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I N T R O D U C T I O N
Texas State University was approached by the Lower Colorado River Authority (LCRA) during the summer of 
2016 to conduct an analysis of water savings that might be attributed to volumetric measurement and pricing, 
a conservation strategy that was newly implemented in the Garwood Irrigation Division in 2012. Five years of 
data were expected to become available at the end of 2016 and plans to collect these data were made in order to 
develop a statistical model using an approach that had been used in a previous study conducted with data from 
the Lakeside Irrigation Division.1 Preparations got underway beginning in the Fall of 2016, a project proposal 
was submitted to LCRA in November, and an Interlocal Cooperation Agreement (ICA) was executed in January 
2017. While the original ICA was scheduled to end August 31, 2017, the timing of water price data delivery and 
challenges related to data integration necessitated a two-month, no-cost extension. 

Data collected for this project came from a variety of sources. Survey questionnaire data were collected from 
farmers via in-person interviews, water-use billing data and GIS-based shapefiles were provided by LCRA, and 
climate data were sourced from LCRA’s Hydromet system of weather stations (temperature and rainfall) and 
Texas A&M University’s Eagle Lake Research Station (evapotranspiration.) Historical data, such as pre-2012 
billed water use and on-farm data such as we collected via the survey, were not available and thus, estimating 
the independent effects of volumetric measurement and pricing on water use is not possible.2 Analyses that 
were conducted with the dataset created by the Texas State project team yielded considerable insight into the 
relationship between annual water use by rice farmers and a variety of explanatory factors, nonetheless. It is the 
purpose of this report to provide those results and an interpretation of their meaning where possible. 

BAC K G R O U N D
The 76th Texas Legislature (1999) passed House Bill 1437 relating to the powers of the Lower Colorado River 
Authority (LCRA) to provide water services to Williamson County. Since Williamson County lies within the 
Brazos River Basin, HB1437 authorizes the LCRA to do an interbasin water transfer if there is “no-net-loss” of 
water to the Colorado River Basin. Among the other conditions placed on such an interbasin transfer are: 1) 
payment for water by the recipient entity of an amount sufficient to pay both LCRA’s applicable water rate and 
the costs of mitigating any adverse effects from the transfer, and 2) a 25,000 acre-feet maximum annual volume 
of transferable water.3  

House Bill 1437 also created the Agricultural Water Conservation Fund to cover the aforementioned mitigation 
costs and can be used only for water resources development and to implement the strategies (i.e., conservation 
best management practices or BMPs) necessary for making water available for interbasin transfer while meeting 
associated conditions.

The “no-net-loss” provision4 is expected to be met in part, at least, by implementation of new agricultural 
water-use conservation measures in LCRA’s irrigation divisions located in Matagorda, Colorado, and Wharton 
counties: Gulf Coast, Lakeside, and Garwood. Volumetric measurement of water delivery and related pricing 
and land leveling are a couple of examples of conservation BMPs. But many other factors involved in rice 
farming can influence water use as well. 

1 Ana Ramirez and D.J. Eaton, 2012. Statistical Testing for Precision Graded Verification: Does Precision Leveling Save Water? A report from the 
University of Texas at Austin to the Lower Colorado River Authority, Austin, TX, September, 2012. 
2 This is the reason for the difference between the proposal and final report titles. 
3 For context, the City of Round Rock, Texas, used 21,005.6 acre feet of water for the 12 months of Dec. 2015 through November 2016. 25,000 ac. ft. 
of water is approximately 68% of the capacity of Lake Georgetown, City of Round Rock’s (and others) primary supply of water. 
4 Per LCRA staff member, Stacy Pandey, LCRA defines “no net loss” as the three-year average of water savings or development meant to offset water 
transfers.
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M E T H O D O L O G Y
Study Area
The Garwood Irrigation Division (GID) is one of three rice-farming areas where farmers purchase water from 
the LCRA (Figure 1). The GID lies in Colorado and Wharton County and within the Western Gulf Coastal 
Plain Ecoregion (U.S. EPA, 2013). Rice farm fields receive water from the Colorado River via a network of 
canals and associated water delivery structures. Some farmers supplement their purchased water with private 
well water. Those farm fields that did such could not be included in the analyses. 

The climate of the area is subtropical humid (Larkin and Bomar, 1983 as cited in Estaville and Earl, 2008).   
Average annual precipitation is approximately 39-47 inches5 (Narasimhan et al. 2005). Annual potential 
evapotranspiration (Priestly Taylor Method) ranges from 67 to 71 inches (Dugas and Ainsworth, 1983 as cited 
in Estaville and Earl, 2008). Nearby Columbus, Texas has an annual average high temperature of 80.3 ºF, an 
average low temperature of 58 ºF, and an annual average temp. of 69.15 ºF6  (U.S. Climate Data, 2017).   

Figure 1. Location of Garwood Irrigation Division rice fields.

5 Isohyets generally run north/south and are relatively tightly packed in the eastern third of Texas. Thus, there can be considerable variation in year-to-year 
rainfall even exceeding that which is indicated.
6 Climate data for Columbus, Longitude: -96.573, Latitude: 29.699. Average weather Columbus, TX 78934, 1981-2010 normals. 
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Data Collection
The project team traveled to Garwood, Texas and conducted in-person survey interviews with fourteen rice 
farmers at the LCRA Garwood Irrigation Division field office during the week of March 6, 2017. Survey data 
were collected from those farmers that had appointments to sign contracts in the Garwood field office during 
the week that had been arranged for the project team to travel and conduct interviews. 

