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WELL-POSEDNESS AND DECAY OF SOLUTIONS FOR A
TRANSMISSION PROBLEM WITH HISTORY AND DELAY

GANG LI, DANHUA WANG, BIQING ZHU

ABSTRACT. In this article, we consider a transmission problem in the presence
of history and delay terms. Under appropriate hypothesis on the relaxation
function and the relationship between the weight of the damping and the
weight of the delay, we prove well-posedness by using the semigroup theory.
Also we establish a decay result by introducing a suitable Lyaponov functional.

1. INTRODUCTION

In this article, we study the following transmission system with a past history
and a delay term

Ut (2, 1) — AUy (x,t) + / 9(8)uge(z,t — s)ds
0

4 () + pous(m,t — 1) =0, (2,8) € Q x (0, +00), (1.1)
v (2, t) — buge(z,t) =0,  (z,t) € (L1, La) X (0, +00),
under the boundary and transmission conditions
u(0,t) = u(Ls,t) =0,
U(Llat) :v(Livt)7 i=1,2, (12)

auw(Livt) - / g(s)uz(Li>t - S)dS = bvw(Liat)v 1=1,2,
0

and the initial conditions
u(z, —t) = uo(x,t), w(x,0)=u1(z), x€Q,
ug(z,t — 1) = folz,t — 1), 2€Q, te(0,7), (1.3)
v(z,0) =vo(x), wv(z,0)=wv1(x), x€ (L1,Ls),

where 0 < Ly < Ly < L3, Q = (0,L1)U (L, L3), a, b, p1, o are positive constants,
ug is given history, and 7 > 0 represents the delay.
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FIGURE 1. The configuration for problem (1.1))—(1.3).

Transmission problems arise in several applications of physics and biology. We
note that problem - is related to the wave propagation over a body which
consists of two different type of materials: the elastic part and the viscoelastic part
that has the past history and time delay effect.

For wave equations with various dissipations, many results concerning stabi-
lization of solutions have been proved. Recently, wave equations with viscoelastic
damping have been investigated by many authors, see [6] [7, [8, 17, 18, 19} 26] 28], [29]
and the references therein. It is showed that the dissipation produced by the vis-
coelastic part can produce the decay of the solution. For example, Cavalcanti et al
[8] studied the equation

t
uge — Au —|—/ g(t — T)Au(r)dr + a(x)us + |u]u =0, in Q x (0,00),
0

where a : © — R;. Under the conditions that a(z) > ap > 0 on w C Q, with w
satisfying some geometry restrictions and

the authors showed the exponential decay. Berrimi and Messaoudi [6] considered
the equation

t
Uy — Au —l—/ g(t — M) Au(r)dr = [u]"u, in Q x (0,00)
0

with only the viscoelastic dissipation and proved that the solution energy decays
exponentially or polynomially depending on the rate of the decay of the relaxation
function g. Guesmia [II] considered the asymptotic behavior of solutions to an
abstract linear dissipative integrodifferential equation with infinite memory (past
history) and introduced a new approach which allows a larger class of past-history
kernels and consequently a more general decay result for a class of hyperbolic prob-
lems with past history is obtained. For other past (infinite) history problems, see
[2, 2] 2T], 24, 25] and the references therein.

In recent years, the control of PDEs with time delay effects has become an active
area of research. The presence of delay may be a source of instability. For example,
it was proved in [I0} 16, 23] that an arbitrarily small delay may destabilize a system
which is uniformly asymptotically stable in the absence of delay unless additional
conditions or control terms were used. Kirane and Said-Houari [14] considered the
viscoelastic wave equation with a delay

uge(z,t) — Aulz, t) + /0 g(t — s)Au(z,t — s)ds

+ prug(x, t) + poug(z,t —7) =0, in Q x (0,00),
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where p; and ps are positive constants. They established an energy decay result
under the condition that 0 < ps < ;. Later, Liu [I5] improved this result by con-
sidering the equation with a time-varying delay term, with not necessarily positive
coeflicient uo of the delay term.

Transmission problems related to - have also been extensively studied.
Bastos and Raposo [4] investigated the transmission problem with frictional damp-
ing and showed the well-posedness and exponential stability of the total energy.
Muitioz Rivera and Portillo Oquendo [22] considered the transmission problem of
viscoelastic waves and proved that the dissipation produced by the viscoelastic part
can produce exponential decay of the solution, no matter how small its size is. Bae
[3] studied the transmission problem, which one component is clamped and the
other is in a viscoelastic fluid producing a dissipative mechanism on the boundary,
and established a decay result which depends on the rate of the decay of the re-
laxation function. The effect of the delay in the stability of transmission system
in the absence of the past history term has been investigated by Benseghir
in [5]. In [27], the present authors studied the well-posedness and decay of so-
lution for a transmission problem in a bounded domain with a viscoelastic term
fg g(t — 8)uzz(z, s)ds and a delay term.

