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NONEXISTENCE OF NONNEGATIVE SOLUTIONS FOR
PARABOLIC INEQUALITIES IN THE HALF-SPACE

EVGENY I. GALAKHOV, OLGA A. SALIEVA, LIUDMILA A. UVAROVA

ABSTRACT. Based on the method of nonlinear capacity, we study the nonexis-
tence of nonnegative monotonic solutions for the quasilinear parabolic inequal-
ity ug — Apu > u9. Also we study generalizations in the half-space in terms of
parameters p and q.

1. INTRODUCTION

The question about nonexistence of nontrivial nonnegative global solutions to
nonlinear equation u; —Au = g(x)u? and the inequality u,— Au > g(z)u?, where A is
an elliptic operator, in different domains is of substantial interest. Such inequalities
can be understood as nonlinear heat equations with a supplementary external source
term f(x,t) = uy — Au — g(z)u? > 0. The aim of the study is to find the range
of values of ¢ such that the equation or inequality in question has no-nontrivial
nonnegative global solutions, i.e. the extra heat source leads to blow-up of a local
solution.

The results in the whole space R™ go back to Fujita [T1] who established that
solutions to the equation u; — Au = u? do not exist for 1 < ¢ < 1+ % Similar
nonexistence ranges for much more general operators were obtained later in [16].
As for the half-space, up to our knowledge, so far only stationary solutions have
been considered. The first results in this direction were obtained by Berestycki,
Capuzzo Dolcetta and Nirenberg [2] who proved nonexistence of solutions to the
inequality —Au > u? for 1 < ¢ < % The optimality of these results was shown
by Birindelli and Mitidieri [3]. Inequalities of the form Au > u? with A = —A,,
where p > 1 and A,, is the p-Laplace operator defined by A,u := div(|Du[P~2Du),
in the half-space with a punched point or a removed neighborhood of a point on the
boundary were studied by Bidaut-Véron and Pohozaev [4], and later by Véron and
A. Porretta [I§]. They obtained results on nonexistence of solutions in the domains
under study and consequently in the whole half-space for p — 1 < ¢ < gec(p, 1),
where ¢ (p,n) =p—1+ ﬁp%’ and (., is the growth rate of singular solutions near

= 32V DPR2 0y (0 hould also

zero, obtained explicitly only for n =2 (8,2 = 30=1)
note the papers of Filippucci [10] on critical exponents for semilinear inequalities of
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the form — div(u®|z|®Du) > |z|u? in the half-space, of Dancer, Du and Efendiev
[5] and of Zou [20] on nonexistence of solutions to the Dirichlet problem
-Apu=u?, zeRl,

1.1
u(z) =0, =€ JRY, (L.1)

for a nonlinear equation with a p-Laplace operator in a half-space, as well as those
of Farina, Montoro and Sciunzi [6]-[9] on monotonicity of essentially bounded solu-
tions of the same problem, which implies their nonexistence for a certain range of q.
Elliptic problems with singular coefficients near unbounded sets were considered,
in particular, in [12], [13].

In this article we consider the nonexistence of nonnegative solutions for the
parabolic inequality u; — Ayu > az)u? in the half-space. Based on the method
of nonlinear capacity [16] [I7], we obtain sufficient conditions for nonexistence of
solutions. Similar results for elliptic inequalities and systems can be found in [I4].

The rest of this article consists of three sections. §2 has our main results, §3
contains a proof in the semilinear case, and §4 the quasilinear case.

2. FORMULATION OF MAIN RESULTS

Denote R} = {z = (z1,...,2,) € R" : 2, >0}. Let p>1,¢>p—1,a>0,
v € R, and let ug € C(R’) be a nonnegative function. Consider the problem

—Apu > axju?, (r,t) e R} xRy,
u(z,0) = up(zr), xeRY, (2.1)
u(x,t) >0, (x,t) e R xRy,
We understand its weak solutions in the following sense.

Definition 2.1. A weak solution of problem (2.1]) is a nonnegative function u €
C*1(R™% x R4), which satisfies the integral inequality

/ / (|DulP~2(Du, Dap)—ugpt)dxdt>/ / ax;’luqcpdxdt—l—/ ugp dz
R, JR? R? R7

for any nonnegative ¢ € C>°(R"} x R, ) such that p(z,t) =0 for (z,t) € IR} x Ry
(that is, for x,, = 0).

Weak solutions of the problems considered below are defined in a similar way.
In the case p = 2, we obtain the following result.

Theorem 2.2. Let a >0,y > —2, and 1 < ¢ < 14 222 Then [2.1)) with p = 2:

n+1-
—Au > axjul, (x,t) e R} xRy,
u(z,0) =up(x), x€RY, (2.2)

u(z,t) >0, (x,t) e R xRy
has no nonnegative nontrivial weak solutions u.

