies [46]. A short-term recovery and restoration plan should be pre-planned to 
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reduce the outage duration through a faster restoration process. An efficient recovery plan 

should have the capability to bring the system back to its maximum performance by 

rapidly feeding the critical load points in a prioritized manner. 

Several metrics to quantify the grid resilience as well as a short-term mitigation 

algorithm for fast recovery of the load outages and enhanced resilience to extreme HILP 

conditions are suggested in Chapter 4. 
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4. PROPOSED METHODOLOGY 

       

4.1 Proposed Metrics for Power Grid Resilience 

This study considers several features of grid resilience grouped under two main 

concepts: (1) grid connectivity and robustness; (2) grid operational functionality. This 

thesis also proposes quantitative indices to measure the resilience performance of the grid 

in the face of disruptions. Such quantitative measures can also help in better comparing 

different recovery options and possible restoration plans (depending on how they affect 

the overall system safety and resilience), and hence, enhance the operator decision 

making. 

4.1.1 Metrics of Graph Spectral Robustness 

The power grid can be realized as a complex graph where the bus stations are 

considered as graph nodes and the transmission lines denote the connective lines between 

each graph node. Hence, to assure the grid robustness we are using the following metrics 

to evaluate the system resilience in the outcome of the case study, which will be 

discussed in Chapter 5. 

 

 Algebraic Connectivity Metric 

The topology of a graph G can be represented by the Laplacian matrix. Suppose   

 1 2, ,..., n   represents a non-decreasing vector of the eigenvalues of the Laplacian 

matrix. The algebraic connectivity is defined as the second smallest eigenvalue of the 

Laplacian matrix [141]. The grid robustness degree (in %) is presented in Equation 1. 
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where s denotes the system states. The index reflects the algebraic connectivity of the 

grid after any changes of network topology compared to the previous state of the grid. In 

other words, algebraic connectivity indicates the lower bound for grid link or node 

connections, where the higher the R , the better the graph connectivity will be. 

 Grid Sensitivity Metric 

It is a graph-oriented metric that quantifies the grid robustness against any 

topological changes and is calculated as follows: 
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where N is the number of nodes in the network (here buses); L+ is the Moore-Penrose 

inverse of the Laplacian matrix of the grid graph, and Trace (L+) is the sum of 

eigenvalues for a given grid topology. Note that a smaller value for R  reflects a higher 

grid robustness, as the network will be less sensitive to changes in its topology. To 

maximize the grid capacity, one should minimize the node/link criticality of the network. 

This index can be used to quantify the system reaction to any changes in the network 

topology [142]. 

 Grid Resistance Metric 

This metric calculates the effective resistance of the grid against any changes in 

the grid elements and configuration, e.g., transmission line or node removal, and is 

defined as follows: 



 

33 

 

1

1

1N

i i

N







    (3) 

The following equation presents the normalized effective grid conductance, always with 

values within the [0, 1] interval, for better comparisons [143]: 
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(4) 

 

4.1.2 Metrics of System Operational Resilience 

 The main factors which the utilities are looking into are the operational metrics by 

which the operator can realize the impact of the corrective actions taken in the 

contingency analysis. The operational resilience metrics are suggested as follows [144] .   

 Grid Flexibility Metric 

It demonstrates the level of system resourcefulness, enabling a faster recovery 

process. Network flexibility depends on the components’ connectivity and the level of 

dependency to other elements. In a system with a sufficient number of generating units 

accessible to many load points, the re-dispatch process and corrective actions could be 

co-optimized as a temporary remedial solution for stabilizing the system facing a 

contingency. Moreover, the higher access to dispersed generating units, storage units, and 

fast-start units can be of great help in realizing a faster recovery process. The flexibility 

index is defined as the ratio of the system’s level of performance following each recovery 

action to that of the system’s normal condition. In other words, it is defined here as the 

amount of served demand following each recovery solution divided by the system’s total 

demand to be met. 
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where, |

,n

t

d iP 
  is the active power demand at load point n after the recovery action i in 

response to the disruptive event   at time t, and  T

dP  is the target active power demand of 

the system in its normal and pre-disaster operating condition. 

 Outage Recovery Value Metric: 

A resilient system should be able to minimize the electricity outage costs, i.e., the 

amount of total customer interruption costs that should be retrieved after each corrective 

action. It depends on the type of customers (residential, industrial, commercial, etc.) that 

are disturbed and should be recovered through the restoration plans. The proposed metric 

to quantify the outage cost recovery is as follows: 
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where, 
ndC is the value of the lost load d at load point “n” (in $/kWh) and 

|

,n

t

d iP 
 is the 

active power demand (MW) at load point n after implementation of the recovery plan i in 

response to a disruptive event   at time t. 

 Outage Capacity Recovery: 

In most cases in many engineering disciplines, the most significant resilience 

metrics involve how fast a recovery action can restore the interrupted function. The 

outage capacity recovery (in MW) determines the power capacity that could be restored 

through the recovery process within a certain time interval. In other words, the suggested 

index indicates the percentage of the recovered demand in each recovery step compared 

to the total demand lost following a disruptive event and can be quantified in (7): 
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where 
|d

n

t

dP   is the active power demand (MW) at load point n at the end of the disruption 

time dt . 

 

4.2      Network Reconfiguration for Enhanced Resilience 

 Having faced an attack or disruption, the main focus for an electric utility is to 

restore the power to its customers. Many of the next steps are similar to those taken in 

response to a severe natural disaster i.e. damage identification, cleaning process, repair 

equipment and power outage restoration. Unlike some of the other threats, cyber-attacks 

may happen with no warning and destroy the key components. Some of these failed 

components may take days to weeks to replace. Physical protection of the components, 

boosting hardening strategies and improving electronic surveillance might help deter an 

attack. Training the operators and other workers to fully recognize and react to any 

possible major disruptions will be of great importance to limit the extent of outages and 

further cascading damages as well. Since it is impossible to completely eliminate all 

possible modes of failures, the utilities’ managers should have a resilient plan to keep the 

major facilities operating in the event of power outages or at least restore the outages as 

soon as possible. 