Motivated by the above results, we intend to study in this paper the well-
posedness and the decay result of problem —, in which the infinite memory
(past history) term fooo 9(8)uzy(x,t — s)ds is involved. The main difficulty we en-
counter here arises from the simultaneous appearance of the past history and the
delay term. We need also pay more attention to the influence of the transmission
boundary. To attain our goal, we use the semigroup theory to prove the well-
posedness, and introduce a suitable Lyaponov functional to establish the decay
result.

This article is organized as follows. In Section [2| we give some materials needed
for our work and state our main results. In Section [Bjwe prove the well-posedness
of the problem. The decay result is proved in Section

2. PRELIMINARIES AND STATEMENT OF MAIN RESULTS

In this section, we present some materials that shall be used for proving our
main results. For the relaxation function g, we have the folloing assumptions:

(A1) g: Ry — Ry is a C! function satisfying

g(0) > 0, af/ g(s)ds=a—go=1>0.
0

(A2) There exists a non-increasing differentiable function £(t) : Ry —
R, such that

g (t) < —&(t)g(t), Vt>0 and /Ooof(t)dtz—i-oo.

As in [23], we introduce the variable
z(z, p,t) = w(z,t —7p), (z,p,t) € Qx(0,1) x (0,00).

Then
th(xapa t) +Zp<xap7 t) =0, ((E,p,t) €0 x (Oa 1) X (0,00)
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Following the ideal in [9], we set
n'(z,s) = u(z,t) —u(z,t —s), (x,t,5) € Ax Ry x Ry.
Then
ni(z,s) +ni(x,s) = w(x,t), (w,t,8) € Ax Ry x Ry.
Thus, system becomes

g (2, 1) — lugy (2, t) — /Oog(s)ngm(m, s)ds
+ prug(z, t) + poz(z, 1,?5) =0, (z,t)€Qx(0,400),
v (2, t) — buge(z,t) =0, (x,t) € (L1, La) x (0,+00),
Tze(x, p,t) + 2p(x, p, 1) =0, (z,p,t) € Q2 x(0,1) x (0,+00),
ni(z,s) +ni(x,s) = ue(x,t), (x,8,t) € Qx (0,4+00) x (0, +00),
the boundary and transmission conditions become
u(0,t) = u(Ls,t) =0,
u(Li,t) =v(L;,t), i=1,2,t€ (0,+0),

lux(Li7t) +/ Q(S)U;(Lu S)dS = bviﬂ(Liat)7 1= 1a 25 te (07 +OO),
0

and the initial conditions become
u(z, —t) = uo(x,t), wu(z,0) =ui(z), x € Q,
z2(x,0,t) = ue(x,t), z(x,1,t) = fo(z,t —7), (x,t) € Qx(0,+00),
v(z,0) = vo(x), vi(x,0) =v1(x), x€ (Ly,Ls),

It is clear that
n'(x,0) =0, forallz >0,

n'(0,s) = n'(Ls,s) =0, forall s> 0,
n°(x,s) =no(s), forall s> 0.
Let V := (u,v,p,1%,2,1m")T, then V satisfies the problem
Vi=dV(t), t>0,
V(0) = Vb,

(2.1)

(2.6)

where Vo := (ug(+,0),vo, ur,v1, fo(-, —7),m0)7 and the operator <7 is defined by

u ®
v (0

7 =171 = lUugy + f0+°° 9(8)wyp(s)ds — p1p — poz(., 1)
(G bugy
“ _%Zp
w —wy + ¢

where

X, = {(uw) € HY(Q) N HY (L1, Ly) : u(0,t) = u(Ls, t) = 0,u(Ls,t) = v(Ls, t),

lug (L, t) +/ g(s)nt(L;, s)ds = bu, (L, t),i = 1,2}
0
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and LZ(Ry, H'(Q)) denotes the Hilbert space of H'-valued functions on Ry, en-
dowed with the inner product

—+oo
(&) L2y 11 (0) = /Q/ 9(8)Px(5)04(s)dsdz.
0
Set
V: (u7v7 <p7¢7 Z?w)T7 ‘7 = (Il_L, 7‘_]7 @71;7 2715)1-"
We define the inner product in 42,

L2 L2
(V, V) / podr + Ypda + luzuldx + bu, v, dx
Ly

+oo
// $)Wy (8)Wy (s dsdx—i—C// zzdpdzx.
The domain of & is

D() = {(u,v,gp,w,z,w)T cHuec H (Q)NH (Q),
v € H*(Ly, Ly) N H' (L1, Ly), € H'(Q),4 € H' (L1, Ls),
we L (Ry, HHQ)NHY(Q)),w,s € (R, H(Q)),
2, € L2((0,1), L2()), w(,0) = 0, z(,0) = w(x)}.
The well-posedness of problem — is ensured by the following theorem.