The survey instrument used (Appendix A) is a slightly modified version of the survey used in the Lakeside 
Irrigation Division where results are presented in an unpublished report by Ramirez and Eaton (2012). The 
survey sought to collect data for each field farmed by an interviewee over the course of five years: 2012-2016. 
The LCRA’s Umap system was utilized on-site during interviews to facilitate the connection between fields 
farmed during the study period and farmers interviewed. 

Climate data were collected from nearby weather stations: LCRA Hydromet stations, Altair, El Campo, 
and Glen Flora for rainfall and temperature, and Texas A&M University’s Eagle Lake Research Station for 
evapotranspiration. Monthly values were tabulated for the five years under study and are available as a worksheet 
in the MS-Excel-based spreadsheet file that accompanies submission of this report. Since the water use/billing 
data are annual rather than monthly, monthly climate data were either summed to produce a total (e.g., rainfall 
(in.), evapotranspiration (in.)), or an average (e.g., temperature (ºF) for the eight-month growing season (i.e., 
March – October inclusive.)) 

The LCRA provided ten billing data files to the project team: one for each of two crop seasons per year. Both the 
volume of water sold (acre-feet) and the total charge ($) for that water were provided. Acreage values for each 
record in the project team dataset were first obtained from LCRA’s Umap system that led to the identification 
of fields farmed each year just prior to conducting survey interviews. Billing files also included acreage, however, 
and these values were used because they are tied to water use and thus, are the official billing record.  

The GIS-derived shapefiles provided by LCRA were used to locate the fields for which the project team collected 
survey data. Field acreage was among the variables included in the attribute table. Since LCRA often billed a 
farmer for a collection of fields for which the project team collected individual field data, the shapefiles helped 
inform the project team as to which fields were grouped and billed as one field. In such cases, project dataset 
records had to be combined in order to match the billing data files. One outcome of this process was a dataset 
reduced in size in both the original dataset and in the modeled dataset. 

The task of combining/dropping records presented an unexpected challenge. For example, some record variable 
values are additive in nature (e.g., field acreage, number of levees7, etc.), but others (e.g., slope percentage, several 
categorical variables) are not additive and thus, resulted in the loss of records when such data were in conflict. 
In the case of levee type, the need to aggregate records resulted in the need to create a new levee-type choice: 
“combination” when levee type among such records was variable. Approximately 82 records from the original 
dataset were aggregated into 36 records after combining their variable values with the related record that was 
referenced in the billing data. While we equate a record in our original dataset to a data-point collected, most 
records requiring aggregation were in agreement when considering variable values that were either nonadditive 
or, in the case of levee type, recoded as “combination.” Record aggregation, therefore, resulted in the complete 
loss of 12 records from the 82 records that required aggregation, but just 4 records from the 36 records after 

7 Levee count and type were not verified via a separate review of corresponding-year aerial imagery. While suggested in the project proposal, data 
management challenges prevented the team from executing this verification task prior to the start of data analysis.
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aggregation. This is because “null” values (i.e., conflicting, nonadditive values) were forced upon one or more of 
the variables that the model found to be statistically significant.8 Additionally, 35 records9 had to be dropped 
because a farmer answered “yes” to the survey question, “Did you supplement this field’s water use with private-
well water?”

The shapefiles also allowed the project team to execute a Thiessen Polygon routine in order to assign climate 
data (i.e., temperature and precipitation) to each record from the closest of three LCRA weather stations. The 
shapefile used by the project team also provided the object ID that was included in the project team dataset in 
order that the dataset should have a unique identifier associated with each record (i.e., unique combination of 
year/farmer/field name.) On this last point, it is important to note that the shapefile attribute table features a 
unique entry and object ID for each time a physical field was cropped during the study period. Thus, a physical 
field could have one or more object IDs in the shapefile attribute table irrespective of the field name in a given 
year (i.e., regardless if the field name was consistent or varied across years.) The project team selected the object 
ID associated with the year, farmer, and field name for which survey data were collected.

Dataset Basics
The project team assembled a dataset that originally featured 365 records or unique combinations of a farmer/
year/field10. After culling 81 records as noted above, and nine other records (e.g., due to error or redundancy), 
the final-full dataset features:

275 records11 or unique combinations of year/farmer/field name, 246 records without null values in final-model 
variables, 153 unique field names, 14 farmers interviewed, and 5 years of data: 2012-2016 inclusive. Table 1 
illustrates number of records by year. 

2012 2013 2014 2015 2016

Full 
Dataset

Model 
Dataset

Full 
Dataset

Model 
Dataset

Full 
Dataset

Model 
Dataset

Full 
Dataset

Model 
Dataset

Full 
Dataset

Model 
Dataset

52 49 53 51 66 56 47 40 57 50

Table 1. Number of records per year/growing season.

8One of the four data-points in the final-full dataset of 275 records featured a null value in the precision-leveled column. This means that this data-point 
could not be included in the modeled dataset as explained in the text. This datapoint resulted from the aggregation of four records from the original set 
of 356. At least one of these four records, but less than all four, featured a “yes” value in the categorical variable “precision-leveled. 
9Three records in 2012, seven records for each of the years 2013-2015, and 11 records in 2016.
10Since LCRA field names do not remain consistent across the years and no other unique identifier is associated with each field, the same field was not 
tracked through time separate from its association with a given year and farmer for that year.
11The full dataset of 275 records equals 275 data-points in the LCRA billing file.



