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ABSTRACT 

Food banks are non-profit, charitable organizations that distribute food and 

products to people in need. Food bank facilities receive donations from public and private 

agencies and distribute them with the help of city organizations, agencies, and volunteers. 

Natural disasters, such as hurricane Harvey, have exposed the complexities and 

challenges associated with those tasks. Food bank facilities become disaster relief centers 

for affected communities after natural disasters. These facilities typically experience an 

increase in product demand and an increase in the volume of donations after the impact 

of a natural disaster. Disaster response involves the planning, coordination, and 

distribution of supplies in an effective manner to the affected population. The goal of this 

research is to analyze and forecast the amount of donations received by food bank 

facilities impacted by natural disasters. A stochastic programming model is also 

presented which considers prepositioning strategies among food bank facilities located in 

high risks areas for hurricanes.  

The first part of this thesis analyzes the donations received by two food bank 

facilities affected by hurricane Harvey in 2017. An extensive numerical study is 

performed that compares the donation behavior at each facility before and after the 

hurricane event. Multiple forecasting models are evaluated to determine their accuracy in 

predicting the observed behavior. The results deduced from this part can be used to 

develop policies that can help in planning for future events. Predictions for total food 

donations provided least mean absolute percentage error for the analysis. Predictions 
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using econometric model too provided least error for Houston Food Bank for disaster 

relief period. 

The second part of this thesis proposes a stochastic model that considers the 

uncertainty associated with the impact of the hurricane at each facility in terms of the 

number of available supplies, donations received at the facility, and the expected demand 

for their service region. The first-stage decisions attempt to minimize the number of 

people not receiving the needed supplies by prepositioning the existing supplies at each 

facility. Second-stage decisions maximize the system responsiveness by trying to satisfy 

the observed demand for the scenarios under consideration such that unmet demand is 

minimized. The experiments consider scenarios in which one or two food bank facilities 

are shut down after the disaster and study the impact of prepositioning supplies. Analysis 

revealed unmet demand observed for the experiments conducted. The implementation of 

this model can have a global outreach by minimizing the damage due to any natural 

disaster by making key food allocation decisions and having an ideal response strategy.  
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1. INTRODUCTION 

Food insecurity is the result of people having limited access to nutritious food for 

a healthy life. Food bank facilities strive to counteract the effects of food insecurity by 

providing food and first necessity products to people in need. Food banks are non-profit 

organizations that collect and distribute needed supplies to people in need. They solicit 

and stock donations from community, private, and government sources; store these items 

in a warehouse; and distribute donations through local organizations. Food banks often 

support people by providing other products such as cleaning supplies and diapers. 

Catastrophic natural events have been on the rise over the past few years causing 

tremendous loss of life and property. To minimize the damage arising after a natural 

disaster, government, private and non-profit organizations provide assistance to people 

affected by the event in terms of food and first need products. Food bank facilities also 

become disaster relief centers for affected communities after natural disaster events. The 

donation-driven environment of food bank facilities complicates the problem of matching 

supply with demand. The problem becomes more challenging when the facility needs to 

serve the additional demand caused by natural disasters. Their role and responsibility 

increase during disasters as they have more population to support and may experience 

uncertainty in the amount of donations received at the facility.   

The goal of this research is to analyze and forecast the amount of donations 

received by food bank facilities impacted by natural disasters followed by making 

decision making models that aid in supply-demand management during calamity. Natural 

disaster events impact communities in multiple ways, including the loss of life, material 

possessions, and homes. These events result in long lasting consequences which could 
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take up to several years for the affected region to recover. Thus, the planning for disaster 

relief plays a pivotal role in minimizing these adversities and in helping people get back 

on their feet. In this thesis, a comprehensive statistical analysis is performed to quantify 

the extent of variability in terms of donors, product, and pounds per donor in food banks. 

The first objective of this research is to analyze the donation behavior at two 

separate food bank facilities that were affected by Hurricane Harvey. The two facilities 

are the Houston Food Bank (HFB) and the Central Texas Food Bank (CTFB) located in 

Austin, Texas. Several published studies examine the challenges faced by food bank 

facilities and their unpredictable supply [1]. However, to the best of the authors 

knowledge, the use of statistical analysis techniques to analyze and compare the donation 

supply uncertainty in food bank facilities impacted by natural disasters has not been 

addressed in literature. The resulting models will provide insight and valuable 

information that will increase the potential of non-profit organizations to meet their 

objectives. The results will enable food banks to better predict the type, quantity, 

frequency, and source of donations to expect during natural disasters. 

The second goal of this thesis is to develop a decision-making model that 

considers the uncertainty when coordinating the distribution of supplies for emergency 

relief. The model considers the uncertainty associated with the impact of the hurricane on 

a network of food banks in terms of the number of available supplies, donations received 

per facility, and the expected demand for their service region. In this research, a model is 

proposed to address the supply and demand coordination problem as it relates to the pre-

positioning of needed supplies. Pre-positioning are activities performed prior to the 

predicted natural disaster event, in which locations are selected to store human or 
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material assets in preparation for disaster relief. The idea is to prepare the supply chain 

for quick distribution to satisfy the demand post-event. The proposed model will identify 

the least-cost strategy associated with pre-positioning existing supplies that will satisfy 

the demand needs after a natural disaster.  

The food bank donation-driven environment complicates the classic supply chain 

dilemma of matching supply with demand. For instance, supply uncertainty exists 

because the facility does not know in advance the frequency, amount, and quality of 

donated items. In terms of demand, the uncertainty occurs because estimates of food need 

are driven by complex factors related to poverty, unemployment, and disaster relief 

events. Donation-driven environments such as food banks are considerably different from 

commercial supply chains which typically prize greater speed and/or cost effectiveness to 

generate increased profits. Even though food bank supply chains wish to rapidly move 

items to individuals in need in an effective manner, the principal goal is not profit driven. 

As non-profit organizations, food banks search for maximizing assistance. 

 Current research addressing food banks operations explains that greater efficacy 

during emergencies is achieved by establishing partnerships before the arrival of the 

expected natural disaster event [1]. Early planning contributes to prompt recovery after 

disasters primary because it addresses some of the events unknows and because it 

establishes cooperative efforts among multiple agencies early in the process. In addition, 

early planning facilitates the involvement of local and international agencies to form part 

of the recovery process of disaster-prone areas [2, 3].  

The deliverables mentioned in this thesis are substantial as it will benefit the non-

profit organizations, such as food banks, to enhance their operational effectiveness for 
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disaster relief efforts and normal operations. This study has significant merit because it is 

important for food bank organizations to have access to better models and technology to 

improve their operational effectiveness during both, normal and disaster relief conditions. 

Equipping these facilities with better predictive information on supply donation behavior 

will allow them to make informed downstream distribution decisions. The models are 

built considering the normal operations and disaster-relief period. The outcomes can be 

replicated by any food bank or non-profit organization to predict the donations and make 

key decisions such that damage is minimized, and more population is served.   

 

1.1. Thesis outline 

This thesis is structured as follows. Chapter 2 reviews literature closely associated 

to the goals of this research. It is explained in two sections; the first section explores the 

previous work done on donation behavior at food banks and forecasting models studied, 

and the second section studies the uncertainty and related to decision making. Chapter 3 

states the followed methodology to analyze estimate the donation behavior at two food 

bank facilities using times series models. The donation data is analyzed, and forecasting 

models are built to understand the donation behavior. Chapter 4 discusses the stochastic 

programming model used to assist on the decision-making process by optimally 

allocating resources during hurricanes. The chapter mentions the prepositioning model 

and the response stage decisions to be considered before and after hurricane. Section 6 

states the conclusion and discusses the implications of the obtained results in the planning 

and operation of food bank facilities and also steers the potential future scope. 
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2. LITERATURE REVIEW 

The literature review for this thesis is detailed according to the sections addressed. 

Section 2.1 reviews the literature reviewed for analyzing the time series models 

pertaining to forecasting donations for food bank. Since food donations are a major 

component for a food bank, this section focuses in aspects that are similar to the 

objectives stated. Section 2.2 discusses the literature on stochastic programming models 

targeted at resource allocation before and after the occurrence of hurricane. This section 

encapsulates the challenges faced while making decisions during hurricanes and the 

different factors involved while determining the right distribution. 

 

2.1. Analyzing donations and time series model 

   A group of papers in the public policy and health literature examine the 

challenges associated with the operation of food banks including limited and 

unpredictable supply [4-6], nutritional initiatives [7, 8], and the impact of donations [9, 

10]. However, to the best of the authors knowledge, food banks operational challenges 

and supply chain uncertainty after natural disasters, such as hurricanes, has not been 

addressed. 

After natural disasters, food banks usually deal with a large influx of small and 

sometimes random donations. Planning for the appropriate allocation and use of those 

donations is challenging. Several studies have documented the negative effect of in-kind 

donations. For instance, Van Wassenhove [11] and Holguín-Veras et al. [12] state that 

management of these donations require moving volunteers from other important tasks to 

sort and inspect low priority donations. These challenges are often caused by the lack of 
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advanced knowledge about the type and timing of the in-kind donations. Currently, in-

kind donations are mostly treated as known inputs in the literature and then focusing on 

strategies to effectively use these donations further downstream [13, 14]. However, the 

management of in-kind donations is critical for the effective operation of food banks after 

natural disasters.   

Only some published studies address the problem of dealing with the uncertain 

behavior of in-kind food and product donations. Most of these studies utilize well-known 

probability distributions to estimate donation quantities and then use this information to 

build simulation models to assess operational decisions. For instance, Mohan et al. [15] 

recommends the best layout configuration to improve the flow of donated food from 

receipt to storage. Phillips et al. [16] develop routing schedules to pick-up donations from 

local supermarkets. Sönmez et al. [17] also studies the problem of scheduling collection 

during a finite planning horizon. 