For other values of p # 2, we obtain a nonexistence result in a smaller functional
class of solutions (with an additional property of monotonicity).

Theorem 2.3. Leta >0, v > —p, ¢ > max(1,p— 1), v(p — 2) > p(1 — q), and
[(n+1)(q=1)=la—p+1)—plg—1) =v(p—2) <0.
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Then (2.1) has no nonnegative nontrivial weak solutions u such that u(z’,-,t) is
monotonic in x, for each ' € R" 1 and t > 0.

Corollary 2.4. Let a > 0 and max(1,p—1) < ¢ < p—1+4 L5. Then the problem
u — Apu > au?, (x,t) € R} x R+,
u(x,0) = uo(x), x€R], (2.3)
u(z,t) >0, (x,t) e R xRy

(that is, (2.1) with v = 0) has no nonnegative nontrivial weak solutions u such that
u(a’, -, t) is monotonic in x,, for each ' € R"™1 and t > 0.

Evidently, the above corollary follows from Theorem in the case v = 0.
Remark 2.5. Nonexistence results can be obtained in the same class of monotonic
solutions for the problem

ur + Apu > axul, (x,t) € R} xRy,
u(z,0) = up(zr), xeRY, (2.4)
u(x,t) >0, (x,t) e R xRy,
where the operator A, has the opposite sign (see [14]). Although the result in

[14] is formulated for monotonically nondecreasing solutions, its proof is valid for
non-increasing ones as well.

3. PROOF OF THEOREM [2.2]

We use the method of nonlinear capacity [16], [17]. We choose a family of nonneg-
ative test functions £ ;€ Cj(R™) such that A > 0 (to be specified below), R and

T are some positive parameters, and g r(x) = H,I::ll Xr(zr) - xr(zn —3R) - x7(t)

with
1 ifs<R
= - 3.1
X&(s) {0 if s > 2R, (3:1)
where
|IDxr(s)| < cR™', scR,. (3.2)

Multiply both sides of (2.2)) by fﬁ,Txn and integrate by parts. After elementary
transformations we obtain

a/ / wley pa) Tt da dt
Ry JR? '
€RT
fRTxn \dxdt—i— |2 da dt.
R+ TI ’V'L

Application of the parametric Young 1nequahty to both integrals on the right-hand
side of (3.3)) yields

A 1 20 M- L
/ / uqf war drdt < c/ / |D§R,T|‘”15R Tq+1 " dxdt
R+ n R+ n ’

—_a_ _ot+1
+C/ / O T Xy ™ dadt (3:4)
R+ n

1(R,T) +12(R 7).

(3.3)
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For A > = 1, the integral I (R,T) can be estimated as
L(RT)<R™"TT (3.5)
and Io(R,T) as
L(R,T) < R™ i7" a1, (3.6)

From (3.4)—(3.6)) we obtain

/ / quk x) ! dmdt<c(R”_
Ry JR?

Choosing T' = R? with # > 0 such that both terms are of the same order and taking

R — 00, we obtain
/ / ulz) ™ dx dt = 0,
Ry JR7?

which contradicts the assumption of non-triviality of the solution. This completes
the proof of Theorem

+RUTITIE). (3)

4. PROOF OF THEOREM [2.3]

Now, using the same family of test functions £ as in the previous proof, we
multiply both parts of (2.3)) by uo‘ff‘%’Txn, where a < 0 will be specified below, and
integrate by parts. After elementary transformations we obtain

a/ / uq+a£§7TxZ+1d$dt+|a\/ / ua_1|Du\p£}%7Txndxdt
Ry JR? Ry JR?

S/ / ua|Du|p_1|D§§7T\mndxdt+/ / utuo‘gf‘%jxndxdt (4.1)
Ry JRY Ry JRY

)
+/ / w|DuP=2 2L X - d dt.
Ry 1 3xn ’

Application of the parametric Young inequality to the first integral on the right-
hand side of (4.1)) yields

a/ / uq+a§§7Tx7L+1 dx dt + lo] / / ua_1|Du\p£j}7T:rn dx dt
R+ n 2 + i
< c/ /
R+ n
+ / / w T (ER 1) e da dt
o+ 1 R+ i

+/ / w0 Dur2 2 e .
Ry Ter 8$n ’

A(l 2 T, dz dt
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Applying the parametric Young inequality to the first two integrals on the right-

hand side of (4.2)) once more, we obtain

9/ / uq+agngg+1dzdt+|a‘// N DulPE} v, da it
2 Ry i ’ Ry n

plgta) M— P(Q+'1) ata— ((“‘FP D(v+1)
< C/ / |DERr| 77 & 7 P am T dz dt
R4 "