6        The Meadows Center for Water and the Environment

Sample Representativeness
Depending on the year, data collected on fields ranged from 22.7 to 31.5 percent of the fields farmed during the 
corresponding year for an average of 27.5 percent across the five-year study. Furthermore, a standard technique 
was applied to the data to test whether the sample collected is representative of the larger population of rice 
fields in the GID. The data tested came from an LCRA shapefile (IRRIGATION_HISTORICAL_FIELDS_
FROM_REPOSITORY_1_31_2017.prj) containing 1,204 records in the polygon attribute table and from a 
subset of this shapefile that was created to represent the fields for which the project team collected survey data 
(365 records). The shapefile and subset created from it represent the only data that were both readily available 
and comparable and thus, appropriate for the test of representativeness.

The technique applied to test for a statistically significant sample, involved t-tests: one for each year and 
another test applied to the combined datasets (i.e., all years lumped together or 365 vs. 1,204 records.) The 
t-tests centered on two variables: GIS acres and contract acreage, to test the null hypothesis that the average
(mean) field size (acres) between surveyed farmers and nonsurveyed farmers is different. In all six tests the
null hypothesis is rejected as there is no statistically significant difference in field size between the sample and
population (Appendix B) Accordingly, results found in this study are representative of the population of fields
farmed each year in GID.

Approach to Data Analysis
The project team had intended to use Stata/IC 14 (StataCorp LP) for statistical analysis, but an unexpected 
change in project personnel combined with a relatively late completion of a quality-checked dataset, necessitated 
the need to use R for model development. The end results would be the same, of course, as the stats package 
applied here is simply the vehicle used to get from “point A to point B.” R is a free software environment for 
statistical computing and graphics output.12 Like many stats packages, R imports an Excel file, converts it to a 
text file, and proceeds to compute as directed.   

Drawing on a recent, similar study,13 we explored the possibility of estimating a multi-level model in which 
water use acts as a dependent variable, with observations grouped at three levels of analysis: (1) time, (2) field, 
(3) farmer.14 To understand whether such a modeling structure was warranted, we first estimated the intra-
class correlation coefficient (ICC) for a two-level model with observations by time grouped by field. The ICC
measures the proportion of variance in our outcome variable—Total Water Use (acre-feet)—that occurs between
groups (fields) relative to the total variation present.15 The ICC ranges from 0 (no variance among fields) to 1
(variation among fields, but not within fields). Higher values of ICC indicate that a large share of total variation
in Total Water Use is associated with field assignments. In our case, the ICC associated with field groups was
equal to 0.552, as estimated in a null model of Total Water Use that used no explanatory variables. This value
means that the correlation of Total Water Use among temporal observations on the same fields is roughly 0.55,
which is quite high. As such, we moved forward with including field as a level of analysis.

Next, we investigated the possibility of longitudinal multilevel modeling structure, which is often appropriate 
when repeated measurements at level 1 (time) are nested within a particular field (level 2). To evaluate the 
suitability of such a modeling design, we updated our prior unconditional model (no explanatory variables) 
to include a time predictor on the right-hand side of the equation.16 A likelihood ratio test that compared 

12 The R Foundation. The R Project for Statistical Computing. https://www.r-project.org/ (last accessed on 9/20/17).
13 Ibid. 1
14 For additional information on this technique, also see: Andrew Gelman and Jennifer Hill, 2007. Data Analysis Using Regression and Multilevel/
Hierarchical Models. New York, NY: Cambridge University Press. 625 p.
15 Finch, W. Holmes, Jocelyn E. Bolin, and Ken Kelley. Multilevel 
modeling using R. CRC Press, 2014. 6        The Meadows Center for Water and the Environment
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the unconditional model to the longitudinal model suggested that the longitudinal model (with time as an 
explanatory variable) was better suited to our data (p<<0.001). The longitudinal model has value in modeling 
both intra-field change over time and differences in temporal change across the levels of the analysis.17 

Third, we estimated a three-level, longitudinal model that grouped observations by time (level 1), field (level 
2), and farmer (level 3), to account for the possibility that farmers make similar decisions for all of the fields 
that they manage. A likelihood ratio test that compared this specification to the working two level longitudinal 
model suggested that the three-level specification was more appropriate for our data (p<<0.001). Thus, our 
approach employs a longitudinal-type, hierarchical linear model.18  

Fourth, we set up a log-level model19 to include 15 major explanatory variables plus two interaction terms 
(Table 2). The log-level model structure is valuable here in that coefficient estimates on the explanatory variables 
represent roughly the percent change in Total Water Use (outcome variable) associated with a single unit increase 
in a given explanatory variable. Such models are popular in econometric analyses of demand.20  

Table 2. Explanatory variables evaluated by model.

List of variables evaluated by model Is the variable retained by model?

Time (relative to 2012) Yes

Cost per unit ($, mean-centered) Yes

Field size (acres, mean-centered) Yes

Growing season (days, mean-centered) Yes 

Temperature (average annual, mean-centered) Yes

Levee density Yes

Hybrid rice (all other rice types considered “nonhybrid”) Yes

Interaction: hybrid rice * growing season No

Farmed by owner (all other relationships considered 
“not farmed by owner”)

Yes

Precipitation (total for growing season) No

Evapotranspiration (total for growing season) No

Precision level (Yes, No) No

Interaction: precision level * levee density No

Permanent perimeter levee (Yes, No) No

Conservation Tillage No

Number of inlets No

Levee type No

17 Ibid. 15 p. 100
18 By comparison, the Ramirez and Eaton (2012) study employed a hierarchical linear model, but there is no evidence found in their final report that it 
was also set up as a longitudinal model.
19 The dependent or outcome variable only is natural log-transformed. This is another difference with the HLM model employed in the Ramirez and 
Eaton (2012) study as best as we can tell.