Theorem 2.1. Assume that pe < p1, (Al) and (A2) hold. Let Vi, € J, then
there exists a unique weak solution V- € C (Ry, ) of problem (2.6). Moreover, if
Vo € D(), then

VeCRy,D))NCH (R, 7).
For a solution u of (1.1)-(1.3), we define the energy

Lo
B() = 5 [ lat(e.0) + (e 0ldo + 5 [ Rt) + i -

// |77z373|d8d33+c// (x, p, t)dpdz,

where ( is the positive constant satisfying

Cuo < ¢ <T(2u1 — p2), p2 < p1, (2.8)
C=rTpa, po=H1. '

Our decay result reads as follows.

Theorem 2.2. Let (u,v) be the solution of (1.1)-(1.3). Assume that (A1), (A2)
hold, that pus < w1, that for some my > 0,

/ ud,(z,8)dr <mgy, Vs>0 (2.9)
Q

and that
0> 8(Ly — Lq) b 8(La — L)

, e Bl VI 2.10
L+ L3 — Lo L+ L3 — Lo (2.10)
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hold, then there exists constants vo,v2 > 0 such that, for all t € Ry and for all
M € (0770)7

B(t) <(1+ / (gl ds e € 4o, / Taloas @

Remark 2.3. Here we consider some examples to illustrate our estimate .
(1) Let
g(t) = ke R0 0 < g <1, k1 >0, ke >0,
then it is clear that (A2) holds for £(¢) = kaq(1 + t)?=1. Consequently, applying
(2:11)), we obtain the decay result
E(t) < ¢em@h20H0",

where ¢; and ¢; are positive constants.
(2) Let
g(t) = ke R g > 0, ky > 0,
then our assumption (A2) holds with £(¢) = %W. (2.11)) gives us
E(t) S c"Se—Clkzl[ln(l—‘rt)]p’
where ¢3 and ¢4 are positive constants.

3. WELL-POSEDNESS OF THE PROBLEM

In this section, by combining the frameworks of [5] with some necessary modi-
fications due to the problem treated here, we use the semigroup approach and the
Hille-Yosida theorem to prove the existence and uniqueness of problem (|1.1))-(/1.3)).

Proof of Theorem[2.1. First, we prove that the operator < is dissipative. In fact,
for (u,v, 9,9, z,w)T € D(&), where p(L;) = (L;),i = 1,2 and ( is a positive
constant satisfying (2.8)), we have

(V) V) / lugppdr + /Q (/O+°° 9(8)waz(8)ds — p1p — paz(., 1))<pdx

Lz L2
+/ luzapmdx+/ bvmwmder/ bvgpdx
Q L

1 L,y

oy " ) wa(5) (s + @) aclsd
_EAAQ%@M@M.

For the last term of the right side of ., we obtain

C// 22p(x pdpdx—(// f—z (z ,odpdac—g/ﬂ(z2(x,1)—z2(x,0))dx.

Noticing that z(z,0,t) = o(z,t), w(z, O) = 0and o(L;) = ¥(L;),i = 1,2, we obtain

+oo
V-V = [usp+ [ glewn(s)ase] |+ ol

(3.1)

+ [ (o= et ot [ | @l Pas]
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//+OO 8)|wy (2, 8)*dsdx — C// zzpdpda

(u1 - E) /Qcpz(:c)dx — £ 22(x,1)dx

+oo
—ug/ z(x, x)da + = // 8)|wy (2, 5)[*dsda,

where we have used that

—+oo
[lumap—i-/o g(8)w,(s)dsp]an
+oo
= 1y (L 1) + /O 9(8)wa(Ln. 8)ds) p(Lr. 1)

_ (lum(Lz, t) + /OJFOO g(s)wz (Lo, S)ds) o(La, t)
—[bv,y]£2

Using Young’s inequality, we have

(FV, V) (ul—i—%>/ 2(z)dx — (%—%) /Ole(:EJ)dx

—+oo
// 8)|wg(x, s)[*dsdz.
Q

Consequently, taking (2.8)) and (A2) into account, we conclude that
(FV. V)0 <0;

that is, o7 is dissipative.
Next, we prove that —«/ is maximal. Actually, let F' = (f1, fo, f3, f1, f5, f6)© €
¥, we prove that there exists V = (u,v,¢,v, z,w)T € D(&/) satisfying

(M - o)V =F, (3.2)
which is equivalent to
Au— @ = f1,
AU — ’(/J = f27
AP — Uy — / 9(8)wee(s)ds + 1o + poz(.,t) = f3,
0 (3.3)
)\w - bvzaz = f47
1
A2+ =z, = fs,
T