There are two challenging issues with most of the past works: (1) as it is hard to 

predict any form of hazards or contingency precisely, dispersed generation and storage 

units, whose allocation is planned previously, may not be readily available in the vicinity 
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of the affected area in a timely manner; (2) prioritizing the damaged equipment in terms 

of importance and criticality for system resilience to repair and/or replace may be time-

consuming, taking days to weeks, depending on the ability to bypass the failed 

substations or disrupted lines. This will lead the system to be restored back to its reliable 

and normal operating condition after the timely maintenance and replacement process. 

It has been demonstrated in the previous literature that the topological 

reconfiguration of the power transmission system, in normal non-emergency scenarios, 

may improve the efficiency of power system operations by re-routing the electricity 

system-wide and enabling re-dispatch of the lower-cost generators [111]. Moreover, 

power system topology control through transmission line switching (TLS) actions is 

proved to be an effective remedy in response to emergency conditions in power systems. 

By changing the way electricity flows in the network, harnessing the built-in flexibility of 

the transmission system through TLS helps mitigate the voltage and overflow violations, 

transformer overloads, network loss improvement, etc. [145]. 

This research suggests the use of topology control for enhanced network 

resilience. A resilience-based Direct Current Optimal Power Flow (DCOPF)-based 

corrective topology control optimization is suggested in this study for timely recovery of 

the load outages and enhancing the system resilience in the face of HILP disruptions. The 

suggested topology control optimization in DC setting (where bus voltages are assumed 

to be 1 per unit, and the reactive power is neglected) is a mixed integer linear 

programming (MILP) formulation. The optimization model tries to maximize the system 

resilience [see objective function (8)] through optimal scheduling of system generating 

units as well as network topology (transmission lines connectivity). A binary variable that 



 

37 

 

can take either 0 or 1 value is introduced for each transmission line in the network. The 

optimization output is the optimal resilience feature quantified as well as the optimal 

generating unit outputs and transmission line statuses. For demonstration purposes, the 

grid flexibility metric is utilized in this study to represent system resilience. As can be 

seen in (8), the optimization objective is to maximize the grid flexibility metric of 

resilience following a disruptive event at time t. The optimization problem is subject to 

several system and security constraints, as presented in (9)-(16). 
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where, K, G, and N are the sets of network transmission lines, generating units, and 

buses, respectively; 
n

t

gP is the active power output of generator g (in MW) connected to 
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bus n at time t; 
n

t

gP is the power flow (in MW) through transmission line k between bus n 

and bus m, at time t; 
n

t|

d ,iP  is the amount of lost demand (in MW) at bus n due to disruptive 

event   at time t which is constrained within the limits 0,
n

t

dP 
   ; 

,n mkB is the susceptance 

of transmission line k between bus n and bus m; k is the switch action for transmission 

line k between bus n and m (0: switch; 1: no switch); 
kM is a user-specified large number 

greater than or equal to  
max min

k n nB    which is selected to make the constraints 

nonbinding and relax those associated with Kirchhoff’s laws when a transmission line k 

is removed from service; and ,n m  is the bus angle difference between bus n and bus m. 

The output power of generating unit g at bus n is limited between its physical minimum 

and maximum capacities in (9). Constraint (10) limits the power flow across transmission 

line k connecting bus n to bus m within the minimum and maximum line capacities. 

Power balance at each node is enforced in (11), and Kirchhoff’s laws are incorporated in 

(12) and (13). Voltage angle limits for each bus are set to -0.6 and 0.6 radians and are 

constrained in (14). The status of any transmission line k of the system is identified via an 

integer variable in (15). The demand loss at each bus is constrained to the maximum 

demand in (16). Parameter   introduced in (17) limits the number of open transmission 

lines in the optimal reconfigured network (i.e., 1-line, 2-line, etc. switches). 

 1 k

k

k K     (17) 

The optimization engine is able to provide several sets of optimal solutions for 

any selection of . Several topology control plans (in the form of a single or a sequence 

of TLS actions) can be provided for each forecasted disruptive event, considered as the 
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recovery actions to be implemented during the restoration process. Note that the solutions 

are found in the system operational time frame (day-ahead) in response to critical 

contingencies. Each optimal TLS plan will migrate the system into a new operating 

condition with different levels of resilience and recovery. Depending on the resilience 

performance of the grid supplied with the provided solutions, the operator can select the 

final best reconfiguration plan for implementation, i.e., the one that improves the system 

resilience, safety and reliability the most. 

 

4.3      Resilience Measurement of Power Grid with Transmission Line Switching 

 Having obtained the best practical solution from transmission line switching 

which ensures both the cost benefit and reliability of the system, we utilize those outputs 

in the new condition in power system topology to measure the network resiliency. By 

removing each line, the network topology is changed and thus, the power flow in the 

whole system adjusts itself with the new condition. After taking out each line, we 

measure the resiliency of the power system until it reaches its previous normal state 

performance. Figure 5 represents the system performance transition curve in the fault 

scenario. A quantifiable and time-dependent system performance function is the basis for 

the assessment of system resilience. It has a nominal value 
0t

P  under nominal operating 

conditions. The system operates in its normal condition at this level until suffering a 

disruptive event at a time it . The disruptive incident degrades the system performance to 

some level 
dt

P  at time dt . Then, the recovery process is started right after the end of the 

disruption ( d rt t t  ) for increasing the system efficiency until it is completely restored 
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to its pre-disruption level.  

Figure 5 illustrates the conceptual framework for computing the resilience metric. The 

following steps will be conducted to compute the resiliency of the system: 

Suppose , ,i n,d tR
 is the resilience of a system at time t (

dt t ). , ,i n,d tR
is here given 

the meaning of the cumulative system functionality that has been recovered at time t, 

normalized by the expected cumulative system functionality during this same time 

period. Graphically, , ,i n,d tR
is represented by the ratio of the area with diagonal stripes S1 

to the area of the shaded part S2. Mathematically, it is given as: 
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Figure 5. Conceptual illustration of system resilience quantification.  