20 Wooldridge, Jeffrey M. Introductory Econometrics: A Modern Approach. Nelson Education, 2015.
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Finally, a backwards stepwise selection process resulted in a parsing out of the statistically significant variables 
from those with no explanatory power to arrive at a “final” model. The stepwise-selected model is a longitudinal, 
multi-level model with yearly observations (i.e., time as the first level) that are nested in fields (the second level) 
that are nested in farmers (the third level.) A longitudinal multi-level model allows the project team to capture 
any temporal trend that might emerge with the outcome variable.

It was determined that the outcome variable to be used throughout the analysis is “Total Growing Season Water 
Use” (i.e., combining both crop 1 and crop 2 season’s water use rather than modeling each season independently. 
The variable “growing season” fully accounts for those farmers who didn’t plant a second crop as the season is 
determined by the first and last dates of water delivery.) Using Total Growing Season Water Use, or Total Water 
Use, as the outcome variable allowed the project team to move field size to the right-hand side of the model 
as an explanatory variable. Doing so allowed for testing the hypothesis that larger fields use more water than 
smaller fields. This would not have been possible had the team chosen “water demand,” a normalized value in 
the dataset (i.e., total growing season water use divided by field size, resulting in a water use per acre value), to be 
the outcome variable. Furthermore, using Total Water Use rather than Water Demand as the outcome variable 
resulted in the model with the greatest explanatory power possible.

As a final technical matter, note that a majority of the explanatory variables in the final model (Table 2) 
were grand mean-centered, which is a common practice to avoid issues of multicollinearity—and add to the 
interpretability—of multilevel models.21

21 Ibid. 15
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R E S U LT S  A N D  D I S C U S S I O N
Table 3 presents the full model output. The model’s “Marginal R2“ value of 0.77 captures the fixed effects of the 
significant explanatory variables only. In other words, the model’s eight explanatory variables explain 77 percent 
of the variability found in water use during the five-year study period. Unobserved farmer behavior is captured 
in the random effects that are included in the “Conditional R2,” a measure of full model performance that 
includes both fixed and random effects. Here, the model explains about 88 percent of the variability found in 
total water use across the modeled dataset of 246 records. This is a particularly strong performing model of the 
data. The R2 values found here, however, are normal for economic studies where there is a longstanding history 
of strong linear relationships found between price and quantity of a commodity demanded, in this case water.22 

Fixed Effects Coef. Std. Err. Lower 95%† Upper 95%† t VIF

Intercept 5.720 0.095 5.525 5.913 60.32*** --

Year2012 -0.076 0.018 -0.116 -0.040 -4.14*** 1.69

CostUnitTotal -0.014 0.002 -0.018 -0.010 -6.74*** 1.32

FieldSize 0.009 <0.001 0.008 0.010 19.30*** 1.22

GSDayC 0.003 <0.001 0.001 0.004 3.70*** 1.08

Temp 0.004 0.001 <0.001 0.068 2.043* 1.40

LeveeDensity -0.576 0.210 -1.037 -0.133 -2.746** 1.20

Hybrid 0.185 0.071 0.024 0.333 2.602** 1.03

Farmed_by_Owner -0.288 0.008 -0.442 -0.128 -3.70*** 1.05

n=246 Field_Name =153 Farmer_Name=14

***p<0.001 **p<0.010 *p<0.050  VIF=variance inflation factor  †bootstrap confidence intervals (500 simulations)
Table 3. Full model output.

Random Effects Variance

Field_Name:Farmer_Name 0.049

Farmer_Name 0.021

Residual 0.072

Model Performance23 Measure

Marginal R2 (fixed effects)     0.77

Conditional R2 (full model)           0.88

22 See, for example, Howe and Linaweaver (1967)
23 See Nakagawa et al. 2013
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Table 4 provides an interpretative summary of model output consistent with the explanation provided above for 
employing log-level models. And the model equation can be found in Appendix C.  

“Time” as a predictor is the only temporal variable in the model and output indicates that there was a 7.6% 
decline in water use each year from 2012 to 2016. Since this trend in the data is independent of other variables, 
we have no readily available explanation for it. Unlike the other variables, there is no rationale behind an 
associated hypothesis stated one way or the other. Thus, this finding is simply a temporal trend of interest that 
is documented by the model. For context, Table 5 shows the mean water use per year from the dataset—these 
are simply the arithmetic means, and were not drawn from the multilevel model.

A one-unit increase in the 
explanatory variable below:

Is associated with the 
following percent change in 

Total Water Use:

Interpretation, holding all else 

constant:

Time (relative to 2012) -7.6%
Water use has trended 
downward since 2012

Cost per unit ($, mean-
centered)

-1.4%
Price increases reduce water 

usage

Field Size (acres, mean-
centered)

+0.9%
The larger the field, the more 

water used

Growing Season (days, mean-
centered)

+0.3%
The longer the growing 

season, the more water used

Temperature (ºF, mean-
centered)

+3.5%
The higher the growing season 

temperature, the more water 
used

Levee Density (not mean-
centered)

-57.6%
(consider that the average 

levee density is 0.17/unit area, 
where the max is 0.97; so 
a one unit increase for this 

variable is a very substantial 
increase)

The higher the levee density, 
the less water used

Hybrid Rice (all other 
responses considered “non-

Hybrid)
+18.5%

Hybrid rice is linked to higher 
use than other rice types

Farmed by Owner (all other 
arrangements considered “Not 

Farmed by Owner”)
-28.8%

Owners use significantly less 
water than farmers who do not 

own their land

Table 4. Summary of model output.
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A reasonable hypothesis concerning the cost of anything is that as cost increases, one can expect lower demand 
as a result. Such a hypothesis proves true here as the modeled data indicate that for every (one) dollar increase in 
the per unit cost of water sold by LCRA, 1.4% less water was used by GID rice farmers in response. 