Current research addressing food banks operations explains that greater efficacy 

during emergencies is achieved by establishing partnerships before the arrival of the 

expected natural disaster event [1]. Early planning contributes to prompt recovery after 

disasters primary because it addresses some of the events unknowns and because it 

establishes cooperative efforts among multiple agencies early in the process. In addition, 

early planning facilitates the involvement of local and international agencies to form part 

of the recovery process of disaster-prone areas [2, 3]. As reported in the natural disaster 

response literature, these agreements or partnerships should be formed within the first 

two phases of the disaster management process which are mitigation and preparedness 

[18]. Planning such partnerships or agreements is a challenging task since supporting 
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agencies have limited resources and because multiple areas associated with the recovery 

process could require some level of partnership. However, it is important to develop 

methods to generate at least a functional level of cooperation with the agencies in the 

response efforts [19]. To achieve sustainable and productive partnerships with agencies, 

it is necessary to understand the dynamics and outcomes of the natural disaster and their 

impact in the food bank operations.  

 

2.2. Stochastic Decision-Making model 

  Stochastic decision-making models have been applied to multiple settings 

including healthcare [20-22], wind energy [23, 24], manufacturing [25-27], and 

humanitarian logistics. Resource pre-positioning is not a new concept and has been 

applied in the military for quite some time [28]. However, lately the concept is becoming 

more promising as an effective strategy for planning the response to natural disasters. 

Humanitarian logistics research can be classified based on the nature and timing of the 

decisions to be made. (preparedness vs. post-event relief). The decisions can address 

distribution of relief supplies [29, 30], stocking of relief supplies [31, 32], or location of 

supply centers [33]. For instance, [31] focus on inventory planning for an humanitarian 

emergency. Authors in  [34] consider supplies prepositioning for natural disasters while 

[32] include in their research information on hurricane intensity such as wind speed data 

and [35] develop a more comprehensive model incorporating location, inventory and 

distribution decisions for a multi-product system.  

The studies in [29], [30], [33], focus on post disaster relief response. The work in 

[33] is to develop a model to determine the location of medical services during large 
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scale emergencies. The authors classify large-scale emergencies as those that have a 

sizeable and sudden volume of demand and low frequency of occurrence. They present 

two parameters to describe this uncertainty and suggest location models to (1) maximize 

the demand to be covered by a group of facilities, (2) minimize the demand weighted 

distance between the new facilities and the demand points, and (3) minimize the 

maximum service distance. Contribution [35] also integrates location choices in their 

model. They study a multi-commodity pre-positioning and location problem to fulfill the 

requests resulting from a hurricane. The goal is to discover the number of new facilities 

to open, the dimension of the facilities and the acquisition quantities related with the 

three commodities considered. The problem is framed as a stochastic mixed integer 

programming model with uncertainty in demand, damage to roads, and damage to 

facilities determined from hurricane scenarios. [36] considers the damage done to roads 

and the impact of transportation limitations in the disaster relief response. The author 

addresses the problem using sample average approximation to help make policies that 

could help make policies that may be applicable for preparing against potential disasters. 

[37] states that inventory plays a pivotal role during the disaster times. The author asserts 

that disaster relief inventory has uncertainties involved and proposes a framework based 

on responding, locating, and controlling the inventory.  

The work presented in this thesis complements the work done in this area and 

builds on the work of [34] and [35]. The proposed model incorporates the uncertainty 

associated with the impact of the hurricane at a network of food banks in terms of the 

number of available supplies, donations received at the facility, and the expected demand 

for their service region. Donations are categorized as regular donations and disaster-relief 
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donations to understand their impact in the recommended decisions. The proposed model 

provides further insights to the donation behavior that influences decision-making in 

disaster relief.  
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3. ANALYZING DONATION BEHAVIOR AND TIME SERIES MODELS 

  This chapter is aimed at developing time series models by studying the historical 

data of food donations provided by food banks. This study involves applying various 

times series models to the observed data to develop predictions. The predictions are then 

evaluated using statistical computational methods to evaluate the best model. The 

forecasting models are created for two scenarios, the former being for a non-disaster 

period and the latter being for a disaster relief period. The goal of this section is to 

determine which forecasting model would work best for the defined class.  

 

3.1. Methodology 

3.1.1. Problem background 

  The data for this research was provided by the Houston Food Bank (HFB) and the 

Central Texas Food Bank (CTFB) located in Austin, Texas. Both facilities provided data 

for two years, 2016 and 2017. The Houston Food Bank serves about 18 counties in the 

Southwest Texas area and distributes approximately 104 million nutritious meals through 

its network of 1500 community partners in Southeast Texas. The facility serves about 

800,000 individuals each year [28]. 

  The Central Texas Food Bank located at Austin, Texas is among the fastest 

growing food banks in the nation [38]. With the help of 21 Partner Agencies in 21 

counties across Central Texas, it provides more than 39.2 million pounds of food to 

families per year, at an average of 200,000 individuals each month. Both the Houston 

Food Bank and the Central Texas Food Bank are members of Feeding America [30], a 

non-profit organization with a nationwide base of over 200 Food Banks feeding 
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approximately 46 million people through food pantries, soup kitchens, shelters, and other 

community-based agencies. 

  After Hurricane Harvey passed the Houston area on August 27, 2017, food banks 

just outside the disaster zone worked overtime to support the Houston area refugee 

shelters. For instance, the Central Texas Food Bank in Austin TX was operating at full 

capacity and under challenging circumstances to support the recovery efforts in the 

Houston area. The food bank goal was to support the Houston community while also 

serving individuals in need in Central Texas. However, since these two food banks have 

never operated after a major disaster like Hurricane Harvey, the decisions of what, when, 

how, and where to send the needed assistance were made with limited information. The 

lack of data to support operational decisions minimized the impact of the disaster relief 

effort. 

  This research seeks to develop an understanding of the donations received in food 

bank facilities before and after natural disasters. The information provided by the food 

bank facilities includes the name of the donor, the date, type of donor, type of product 

donated, and quantity of the corresponding donation. Donors are categorized into twelve 

different types, and product donated is classified in eleven different types (Table 1). In 

order to understand the in-kind donation behavior, this research addresses these major 

questions: i) Does food donation behavior vary over time? ii) Does food donation 

behavior change as a function of donors, donor type, product, and product type? iii) 

Given information about the donor and product type, which information should be used 

to construct forecasts? iv) After analyzing the performance and behavior of donation 

data, which forecasting model provides most accurate results to quantify the incoming 
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donations at the time of disaster?  

  To answer these questions, two years of data has been analyzed for both food 

banks. The data is then grouped according to the clusters defined in Table 1. Using these 

clusters, six forecasting methods are evaluated on these clusters to understand the 

behavior of times series. The results are then analyzed as a function of forecast accuracy 

and donation variability. The details of the approach are briefed in the following sections. 

 

3.1.2. Data collection method 

  HFB and CTFB provided two calendar years of data. Each calendar year starts on 

January 1st and ends on December 31st. The data contains daily food donations receipts at 

both location by posting date. The Houston Food Bank database contains approximately 

272,979 records whereas Austin’s Central Texas Food Bank contains around 92,929 

records, for both years combined. Each donation receipt has multiple fields including 

information about the donor and type of donation. However, in this study, only fields 

relevant for this research were considered. The relevant fields and clusters considered in 

this research are listed in Table 1. The quantity in pounds of product received from 

donors is recorded in amount field. Each donor corresponds to a particular donor type, as 

mentioned in the clusters and similarly each product type corresponds to a distinct 

product type accordingly. The data acquired over a span of two years has been analyzed 

weekly.  
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3.1.3. Descriptive donation behavior methods 

  Two food banks were considered in this study, Houston Food Bank and Central 

Texas Food Bank in Austin. The studied donation behavior was analyzed over two 

phases, pre-disaster phase and post disaster phase. This timeline separation allows to 

better understand the impact of natural disasters on food bank normal operations. In this 

study, the impact of Hurricane Harvey on the operation of food bank facilities located in 

central Texas is analyzed. The disaster period under consideration is the last week of 

August 2017. The donation behavior observed showed high variability after the disaster, 

affecting number of donors and quantity of donations. Variability is analyzed in terms of 

number of unique donors, total amount of donations and average donation per donor. 

Variability is assessed using coefficient of variation (CV). The coefficient of variation 

measures the uncertainty in a sample by expressing its standard deviation relative to its 

mean value (�̅�). It is computed as a ratio of standard deviation and sample mean as 

expressed in Equation (1). 

                                                          𝐶𝑉 =
𝑠𝑥

�̅�
∗ 100                                                                (1) 

Table 1: Summary of key fields for donors 
Field Description Levels 

Donor ID Unique identifier of the donor  

Donor type Differentiates donor per industry Wholesaler, Manufacturer, Retailer, 

Corporate/Corporation, Government, 

Foundations, Hotels/Kitchen/Restaurant, 

Schools/Church, 

Hospital/Healthcare/Banks/Event, Red Barrel, 

Individual/Family, Non-Profit/ Food Drives 

Product type Classification level for the donated 

food (e.g. produce) 

Meat/Fish/Poultry, Prepared and Perishable 

Food, Fresh Fruits and Vegetables, Packed 

food, Assorted Non-Food, Pharmacy, Baby 

Food/Formula, Snack Food/Cookies, Water, 

Household Cleaning Product, and Pet Food/Pet 

Care 

Food bank  The receiving location Central Texas Food Bank, 

Houston Food Bank. 

Posting date The date the item was received in  
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Field Description Levels 

the warehouse. 

Amount The amount received in pounds.  