 

 The following considerations about the given resilience definition are important: 

Here, the system resilience , ,i n,d tR
 defined in equation (18) calculates the cumulative 

recovered system performance following a disruption normalized by the target 

cumulative system performance in the normal state as if the system was not affected by 

the emergencies.  

The system performance function tP  can be quantified by various metrics (e.g., 

the amount of flow or services delivered to the demand, the availability of critical 

resource allocation, the number of customers served, or the likelihood of economic 

activities for infrastructure systems), depending on which dimensions (i.e., technical, 

organizational, social and economic) of resilience the analysis focuses on. This study 

utilizes the amount of flow delivered to the demand nodes of a network as the 
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performance level metric.  

, ,i n,d tR
is undefined when 

dt t , because  the system is not exposed to disruptive 

incident and recovery is meaningless since no loss is subjected to the system. To carry 

out the analysis, each system element is transposed into a node or edge of the 

representative topological network. In this study, three different types of nodes are 

considered: generator nodes (where generate the electricity to feed the system), demand 

nodes (where customers are connected) and transmission nodes (without customers or 

sources). The mathematical model for the resilience optimization problem here 

considered involves an infrastructure network G (N, L) comprising a set of nodes N 

connected by a set of links L. The network nodes are classified into supply nodes NS, and 

transmission node lN . Each path ,i j L carries associated capacity ,i jP  while each 

supply node sg N  has a supply capacity per time unit 
s

gP  and each demand 

node dj N  has a demand 
d

jP per time unit. The flow is delivered from the supply nodes 

to the demand nodes taking into consideration the flow capacity of the links and 

supply/demand capacity constraints. 
,d n

tP represents the amount of power received by 

demand node n at time t. The impact of the disruptive event is modeled by the removal of 

the element. System performance achieves its minimum value at this time 

( min, . . ( )d dt t i e P P t  ). The goal is to achieve maximum system resilience over the 

whole restoration horizon T (i.e. r dt t ). In addition, the number of arcs that can be 

restored in each time period is constrained by the grid connectivity and stability checks. 

We focus on the role of various recovery decisions and actions in the task of optimizing 

the resilience of infrastructure networks subject to disruptive events. A resilience 
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optimization model for infrastructure networks is first formulated taking into 

consideration the resilience metrics provided in Sections 4.1.1 and 4.1.2, and then the DC 

power flow is incorporated as extra constraints (i.e. equations (9)-(17)) when applying to 

power grids. 
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5. CASE STUDY: IEEE 118-BUS TEST SYSTEM 

 

This research effort is tested and verified through a case study on the IEEE 118-

bus test system which contains a total of 186 transmission lines, and 19 generating units, 

with the total capacity of 5859.2 MW, serving a total demand of 4519 MW. The 

optimization formulation for fast recovery in the face of HILP events, i.e., co-

optimization of the generation re-dispatch and topology reconfiguration through TLS 

actions, is implemented with the main goal of maximizing the system resilience. The 

optimization problem and the analysis were run on a PC with an Intel(R) Core(TM) 2.9 

GHz processor and 8 GB of RAM. The optimization allows the status of each 

transmission line as well as the optimized generation dispatch to be determined, overall 

comprising the recovery action. Several optimal TLS solutions taking into account 

different values for the maximum number of open transmission lines are obtained. This 

allows benefiting from a sequence of TLS actions that incrementally change the network 

topology, adjust the flow of power, and improve the system resilience.  

In this study one non-trivial contingency, the outage of generator 13 (G13) which 

is the largest unit with the highest capacity in the studied network, is considered as an 

HILP disruptive event. Among the total 99 load points of the system, 26 load points are 

partially or fully affected by the weather-driven HILP phenomenon. The initial system-

wide load outage caused by the G13 contingency is 805.2 MW, of which only 584.3 MW  
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Figure 6. The impact of G13 contingency on network load points: Load outages and 

survived demand. 

 

(72.6% of the system total load outage) can be recovered through the traditional 

generation re-dispatch-only practice. Figure 6 illustrates the load outages as a result of the 

studied contingency, and the demand survived at each bus. Hence, a co-optimization of 

generation re-dispatch and topology reconfiguration is pursued anticipating additional 

benefits in recovering the load outage in a timely manner.  

 

5.1       Proof of Concept: TLS for Enhanced System Resilience  

The proposed formulation for corrective resilience-based topology control is 

applied to the studied network faced with the G13 contingency, and various optimal 

topology control plans for outage recovery are found as depicted in Figure 7. The 

suggested recovery plans based on network topology control involve one or more TLS  
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Figure 7. The optimal TLS sequences for enhancing the grid resilience in the face of the 

HILP event (an outage of G13). 

 

actions in the form of a sequence that incrementally recovers the load outage and improve 

the system resilience. The grid flexibility metric [see (5)], representative of the system 

resilience, is quantified for each optimal restoration plan suggested via the optimization 

framework. Further details on the optimal TLS actions as well as their associated benefits 

in terms of load outage recovery are tabulated in Table 2. 
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Table 2. Line-Bus Connectivity of the Recovery Plans for Contingency G13: IEEE 118-

Bus Test System 

Line From Bus To Bus 
Recovery 

Plan 

Sequences of Optimal 

TLS Actions 

Recovered 

Outage (MW) 

40 29 31 RDO* N/A 586.452 

41 23 32 TLS Plan1 [52]-[53]-[50]-[44] 752.409 

42 31 32 TLS Plan2 [41]-[112]-[178]-RD                   753.57 

44 15 33 TLS Plan3 [41]-[113]-RD 799.2 

50 34 37 TLS Plan4 [41]-[112]-[40]-[42] 764.439 

52 37 39 TLS Plan5 [53]-[110]-[40]-[42] 783.146 

53 37 40 

Grid Flexibility Features: Resilience State following 

Each Optimized Recovery Plan 

 

*RDA: Re-Dispatch-Alone Practice 

*RD: Re-Dispatch Action 

*[x]: Transmission Line to be Switched Off. 