As might be expected, bigger fields use more water than smaller fields. For every acre increase in field size, 0.9% 
more water was used during the study period. Table 6 shows average (arithmetic mean) size field for each of the 
five years studied. Similarly, the longer the growing season, the more water is used: 0.3% more water used for 
each day the growing season exceeded the average length growing season. 

Not surprisingly, higher growing season temperatures are associated with greater water demand. Specifically, 
the model shows that for every (one) degree Fahrenheit increase in temperature, water use increased 3.5%. 
The other two climate variables – evapotranspiration and precipitation – were not found to be statistically 
significant. It’s possible their effects were masked by the temperature variable.

Levee density, by definition, is a value between 0.01 and 1. We see a considerable percentage effect, therefore, 
between a one-unit increase in levee density and water use. The results of this study show that the higher the 
levee density, the less water is used. Model results here are different from those found in the Lakeside Irrigation 
Division (LID) insofar as “levee density” did not prove to be a statistically significant independent variable in the 
LID study. In the LID, the variable only became significant as an interaction term with the variable “precision 
leveling.” In this study, we found no significant interaction effect between levee density and precision leveling 

Year Mean Total Water Use (ac. ft.)

2012 460.86 (n=49)

2013 417.42 (n=51)

2014 249.55 (n=56)

2015 294.65 (n=40)

2016 248.56 (n=50)

Table 5. Annual average water use per field during study period.

Year Average (mean) size field (acres)

2012 103.5 (n=52)

2013 110.6 (n=53)

2014 93.8 (n=66)

2015 103.4 (n=47)

2016 86.4 (n=57)

Table 6. Average aggregated field size during study period from full dataset.
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(Table 2). To be sure that the result found here was not an artifact of the model—in which all coefficients 
indicate a relationship between water use and a given explanatory variable holding all else constant—Figure 2 
presents a smoothed scatterplot which depicts the inverse relationship that exists between water use and levee 
density in the project team’s dataset.

Data representing the last two explanatory variables found to be significant, “hybrid rice” and “farmer by 
owner,” were organized to become dichotomous categorical variables. Hybrid rice, for example, is a rice-type 
choice among three other choices that accounts for 80% of the modeled observations. Thus, all other rice 
choices – seed, traditional, other – were grouped together in a nonhybrid category. Farmers who used hybrid 
rice used 18.5% greater water that farmers who chose other rice types for cultivation. This is a slightly different 

Figure 2. Log of total water use vs. levee density.
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finding than the study in LID where hybrid rice was combined with seed rice versus conventional and other rice 
varieties and found to not affect water use in and of itself. In the LID, farmers who planted hybrid or seed rice 
were found to use more water, but only when rice type was entered in that study’s model as an interaction term 
with length of growing season. Here, we found no such significant interaction effect (Table 2). Rice type data 
collected in this study is shown in Table 7.

Regarding the relationship between the farmer and the fields farmed, four choices were available to interviewees: 
farmed by owner, rented for cash, share rented, or other. Since renting for cash or a share of the crop are similar, 
and there were very few “other” observations, data were organized into a categorical variable: “farmed by owner” 
and “not farmed by owner.” The model indicates that farmers who work the land they own, use 28.8% less water 
than farmers who are renting the land. This finding is not consistent with the relationship found in the LID 
study, but results found here may not be comparable to that study as relationships were grouped differently in 
the LID study.24   

Regardless of comparability, the finding here that those who own the land they farm also use less water does not 
come as a surprise. First, there is a fundamental difference between farming land that one owns versus renting 
a field for a season or more whether it be for cash or a share of the crop production. Ownership is tantamount 
to investment and an investment over time leads to experience and familiarity. Greater knowledge of how a 
field performs in response to an input should lead to more informed decisions over time about the timing 
and quantity of inputs necessary. Furthermore, other research (Loftus, 1999; Esseks and Kraft, 1989) suggests 
that rented land does not benefit from the same conservation ethic that is more likely applied to a field that 
is both owned and operated by the same famer. Thus, we’re inclined to think that owner-operators are more 
conservative with inputs and more willing to make long-term investments in the land despite bearing similar 
financial risks as those who otherwise rent the land they farm. 

Rice Types

traditional hybrid seed other

# of cases 15 213 20 24

avg GS days 140 126 79 113

min GS days 73 50 52 50

max GS days 174 194 125 173

Notes:

•	 Growing season (GS) days is for both crops if a second crop was planted.
•	 When seed was planted, there was no 2nd crop planted across all 20 cases.

Table 7. Rice-type metrics across five-year study.

24 In the LID study, share renters were grouped with owner-operators based on the argument that cash renters bear a much greater financial risk than those 
who either pay their rent with a share of the crop or those who own the land they farm. This is a questionable premise and was posited without support 
from any reference(s) to the literature.   
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Figure 3. Simulated water savings (acre-feet per acre) by field in response to price Increase.