 

 

3.2. Predictive donation behavior methods 

3.2.1. Clustering Approach 

  In this research, seven different class structures are defined to facilitate 

understanding of the forecasting information and its corresponding accuracy. The classes 

represent different information about the donations. The classes considered in this study 

include: (1) the donations for food bank, (2) donor type, (3) product type, (4) donor type 

and product type, (5) food bank and donor type, (6) food bank and product type, and (7) 

donor type along with product type for a food bank. Different combinations of product 

and donor types are analyzed for analysis considering both food banks. Table 2 lists the 

class structures analyzed in this study. 𝐶𝑖 is an information class defined on characteristic 

𝑖 with members 𝑐 ∈ 𝐶𝑖. Associated with each observation is a function that uniquely maps 

the observation to a member 𝑐 in 𝐶𝑖. An information specific time series is built using the 

historical data according to the classes mentioned. A new time series consisting of 

donations from one specific class can be constructed. A subset of all combinations is 

explored in this research. The data is analyzed, at both food banks, with their 

corresponding donor and product type ranking. Disaggregation of the data according to a 

desired information class allows for analysis and prediction by donor, location, product 

type, or a combination thereof (donor and product). Disaggregation of data is essential as 

both food banks are of different capacity and volume. The selected donor type and 

product type vary per food bank as each have unique characteristic and different 

operating conditions. Also, since the donations are analyzed according to phases (before 
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and after disaster), disaster relief operations might affect product demands at different 

locations, because equitable distribution of donated food is a concern and sharing across 

branches can ensure food equity among charitable agencies. Three major contributors of 

donor type and product type have been identified forming the classes for both food banks. 

The selected major contributors are used to form classes individually for both food banks. 

Data analysis is then conducted on each class for each food bank to build forecasts.  

  The splitting of data by different classes and combination of food bank, donor, 

and product type, enables better understanding and improves prediction models by 

different classes, as mentioned in this research. Analyzing the data by different 

component leads up to improved forecasting models and may prove to be an asset for 

food banks while dealing with natural disasters such as hurricane. As a result, the food 

banks would be in a better state to determine what kind of donations to expect from what 

donor type and plan accordingly. Also, the product type predictions can provide food 

banks with a head start to what food type could be donated and, consequently, allocate 

the stocks such that the supply matches the demand. It leads to a better planning and 

optimum utilization of resources during natural disasters; thus, serving majority of the 

population in need. For example, if the food bank receives more of packed food, then it 

can correspond with other food bank and/or agencies to manage the surplus quantity. 

Similarly, if a food bank is falling short of a particular type of product, at the time of 

disaster, other food banks can contribute to supplement the shortage. Combinations of 

different donors and product types help food banks to foresee what donations to expect 

from a particular type of donors.  

  In this work, the three major contributors in terms of donor type and product type 
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were considered in the analysis for both food banks. The major donor contributors for 

Houston Food Bank before hurricane are Retail, Government, Manufacturer, Wholesale, 

and Non-Profit; while major product types are Packed food, Produce food, 

Meat/fish/poultry food, Dairy/prepared/perishable food, and Water. Major donor 

contributors for Central Texas Food Bank are Retail, Company/Corporation, 

Manufacturer, Wholesale, and Non-Profit donors, while product types are Packed food, 

Produce food, Meat/fish/poultry, dairy/prepared/perishable food, and Assorted non-food 

products.  

  The analysis for post disaster donation analysis shows Government, Retail, 

Manufacturer, Company/Corporation, and Non-Profit as top donors for Houston Food 

Bank whereas Packed food, Produce, Water, Meat/Fish/Poultry, and Snack food being 

top product types. Retail, Company/Corporation, Manufacturer, Wholesale, and 

Hospital/Healthcare/Banks/Events constitute top donors for CTFB while major product 

type being donated is Packed food, Produce, Water, Meat/Fish/Poultry, and Assorted 

non-food.  

Table 2: Information class structure for donations 
Class (𝐂𝐢) Description Class members { 𝐜|𝐜 ∈ 𝐂𝐢} 

𝐶𝐷 Donor type  {Wholesaler, Manufacturer, Retailer, 

Corporate/Corporation, Government, Foundations, 

Hotels/Kitchen/Restaurant, Schools/Church, 

Hospital/Healthcare/Banks/Event, Red Barrel, 

Individual/Family, Non-Profit/ Food Drives} 

𝐶𝑃 Product type {Meat/Fish/Poultry, Prepared and Perishable 

Food, Fresh Fruits and Vegetables, Packed food, 

Assorted Non-Food, Water, Pharmacy, Baby 

Food/Formula, Snack Food/Cookies, Household 

Cleaning Product, Pet Food/Pet Care} 

𝐶𝐹 Food bank {Austin, Houston} 

𝐶𝐷𝑃 Donor type/Product type 𝐶𝐷 𝑥 𝐶𝑃 
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3.2.2. Exponential smoothing models 

  In general, forecasting models use subjective and/or objective information for the 

prediction of an outcome of one or more periods in the future. One highly used approach 

relies on past information as observed through a time ordered series. Numerous 

quantitative models are used to represent the relationship between past observations and 

future outcomes. This research employs two models based on exponentially weighted 

moving average (EWMA), also known as double and triple exponential smoothing, along 

with an econometric model. Table 3 lists the parameters definition for the models. The 

methods are elaborated in detail in [39]. 

Table 3: Parameters in forecasting models 

 

 

 

 

 

 

 

 

 

 

 

  Table 4 summarizes the smoothing models investigated in this research, which are 

defined in recurrence form [40]. In addition to the EWMA models, centered moving 

average (CMA), naïve model, and the econometric model are considered. 𝑌𝑡 denotes the 

observation of the supply in month t. �̂�𝑡 represents the supply forecast for month t. 

Estimates of the level or systematic component, trend, and seasonality are denoted by �̂�𝑡, 

𝑇𝑡, and 𝐼𝑡, respectively. The subscript 𝑚 denotes the number of periods in the seasonal 

cycle and τ denotes the number of periods in the forecast lead time. 

Parameter Description 

�̂�𝑡 

𝑌𝑡 

𝑌𝑡𝑙 

 

�̂�𝑡 

𝑇𝑡 

𝐼𝑡 

𝑚 

𝜏 

       𝑏 

       𝑋𝑛𝑡 

𝐿 

denotes the supply forecast in time 𝑡 

denotes the observation of the supply in time 𝑡 

denotes the observation of the supply at time 𝑡 for previous 

period 𝑙 
denotes estimates of the level or systematic component 

denotes estimates of the level or systematic trend 

denotes estimates of the level or systematic seasonality 

denotes the number of periods in the seasonal cycle 

denotes the number of periods in the forecast lead time 

denotes slope or rate of change of 𝑌 given 𝑋𝑛𝑡 

denotes a predictor of 𝑌 

denotes same week 𝐿 used for previous year  
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Table 4: Forecast models 
Model Forecast equation Parameters 

Centered Moving 

average 

�̂�𝑡 = 𝑛−1(∑ 𝑌𝑡−1)𝑛
𝑖=1   

�̂�𝑡 = �̂�𝑡 

𝑛 

Holt’s double 

exponential smoothing 

�̂�𝑡 = 𝛼𝑌𝑡 + (1 − 𝛼)(�̂�𝑡−1 + 𝑇𝑡−1)  

𝑇𝑡 = 𝛽(�̂�𝑡 − �̂�𝑡−1) + (1 − 𝛽)𝑇𝑡−1  

�̂�𝑡 = �̂�𝑡+𝑇𝑡 

 

𝛼, 𝛽 

Holt-Winters triple 

exponential smoothing 

�̂�𝑡 = 𝛼(𝑌𝑡/𝐼𝑡−𝑚)  + (1 − 𝛼)(�̂�𝑡−1 + 𝑇𝑡−1)  

𝑇𝑡 = 𝛽(�̂�𝑡 − �̂�𝑡−1) + (1 − 𝛽)𝑇𝑡−1  

𝐼𝑡 = 𝛾 (
𝑌𝑡

�̂�𝑡
) + (1 − 𝛾)𝐼𝑡−𝑚  

�̂�𝑡(𝜏) = (�̂�𝑡+𝜏𝑇𝑡)𝐼𝑡+𝜏−𝑚 

 

𝛼, 𝛽, 𝛾, 𝑚 

ARIMA forecasting �̂�𝑡 = 𝑐 + ∑ 𝑎𝑖

𝑝

𝑖=1
𝑌𝑡−𝑖 − ∑ 𝑏𝑖𝜖𝑡−1 + 𝜖𝑡

𝑞

𝑖=1
 

𝑝, 𝑑, 𝑞, 𝑎𝑖 , 𝑏𝑖 

Econometric model 
�̂� = 𝑏0 + 𝑏1�̂�𝑡−1 + 𝑏2𝑋1𝑡 + 𝑏3𝑋1(𝑡−1) +  𝑏4𝑋2𝑡

+ 𝑏5𝑋1𝑡𝑋2𝑡 + ⋯ 

𝑏, 𝑋𝑛𝑡  

Naïve �̂�𝑡 = 𝑌𝑡𝑙 L 

 

  The selection of the appropriate model is based on the existence of a trend and/or 

seasonality in the plotted time series [39]. Trend-based methods outperform non-trend-

based methods when a distinguishable trend is present in the data. There are multiple 

ways to incorporate trends into forecasting models (e.g., additive, damped additive, 

multiplicative). In this research, the additive trend approach is investigated, commonly 

known as the Holt's method. The model with additive trend and multiplicative 

seasonality, which is commonly referred to as Winter's method [39], is also studied when 

trend and seasonality are present. The identification of a trend or seasonality is 

determined by graphing the series over time. 

  The forecasting parameters are determined using R: a free language and 

environment for statistical computing [41]. R was used to manipulate, graph and analyze 

the fed historical data to calculate the smoothing parameters. For the moving average 

forecasting, a centered moving average approach is adopted by taking a three weeks 

period into account, as it yielded the least forecasting error than other periods. For the 

Holt and Holt-Winters forecasting, the smoothing parameters 𝛼, 𝛽 are estimated and the 



 

 

19 

model is fitted accordingly. To determine the parameter values, an iterative search over 

the possible values for the forecast parameter was conducted to determine the parameter 

that minimizes the total relative error. The predictions have been generated for 95% 

prediction interval. The centered moving average correspond to the average calculated 

over the rolling series of data observed. For each observation, in this research, the 

average is calculated using three observations from the dataset for all the data points.   