79 55 56 

110 70 71 

112 71 72 

113 71 73 

178 17 113 

Figure 8 illustratively proves the general concept and demonstrates the advantage 

of the proposed network reconfiguration strategy using TLS actions in the recovery of the 

load outages and enhancing the system resilience. As one can see from the resilience 

chart in Figure 8, the studied network faces an HILP event at time 10, and the system 

performance (here, the total system demand to be served) degrades to a minimum, 

resulting in 805.2 MW load outage in 10 minutes. At time 20, recovery actions should be 

initiated by the system operator to maintain the system safety and reliability performance  
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Figure 8. Load outage restoration through optimal corrective TLS plans. 

through enhanced network resilience. As previously mentioned, the optimization engine 

is simulated in the operational planning time-frame (day-ahead) in response to this 

critical contingency and the solution recovery plans are ready to be implemented at time 

20. For demonstration purposes, six recovery plans are compared, where the generation 

re-dispatch-only practice is also included. 

 It can be observed, from Figure 8, that while the load outage recovery through a 

10-min re-dispatch practice at time 20 is significant (%72.6), all the other five restoration 

plans can further restore the interrupted loads, some of which leading to almost %100 

load outage recovery. To put a figure on this, take the TLS Plan 5 as an example. This 

recovery plan involves 4 transmission line switching actions that need to be sequentially 

implemented together with the generation re-dispatch actions at each level, combined 
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taking a 40 minutes implementation time leading to the %97.3 recovery of the system 

load outage (~%25 more than the re-dispatch-alone practice). Similar observations can be 

made for other optimal topology control plans presented, which highlights the benefits of 

employing the built-in network flexibility for corrective recovery actions for load 

restoration in this case. 

Note: The implementation time requirement for each TLS action involved in a 

recovery plan is 10 min as it is accompanied by a generation re-dispatch process and 

restricted by the ramping up/down requirements of the system generating units. Hence, it 

takes 10, 20, 30 minutes to implement a 1-line, 2-line, and 3-line TLS plan, respectively. 

 As the suggested optimization framework for outage recovery is able to suggest 

multiple recovery plans per forecasted contingency, the possibility of having at least one 

mitigation plan meeting all the other practical requirements (e.g., system stability, circuit- 

breaker reliability, electric safety considerations, etc.) is very high which is, thus, one 

more advantage of the suggested framework. With several optimal restoration options 

available, all of which providing significant load outage recovery, the operator needs to 

select one of such temporary plans for final implementation. Several key factors such as 

implementation duration (representative of how fast the system resilience can be 

improved), the amount of outage recovery (reflective of system robustness), and 

prioritized load point restoration, etc. could individually or collectively help the system 

operator make the best decision. In case of the studied example, although TLS plans 1, 2, 

4, and 5 can all bring about potential for some benefits to the grid resilience, they recover 

the critical load points, those with the highest restoration priority, differently. In other 

words, critical load points may be restored faster in some recovery plans than in others.  
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In other special circumstances, e.g. less survivable systems, the system 

functionality might fall below a certain operation point following an HILP incident. In 

this case, it is vital to select the fastest temporary restoration plan first to bring the system 

back to its operational mode, regardless of other longer optimal plans with the highest 

outage restoration benefit. Thus, selection of the best plan for implementation also 

depends on the network configuration, customer types that are interrupted (e.g. 

commercial, industrial, residential, etc.), the operator’s judgment and preference, as well 

as the goal he/she is seeking to improve the system overall safety and resilience. 

 

5.2      Impact of TLS on Restoration of Critical Load Points       

As discussed earlier, the interrupted demand following an HILP incident may be 

of different types and criticality, thus imposing different outage costs and socio-economic 

consequences. The system operator must be aware of the grid geology and be prepared 

which restoration strategy to follow. Identifying the system critical load points in each 

region can be of great help in realizing a faster recovery and higher resilience. The impact 

of optimal network reconfiguration on the recovery of the critical load points of the 

studied network facing the HILP incident is further analyzed in this section. Of all 

disrupted load points (LPs), three are considered critical since LP15, LP75, and LP79 

feed the industrial, commercial, and military demand sectors, respectively. The 

optimization objective (8) is adjusted to find the optimal restoration plans to recover the 

load outages in a timely manner considering the load point criticality.  

Figure 9 (a)-(c) illustrates how the proposed optimal recovery actions are able to 

restore the aforementioned critical load points incrementally. As can be seen in Figure 9, 
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LP15, LP75, and LP79 were serving a total demand of 93 MW, 47 MW, and 40 MW, 

respectively, under system normal operating condition. With the HILP incident stroked at 

G13, all three of these load points are fully interrupted with %100 load outage 

consequence. The proposed optimization engine is able to suggest a recovery plan, 

among several others, consisting of a three-action TLS sequence (L52-L110-L79) that if 

sequentially implemented, can iteratively recover the demand associated with the target 

critical load points [this suggested restoration plan is shown in violet circles and lines in 

Figure 7]. Figure 9(a) shows how implementing the first TLS recovery action (opening 

transmission line 52) helps the load point restoration, with which 77.15% and 33.67% of 

the interrupted demand in the critical LP15 and LP79 are recovered, respectively, within 

10 minutes. However, the demand at LP47 still remains fully interrupted with no 

recovery with this single TLS action. Subsequently, the second TLS action within the  

 

(a) Critical load points restoration via 1st TLS action: L52. 
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(b) Critical load points restoration via 2nd TLS action: L52-L110. 

 

 

(c) Critical load points restoration via 3rd TLS action: L52-L110-L79. 

Figure 9. Demand restoration of critical load points through the implementation of an 

optimal corrective TLS sequence. 

 

suggested recovery sequence is implemented (opening transmission line 110 while 

transmission line 52 remains switched out), and the interrupted demand in LP75 is 
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recovered by 59.52% in 20 minutes [see Figure 9(b)], while no additional recovery could 

be realized for LP15 and LP79. Eventually, the suggested restoration sequence can be 

fully implemented in 30 minutes by performing the third TLS action (opening 

transmission line 79 while transmission lines 52 and 110 remain switched out), and 

according to the results presented in Figure 9(c), the entire interrupted demand in all 

critical load points of the system is fully restored in 30 minutes. Note that the TLS 

actions include switching the line out of service by opening the circuit breakers as well as 

a 10-min generation re-dispatch implementation. These combined actions realize 

incremental benefits in terms of power grid resilience against HILP incidents.   