Figure 3 above illustrates a model simulation that considers the effect of water price change from 2012 to 
2016 average levels on water use for each of the fields modeled. Each dot represents estimated water savings 
for an individual combination of farmer-field. Estimated savings are calculated by simulating the following 
scenarios and computing the difference in water use between them:

1.	 All independent variables are held at their 2012 (or earliest observed (e.g., 2013 if that was the first time 
for a particular farmer-field combination)) levels except for (1) price, which is set to the average 2012 cost 
per unit ($30.54 / ac. ft.) and (2) year, which is set to 2016. Thus, the scenario estimates water use for each 
farmer-field combination in 2016 under prior conditions (i.e., 2012 or whenever the combination first 
appears in the dataset.) The estimates, therefore, incorporate the temporal trend observed in the data which 
shows that average water use has been declining each year since 2012. These specifications were chosen to 
imagine the case that all of the circumstances that existed in 2012 continue to exist today. 
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2.	 All independent variables are held at their 2012 (or earliest observed) levels except for (1) price, which is 
increased to the average 2016 cost per unit ($45.01 / ac. ft.) and (2) year, which is again set to 2016, as 
in the scenario described above. In this way, we estimate water use for each farmer-field combination in 
2016 under prior conditions, but current (increased) price. Because all of the independent variables in 
this scenario are set to the same values that they were in the above-described scenario, any difference in 
estimated water use is due exclusively to the modeled change in average price (i.e., from average 2012 cost 
per unit to average 2016 cost per unit). In other words, if the average price per unit of water in 2016 were 
exactly equal to the average price per unit of water in 2012, then the scenarios described in bullets (1) and 
(2) would produce the exact same estimates. However, because price per unit of water in 2016 was higher 
in 2016 than it was in 2012, the estimates in scenario (2) should be different from those in scenario (1). 
The magnitude of this difference, for each farmer-field, is therefore a proxy measure of the estimated water 
savings for each farmer-field due to the price increases that occurred from 2012 to 2016. These estimates 
thus represent expected levels of water conservation in response to price changes. 

Recall from above that Figure 3 shows the simulated effect of price change only - an increase of 47.4 percent 
from 2012 to 2016 - on the water usage of 153 fields that were farmed/modeled during the study period. This 
price increase equals a median expected water savings of 0.58 acre-feet per acre, or 52.95 acre-feet per field on 
average.25 This makes clear that increasing the price per unit of water is associated with meaningful water savings. 
The magnitude of the savings, as shown in Figure 3, will vary from farmer-field to farmer-field; but the overall 
tendency is net positive water savings. In an overall sense, based on the findings of the regression model, a $1 
increase in price per acre-foot. of water is associated with approximately a 1.4% reduction in water demand 
(Table 4). Put another way, 100 acre-feet of water used under current per unit prices is expected to decrease to 
98.6 acre-feet if per unit cost increases by $1.

25 The average price of water in 2016 is $45.01 per acre foot.
26 Except for temperature, which is held constant at 2012 levels given that it is not a variable under our control.
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To comment on the relationships between total water use and two remaining explanatory variables,26  Tables 8 
and 9 summarize expected water use by: (1) rice type [hybrid v. other]; and (2) tenure [owner v. other].  Note 
that the expected water use figures are drawn from the multilevel model by setting the explanatory variables for 
each farmer-field combination at their most recent observed values (e.g., if Ownership was observed in 2016, 
then the value for 2016 is used; otherwise, the most recent observed value is used in its place). Temperature is 
held constant (at its grand mean) for all farmer-fields, as is time (2016) and cost per unit (2016 average = $45.01 
per acre-foot). Fields farmed by owners use 0.46 acre-feet of water less per acre than farmers with a different 
relationship to the fields they farm. And growing hybrid rice uses 0.59 acrc-feet of water more per acre than 
other types of rice planted.

Farmed by Owner Other

Minimum 1.06 1.76

1st Quartile 1.63 2.02

Median 2.43 2.83

Mean 2.48 2.96

Standard Deviation 0.67 0.77

3rd Quartile 3.02 3.40

Maximum 4.01 5.59

Table 8. Predicted values of water use in acre-feet per acre from multilevel model, by ownership.

Hybrid Rice Other

Minimum 1.67 1.06

1st Quartile 2.16 1.61

Median 2.86 2.07

Mean 2.96 2.37

Standard Deviation 0.72 0.91

3rd Quartile 3.39 2.49

Maximum 5.59 4.63

Table 9. Predicted values of water use in acre-feet per acre from multilevel model, by type of rice planted.

26 Except for temperature, which is held constant at 2012 levels given that it is not a variable under our control.
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A Word About Precision Leveling
As noted above, the variable “precision-leveled” did not indicate a statistically significant contribution to the 
final model either as an independent variable or as an interaction term with levee density. A separate analysis was 
conducted on the presence/absence of precision leveling on a field relative to water demand, a normalized value 
of water use (i.e., water use / field size = water use per acre.) T-tests performed separately for each of the five years 
revealed no significant difference in water use for the first four years (2012-2015), but a statistically significant 
difference emerged in 2016.27 Tables 10 and 11 show that the majority of fields sampled are precision-leveled.

Total Fields in production 2012-2016 during the first crop

Year Total Fields Nonleveled fields Leveled Fields

# Fields Percentage # Fields Percentage

2012 52 15 28.85% 33 63.46%

2013 53 17 32.69% 32 60.38%

2014 66 23 44.23% 37 56.06%

2015 47 14 26.92% 30 63.83%

2016 57 22 42.31% 33 57.89%

Table 10. Fields in production of first crop: 2012-2016.

Note: Nineteen null values are distributed as follows: 4 in 2012, 4 in 2013, 6 in 2014, 3 in 2015, and 2 in 2016.