Aw +ws —p = f.
Assume that with the suitable regularity we have found v and v, then
o =Au— fi,
= Av— fo.
So we have p € HY(Q) and v € H*(L1, L2). Moreover, we can find z with
z(z,0) = p(z), forz e Q.
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Following the same approach in [23] and using the equation in ([3.3)), we obtain
P
2(x,p) = p(z)e M7 + Tef/\‘”/ fs(z,0)er 7 do.
0

From (3.4)), we obtain

p
2(z,p) = Mue 7T — fe” T e T | fs(x,0)er T do. (3.5)
0

It is easy to see that the last equation in (3.3) with w(z,0) = 0 has a unique
solution

wlews) = ([ Mato) + ptean)e™ (35
(] M (folay) + Mule) — fi(@)dy)e (3.7)

By using (3.3)), (3.4) and (3.6]), the functions u and v satisfy
(>\2 + :ul)\ + MQ)\G_)\T) u— Zua:w = f7
)\2'0 - b'U'rT = f4 + >\f27

l~:l+/\/ g(s)eﬂ\s(/ eAydy)ds
0 0

[= /OoO g(s)e—As(/Os e (fo(z,y) — fl(%y))mdy)ds

(3.8)

where

and

1
— ‘[LQTei)\T\/ f5(l‘, O')@AUTdU + ()\ + M1 + pgef)‘T) f1 + f3.
0

We just need to prove that (3.-8) has a solution (u,v) € X, and replace in (3.4),
3.5) and (3.6)) to get V = (u,v, ¢, %, z,w)! € D(<7) satisfying (3.2). Consequently,
problem l 8)) is equivalent to the problem

O((u,v), (wi,w2)) = (w1, wa), (3.9)

where the bilinear form @ : (X,, X,) — R and the linear form [ : X, — R are
defined by

D((u,v), (w1, ws)) = /Q [(A? 4+ A + pore ™) uws + Zux(w)z]dz — [luzwi]oa

Lo
+ / ()\2vw2 + bug (w2)w) dzr — [bvwwz]éf
Ly

and

Lo
l(wl,wg):/gfwldx—i—/ (fa + Mf2)wadz.
L

1
Using the properties of the space X, it is easy to see that ® is continuous and
coercive, and [ is continuous. Applying the Lax-Milgram theorem, we infer that for
all ( wl,wg) € X*, problem has a unique solution (u,v) € X,. It follows from
. ) that (u,v) € {(H2 ) % HQ(Ll,LQ )ﬂX } Thence, the operator AI — &7
is surjective for any A > 0. At last, the result of Theorem [2.] follows from the
Hille-Yosida theorem. (]
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4. DECAY OF THE SOLUTION

In this section, we consider a decay result of problem (1.1))-(1.3). We will discuss
two cases, the case po < p1 and pe = p1. We will separate two cases since the
proof are slightly different.

4.1. The case s < pq. For the proof of Theorem [2:2] we need some lemmas.

Lemma 4.1. Let (u,v,z) be the solution of (2.2))-(2.3). Assume that pa < p1 and
E(t) satisfies (2.7). Then we have the inequality

%E(t) < —cl[ / W2 (z, t)dz + /Q zQ(x,l,t)dx}

+3/ / $)lnt (z, )2 dsda.

Proof. Multiplying the first equation in (2.2)) by wu, the second equation by vy,
using the fourth equation in (2.2)), integrating by parts and using (2.3)), we obtain

(4.1)

o0
/ (ututt + lugpugs + / g(s)nk(x, 8)ugeds + ,ulutz + poz(z, 1, t)ut)do:
Q 0
Lo

(oo}
_ {(lum +/ g(s)nt (z, s)ds) ut} - [bvzvt]ff +/ (Ve + bvgvgs)da
0 o0 L,

— sl [+ nzeoias] + 35 [t + i o] (1.2
5

vga [ s Pasas s[5  oolnite. o]

o / u2(, )z + iy / w2z, 1, £)da
Q

- f/ / s)|nk(x, s)|*dsdz = 0,

where we have used that

- [(lux + /000 g(S)ni(ﬂfas)dS)“t} )

— (tua(Zavt) 4 [ gt (Lo, o)ds (a1
~ (L) + /0 (L, s ) (L. 1)

= [bvzvt]ﬁ,

and

5 [t opad =0

Multiplying the third equation in (2.2)) by {z/7, integrating the result over Q x
(0,1) with respect to  and p respectively, we have

2dt// (@, p,t dpdx——*/ (2,1) = 2%(x,0))dz. (4.3)
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From and (4.3)), we arrive at
d ¢ ¢
th( )= (ul - ) |5 [ e

—ug/ ug(x, t)z(z, 1,t)de + = // s)|nt (z, s)[*dsda.

Young’s inequality gives us

th( t) < (,ul - % - %) /Qu?(a;t)dx - (% - %) /QZQ(%l,t)dx

/ / s)|nt (z, s)|*dsdz.