 

3.2.3.  ARIMA Model 

  In addition to the traditional EWMA models, Autoregressive Integrated Moving 

Average (ARIMA) models are also considered for the analysis of the data. ARIMA 

models are appropriate if the time series is stationary and the data is correlated with prior 

observations and/or random shocks [42]. In general, the ARIMA model can be specified 

by: i) the number of autoregressive terms (𝑝); ii) the number of past forecast errors (𝑞); 

and, iii) the number of differences needed to make a nonstationary time series stationary 

(𝑑).  

  More specifically, a nonstationary time series can be transformed to a stationary 

time series through differencing. The number of times the series is differenced is 

represented by 𝑑. The forecast equation for a stationary time series (ARIMA(𝑝,d,𝑞)) is 

defined in Equation (2) where 𝑎𝑖 and 𝑏𝑖 are the correlation coefficients associated with 

prior observations and random shocks 𝜖𝑡, respectively. The intercept is represented by the 

parameter 𝑐. ARIMA models are represented as: 

  

                                         �̂�𝑡 = 𝑐 + ∑ 𝑎𝑖

𝑝

𝑖=1
𝑌𝑡−𝑖 − ∑ 𝑏𝑖𝜖𝑡−1 + 𝜖𝑡 

𝑞

𝑖=1
                                   (2) 
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  When fitting an ARIMA model to the data, the data is initially tested for being 

nonstationary using the Augmented Dickey–Fuller unit root test [10]. Based on the 

results of this test, the original time series data is differenced until stationarity is 

achieved. The autocorrelation function (ACF) and partial autocorrelation function 

(PACF) is examined to determine the number of autoregressive terms (𝑝) and moving 

average terms (𝑞) to consider. ARIMA models will be identified by matching obtained 

patterns of ACF and PACF plots with theoretical patterns. If an autocorrelation at some 

lag is significantly different from zero, the correlation will be included in the ARIMA 

model. The selected models are validated by ensuring that the residuals are a series of 

random errors. If all the residuals of the model are a series of random errors, there should 

be no sizable full or partial autocorrelations remaining in the data.  

 

3.2.4. Econometric Model 

  In addition to the forecasting methods discussed above, the donations are also 

analyzed considering the economic factors deemed to be associated with the amount of 

donations. The economic factors taken into consideration in this research are 

unemployment rate, average gas prices, productivity index, and Consumer Price Index 

(CPI).  Lags for the econometric model are determined by unemployment, gas prices, 

CPI, and Productivity using the cross-correlation function. The econometric model is 

built using the applicable lags for that period on a weekly data. The data is considered for 

the cities of Austin and Houston. The econometric model is a statistical linear regression 

model used to establish a relationship between amount of in-kind donations and 

economic factors as defined above. Unemployment is a reflector of the health of the 
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economy. It means the economy is operating below its potential capacity and is 

inefficient. Transportation could be affected by the gas prices as it affects the movement 

of goods from one location to another. For various donors, transporting food from their 

location to a food bank is essential. Productivity highlights the output in an economy. It 

shows how efficiently the inputs are converted into outputs. The CPI is a measure of the 

average change in the prices paid by urban consumers for a market of consumer goods 

and services over time. The data for the econometric model is obtained from Bureau of 

Labor Statistics [43]. The econometric model for this research is represented in Equation 

(3): 

 

�̂� = 𝑏0 + 𝑏1�̂�𝑡−1 + 𝑏2𝑋1𝑡 + 𝑏3𝑋1(𝑡−1) +  𝑏4𝑋2𝑡 + 𝑏5𝑋1𝑡𝑋2𝑡 + ⋯                                (3) 

 

  Where 𝑋𝑛𝑡 is a predictor of 𝑌 and 𝑏𝑖>1 denotes estimates of the slope of 𝑌 given 

𝑋𝑛𝑡, 𝑏1 is the estimate of the first-order autocorrelation coefficient and 𝑏0 the estimate of 

the y-intercept. The econometric model tries to establish a relation to determine whether 

any of the economic factors had any influence on the donations made at both food banks. 

It tries to corelate each econometric factor with the donation made during that period.  

 

3.2.5. Naïve Forecasting 

  A naïve forecasting method uses historical values as estimates for future values. 

This technique does not apply any adjustment to the historical values. It simply uses data 

from last observed period as a forecast for the next period. Naïve forecasting model is 

represented in Equation (4). 
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�̂�𝑡 = 𝑌𝑡−𝑙                                                                      (4) 

  Naïve method of forecasting is commonly used in industry where last period’s 

results are used as current period’s reference. Although it not an elaborate method, it has 

been commonly used in many sectors because it is easy to compute and provide quick 

results.  

 

3.3. Predictive model selection and evaluation 

  Six forecasting models are tested over the in-sample time series defined by the 

classes in Table 4. The forecasting models used in this research are moving average, 

Holt, Holt-Winters, ARIMA, Econometric, and naïve model. Six forecasting models are 

then fitted in the in-sample data sets as defined by Table 4.   

  For each model, one period forecasts �̂�𝑡+1|𝑡 will be generated where 𝑌1…𝑌𝑡 are 

assumed to be known. The model that has the smallest mean absolute percentage error 

(MAPE) will be applied to the out-of sample data to assess model validity for future time 

periods. In particular, one period ahead forecasts are constructed for the out-of-sample 

series data and the MAPE is determined according to Equation (5).  

 

𝑀𝐴𝑃𝐸 = 𝑇0
−1 [ ∑ |

�̂�𝑡+1|𝑡 − 𝑌𝑡+1

𝑌𝑡+1
|

𝑇+𝑇0

𝑡=𝑇

] ∗ 100                                       (5) 

 

  Besides using the MAPE to evaluate the forecast accuracy for a specific time 

series, it is also used to assess the improvement in the forecast across series given 

different information classes. More specifically, when comparing the value of using 



 

 

23 

donor versus product information, a mean absolute percentage error closer to zero implies 

greater forecast accuracy. 

 

3.4. Using forecast for decision making 

  The forecasts models identified in this research can be used to improve the 

operations of food banks. For example, knowing the expected number of donations can 

help in prepositioning supplies for disaster relief operations. Food banks in the Feeding 

America network determine their distribution effectiveness by analyzing the pounds 

distributed. This aspect is referred to as pounds distributed per person in poverty (PPIP) 

and it provides a way to analyze food distribution activities done across counties in the 

service area [10]. The forecasts generated can be used to have in-depth understanding the 

supply chain and the distribution. Assuming that there are 𝐾 counties served by a food 

bank and for each county, 𝑘 ∈ 𝐾, then the number of people in poverty is defined as 𝑝𝑘. 

Using 𝑝𝑘, 𝑎𝑘 known as the fair share percentage is computed using 𝑎𝑘 =
𝑝𝑘

∑ 𝑝𝑘𝑘
. Consider 

𝑑𝑘 as prior total distribution quantity (in pounds) for the food bank for a specific time 

period. Then the amount of supplies that should be numerically allocated to each county 

𝑘 is 𝑎𝑘𝑌�̂�. The total forecast of 𝑃𝑃𝐼𝑃𝑘  for county 𝑘 is determined as follows.  

 

𝑃𝑃𝐼𝑃𝑘 =  
𝑎𝑘(𝑌�̂� + 𝑑𝑘)

𝑝𝑘
 

 

  If 𝑃𝑃𝐼𝑃𝑘 is below 75, then a county is considered underserved. To construct a 

forecast value of 𝑃𝑃𝐼𝑃𝑘 for each week, the researcher has performed the following steps. 



 

 

24 

1. Generate a forecast donation using the information from a specific time period. 

2. Use the forecasted values to generate the 95% prediction interval for time period 

𝑡. 

3. Compute 𝑃𝑃𝐼𝑃𝑘 for each county. 

 

  𝑃𝑃𝐼𝑃𝑘 calculated for each county using the prediction interval considers the 

potential demand and supply to the county by the food bank. The possible unmet demand 

can be understood from this analysis and policies can be made and implemented to 

improve the food bank services and distribution. Section 4.6 further discusses the results 

and managerial decisions that can be taken to optimize the distribution during a hurricane 

event. A potential shortfall is determined for each county suggesting the surplus quantity 

of donations that need to be supplied to meet the requirements.  

 

3.4.1. Computational Results 

  A comprehensive numerical study is performed to quantify the extent of 

uncertainty in terms of donors, product, and pounds per donor in food banks. In addition, 

predictive models are developed to estimate the quantity of in-kind donations. The results 

show the relationship between forecast accuracy, donation behavior, and donations 

uncertainty. Equipping these facilities with better predictive information on supply-

donation behavior will allow them to make informed downstream distribution decisions. 

The resulting models provides statistical data and valuable information that will increase 

the potential of the supply chain to meet the organizational objectives.  
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3.4.2. Results of donation behavior as a function of donation characteristics 

  The following section illustrates the variability of the associated factors impacting 

donations at the studied food banks facilities following Hurricane Harvey. The analysis 

considers the pre-disaster time period (i.e. from January 1, 2016 until July 31, 2017) and 

the post-disaster time period (i.e. from August 2017 until December 2017).  Figure 1 

depicts the variation in donation behavior in terms of pounds received, number of donors, 

and pounds received by donor at the Houston Food Bank before and after Hurricane 

Harvey. Figure 2 shows the variability in donation behavior in terms of pounds received, 

number of donors, and pounds received by donor at the Central Texas Food Bank in 

Austin before and after Hurricane Harvey. The coefficient of variation is an important 

parameter to determine the accuracy of the data. It measures how spread the data is and 

how much the data points differ from each other. Variance determine how close the 

datapoints are to the mean of the data and the square root of variance is called standard 

deviation. In this research, daily donations involve pounds of food being donated. During 

disaster, it is important to predict the quantity of donations such that the food banks are 

able satisfy the demand of the served population.  