 

5.3 Grid-Scale Resilience Analysis       

 Generally speaking, an electric power grid with a higher number of transmission 

lines (i.e., a higher level of network redundancies) provides more flexible control over 

energy delivery with an increased power flow capacity. This higher flexibility offers 

higher elasticity to re-route the power flow system-wide, bypass the damaged equipment, 

and mitigate the risk of cascading failures and grid-scale outages. 

 Quantifying the network robustness is important for decision making on 

corrective restoration plans (either through topology control or microgrid operations) for 

enhanced resilience. Therefore, the grid resistivity and other robustness metrics are 

calculated as supplemental resilience metrics for each optimal recovery plan suggested 

through the optimization engine. Table 3 demonstrates the resilience metrics on grid 

robustness for each recovery plan formerly proposed in Table 2, where each network 

topology control plan impacts the system resilience differently. The network possesses 
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the highest robustness in the base case condition. In general, the lower the resistance 

index is, the lower the system sensitivity is to any transmission line removal. The higher 

the other indices in Table 3 are, the better the grid capability is to withstand any topology 

changes. As the HILP incident strikes the network, its robustness changes. With several 

different optimal restoration plans proposed, the operator should consider selecting a final 

recovery plan that not only assures the highest outage recovery in a faster time frame, but 

also offers higher grid resilience. For instance, the proposed plan 3 is a recovery option 

composed of two TLS actions. While it restores 99.25% of the interrupted demand in 20 

minutes, the network connectivity is much less than that for other plans as the switched 

lines are connected to a critical load point with a fewer number of transmission lines 

attached. So, switching out a line from that bus might put the grid at risk if another 

unpredicted contingency occurs during restoration. 

 

Table 3. Grid Robustness Analysis for Each Suggested Recovery Plan in Response to 

Contingency G13 

Recovery 

Plan 

Grid 

Resistivity 

Grid 

Connectivity 

Grid 

Flexibility 

Grid 

Conductivity 

Base Case 2.2414 0.07440 6.324 0.0075 

Plan 1 2.5147 0.07433 6.188 0.0067 

Plan 2 2.3903 0.07414 6.222 0.0071 

Plan 3 2.2950 0.02910 6.256 0.0073 

Plan 4 2.4148 0.07414 6.188 0.0070 

Plan 5 2.4099 0.07421 6.222 0.0070 
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6. CONCLUSION 

 

Resilience is the ability of the system to restore itself, with little or no human 

intervention, to safe and reliable operation from any disturbances or outages. With the 

increasing exposure of the electricity grid to several sources of hazards arising from 

natural disasters or malicious cyber-attacks, realizing an enhanced resilience is essential 

through deployment of advanced hardware and software technologies as well as 

streamlined recovery processes and decision-making strategies.  

This thesis proposes a resilience-based smart grid application of harnessing the 

full control of transmission assets in the face of emergency scenarios. The suggested 

approach employs network reconfiguration as a temporarily corrective tool in dealing 

with the forecasted contingencies for load outage restoration. Several resilience metrics 

corresponding to each proposed recovery plan are quantified, aiding the operator to make 

a more efficient decision on which one to implement. Results revealed that implementing 

the suggested recovery options quickly restores the load outages and improve the system 

overall safety and resilience. 
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APPENDIX SECTION 

 

Here are the raw data that has been used in the investigated IEEE 118-Bus test 

case study discussed in Chapter 5. Following parameters and data are considered. 

 Network Topology 

 Bus Data 

 Generator Data 

 Line Data 

 Bus Load Data 
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A. Network Topology 

 

 

 

Figure 10. IEEE 118-bus test system one-line diagram. 
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B. Bus Data 

 

 

Table 4. IEEE 118-Bus Test System Bus Data 

Bus 

No. 

Conductance 

(G) 

(mhos) 

Susceptance 

(B) 

(mhos) 

Base 

Voltage (kV) 

Voltage-Max 

(pu) 

Voltage-Min 

(pu) 

1 0 0 138 1.06 0.94 

2 0 0 138 1.06 0.94 

3 0 0 138 1.06 0.94 

4 0 0 138 1.06 0.94 

5 0 -40 138 1.06 0.94 

6 0 0 138 1.06 0.94 

7 0 0 138 1.06 0.94 

8 0 0 345 1.06 0.94 

9 0 0 345 1.06 0.94 

10 0 0 345 1.06 0.94 

11 0 0 138 1.06 0.94 

12 0 0 138 1.06 0.94 

13 0 0 138 1.06 0.94 

14 0 0 138 1.06 0.94 

15 0 0 138 1.06 0.94 

16 0 0 138 1.06 0.94 

17 0 0 138 1.06 0.94 

18 0 0 138 1.06 0.94 

19 0 0 138 1.06 0.94 

20 0 0 138 1.06 0.94 

21 0 0 138 1.06 0.94 

22 0 0 138 1.06 0.94 

23 0 0 138 1.06 0.94 

https://en.wikipedia.org/wiki/Siemens_(unit)
https://en.wikipedia.org/wiki/Siemens_(unit)
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Table 4. Continued. 

24 0 0 138 1.06 0.94 

25 0 0 138 1.06 0.94 

26 0 0 345 1.06 0.94 

27 0 0 138 1.06 0.94 

28 0 0 138 1.06 0.94 

29 0 0 138 1.06 0.94 

30 0 0 345 1.06 0.94 

31 0 0 138 1.06 0.94 

32 0 0 138 1.06 0.94 

33 0 0 138 1.06 0.94 

34 0 14 138 1.06 0.94 

35 0 0 138 1.06 0.94 

36 0 0 138 1.06 0.94 

37 0 -25 138 1.06 0.94 

38 0 0 345 1.06 0.94 

39 0 0 138 1.06 0.94 

40 0 0 138 1.06 0.94 

41 0 0 138 1.06 0.94 

42 0 0 138 1.06 0.94 

43 0 0 138 1.06 0.94 

44 0 10 138 1.06 0.94 

45 0 10 138 1.06 0.94 

46 0 10 138 1.06 0.94 

47 0 0 138 1.06 0.94 

48 0 15 138 1.06 0.94 

49 0 0 138 1.06 0.94 

50 0 0 138 1.06 0.94 

51 0 0 138 1.06 0.94 
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Table 4. Continued. 