Thanks to ) and -, our conclusion holds. The proof is complete. ([l

(4.4)

Now we define the functional

Lo
2(t) :/uutdaﬁ—&—&/qux—i—/ vogda.
Q 2 Q L,y

Then we have the following lemma.

Lemma 4.2. The functional 2(t) satisfies

L2 L2
i.@(t) / 2dx + / vide + (LPe + ¢ — l)/ uide — bv2dz
dt Q Iy (4 5)

// s)|nt (z,s)|*dsdx + =2 /22(:v,1,t)d:r.
de Jq

Proof, Taking the derivative of 2(t) with respect to ¢ and using (2.2)), we have
Lo

.@( )= / uidx —l/ uldz — H2/ z(x, 1, t)udx + [bvxv]ff —|—/ vide
dt ) Q Q Ly
t
+ [(lugj +/0 g(s)ngﬂ(x,s)ds)u} 0

_ /Q g (1) /0 - g(s)nt (z, s)dsdz — / - bv2dz (4.6)

Ly

Lo
:/ufdx—l/uidx—ug/z(x,l,t)udx—i—/ vidx
Q Q Q Ly

Lo

- bvidx—/ugj(aﬁ,t)/ g(s)n(x, s)dsdx,
Q 0

Ly

where we used that
o0

(s [ gt e yas)u] = (luama) | stz as)u(ts.
- (lux(Lg,t) + /O - g(s)nt (La, s)ds)u(Lg,t)

= —[bvxvt]ff.

By the boundary condition (1.2)), we have

x 2 L,y
u?(z,t) = (/ um(;v,t)dm) < Ll/ ul(z,t)dz, x€0,L],
0 0
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L3
u?(z,t) < (L — Lg)/ u?(x,t)dz, x € [Lo, L3,
Lo
which implies
/uz(x,t)dx < L2/ uide, x€Q, (4.7
Q Q

where L = max{Ly, L3 — La}. By making use of Young’s inequality and (4.7), for
any € > 0, we obtain

/Lg/ z(x, 1, H)udx < MQ / ZZ(I,I,t)dl‘+L2€/ u?da. (4.8)
Q e Ja Q

Young’s inequality, Holder’s inequality and (A2) imply that

/ug;(x,t)/ g(s)n(x, s)dsdx <€/ (x,t da:—|—gO // s)|nk (x, s)|*dsd.
Q 0

(4.9)
Inserting the estimates (| and ( into , then (4.5) is fulfilled. O
Next, enlightened by [20], we introduce the functional
z— L, x € [0, L],
q(z) = { 5 — B (@ — L), @€ (L, La),
LL’—#, T € [LQ,Lg].

It is easy to see that ¢(z) is bounded: |g(z)| < M, where M = max{%L, La=l2},
We define the functionals

Fi(t) = — /Q q(z)uy (lu,; + /000 g(s)nt (z, s)ds)dx, Fo(t) = — /L2 q(z)vzvede.

Ly

Then we have the following results.

Lemma 4.3. The functionals F1(t) and F5(t) satisfy

d
ayl(t)
M2
S(l+90+ Lig MQ)/ dx+(12+2l251)/udx
2 4eq
M2
+ —= / 2(z,1,t)dz + (go + 2g0€1) / / 8)|nt(x,s)?dsdz  (4.10)

l+go 2
- / | gt o Pasts - [0 gt]

(% e+ [ atomtiospes)

o
and
P (t) < LlJrL?’_LQ(/L v2dm+/L2 bu2dx) + &vz(L )
A" T ALy —Lo) \Jp, Lo D (4.11)
Ls—L b
+ = 2 2(L2)+Z((L3—L2)v§(L2, t)+ Lyv2 (L, t)).
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Proof. Taking the derivative of %#1(t) with respect to t and using (2.2)), we obtain

d o7
afl(t)

- —/Qq(x)utt(lug; +/Om syt (x, s ds)dx
—/Qq(m)ut (zum +/OOO sty (@, 5) ds)dx

- —/Qq(x)<lum +/OOO ()0t (z, 5 ds) (lum +/Ooog Yt (z, s)ds)dx
+ /Q q(x)(ulut(aﬂ,t)+ugz(:ﬂ,1,t))(lux+ /0 b g(s)n;(x,s)ds)dx
—/Qq(z)ut<luxt+/ooo g(s)nt (x, 5)ds) da.

We pay attention to
- [ a1+ [ gttt (s [ gt s)a
- %/Qq'(m) (1. +/OOo 9()n (. )ds)
- [@(m + /O " )t (e, s)ds)2]aﬂ.