 

 

26 

 
Figure 1: Uncertainty in food donation behavior in terms of pounds received, number of 

donors, and pounds received by donor at Houston 

 

 
Figure 2: Uncertainty in food donation behavior in terms of pounds received, number of 

donors, and pounds received by donor at Austin 
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3.4.3. Pre-Disaster donation behavior  

  The analysis for this section is done independently for Houston Food Bank and 

Central Texas Food Bank. Figure 2 suggests there was less variation in terms of number 

of donors and donations at Houston food bank during pre-disaster phase. It can be noted 

that Houston Food Bank experienced normal operations prior to disaster and it faced no 

significant shocks. However, repercussions of hurricane can be understood from Figure 1 

where the variation in number of donors, pounds donated per month, and pounds received 

by donor increased. Also, maximum variation is observed in total pounds donated per 

month. Referring to Figure 2, it can be observed that Central Texas Food Bank had no 

major effect of hurricane Harvey on its operations. The results agree with the proximity 

of the facilities to the area impacted by the hurricane 

 

3.4.4. Disaster and post disaster donation behavior  

  Referring to Figure 1, it is observed that the variability is consistent with the 

impact Hurricane Harvey had on regular operations of Houston Food Bank prior to 

disaster. The unpredictability in terms of donors and donation at Houston Food Bank 

amount increased almost three times and six times respectively during normal operations 

and post-disaster phase, A higher increase in variability in total donation amount and 

pounds donated by donor is observed at Houston Food Bank. Referring Figure 2, Central 

Texas Food Bank did not experience a significant effect on the donations made. It is in 

consistent to the fact that it was not directly affected by the hurricane Harvey. Houston 

Food Bank’s higher variability is consistent with the fact that it is the largest food bank in 

United States and has more capacity in terms of storage and volunteers than Central 
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Texas Food Bank.  

 

3.4.5. Relationship between number of donors and donations amount 

  Figure 3 and Figure 4 outlines donation behavior in terms of number of donors 

and the quantity donated by them weekly, for 2016 and 2017 for both food banks 

analyzed is this study. There is a notable linear relationship between number of donors 

and total pounds received for the Houston Food Bank. However, there are some instances 

in which a large number of donors contribute to a relatively less amount of donations and 

at times less donors contribute more quantity.  

 
Figure 3: Uncertainty in donor behavior as measured by scatterplot of donors versus 

pounds received for Houston Food Bank 

 

For the Central Texas Food Bank, the number of donors and the volume of 

donations are less than those at the Houston Food Bank. Remember the Houston Food 

Bank is the largest food bank in the nation and its facility is much bigger than the CTFB. 
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Figure 4 illustrates that, at Central Texas Food Bank, the number of donors is reduced 

and there is a large variability in the amounts that each donor contributes; whereas, in 

Houston donors are more similar in their contribution amount indicated by the linear 

shape. 

 

 
Figure 4: Uncertainty in donor behavior as measured by scatterplot of donors versus 

pounds received for Central Texas Food Bank 
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  In this subsection the donation behavior for both food bank facilities are 

discussed. Figure 5 represents the donations plotted over time at the Houston Food Bank 

and the Central Texas Food Bank at Austin. The graphs presented in this subsection 
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The analysis also considers donation behavior pre-disaster and post-disaster at both 
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at the Houston Food Bank and the Central Texas Food Bank for 2016 and 2017. The 

graphs demonstrate the product donation behavior observed overtime for years 2016 and 

2017. Figure 5 shows that the quantity of donations received at the Houston Food Bank 

are significantly higher than the donations received at the Central Texas Food Bank. 

Houston Food Bank received approximately nine times more donations than the Central 

Texas Food Bank.  

 
Figure 5: Time series plot of food donations: FB total, Houston, and Austin 

 

  Hurricane Harvey impacted Texas at the end of August 2017. The event caused a 

rise in total pounds donated at both facilities in the following months until the end of the 

year. The total donations were approximately three times higher at the Houston Food 

Bank during the post-disaster phase. The donations at the Central Texas Food Bank also 

increased. The following two subsections discuss the donation behavior observed in both 

food bank facilities in the pre-disaster and post-disaster period respectively. As stated 

earlier, the pre-disaster relief period goes from January 2016 until the end of July 2017 
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and the post-disaster relief period goes from August 2017 until December 2017.  

 

3.5.1. Pre-Disaster donation behavior 

  The following analysis considers only the top donor types and product types for 

both food bank facilities as indicated in Section 3.4. The Houston Food Bank top donor 

types are Retail, Government, Manufacturer, Wholesale, and other Non-Profits as 

depicted in Figure 6. The plot shows that there is significant variability across time for all 

the donor types represented in Figure 6. Figure 7 illustrates the donor behavior in term of 

pounds donated for the Central Texas Food Bank. In this facility, the Retail category 

dominates the total pounds donated. Retail (i.e. supermarkets) is followed by the 

Wholesale (i.e. Sam’s Club), Company/corporation (i.e. Electronics), Manufacturer (i.e. 

Growers), and Non-Profits categories accordingly. Retail donations constitute 

approximately more than four times the other donations for the Central Texas Food Bank 

which indicates that this facility depends mostly from business like supermarkets.  
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Figure 6: Time series plot of food donations by donor (top 5)  

for Houston (Jan 2016 to July 2017) 

 
Figure 7: Time series plot of food donations by donor (top 5)  

for Austin (Jan 2016 to Jul 2017) 
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following results. The period for analysis is same as donor type. Figure 8 and Figure 9 

shows packed food being the maximum product donated for both food banks individually 

during pre-disaster phase. It is followed closely by Fresh/Produce food, Meat, Dairy and 

Non-Food products. There is absence of any noticeable trends in this period. Figure 8 

shows that there is a minor decline in overall food donations for Houston Food Bank 

during January 2017 owing to it remaining non-operational for few days. However, 

donations resume back to normal during February evidenced by the graphical data.  

 
Figure 8: Time series plot of food donations by product type (top 5)  

for Houston (Jan 2016 to July 2017) 
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Figure 9: Time series plot of food donations by product type (top 5)  

for Austin (Jan 2016 to July 2017) 
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Company/corporation, and other Non-Profits as depicted in Figure 10. The plot shows 
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Figure 10: Time series plot of food donations by donor (top 5)  

for Houston (Aug 2017 to Dec 2017) 

 

 
Figure 11: Time series plot of food donations by donor (top 5)  

for Austin (Aug 2017 to Dec 2017) 
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  During the post disaster period, as noted in Figure 12 for the Houston Food Bank, 

the packed food product type is the major contributor to total food donations. It is 

followed by produce, meat, dairy, and snack food products. Snack food became one of 

the major contributions, replacing water during the post disaster period, as illustrated in 

Figure 12. There is an increase in packed food donations during September denoting 

influx of donations as an aftermath of the disaster.  

 

 
Figure 12: Time series plot of food donations by product type (top 5) 

 for Houston (Aug 2017 to Dec 2017) 

 

  Figure 13 depicts the behavior for the Central Texas Food Bank. The plot shows 

that packed food donations is the major contributor during the disaster phase. There is a 

minor decrease in packed food donations and a corresponding rise in produce-food 
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Figure 13: Time series plot of food donations by product type (top 5)  

for Austin (Aug 2017 to Dec 2017) 
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pharmaceutical products, baby food, and pet food. The was no substantial contribution 

during the disaster and post-disaster period as well. There’s an increase in donations at 

Houston Food Bank following the disaster period. It is, however, not observed at Central 

Texas Food Bank. It may be attributed to the area of impact of the disaster as Houston 

was directly affected by the hurricane and hence has attracted most of the donations. The 

disaster hardly had any impact on donations at Austin. Retail and Government donations 

being the most amongst other food items donated at that period. There is absence of 

donations by Government at Central Texas Food Bank. Packed food is at the top of the 

food donations at Austin and Houston food bank. Packed food is closely followed by 

produce/fresh food during both the phases at Austin. Produced/fresh food donations 

formed the majority of donations at Houston before the disaster period.  

 

3.6. Statistical analysis of donation behavior 

  Paired t-tests are often used to compare two population means for paired random 

samples whose differences are approximately normally distributed. The test statistic 𝑡 has 

𝑛 − 1 degrees of freedom and is computed by 𝑡 =  
�̅�

𝑠√𝑛
, �̅�  is the mean difference 

between two paired samples, 𝑠 is the standard deviation of the differences, and n is the 

sample size. The results are considered to be significant if p-values < 0.05. The results for 

the test statistic 𝑡 are presented in Table 5. 

  The data for this study was partitioned into two sets: in-sample dataset and an out-

of-sample dataset. There are two in-sample data sets in this study, 1) a “normal” 

operation data set (January 2016 – August 2016), and 2) a “disaster relief” operation data 

set (September 2017 – December 2017). This research identifies the activities from 
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September 2017 to December 2017 as the “disaster relief” period where relief actions 

were in full effect after Hurricane Harvey. The in-sample data sets are used to fit the 

forecasting model parameters. 

  The out-sample dataset identified for this study goes from January 2017 to August 

2017. The out-of-sample dataset is used to validate the forecasting models by measuring 

their accuracy against real observed data. Cross validation was only performed for the 

forecasting models developed with the in-sample dataset corresponding for the “normal” 

operations data set (i.e. January 2016 – August 2016). The forecasting models for the 

disaster relief operation in-sample dataset (i.e. i.e. September 2017 – December 2017) 

were assessed using the MAPE since out-of-sample data for a similar hurricane event was 

not available at the time of this research work. Table 5 summarizes the results of p-values 

obtained from the t-test to determine the in-sample dataset and an out-of-sample dataset. 

 

Table 5: Results of paired t-test  

Houston 
Jan.-Apr. 

2016 

May-Aug. 

2016 

Sep.-Dec. 

2016 

Jan.-Apr. 

2017 

May-Aug. 

2017 

Sep.-Dec. 