52 0 0 138 1.06 0.94 

53 0 0 138 1.06 0.94 

54 0 0 138 1.06 0.94 

55 0 0 138 1.06 0.94 

56 0 0 138 1.06 0.94 

57 0 0 138 1.06 0.94 

58 0 0 138 1.06 0.94 

59 0 0 138 1.06 0.94 

60 0 0 138 1.06 0.94 

61 0 0 138 1.06 0.94 

62 0 0 138 1.06 0.94 

63 0 0 345 1.06 0.94 

64 0 0 345 1.06 0.94 

65 0 0 345 1.06 0.94 

66 0 0 138 1.06 0.94 

67 0 0 138 1.06 0.94 

68 0 0 345 1.06 0.94 

69 0 0 138 1.06 0.94 

70 0 0 138 1.06 0.94 

71 0 0 138 1.06 0.94 

72 0 0 138 1.06 0.94 

73 0 0 138 1.06 0.94 

74 0 12 138 1.06 0.94 

75 0 0 138 1.06 0.94 

76 0 0 138 1.06 0.94 

77 0 0 138 1.06 0.94 

78 0 0 138 1.06 0.94 

79 0 20 138 1.06 0.94 
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Table 4. Continued. 

80 0 0 138 1.06 0.94 

81 0 0 345 1.06 0.94 

82 0 20 138 1.06 0.94 

83 0 10 138 1.06 0.94 

84 0 0 138 1.06 0.94 

85 0 0 138 1.06 0.94 

86 0 0 138 1.06 0.94 

87 0 0 161 1.06 0.94 

88 0 0 138 1.06 0.94 

89 0 0 138 1.06 0.94 

90 0 0 138 1.06 0.94 

91 0 0 138 1.06 0.94 

92 0 0 138 1.06 0.94 

93 0 0 138 1.06 0.94 

94 0 0 138 1.06 0.94 

95 0 0 138 1.06 0.94 

96 0 0 138 1.06 0.94 

97 0 0 138 1.06 0.94 

98 0 0 138 1.06 0.94 

99 0 0 138 1.06 0.94 

100 0 0 138 1.06 0.94 

101 0 0 138 1.06 0.94 

102 0 0 138 1.06 0.94 

103 0 0 138 1.06 0.94 

104 0 0 138 1.06 0.94 

105 0 20 138 1.06 0.94 

106 0 0 138 1.06 0.94 

107 0 6 138 1.06 0.94 
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Table 4. Continued. 

108 0 0 138 1.06 0.94 

109 0 0 138 1.06 0.94 

110 0 6 138 1.06 0.94 

111 0 0 138 1.06 0.94 

112 0 0 138 1.06 0.94 

113 0 0 138 1.06 0.94 

114 0 0 138 1.06 0.94 

115 0 0 138 1.06 0.94 

116 0 0 138 1.06 0.94 

117 0 0 138 1.06 0.94 

118 0 0 138 1.06 0.94 
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C. Generator Data 

 
 

Table 5. IEEE 118-Bus Test System Generator Data 

 

U Bus No. 
Pg 

(MW) 

Qg 

(MVar) 

Marginal Cost 

($/MWh) 

Pmax 

(MW) 

Pmin 

(MW) 

Qmax 

(MVar) 

Qmin 

(MVar) 

1 10 450 -5 0.217 550 0 200 -147 

2 12 85 91.27 1.052 185 0 120 -35 

3 25 220 49.72 0.434 320 0 140 -47 

4 26 314 9.89 0.308 414 0 1000 -1000 

5 31 7 31.57 5.882 107 0 300 -300 

6 46 19 -5.25 3.448 119 0 100 -100 

7 49 204 115.63 0.467 304 0 210 -85 

8 54 48 3.9 1.724 148 0 300 -300 

9 59 155 76.83 0.606 255 0 180 -60 

10 61 160 -40.39 0.588 260 0 300 -100 

11 65 391 80.76 0.2493 491 0 200 -67 

12 66 392 -1.95 0.2487 492 0 200 -67 

13 69 513.48 -82.39 0.1897 805.2 0 300 -300 

14 80 477 104.9 0.205 577 0 280 -165 

15 87 4 11.02 7.142 104 0 1000 -100 

16 92 607 0.49 10 1100 0 9 -3 

17 100 252 108.87 0.381 352 0 155 -50 

18 103 40 41.69 2 140 0 40 -15 

19 111 36 -1.84 2.173 136 0 1000 -100 
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D. Line Data 

 
 

Table 6. IEEE 118-Bus Test System Transmission Line Data 

 

Line No. From Bus To Bus R (pu) X (pu) B (pu) 
Rate A 

(MVA) 

1 1 2 0.0303 0.0999 0.0254 220 

2 1 3 0.0129 0.0424 0.01082 220 

3 4 5 0.00176 0.00798 0.0021 220 

4 3 5 0.0241 0.108 0.0284 220 

5 5 6 0.0119 0.054 0.01426 220 

6 6 7 0.00459 0.0208 0.0055 440 

7 8 9 0.00244 0.0305 1.162 220 

8 8 5 0 0.0267 0 220 

9 9 10 0.00258 0.0322 1.23 220 

10 4 11 0.0209 0.0688 0.01748 220 

11 5 11 0.0203 0.0682 0.01738 220 

12 11 12 0.00595 0.0196 0.00502 1100 

13 2 12 0.0187 0.0616 0.01572 880 

14 3 12 0.0484 0.16 0.0406 220 

15 7 12 0.00862 0.034 0.00874 1100 

16 11 13 0.02225 0.0731 0.01876 220 

17 12 14 0.0215 0.0707 0.01816 220 

18 13 15 0.0744 0.2444 0.06268 220 

19 14 15 0.0595 0.195 0.0502 220 

20 12 16 0.0212 0.0834 0.0214 220 

21 15 17 0.0132 0.0437 0.0444 220 

22 16 17 0.0454 0.1801 0.0466 220 
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Table 6. Continued. 