Year Total Fields Nonleveled fields Leveled Fields

# Fields Percentage # Fields Percentage

2012 47 13 27.66% 31 65.96%

2013 39 12 30.77% 24 61.54%

2014 21 1 4.76% 18 85.71%

2015 27 7 25.93% 19 70.37%

2016 46 18 39.13% 26 56.52%

Table 11. Fields in production of second crop: 2012-2016.

27 Results are displayed in the MS-Excel file, “PLevel_vs_nonlevel_ttests_Nov2017”.
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C O N C L U S I O N S  A N D  R E C O M M E N DAT I O N S
The model developed for this project explains most – 88 percent – of the variability found in water use among 
rice farmers in the GID. Among the seven nontemporal predictors, however, just one appears to be policy 
relevant: cost of water per unit sold. In other words, there are no policy levers for influencing field size or length 
of growing season. And temperature, much like rainfall, cannot be influenced to increase or decrease as a short-
term response to a policy decision.28  

Levee density might be managed to meet a minimum standard, but farmers must each make a decision of how 
many levees to install based on a number of factors: field characteristics, cost, advantages to be gained (e.g., less 
water use), and disadvantages of additional levees (e.g., natural slope contours and the practical matter of using 
farm equipment, etc.) Here it will be useful to explore the extent to which the local USDA NRCS field office 
is providing technical advice and if staff have the sense that levee density is about right or if it can be adjusted 
and/or improved for the purpose of minimizing water use further.

Similarly, the variety of rice chosen for planting is a matter of farmer preference. This study did not seek to 
understand why one type of rice was chosen over the other types available and much work would need to be 
done on rice variety cost, potential crop production, value of harvest relative to market forces, and other factors 
before one might consider, for example, a tax imposed on higher water using rice varieties during a water 
shortage. But water price is another way to address the matter without overtly favoring one variety over another 
by implementing an unpopular tax. In any event, rice variety appears to matter when it comes to water use and 
findings here are in general agreement with the LID study as noted above. 

Lastly, the relationship between the farmer and land ownership will vary over time in response to demographics, 
market forces, and the history of land ownership, none of which lends itself well to influence by policy makers. 

If LCRA wishes to reduce water use in the GID or any of their other rice-growing irrigation divisions, then 
using the price of water as a regulator of the volume purchased (and thus, volume saved for transfer) is proven 
to be effective. Of course, this has not been the intent to date. Yet farmers have nonetheless become increasingly 
more conservative with water purchases in response to rising price. In that vein, implementation of volumetric 
measurement and pricing has been instrumental in enabling LCRA to manage demand. It should be noted, 
however, that rising price also appears to be incentivizing conjunctive use among some farmers. A number of 
farmers interviewed, indicated that they are supplementing purchased water with private-well water applied to 
their fields. As long as this alternative supply is unmetered, it will be impossible to know the full extent of overall 
water use in the GID. 

Finally, rising price during the five-year study period may also be responsible for precision leveling, eventually 
(i.e., only in year five) showing a noticeable relationship to water demand. This relationship will be important 
to follow over time regardless of whether significance is maintained or not.   

We believe that water use and any measured savings from reduced use, to the extent that water use changes 
relative to a baseline, need to be quantified annually to provide a defensible foundation for a future interbasin 
water transfer. Furthermore, a baseline of water use needs to be determined for GID and other irrigation 

28 This statement is aside from the fact that Earth is warming and some policymakers are making decisions to reduce greenhouse gas emissions that are 
driving the warming trend.
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divisions along with an accounting period (e.g., 20 or 30 years rolling) during which time annual surpluses/
deficits can be tallied in order to arrive at an annual status of water availability for transfer whenever a request 
for such is made. 

The recommendations made for LCRA in the 2012 study conducted in the LID can be echoed here as they 
remain relevant. Here, we’ll highlight the recommendation to include many of the questions that were asked 
of farmers during the on-site survey interviews, in the annual contracting process. Doing so will have three 
advantages: 1) data will be collected annually for all farmers under contract, 2) the burden of lengthy survey 
interviews that was placed on farmers in this study will be greatly reduced should survey interviews be conducted 
in the future, and 3) more accurate data is likely to result when questions are posed annually versus every three 
to five years.

Data analysis conducted here in the GID and five years ago in LID, concerns an administrative mismatch 
between fields that are physically farmed and fields as they are represented in the billing files. While the mismatch 
concerns a minority of fields, the loss of data resolution and potential for reduced data quality that results when 
fields are aggregated to compensate for the mismatch, are matters that seek rectification if possible.

Since field names can change over time, LCRA should also include the USDA FSA farm and tract numbers that 
are associated with each of the rice fields of interest. Doing so will create a unique identifier for each field that 
currently does not exist and will allow for efficient tracking of a field over time in the event that there is value 
associated with such tracking.
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A P P E N D I X  A
Volumetric Measurement and Pricing as a Conservation Practice

RICE PRODUCTION FARM PRACTICES SURVEY 2012-2016

INTRODUCTION:  The purpose of this survey is to investigate how volumetric measurement and pricing of 
water, and other water conservation practices, as currently applied by farmers in LCRA’s Garwood Irrigation 
Division influence on-farm water use. A research team from Texas State University will analyze data collected 
by this survey. 

Your voluntary response to the survey is important to understanding the effects of certain conservation practices 
on water use. The information you share will be compiled into a report that has aggregated data for the entire 
division, and LCRA will not release your individual information unless required to do so by law. 

If you do not wish to answer a question, you are not required to do so. The survey consists of three parts: general 
information, farming practices and field characteristics. We greatly appreciate your time and effort.