2017 

Jan.-Apr. 2016 - 0.512 0.712 0.472 0.640 4.012E-06 

May-Aug. 2016 - - 0.076 0.170 0.652 2.288E-06 

Sep.-Dec. 2016 - - - 0.592 0.165 5.963E-06 

Jan.-Apr. 2017 - - - - 0.222 2.608E-05 

May-Aug. 2017 - - - - - 2.582E-06 

Sep.-Dec. 2017 - - - - - - 
 

 

3.7. Forecast model results 

3.7.1. Forecast model accuracy 

  Table 6, Table 7, Table 8, and Table 9 presents the results of the model fitting for 

each class for both food banks. In the table, 𝐶𝑖  refers to the class and |𝐶𝑖| represents to the 

number of time series evaluated for each class (see Table 2). Only the three major 
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contributors of donor type and product type for each food bank were considered in the 

analysis. Different combinations are then analyzed to determine the best fitting model. 

Several statistics are considered when evaluating the forecast model accuracy for each 

class. The average coefficient of variation (𝐶𝑉̅̅ ̅̅ ) is calculated for each class by computing 

the mean of all CV’s calculated over different combinations evaluated for that class. 

Analyzing the results for the Houston Food Bank and the Central Texas Food Bank, it is 

evident that the most accurate forecasts are achieved for the total food donations in both 

food banks. The mean absolute percentage error (𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ) for both food banks for total 

donations is approximately 13%.  

  Referring to Table 6, analysis of Houston Food Bank for different classes shows 

better donation forecasts are observed with predictions involving product type than donor 

type. It implies a more consistent nature of product type donated. The average MAPE 

observed for product type donations is 21.49% with minimum error of 17%. The 

forecasts considering donor type have an average error of 30% with higher coefficient of 

variation. The minimum error observed for donor type forecasts is 20%. Also, the 

coefficient of variation is lower when forecasts are constructed predicting the type of 

product donated. It can be understood that as the combinations of food increases the 

higher is the variability and it produces a large average MAPE’s. It can be suggested that 

predicting the donor type and product type together, leads to higher variability (CV) and 

large MAPEs as the values are 1.6% and 90.56%, respectively.  

  Referring to Table 7, analysis for Central Texas Food Bank during pre-disaster 

period shows similar forecasting results as that of Houston Food Bank. Forecast results 

for donations related to product types shows an average MAPE of 11.86%. Error 
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percentage for total donations at Central Texas Food Bank is 12%. While higher average 

MAPE is observed for donations involving donor type with a minimum value MAPE 

value of 12%.  

Table 6: Model testing results for Houston under “normal” operations  

(Jan. 2016 – Aug. 2016) 

𝐶𝑖 |𝐶𝑖 | 𝐶𝑉̅̅ ̅̅  𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅  Minimum Std. Dev. 

𝐶𝐹 1 - 14.584 - - 
𝐶𝐷 3 0.276 30.063 20.265(CMA)     8.164 
𝐶𝑃 3 0.214 21.492 17.243(Econometric)     4.605 

𝐶𝐷𝑃 9 1.609 90.564 16.38 (Econometric) 145.737 

 

 

Table 7: Model testing results for Austin under “normal” operations  

(Jan. 2016 – Aug. 2016) 

𝐶𝑖 |𝐶𝑖 | 𝐶𝑉̅̅ ̅̅  𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅  Minimum Std. Dev. 
𝐶𝐹 1 -   12.332 - - 
𝐶𝐷 3 0.704 131.622 12.726 (CMA) 92.656 
𝐶𝑃 3 0.129   11.866 9.722 (Econometric) 1.533 

𝐶𝐷𝑃 9 1.194 157.978 9.503 (Econometric) 188.569 

 

   

  Analyzing the post-disaster forecasting results for Houston Food Bank using 

Table 8, it can be seen that forecasting error percentage for total donations increased vs 

the one gotten for pre-disaster forecasts. The best forecast can be observed for predictions 

involving donor type, with average MAPE of 10.43% and 0.498 coefficient of variation. 

Product type donation yield an average MAPE of 19.40% with a minimum error 

percentage of 6.572%.  

Table 8: Model testing result for Houston under “disaster relief” operations  

(Sep.17 – Dec.17) 

𝐶𝑖 |𝐶𝑖 | 𝐶𝑉̅̅ ̅̅  𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅  Minimum 
Std. 

Dev. 
𝐶𝐹 1 -   23.649 - - 
𝐶𝐷 3 0.498   10.430 5.495 (Econometric) 5.191 
𝐶𝑃 3 0.473   19.404 6.572 (Econometric) 9.176 

𝐶𝐷𝑃 9 2.403 346.732 8.927(Econometric) 833.171 

 



 

 

42 

  Examination of post-disaster forecasts for CTFB in Table 9, reveals more 

unpredictability in donations. Forecast for total food donations has an average MAPE of 

47%. Also, the minimum MAPE for product type forecasts and donor type forecasts is 

35% and 51% respectively. There is an increase in coefficient of variation across all 

classes analyzed. The change is also reflected in an increase in standard deviation 

observed through all classes analyzed before and after hurricane.  

 

Table 9: Model testing result for Austin under “disaster relief” operations  

(Sep.17 – Dec.17) 

𝐶𝑖 |𝐶𝑖 | 𝐶𝑉̅̅ ̅̅  𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅  Minimum 
Std. 

Dev. 
𝐶𝐹 1 -   47.087 - - 
𝐶𝐷 3 0.602 191.636 51.370 (CMA) 115.435 
𝐶𝑃 3 0.270   53.045 35.019 (CMA) 14.315 

𝐶𝐷𝑃 9 1.521 462.163 39.478 (CMA) 702.927 

   

  It can be conjectured that better and accurate forecasts can be constructed for 

certain types of donors and products. Coefficient of variation and MAPE increases as 

more classes are clustered and fragmented. It should be observed that donations involving 

product types had lesser variation, specifically packed food which was donated more 

frequently. The results are important as it helps improve the forecast. Also, the forecasts 

involving only total donation for the food bank gave the best results (i.e., least coefficient 

of variation). Through data analysis, the researcher observed that the variability and 

MAPE for the forecasts was observed to be high for classes which involved a 

combination donor type and product type. 
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3.7.2. Forecast model comparison 

  Table 10 and Table 11 summarize the forecast model selection per class for the 

Houston Food Bank and the Central Texas Food Bank, respectively, under “normal” 

conditions (i.e. pre-disaster). The data used to build the forecasting models include 

January 2016 until August 2016 which is the in-sample dataset. Of all the forecasting 

methods analyzed for Houston, the naïve method proves to be the most accurate as it 

provided predictions with least error. The naïve method performs well in this scenario as 

the donations amount were similar to the observed values for previous period. Holt, 

ARIMA, Econometric, and Holt-Winters gave the best forecasting results for some of the 

instances of each class 𝐶𝑖.   

 

Table 10: Model selection summary for Houston under “normal” operations  

(Jan. 2016 – Aug. 2016) 

 

 

CMA Holt 
Holt-

Winters 
ARIMA Econometric Naïve  

 

 CF - - - - - 1  

 CD - - - 2 - 1  

 CP - - - - 1 2  

 
CDP - 2 1 2 2 2  

                

 Total 0 2 1 4 3 6  
 

   

  Table 11 summarizes the model selection for the Central Texas Food Bank in 

Austin TX. The centered moving average (CMA) proves to be the most useful method to 

build forecasts for this facility under “normal” conditions (i.e. pre-disaster). CMA 

provided the best results in six instances. ARIMA proved to be second best method 

giving best results in four instances.  
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Table 11: Model selection summary for Austin under “normal” operations  

(Jan.16 – Aug.16)  

 

 

CMA Holt 
Holt-

Winters 
ARIMA Econometric Naïve  

 

 
CF - - - - 1 - 

 

 
CD 2 1 - - - -  

 
CP 1 - - 2 - -  

 
CDP 3 1 2 2 1 0  

                

 Total 6 2 2 4 2 0  

         
   

  Table 12 and Table 13 summarize the forecast model selection per class for the 

Houston Food Bank and the Central Texas Food Bank, respectively, under “disaster 

relief” conditions (i.e. post-disaster). The data used to build the forecasting models 

include September 2017 until December 2017 which is the second in-sample dataset. 

Table 14 shows that for the Houston Food Bank, the Econometric method proves to be 

the most accurate forecasting model since it computed predictions with least percentage 

error. Econometric model accounts for various economic factors which can potentially 

influence the donation behavior at the food bank location. The economic factors 

considered in this research can possibly have an impact on donation behavior at Houston 

during disaster-relief period. CMA provides the best forecasting results for the rest of the 

instances of each class 𝐶𝑖.   

 

 

 



 

 

45 

Table 12: Model selection summary for Houston under “disaster relief” operations 

(Sep.17 – Dec.17)  

𝐶𝑖 CMA Holt 
Holt-

Winters 
ARIMA Econometric 

CF - - - - 1 

CD - - - - 3 

CP 1 - - - 2 

CDP 6 - - - 3 

      

Total 7 - - - 9 

 

   

  Table 13 summarizes the model selection for the Central Texas Food Bank in 

Austin TX. The centered moving average (CMA) proves again to be the most useful 

method to build forecasts for this facility under “disaster relief” conditions (i.e. post-

disaster). CMA provided the best results in nine out of the fifteen instances.  

 

Table 13: Model selection summary for Austin under “disaster relief” operations  

(Sep.17 – Dec.17)  

𝐶𝑖 CMA Holt 
Holt-

Winters 
ARIMA Econometric 

CF - - - 1 - 

CD 2 1 - - - 

CP 3 - - - - 

CDP 4 2 - 1 1 

      

Total 9 3 - 2 1 

 

 

3.7.3. Forecast model validation 

  Table 14 and Table 15 report the values for the best forecasting models  when 

compared to the out-of-sample datasets for the Houston Food Bank and the Central Texas 
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Food Bank respectively. The tables represent the different parameters evaluated for each 

series in the class 𝐶𝑖, the minimum forecast error, and the standard deviation of the 

forecast error. The forecast error and coefficient of variation is also reported in relation to 

the average CV and MAPE from in-sample dataset. Ratios that are less than 1 are in 

consistent with reduction in variability (𝑅𝑉) or forecast error (𝑅𝐶), respectively. 𝐶𝑖 

represents the classes analyzed and |𝐶𝑖| represents the number of classes evaluated for 

building forecast. Minimum indicates the least MAPE observed over the particular 

instance. Std Dev denotes the standard deviation for class 𝐶𝑖. 𝐶𝑉̅̅ ̅̅  represents the average 

co-efficient of variation observed over different classes. 𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅  represents the average 

mean absolute percentage error observed over a specified class.  