23 17 18 0.0123 0.0505 0.01298 440 

24 18 19 0.01119 0.0493 0.01142 220 

25 19 20 0.0252 0.117 0.0298 220 

26 15 19 0.012 0.0394 0.0101 220 

27 20 21 0.0183 0.0849 0.0216 220 

28 21 22 0.0209 0.097 0.0246 220 

29 22 23 0.0342 0.159 0.0404 220 

30 23 24 0.0135 0.0492 0.0498 220 

31 23 25 0.0156 0.08 0.0864 220 

32 26 25 0 0.0382 0 220 

33 25 27 0.0318 0.163 0.1764 220 

34 27 28 0.01913 0.0855 0.0216 220 

35 28 29 0.0237 0.0943 0.0238 220 

36 30 17 0 0.0388 0 220 

37 8 30 0.00431 0.0504 0.514 440 

38 26 30 0.00799 0.086 0.908 220 

39 17 31 0.0474 0.1563 0.0399 220 

40 29 31 0.0108 0.0331 0.0083 220 

41 23 32 0.0317 0.1153 0.1173 440 

42 31 32 0.0298 0.0985 0.0251 220 

43 27 32 0.0229 0.0755 0.01926 660 

44 15 33 0.038 0.1244 0.03194 220 

45 19 34 0.0752 0.247 0.0632 220 

46 35 36 0.00224 0.0102 0.00268 220 

47 35 37 0.011 0.0497 0.01318 220 

48 33 37 0.0415 0.142 0.0366 220 

49 34 36 0.00871 0.0268 0.00568 660 

50 34 37 0.00256 0.0094 0.00984 220 
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Table 6. Continued. 

51 38 37 0 0.0375 0 220 

52 37 39 0.0321 0.106 0.027 220 

53 37 40 0.0593 0.168 0.042 220 

54 30 38 0.00464 0.054 0.422 220 

55 39 40 0.0184 0.0605 0.01552 220 

56 40 41 0.0145 0.0487 0.01222 440 

57 40 42 0.0555 0.183 0.0466 220 

58 41 42 0.041 0.135 0.0344 220 

59 43 44 0.0608 0.2454 0.06068 220 

60 34 43 0.0413 0.1681 0.04226 220 

61 44 45 0.0224 0.0901 0.0224 220 

62 45 46 0.04 0.1356 0.0332 660 

63 46 47 0.038 0.127 0.0316 440 

64 46 48 0.0601 0.189 0.0472 220 

65 47 49 0.0191 0.0625 0.01604 220 

66 42 49 0.0715 0.323 0.086 220 

67 42 49 0.0715 0.323 0.086 220 

68 45 49 0.0684 0.186 0.0444 220 

69 48 49 0.0179 0.0505 0.01258 220 

70 49 50 0.0267 0.0752 0.01874 220 

71 49 51 0.0486 0.137 0.0342 220 

72 51 52 0.0203 0.0588 0.01396 220 

73 52 53 0.0405 0.1635 0.04058 220 

74 53 54 0.0263 0.122 0.031 220 

75 49 54 0.073 0.289 0.0738 220 

76 49 54 0.0869 0.291 0.073 220 

77 54 55 0.0169 0.0707 0.0202 220 

78 54 56 0.00275 0.00955 0.00732 220 
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Table 6. Continued. 

79 55 56 0.00488 0.0151 0.00374 220 

80 56 57 0.0343 0.0966 0.0242 220 

81 50 57 0.0474 0.134 0.0332 220 

82 56 58 0.0343 0.0966 0.0242 220 

83 51 58 0.0255 0.0719 0.01788 440 

84 54 59 0.0503 0.2293 0.0598 440 

85 56 59 0.0825 0.251 0.0569 220 

86 56 59 0.0803 0.239 0.0536 220 

87 55 59 0.04739 0.2158 0.05646 220 

88 59 60 0.0317 0.145 0.0376 220 

89 59 61 0.0328 0.15 0.0388 220 

90 60 61 0.00264 0.0135 0.01456 220 

91 60 62 0.0123 0.0561 0.01468 220 

92 61 62 0.00824 0.0376 0.0098 220 

93 63 59 0 0.0386 0 220 

94 63 64 0.00172 0.02 0.216 220 

95 64 61 0 0.0268 0 220 

96 38 65 0.00901 0.0986 1.046 220 

97 64 65 0.00269 0.0302 0.38 220 

98 49 66 0.018 0.0919 0.0248 220 

99 49 66 0.018 0.0919 0.0248 220 

100 62 66 0.0482 0.218 0.0578 220 

101 62 67 0.0258 0.117 0.031 220 

102 65 66 0 0.037 0 440 

103 66 67 0.0224 0.1015 0.02682 220 

104 65 68 0.00138 0.016 0.638 220 

105 47 69 0.0844 0.2778 0.07092 220 

106 49 69 0.0985 0.324 0.0828 220 
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Table 6. Continued. 