The last term in (4.12)) can be treated as follows
oo
—/ﬂ)m@m+/ 9()nt (e, 5)ds ) da
Q
-1

) uptigrde —/ / nm x, s)dsdx
= [ £q(x)uZ] +*/ ¢ (z)uldx
o 2 Jq ¢
/ ut/ — ni)z dsdz
Q

= [~ gat], +§Aqum—%4«wwmw

/ / s)nt, (z, s)dsdz

[+ g0 L+ g0
= |- 5 awd] 5" [ dapdds

/ x)uy / s)ntdsdz,
Q

where we used that

oo

-[ [ at@pueg(eint e sz <o,

(4.12)

(4.13)

(4.14)
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Inserting (4.13) and (4.14) in , we arrive at

d
—F(t
4510

=— {@ (ZUw + /0009(3)77;(557 S)dS)Z} P [l +290 q(x)uﬂ oQ

+%/Qq/(:c) (luw +/Ooo 9(3)773($78)ds>2d33+/QQ(:E)(mut(:c,t)
+ poz(z, 1,t)) (lux + /OO g(s)nt (x, S)ds)dx

l
+ +go/ ufd:cf/ / s)ntdsda.

Using Minkowski and Young’s inequalities, we have

o0 2
%/Q (lum / g(s)nt (z, s)ds) dz
< 12/ 2dx+g0// )|k (x, s)|*dsde.

Young’s inequality gives us that for any 1 > 0,

’ul/ﬂq(ac)ut(x,t) (luz +/Ooog(s)77fv(x,s)ds)dx‘

M2 2
I, /ut(x t)dx—|—1251/ u?(x,t)dx
Q

+90€1// s)|nt (z,s)[*dsda
’uz/ q(x)z(x,l,t)<luz+/ g(s)n;(x,s)ds)dx‘
Q 0
2,2
< J\i uQ/ (x,l,t)d:z:JrZQsl/ui(x,t)dz
Q

+9081// s)|nt (z, s)[*dsdz.

(s)ntdsdz

§€1M2/ 2dx 451 // 8)|nt (x, s)|*dsd.

Inserting (4.16 into ( , we obtain

and

It is clear that

13

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

By the same method taklng the derivative of yl( ) with respect to ¢, we obtain

d Lo Lo
d—ﬁz(t) = —/ q(x)vzveda — / q(x)vzveda
t Iy

L,y

2 1 2L1

q(x)vi} "

gl
Ly

1 Ly 1 [P I
= [— 3 (x)vf}L + 7/ ¢ (z)vidr + = bq' (z)vide
1 L
_0
2
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L1-1-L3—L2(/L2 2 /L2 2 Ly ,
< - vidx + bvzdx) + —wvi (L
A(Ly — L) \Jp, ! L 4 i (L)

L4L2%h) Z«%-LQ@@%)+LW(M,».

Thus, the proof of Lemma [£:3]is complete.
As in [I], we define the functional

1
t) = T// e P22 (x, p,t)dpda,
QJo

then we have the following estimate.

Lemma 4.4 ([I]). The functionals F3(t) satisfies

%Jg(t) —02(/ (x,1,t dx—!—T// (x,p,t dpdx) /ut(x,t)dm.

Proof of Theorem[2.3. We define the Lyapunov functional
L(t) = N1E(t) + N2 2(t) + F1(t) + NaFa(t) + Fa(t), (4.20)

where N1, No, N4 are positive constants that will be fixed later.
Taking the derivative of (4.20)) with respect to ¢ and taking advantage of the
above lemmas, we have

l M22
L(t) < —{N1c1 1Ny ( t9 M +€1M2)}/ wldz
Q

dt 2 4eq

2N M2 2
— {N101 + o — Mzez — 4€M2 }/ 22(x,1,t)dx
1 Q

—{No(l—LPc—e)— (> + 2l251)}/ u?dx
Q

b(L, + Ly — Ly) /Lz2
LT T 2N L Ny v2de

{ A(Ly — Ly) 4 2}L1~

L1+ L3 — Lo /L2 9 (4.21)
ST 2N N d

{qm—m)4 Q}MWw

—(b— N4)g (L3 — Lo)vi(La,t) + Livi(La,t))

— Lo Q(LQ7 ):|

~(a= N[ STt +

+cN2// s)|nt (z, )*dsda
+ 7_E // s)|nt (z, s)[*dsdz.

At this moment, we wish all coefficients except the last two in (4.21]) will be negative.
We want to choose Ny and N, to ensure that

a—Ny =20, b—Ny=>0,

Ly + Ly — Ly

Ny — Ny > 0.
KTy —Iy) YamN2>0
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% < min{a, b} we first choose N, satisfying
8I(Ly — Ly)
Li+Ls—Ly
Once Ny is fixed, we pick N, satisfying
Ly + Ls — Ly

9 <« Ny < ZLT o8 22y
SN S YL on)

For this purpose, since

< N4 < min{a,b}.

Once the above constants are fixed, we take € < 8 L2 =y and €1 < 7 L guch that
No(l — L% —¢) — (I> + 20%¢1) > 0.