 

Table 14: Model validation results for the Houston Food Bank 

𝐶𝑖 |𝐶𝑖 | 
  Minimum 

Std 

Dev 

 𝑅𝑉 (Jan.-

Dec.) 

𝑅𝑉 (Sep. 

-Dec.) 

𝑅𝐶 (Jan.-

Dec.) 

𝑅𝐶 (Sep. 

-Dec.) 

CF 1 18.730 - - - - - 0.623 0.798 

CD 3 48.777 28.001 16.132 0.331 1.218 0.664 1.623 4.676 

CP 3 29.032 21.642 5.232 0.180 0.841 0.381 1.351 1.496 

CDP 9 79.543 33.131 36.626 0.460 0.286 0.192 0.878 0.229 

 

 

 

Table 15: Model validation results for the Central Texas Food Bank in Austin 

𝐶𝑖 |𝐶𝑖 | 
  Minimum Std Dev 

 𝑅𝑉 (Jan.-

Dec.) 

𝑅𝑉 (Sep. 

-Dec.) 

𝑅𝐶 (Jan.-

Dec.) 

𝑅𝐶 (Sep. 

-Dec.) 

CF 1 10.621 - - - - - 0.861 0.226 

CD 3 180.761 15.490 121.789 0.674 0.957 1.119 1.373 0.943 

CP 3 19.991 13.482 7.1407 0.357 2.765 1.323 1.685 0.377 

CDP 9 178.734 11.951 150.724 0.843 0.706 0.554 1.131 0.387 

 

  Several observations are deduced from these results. First, forecasts generated for 

overall donations for both food banks are the most accurate and for both considered 

𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅  𝐶𝑉̅̅ ̅̅  

𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅  𝐶𝑉̅̅ ̅̅  
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sample groups. For Houston Food Bank and Central Texas Food Bank, an increase in 

variability is usually accompanied by an increase in average forecast error. Also, classes 

with less average MAPE and variability tend to have lower standard deviation which 

signifies a consistency in donations. Forecasts generated for classes which involves a 

combination of donor type and product type prove to have larger average MAPE and 

coefficient of variation for all the instances considered. Forecasts generated for product 

type prove to give better results as compared to other classes. The analysis indicates an 

increase in variation and on the average MAPE’s for all classes during the post-disaster 

phase.  There’s also a corresponding increase in absolute percentage error for this phase. 

 

3.8. Using forecast for decision making 

  This section aims to provide a guide on how to use the results reported in this 

research. Consider the donation requirements for a number of counties surrounding a 

food bank. For the purpose of this work, eight counties associated to the Houston Food 

Bank are considered. For each county 𝑘 ∈ 𝐾, the number of people in poverty 𝑝𝑘 is 

known, as well as pre-defined allocation of branch supply 𝑎𝑘 known to be fair-share 

percentage. The pounds distributed per person in poverty, 𝑃𝑃𝐼𝑃𝑘, is computed as 

discussed in Section 3.6. The term 𝑑𝑘 represents the 11th -time period distribution 

quantity, in pounds, for county 𝑘. The amount of supply that should be theoretically 

allocated to each county 𝑘 is 𝑎𝑘(𝑌�̂� + 𝑑𝑘). A 95% prediction interval is constructed for 

total supply and it is [2,055,434.91, 7,287,576.64] pounds. 

 Table 16 denotes the corresponding interval forecast of PPIP for each county 

served by the food bank. The statistics, as indicated in Table 16, shows the counties 
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served by the Houston Food Bank that may potentially be under-served as their PPIP 

values are less than 75. Shortfall of supplies is then determined to denote the additional 

pounds of food to be supplied to these counties to reach a threshold PPIP of 75. Thus, 

management can improve their existing policies or bring new ones to match the supply 

with demand. 

  

Table 16: Forecast summary PPIP 

County 

Name 
PPIP 

Population 

in poverty 
Shortfall (Pounds) 

Harris [1.61, 2.10] 747,080.42 [346,854,467 - 349,151,301] 

Galveston [22.37, 29.17] 40,546.80 [19,799,792 - 22,096,626] 

Montgomery [12.79, 16.68] 52,592.33 [38,777,417 - 41,074,251] 

Chambers [178.04, 232.15] 4,033.13 - 

Brazoria  [20.42, 26.62] 33,318.00 [22,223,042 - 24,519,876] 

Liberty [87.56, 114.17] 13,380.07 -  

Waller [142.28, 185.51] 8,234.53 - 

San Jacinto [263.19, 343.17] 5,226.86 - 
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4. DECISION-MAKING STOCHASTIC MODEL 

4.1. Methodology and Assumptions 

4.1.1 Problem Definition 

This research involves the logistics associated with the disaster relief operations 

for a network of food bank facilities at risk of getting impacted by a natural disaster (i.e. 

hurricane). The goal is to plan the prepositioning of supplies that will minimize unmet 

demand for the counites served by all food bank facilities in the network. The problem is 

formulated as a two-stage stochastic programming model that considers the uncertainty in 

terms of available supplies, donations received at the facility, and the expected demand 

for their service region. The first phase of the model will determine if the system requires 

pre-positioning of the expected inventory considering the expected donations. The second 

phase of the model will determine the activities to be undertaken during the response 

phase.  

In this research, the supply nodes are the food bank facilities which are large 

storage facilities similar to a distribution center or a warehouse. The demand nodes are 

accessible fixed locations in the service radius of the food bank facility. In this research, 

demand nodes are represented by the counties served by the respective food banks. The 

distance between supply and demand nodes are associated to the roadway distances in the 

network. Supplies are allowed be moved between these supply nodes and demand nodes 

before and after hurricane. The following section discusses the assumptions considered 

for this problem. 
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4.1.2. Assumptions 

The researcher, for this study, has considered hurricane Harvey which affected the 

state of Texas and Louisiana in 2017. The counties served by Houston Food Bank (HFB), 

Central Texas Food Bank (CTFB), and San Antonio Food Bank (SAFB) have been 

analyzed for determining the supply and demand nodes. The historical data provided by 

the food banks gave information about the inventory and capacity for each food bank 

facility. It is observed that after a natural disaster, such as a hurricane, there is a surge in 

the demand that needs to be satisfied with the available inventory. The natural disaster 

can also disrupt normal operations for the food banks by damaging structures, flooding, 

among other circumstances. In this research, a hurricane event is considered which is 

based on the data collected from Hurricane Harvey in 2017. The following assumptions 

are considered by the authors when defining the problem. 

• Consider a supply and demand network with 𝑁 supply nodes, and 𝐻 demand nodes.  

• Each supply node 𝑛 ∈ 𝑁, corresponds to a food bank facility which can store and 

distribute supplies.  

• Each supply node 𝑛 ∈ 𝑁 is associated with maximum a quantity of supplies it can 

hold. This upper limit is known as capacity. It is the maximum physical volume of 

goods that can be stored. This research assumes the maximum capacity as pounds of 

food that can be stored at a facility.  

• The set of demand nodes, ℎ ∈ 𝐻, represents locations that show the requirement of 

the population in a given geographical area. In this research, the counties are 

considered the demand nodes. These counties serve their respective population, and 

demand varies considering the population in poverty.  
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• A demand forecast for each county is known thereby reflecting the population that 

needs to be served. The demand nodes are satisfied by the supply nodes.  

• The actual demand quantity of different counties may increase, decrease, or remain 

same after the event. The change is estimated by considering the distance of nodes 

from the impact of disaster. See Figure 14. 

• The disaster donations, in addition to regular donations, is determined using the 

historical data obtained from food bank facilities.  

• The interconnections between supply and demand nodes are the transportation routes 

as illustrated in Figure 14. It is assumed that movement of food takes place using the 

roadways.  

• The size and volume of Central Texas Food Bank, and San Antonio Food Bank is 

identical. Hence, the values for inventory and donations are considered to be same.  

 

It is believed that the decision-maker has been informed of the incoming disaster 

and intends to take active approach to planning distribution of supplies before the event. 

Pre-positioning could take place between the supply nodes before the event takes place 

using the existing inventory subject to maximum capacity. 

 

4.2. Supply and Demand Nodes 

4.2.1. Supply network 

The supply nodes in this research are the food banks facilities which are 

illustrated by circles in Figure 14. The names of the supply nodes considered in this study 

are (1) Houston Food Bank (H), (2) Central Texas Food Bank at Austin (A), and (3) San 
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Antonio Food Bank (S). The selection of these three facilities was based on the observed 

operations during Hurricane Harvey in central Texas. Each supply node has a pre-defined 

capacity and an associated inventory calculated for each day. In this research a supply 

node is represented by an index 𝑛 ∈ 𝑁. However, to identify inbound and outbound flows 

at each supply node 𝑛, two additional indices 𝑖 and 𝑗 are defined and 𝑖, 𝑗, 𝑛 ∈ 𝑁. 

 

 

Figure 14: Supply and demand network.  

 

Table 17 shows the distances between food bank facilities (i.e. the supply nodes). 

Donated supplies are managed by the supply nodes. Typically, after a natural disaster (i.e. 

disaster relief period), a surge of donations is observed at the supply nodes. Historical 

data from the studied food bank facilities was used to develop donation forecasts and to 

model the associated uncertainty. The expected number of donations varies according to 

the severity of the expected hurricane event. For instance, the expected number of 

donations will be lower for category 1 hurricane than for a category 4 or category 5. In 
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this research a donation changing factor 𝛿𝑛,𝜔, where 𝜔 represent hurricane impact 

scenario, is used to model the fluctuation in donations.  