PART 1: GENERAL INFORMATION - In the general information section you will be asked to provide 
information about yourself to help LCRA and the research team better understand the factors most related to 
conservation and water use.   

PART 2: FARMING PRACTICES - These questions refer to water conservation measures and management 
practices. 

PART 3: FIELD CHARACTERISTICS - These questions are central to verifying the benefits of the program 
to pay for farm land improvements. You will be asked about ALL fields planted from 2012 to 2016 (one row 
per field per year). Please bring farm records you consider necessary to ensure the information is as accurate as 
possible. If you do not have records for some fields or years, please let us know. If you have questions about the 
terminology in the survey, refer to the glossary attached to this survey. 

The project team will use LCRA’s uMap tool to verify your fields. If there are fields incorrectly marked, not part 
of your farming operation or missing, please let us know. If you have questions about completing this survey, 
contact Stacy Pandey at 800-776-5272, ext. 7471 or by email at stacy.pandey@lcra.org. We look forward to 
completing the survey with you.

Survey respondent name: ______________________________________________

LCRA contract holder name: ____________________________________________ 

Date: ___________________
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Part 1 – General Information

Name: __________________________

Role in farm operation: ___________________________

Gender: _____ Male   _____ Female

Total area of your farm operation: _____ acres

Years you actively have farmed: _____ 

Please circle your age (optional).

•	 Less than 30
•	 31-40
•	 41-50
•	 51-60	
•	 More than 60 

Please circle your level of formal education (optional):

a. Completed grade school		

b. Completed high school

c. Attended a four-year or junior college

d. Graduated from a four-year college

e. Attended graduate or professional school

f. Completed graduate or professional degree

Part 2 – Farming Practice

1. What percentage of your total working time (i.e., time spent generating income) do you spend working on:

a. Farms you own 	      	 _____

b. Farms rented for cash	 _____

c. Farms share rented    	 _____

d. Off-farm activities 	 _____ 

Total 100 percent

2. In your farming practice, please circle who makes the management decisions for crop variety, pesticide use, 
labor and water orders when land is:

Farmed by owner Rented for cash Share rented
Landowner Landowner Landowner
Tenant Tenant Tenant
Manager Manager Manager
Field hand Field hand Field hand
Ag/crop consultant Ag/crop consultant Ag/crop consultant
Other_________________ Other_________________ Other_________________
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3. Which of the following conservation practices do you practice to reduce water use? Circle all that apply.

a. Precision land leveling

b. Multiple inlets

c. Permanent levees

d. Other: __________________

4. Please rank the reasons below for adopting conservation practices such as precision land leveling, multiple 
inlets or permanent perimeter levees (1 being most important, 5 being least important). 

a. Increase yield.		  _____

b. Land topography		  _____

c. Reduce labor costs   	 _____

d. Water savings             	 _____

e. Financial support	     	 _____

f. Other, please specify: 	 _____________________

5. Please estimate the percentage of your farmland that has been precision leveled (i.e., land graded to a slope 
of less than 2 percent). 

_____ percent

6. How often do you perform land-grading maintenance on your precision-leveled fields?

a. Each year they are in production.

b. Every other year they are in production.

c. Every _____ years.

d. As needed based on visual inspection.

e. Other:__________________________

7. What circumstances lead you to perform land-grading maintenance on your precision-leveled fields?

a. Weather

b. Fallow-field flooding

c. Livestock damage

d. Other: ___________________________

8. Please rank the following sources of farming knowledge (1 being most important, 5 being least important). 

a. My own practice and experience	 _____

b. Parents/relatives			   _____

c. Other farmers			   _____

d. University Extension/USDA	 _____

e. School/professional training	 _____

f. Ag/crop consultant		  _____

g. Other, please specify: ______________________________
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9. How has volumetric measurement and pricing of water affected your water usage (choose one answer)?

a. I use about the same amount of water as I always have.

b. I use less water than I did prior to implementation of this pricing mechanism.

c. I use more water than I did prior to implementation of this pricing mechanism.

10.  Since volumetric measurement and pricing were introduced, are you managing water in your fields differ-
ently with greater investment in labor or some other management technique? 

a. Investing in more labor to increase efficiency of water use.

b. Other technique (please describe): ____________________________________

11. Do you manage/maintain your private lateral canals on a regular basis and if so, what is the primary rea-
son(s) for doing so? 

• No  

• Yes, because________________________________________________

12. On your farm fields, do you collect rainfall or other weather data?  

• Yes

• No

13. Do you flush your field(s) as a standard practice before holding a permanent flood?

• Yes

• No

14. Do you flush to start a herbicide?

• Yes

• No

15. Are there any other things that you can tell us about your farming practice that influence your water use?

_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
________________________________________
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A P P E N D I X  B
t-tests applied to determine sample representativeness
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T-Test

COMPUTE filter_$=(year = 2012).
VARIABLE LABELS filter_$ ‘year = 2012 (FILTER)’.

T-Test
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T-Test

COMPUTE filter_$=(year = 2013).
VARIABLE LABELS filter_$ ‘year = 2013 (FILTER)’.
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T-Test

COMPUTE filter_$=(year = 2014).
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T-Test

COMPUTE filter_$=(year = 2015).
VARIABLE LABELS filter_$ ‘year = 2015 (FILTER)’.
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T-Test

COMPUTE filter_$=(year = 2016).
VARIABLE LABELS filter_$ ‘year = 2016 (FILTER)’.
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T-Test
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A P P E N D I X  C
Longitudinal multi-level model equation
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