Finally, choosing N large enough such that the last coefficient in (4.21)) is positive.
From the above, we deduce that there exists two positive constants a; and as such

that (4.21) becomes
d
% L(t) < —an E() —|—a2// s)|nt (z, s)|2dsda. (4.22)

On the other hand, by the definition of the functionals Z(t), %1 (t), Fa(t), F3(t)
and E(t), for Ny large enough, there exists a positive constant 3 satisfying
INoD(t) + F1(t) + Ny Fa(t) + F3(t)| < BE(t),
which implies
(N1 = B)E(t) < L(t) < (N1 + B)E(?).
To finish the proof of the stability estimates, we need to estimate the last term

in (4.22). For the convenience of reading, we briefly repeat the process of [I3].
Using (A2) and ([4.1), we have

// s)|nt (z, 5)[2dsda < // £(s)g(s)|nt (z, s)|*dsdz
/ / s)|nt (z,s)*dsda
A (4.23)
// s)|nt(z, s)*dsda

- dt E(®).
Moreover, (A2) and the definition of E(t) give us
2

/ (2, #)de < ?E( )< 2B0), VieR,.

Using (2.1] ., . ) and ., we arrive at

) / 0t (z, 5) 2de = £(t) /ﬂ(w,t) gt — ))%de
< 2¢(t) /Q W2 (z, )z + 26(2) /Q W2 (x,t — 5)dw

< SBO)E() + 2moc(t), V15 € Ry
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Then, we infer that for all ¢ € Ry,

+oo “+o0
e [ [ st Plsds < GEO +2ma)e0) [ o(s)ds @29

Multiplying (4.22) by £(¢) and using (4.23)) and (4.24)), we obtain
d d oo
E0HLO + B GEO < -abOBW) + 5t [ glo)ds.  (425)
t

where 81 = 2a; and B2 = a2 (3 E(0) + 2myo).
Now, we define functionals .Z(¢) and h(t) as

+oo
L) =¢&@)L(t) + B1E(t) and h(t) = §(t)/t g(s)ds.

The fact that L(¢) and E(t) are equivalent and (A2) imply that for some positive
constants 11 and 7.,
mE(t) < Z(t) <mE({). (4.26)

Using (4.25)), and (A2), we obtain
d
& 2(1) < —0E().2(0) + (1),

where v9 = a1 /2. We conclude that, for any v; € (0, 7o),

d
@f(t) < —mé()Z(t) + B2h(t).
By integrating over [0, T] with T' > 0, we obtain
T
L(T)<em o &(s)ds (,,2”(0) + 52/ e Jo 5(S)dsh(t)dt).
0
Using (4.26)), we have
T
E(T) < nie—% Jo €(s)ds (z(o) + B / enl 5<S)dsh(t)dt). (4.27)
1 0
We notice that
t 1 t roftoeo
e i €eep(g) = L (e Jeoan) / g(s)ds.
t

!
So integration by parts gives us

T
/ e Jo €05 (ydy

0
1 T +oo Foo T ¢

= 7(671 Jo E(S)dS/ g(s)dsf/ g(s)ds+/ en Jo 5(S)dsg(t)dt).
ga! T 0 0

Consequently, combining with (4.27)), we have

1 o [T eas P2 [T
B(T) < (3(0)6 + /T g(s)ds) .

T
N
0

On the other hand, thanks to (A2), we have

‘ /
(e fo et g)m) <0, WteRy
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then
e IS ()™ < (g(0))

Thus . .
| e engwar < o) [ o)t (4.29)
Finally, (4.28) and (4.29) imply that for the solution of (1.1} {D with

72 = max {2(0), 22, 2 g0)y 1},

7 m
holds. The proof is complete. [
4.2. Case 9 = p1. In this subsection, we assume that py = ps = p and prove the
decay result of problem —. By , we choose ( = T, then we obtain the
following consequence of Lemma

Lemma 4.5. Let (u,v,z) be the solution of (2.2)-(2.3)). Assume that p1 = ps = p
and E(t) satisfies 1) Then we have the inequality

S <t / / s)lnt (z, )[2dsda. (4.30)

When @1 = pe = p, we need negative term — fﬂ uZdx to get —cE(t). For this
purpose, we define the functional

*/Q“t /Ooog(s)(u(t)u(ts))dsdz.

Then we have the following estimate.

Lemma 4.6. The functional F#4(t) satisfies

%ﬁZl(t) < —(go —62—52u)/ utdm—l—éng/ u d$+52u/ 22(x,1,t)dx

Q

9o ugoL )2
+ (90 + 135 + 2, / / s)|nt (x, s)|*dsdz (4.31)

L2
/ / s)|nt (z, s)|*dsdz.