107 68 69 0 0.037 0 440 

108 69 70 0.03 0.127 0.122 440 

109 24 70 0.00221 0.4115 0.10198 220 

110 70 71 0.00882 0.0355 0.00878 440 

111 24 72 0.0488 0.196 0.0488 220 

112 71 72 0.0446 0.18 0.04444 220 

113 71 73 0.00866 0.0454 0.01178 220 

114 70 74 0.0401 0.1323 0.03368 440 

115 70 75 0.0428 0.141 0.036 220 

116 69 75 0.0405 0.122 0.124 440 

117 74 75 0.0123 0.0406 0.01034 440 

118 76 77 0.0444 0.148 0.0368 440 

119 69 77 0.0309 0.101 0.1038 220 

120 75 77 0.0601 0.1999 0.04978 220 

121 77 78 0.00376 0.0124 0.01264 220 

122 78 79 0.00546 0.0244 0.00648 220 

123 77 80 0.017 0.0485 0.0472 220 

124 77 80 0.0294 0.105 0.0228 220 

125 79 80 0.0156 0.0704 0.0187 220 

126 68 81 0.00175 0.0202 0.808 220 

127 81 80 0 0.037 0 220 

128 77 82 0.0298 0.0853 0.08174 220 

129 82 83 0.0112 0.03665 0.03796 220 

130 83 84 0.0625 0.132 0.0258 220 

131 83 85 0.043 0.148 0.0348 440 

132 84 85 0.0302 0.0641 0.01234 220 

133 85 86 0.035 0.123 0.0276 220 

134 86 87 0.02828 0.2074 0.0445 220 
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Table 6. Continued. 

135 85 88 0.02 0.102 0.0276 220 

136 85 89 0.0239 0.173 0.047 220 

137 88 89 0.0139 0.0712 0.01934 220 

138 89 90 0.0518 0.188 0.0528 220 

139 89 90 0.0238 0.0997 0.106 220 

140 90 91 0.0254 0.0836 0.0214 220 

141 89 92 0.0099 0.0505 0.0548 220 

142 89 92 0.0393 0.1581 0.0414 220 

143 91 92 0.0387 0.1272 0.03268 220 

144 92 93 0.0258 0.0848 0.0218 220 

145 92 94 0.0481 0.158 0.0406 220 

146 93 94 0.0223 0.0732 0.01876 220 

147 94 95 0.0132 0.0434 0.0111 220 

148 80 96 0.0356 0.182 0.0494 220 

149 82 96 0.0162 0.053 0.0544 220 

150 94 96 0.0269 0.0869 0.023 440 

151 80 97 0.0183 0.0934 0.0254 660 

152 80 98 0.0238 0.108 0.0286 220 

153 80 99 0.0454 0.206 0.0546 220 

154 92 100 0.0648 0.295 0.0472 660 

155 94 100 0.0178 0.058 0.0604 220 

156 95 96 0.0171 0.0547 0.01474 220 

157 96 97 0.0173 0.0885 0.024 220 

158 98 100 0.0397 0.179 0.0476 220 

159 99 100 0.018 0.0813 0.0216 220 

160 100 101 0.0277 0.1262 0.0328 220 

161 92 102 0.0123 0.0559 0.01464 220 

162 101 102 0.0246 0.112 0.0294 220 
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Table 6. Continued. 

163 100 103 0.016 0.0525 0.0536 220 

164 100 104 0.0451 0.204 0.0541 220 

165 103 104 0.0466 0.1584 0.0407 220 

166 103 105 0.0535 0.1625 0.0408 220 

167 100 106 0.0605 0.229 0.062 220 

168 104 105 0.00994 0.0378 0.00986 220 

169 105 106 0.014 0.0547 0.01434 440 

170 105 107 0.053 0.183 0.0472 220 

171 105 108 0.0261 0.0703 0.01844 220 

172 106 107 0.053 0.183 0.0472 220 

173 108 109 0.0105 0.0288 0.0076 220 

174 103 110 0.03906 0.1813 0.0461 220 

175 109 110 0.0278 0.0762 0.0202 220 

176 110 111 0.022 0.0755 0.02 220 

177 110 112 0.0247 0.064 0.062 220 

178 17 113 0.00913 0.0301 0.00768 220 

179 32 113 0.0615 0.203 0.0518 220 

180 32 114 0.0135 0.0612 0.01628 220 

181 27 115 0.0164 0.0741 0.01972 220 

182 114 115 0.0023 0.0104 0.00276 220 

183 68 116 0.00034 0.00405 0.164 220 

184 12 117 0.0329 0.14 0.0358 220 

185 75 118 0.0145 0.0481 0.01198 220 

186 76 118 0.0164 0.0544 0.01356 220 
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E. Bus Load Data 

 
 

Table 7. IEEE 118-Bus Test System General Load Data 

 

Bus No. Pd (MW) Qd (MVar) 

1 51 27 

2 20 9 

3 39 10 

4 39 12 

6 52 22 

7 19 2 

8 28 0 

11 70 23 

12 47 10 

13 34 16 

14 14 1 

15 90 30 

16 25 10 

17 11 3 

18 60 34 

19 45 25 

20 18 3 

21 14 8 

22 10 5 

23 7 3 

24 13 0 

27 71 13 

28 17 7 
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Table 7. Continued. 

29 24 4 

31 43 27 

32 59 23 

33 23 9 

34 59 26 

35 33 9 

36 31 17 

39 27 11 

40 66 23 

41 37 10 

42 96 23 

43 18 7 

44 16 8 

45 53 22 

46 28 10 

47 34 0 

48 20 11 

49 87 30 

50 17 4 

51 17 8 

52 18 5 

53 23 11 

54 113 32 

55 63 22 

56 84 18 

57 12 3 

58 12 3 

59 277 113 
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Table 7. Continued. 

60 78 3 

62 77 14 

66 39 18 

67 28 7 

70 66 20 

72 12 0 

73 6 0 

74 68 27 

75 47 11 

76 68 36 

77 61 28 

78 71 26 

79 39 32 

80 130 26 

82 54 27 

83 20 10 

84 11 7 

85 24 15 

86 21 10 

88 48 10 

90 440 42 

91 10 0 

92 65 10 

93 12 7 

94 30 16 

95 42 31 

96 38 15 

97 15 9 
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Table 7. Continued. 

98 34 8 

99 42 0 

100 37 18 

101 22 15 

102 5 3 

103 23 16 

104 38 25 

105 31 26 

106 43 16 

107 50 12 

108 2 1 

109 8 3 

110 39 30 

112 68 13 

113 6 0 

114 8 3 

115 22 7 

116 184 0 

117 20 8 

118 33 15 
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