, gta )\_q+r; q+a7(a+11)(w+1)
+C/ / O e A R
R+ n

a[)u”—ugA da dt
R, T
Ry JR? '

=NL(R,T) +12(R T)+ I3(R,T).
For \ >

and

9= p+1
mg—p+t) —(g+ry-Dp-1
Pty
the integral I;(R,T) and Iz(R,T) can be estimated as

o >

(p—1)(gto)+(atp—1)(v+1)

Il(R7 T) <R"” a=p+l T,

+a—(at1)(y+1) _atao
q—1 Tl

L(R,T) < R"* 1,

(4.3)

(4.4)

(4.5)
(4.6)

If 2% >0, then I3(R,T) < 0. Estimate the integral I3(R,T) in the case 87“” <0.

In case p < 2, using the Hélder inequality and integrating by parts, we have

0
I(R,T) = f/R / ua|Du|p*2%§I)‘%,T da dt
+ + n
Ou \pr—1
< u( — =—)  &ppdedt
/]R+ /1 ( axn) RT
oulT T \p—1
<c / / ———) (popdrdt
R, » ( 8(En ) RT
outt et 2o p—1
- ¢ N dadt)  RMEP)
/]R+ /" 8wn R v )
1452 n(2—p)
c d dt R
(L L. )
1429
C
(L]
atp—1
c(/ / uq+a§1)%,Tw7L+1 dwdt) e pree)
Ry JR™

/ / ‘6’5RT|<q+(éi+‘f>)<(5 TR

% (gA(qTﬂﬂl)*(qua)xr—L(’y+1)(a+p—1))m dx dt)

IN

R |d ar)" "Rre-p)

IN

)

(@ta—DH(p—1)—o
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a
< 1 / / uq+“§§7TxZLH dx dt
Ry JRT

n[(2—p)(gt)t(gta—1)(p—1)—a]—(gtaty+1)(p—1)—(y+1) o
q—p+1

+cR
a _ (@) (p=1)+ (v 1) (atp—1)
=1 / / uq+°‘§}>§37TxZ+1 dx dt + cR" a—pT1 ,
ie.
a _@ta)(p—D)+(v+1)(at+p—1)
(R T) < Z/ / uqJ’O‘é‘ﬁ)TxZJrl dz dt + cR" a=p+1 T. (4.7)

From (4.3)—(4.7) we obtain

a o
3 / / uq+a§j\37Tx;’L+1 dx dt + % / / ut™! |Du\p§§7Txn dx dt
Ry JRY Ry JRY

(@+a)(p—D)+(v+D)(atp—1) (+1)(at+1) +a
TTl—zfl)

< (R SRR | e

(4.8)

Choosing T' = R? with # > 0 such that both terms are of the same order and taking
R — oo, for « satisfying (4.4) we obtain

/ / ut )T dy dt = 0,
Ry JRT

which contradicts the assumption of non-triviality of the solution. This proves the
theorem in the case p < 2.

In the case p > 2, estimates and are still valid, and for the integral
I3(R,T) in the case aé:il < 0 we have

0
Ig(R,T)z/ / ua|Du|p_28—u§j\dexdt
Ry n LTn
ou \ =3 ou \ =1
— _ a p—2( _ P P A
/R+ /iu | D ( 3a:n> (—i—Tmn) Errdrdt

S/ / ua|Du|P—2+"%f(— au)ﬁggdedt
Ry ;L_ &L‘n ’

and by the Young inequality, similarly to the previous argument,

I3(R,T) < |%|/ / uafl\Du|p§1)%7Txn dx dt
Ry JR?

)
+c / / ua+P—2a—“xi—ngT da dt
Ry JRY €T

n

§M/ / u“"H DulPEy piy, da dt
T A »

+cR2*p/ / ua+p71|7a§§’T|§}>‘%—1d$dt
Ry T n

< M/ / uo‘_l\Du|p£]’§iTxndxdt+g/ / wtt ey pa) T da dt
4 ]R+ 1 ’ 4 R+ i )
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(2-p)(a+a) (’Y+1)(C¥+P 1) a
4+ cR a-rt1 / / | §RT|q p+1§ T a— p+1 dx dt
R+ n

ox,

(p—1)(gta)+(at+p—1)(v+1)

a _
< 1 / / uq+a§1)%7T:L‘Z+1 drdt+ cR"™ a—pFI T,
Ry JR?

i. e.
Ig(R,T)ﬁM/ / u*" Y DulPE} pay, da dt
4 R+ i ’

(4.9)

a _ (=D (@t)+(at+p=1)(y+1)

- / / uq+°‘§;\%’Tx;’L+1 dx dt + cR" a—p1 T,
R+ n

which together with (4.3)) and (4.5)) yields (4.8]) again. The proof can be completed
similarly to the previous case.
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