Proof. Taking the derivative of .%,(t) with respect to ¢ and using (2.2)), we have

« / o(8)(u(t) — ult — s))dsdz — /Q ” A 9(8) () — wa(t — 5))dsda

0

~ [ [ " () () — walt — ))dsda — go [ s

Q

—i—/ﬁut /000 g9(s)ns(s)dsdx + /Q (/Ooo 9(8)(ug(t) — ug(t — 3)>d8)2d$

[ [ oo - ue - s)dsa

2
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+ / wz(z, 1, t)/ g(8)(u(t) — u(t — s))dsdz. (4.32)
Q 0

Using Young’s inequality and (4.7), we obtain for any do > 0,

Lo | " () () — et — ))dsd

(4.33)
< §ql? 2L
_52l/ud +4§2// s)|nt (z, s)|*dsdz,
/ ,uut/ g(s)(u(t) —u(t — s))dsdz
& 0 (4.34)
< 52,u/ uldx + 1ol // s)|nt(z, s)|*dsdu,
Q 462
[0 [ g(s)u(e) — ult - 5)dsda
@ 0 (4.35)
< 52u/ 2(2,1,t)dx + 1ol // s)|nk(x, s)|*dsd.
Q 407

We notice that

/Q (/OOO 9(8) (ug (t) — ug(t — 5))ds>2d$
< / /Oo g(s)ds /oo g(s)|n;(x,s)|zds)dx )
<go// 5)|ng (. s)|*dsdz

and

/Qut/o g(s)nt(s)dsdr = — /ut/ s)dsdx

<52/utdx— (45 / g (s)nk(s)dsdz.
Q 2 0

Inserting the estimates into , we obtain . The proof is

complete. (I

(4.37)

Now, we define the Lyapunov functional
G(t) = NME() + NaD(t) + F1(t) + NaFa(t) + NsF3(t) + NeFu(t),  (4.38)

where N1, No, Ny, N5 and Ng are positive constants that will be fixed later.
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Taking the derivative of (4.38)) with respect to ¢ and taking advantage of the
above lemmas, we have

I+g0 | M2 2
— 09 — — — M
dtG() {Nﬁ(go g — 02p) — Na ( 5 T, T )
—N5}/ufdx
Q
N2H2 M2M2

—{Na2(l = L% — ) — (I* + 20%e1) — Ng6ol?} / uZdx
Q

Li+Ls—L L2
_ {w]\h + Ngb} v2da
L2 = L) I (4.39)
Li+ Ls— Lo /L2 )
2N, N d
{ ALy —Ly) * 2} L

(b= )Y ((Ls — Lo)o3 (Lo, 1) + Liv(Ln, 1)

— Ly
2(L27 )]
+ ¢(Na, Ng) // )|k (x, s)|*dsda

N1 g(0)  Neg(0 LQ //

At this moment, we wish all coefficients except the last two in will be negative.
‘We want to choose Ny and N4 to ensure that
a— Ny >0, b—Ng>0,
Ly+ Lz — Lo
4(Ly — Ly)

. For this purpose, since H < min{a, b} we first choose Ny satisfying

81(Ly — Ly)
Ly + Ls— Lo
Once Ny is fixed, we pick N, satisfying
L+ Lz — Lo
2l < Ng < —————=N,.
SRS T, oy

and g1 < % such that

—(a- N4>[L—vt (L, 1) +

Ny — Ny > 0.

< N4 < min{a, b}.

Then we take € < m

Ny(l — L*e —¢) — 20%e; > glz.

Once ¢ and ¢; are fixed, we take N5 satisfying
2Nop? 2M2p?
N5 > max {72'”’ 7’111}

ECo £1C2

such that
Nop? B M?p? 3

Nzco — > —Nxco.
5¢2 7 T Az, 4 5
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Further, we choose Ng satisfying

8Ny 4(l 2M? 2 81 M? 8N,
N6>max{—2, ( +go)+ K + = ,75}
90 go €190 go g0
such that
7 l4+g0 M?p? 2 Nego
L Nego — Ny — ( M ) _N, .
3 690 2 5 + 1, +é1 5 > 9
Then, we pick d, satisfying
N, 1
02 <min{7g0 77562 ,—}
8(14 ) 8Ngu’ 4Ng
such that
3 5 1 12 12
= Nscy — Ngb N - ) 0, — — Nghl®>> —.
1 5C2 62M>8 5C2, 3 690 2 o2 >0, 5 6020" > 1

Finally, choosing N; large enough such that the first two coefficients in (4.39) are
negative and the last coefficient in (4.39) is positive. From the above, we deduce
that there exists two positive constants ag and a4 such that (4.39) becomes

d o
aG(t) < —a3zE(t) + a4/ / g(s)nt(z, s)|*dsdz. (4.40)
aJo
The remaining part of the proof of Theorem [2:2] can be finished, following the same
steps as in the previous proof. ([l
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