 

 

Table 17: Distance matrix in miles between supply nodes 𝒏 ∈ 𝑵 

Food bank facility 
Houston Food 

Bank, Houston TX 

Central Texas Food 

Bank, Austin TX 

San Antonio Food 

Bank, San Antonio TX 

Houston Food Bank, 

Houston TX 
- 165 208 

Central Texas Food 

Bank, Austin TX 
165 - 86 

San Antonio Food 

Bank, San Antonio TX 
208 86 - 

 

 

4.2.2. Demand Nodes and Forecasted demand 

 

Demand nodes are the counties in the service region of each food bank. During 

the disaster relief period, demand nodes are typically distribution points where the 

delivery trucks from the food banks can reach out to a large group of people in need (i.e. 

food pantries). The data obtained by the food banks provided information on the amount 

of supplies distributed by the food banks after Hurricane Harvey. The information 

provided a way to estimate the demand after natural disasters in the area.  

The demand of supplies for the food banks under normal operation was estimated 

considering the counties and their corresponding population in poverty [44]. This 

research estimates the demand for a county using Equation (1) which consider the 

poverty population (𝑝𝑐) for each county and the product need factor (𝐻𝑓) which considers 

the people that are not classified as in poverty level but that will need help from the food 

bank for other reasons such as unemployment. Table 18 represents the estimated demand 

at supply nodes calculated using the equation stated above. County numbers from h01 to 

h18 represent the counties served by Houston Food Bank, counties h19 to h39 are 
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counties served by the Central Texas Food Bank, and h40 to h55 are counties served by 

San Antonio Food Bank. The locations for the counties are displayed in Figure 14. 

 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 =  
𝑃𝐶 × 𝐻𝑓 ×  75

12 
          (1) 

 

Table 18: Estimated monthly demand per county 
County 

Number 

County 

Name 

Poverty 

% 

Poverty 

Population 
Demand 

h01 Austin 10.20% 3,058.88      31,427.00  

h02 Brazoria 10.10% 37,390.20     384,146.00  

h03 Brazos 23.20% 52,607.86     540,491.50  

h04 Burleson 14.80% 2,721.57       27,961.50  

h05 Chambers 8.50% 3,608.59       37,074.50  

h06 Fort Bend 7.90% 62,240.78     639,460.00  

h07 Galveston 12.10% 40,884.69     420,048.00  

h08 Grimes 17.50% 4,963.00       50,989.50  

h09 Harris 16.50% 775,272.14 7,965,124.50  

h10 Liberty 15.10% 13,034.77     133,919.00  

h11 Madison 17.90% 2,581.54      26,522.50  

h12 Montgomery 9.30% 54,956.03     564,616.50  

h13 Robertson 15.80% 2,730.87       28,057.00  

h14 San Jacinto 17.50% 5,025.83       51,635.00  

h15 Trinity 26.10% 3,847.14       39,525.50  

h16 Walker 15.90% 11,524.32     118,400.50  

h17 Waller 13.80% 7,331.39       75,322.50  

h18 Washington 13.80% 4,844.90       49,776.50  

h19 Bastrop 12.60% 10,958.98     112,592.00  

h20 Bell 13.00% 46,233.46     475,001.50  

h21 Blanco 10.10% 1,181.90       12,143.00  

h22 Burnet 11% 5,229.62       53,729.00  

h23 Caldwell 14.10% 6,097.83       62,649.00  

h24 Coryell 15% 11,221.20     115,286.50  

h25 Falls 21.70% 3,761.70       38,647.50  

h26 Fayette 13.30% 3,371.42       34,638.00  

h27 Freestone 13.70% 2,713.70       27,880.50  

h28 Gillespie 9.60% 2,573.18       26,437.00  

h29 Hays 13.20% 29,387.29     301,924.00  

h30 Lampasas 12.90% 2,738.54       28,135.50  

h31 Lee 12.30% 2,108.71       21,665.00  

h32 Limestone 22.20% 5,221.22       53,642.50  

h33 Llano 12.30% 2,662.46       27,354.00  

h34 McLennan 18.90% 48,120.72     494,391.00  

h35 Milam 15.60% 3,920.44       40,278.50  

h36 Mills 14.60% 718.47         7,381.50  

h37 San Saba 16.80% 1,017.07       10,449.50  

h38 Travis 12.00% 149,849.16 1,539,546.00  
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County 

Number 

County 

Name 

Poverty 

% 

Poverty 

Population 
Demand 

h39 Williamson 6.40% 36,270.02     372,637.00  

h40 Atascosa 15.70% 7,898.67       81,150.50  

h41 Bandera 13.40% 3,058.42       31,422.00  

h42 Bexar 17.20% 341,600.43 3,509,593.50  

h43 Comal 7.10% 10,534.48     108,231.00  

h44 Edwards 22.10% 426.09         4,377.50  

h45 Frio 27.50% 5,449.40       55,987.00  

h46 Guadalupe 8.50% 13,913.99     142,952.00  

h47 Karnes 21.80% 3,411.70       35,051.50  

h48 Kendall 7.50% 3,423.08       35,168.50  

h49 Kerr 13.90% 7,284.30       74,838.50  

h50 La Salle 29.60% 2,229.18       22,902.50  

h51 Medina 12.30% 6,263.28       64,349.00  

h52 Real 18.10% 629.52         6,467.50  

h53 Uvalde 22.90% 6,147.73       63,161.50  

h54 Wilson 10.90% 5,474.42       56,244.00  

h55 Zavala 32.00% 3,834.56       39,396.00  

 

 

The projected daily demand can thus be calculated from projected monthly 

demand. This gives us an estimate of the total pounds demanded by each county served 

by food banks under consideration in this research. The projected demand helps us to get 

an estimate of how much food is to be distributed, thereby acting as demand nodes. The 

demand changes according to the severity of hurricane as explained earlier.  

 

4.3. Arcs and other variables 

The arcs between supply nodes and demand nodes represent the access between 

the food banks and supply nodes. The cost associated to using those arcs is represented 

by the distance between them. These values have been estimated considering the 

minimum distance between them which includes the state and interstate highways routes. 

The approximate distance between supply-supply nodes, and supply-demand nodes were 

calculated using Google Maps [45]. The distances are calculated for each combination of 

demand node and supply node since during the disaster relief period the model allows 
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food banks to serve any demand node in the network. Table 19 states the distances 

calculated between the supply and demand nodes.  

 

Table 19: Distance of demand nodes from supply nodes 

Food 

Bank 

Demand 

Node 

number 

Counties County Name HFB CTFB SAFB 

Houston 

Food 

Bank 

h1 1 Austin 68.9 102 152 

h2 2 Brazoria County 48.2 175 217 

h3 3 Brazos 103 105 186 

h4 4 Burleson 106 85 160 

h5 5 Chambers 45.5 208 251 

h6 6 Fort Bend 41.6 138 181 

h7 7 Galveston 44.7 203 246 

h8 8 Grimes 76.2 122 190 

h9 9 Harris 2.4 162 205 

h10 10 Liberty 47 208 253 

h11 11 Madison 108 140 220 

h12 12 Montgomery 45.9 169 232 

h13 13 Robertson 137 105 187 

h14 14 San Jacinto 60 180 246 

h15 15 Trinity 111 192 262 

h16 16 Walker 80 151 220 

h17 17 Waller 58.3 119 175 

h18 18 Washington 82.4 93.3 161 

Central 

Texas 

Food 

Bank 

h19 1 Bastrop 145 29.6 108 

h20 2 Bell 185 84.1 155 

h21 3 Blanco 218 54.6 78.1 

h22 4 Burnet 213 62.5 107 

h23 5 Caldwell 165 24.6 74.7 

h24 6 Coryell 221 109 178 

h25 7 Falls 165 110 183 

h26 8 Fayette 110 62.6 124 

h27 9 Freestone 160 168 253 

h28 10 Gillespie 247 83.9 77.7 

h29 11 Hays 193 29.3 75.9 

h30 12 Lampasas 242 92.3 147 

h31 13 Lee 121 54.4 134 

h32 14 Limestone 173 135 215 

h33 15 Llano 245 81.9 111 

h34 16 McLennan 193 107 186 

h35 17 Milam 143 74.6 157 

h36 18 Mills 275 126 179 

h37 19 San Saba 262 117 148 

h38 20 Travis 164 1.7 87.7 

h39 21 Williamson 189 46.1 126 

 

 

 

h40 1 Atascosa 244 120 45.7 

h41 2 Bandera 273 125 65.2 

h42 3 Bexar 211 85.6 1.3 
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Food 

Bank 

Demand 

Node 

number 

Counties County Name HFB CTFB SAFB 

 

San 

Antonio 

Food 

Bank 

h43 4 Comal 197 58.6 49.4 

h44 5 Edwards 364 198 164 

h45 6 Frio 264 138 59 

h46 7 Guadalupe 167 50.2 50.9 

h47 8 Karnes 201 94.7 61.4 

h48 9 Kendall 235 82 53.8 

h49 10 Kerr 291 129 94.8 

h50 11 La Salle 293 185 105 

h51 12 Medina 240 114 28.8 

h52 13 Real 327 166 107 

h53 14 Uvalde 301 176 90.5 

h54 15 Wilson 197 83.1 37.7 

h55 16 Zavala 335 172 92.1 

 

   

4.4. Problem formulation 

The decision-making model has been formulated as a two-stage stochastic 

programming model [46]. The first-stage models the pre-positioning of supplies between 

food banks while the second-stage provides recourse actions for supplies prepositioning 

and also considers supplies distribution to the demand nodes under different scenarios. A 

specific scenario is denoted as 𝜔 with the associated probability parameter 𝑝𝜔. First stage 

decision variables, second stage decision variables and associated parameters are defined 

in Table 20.Using the notation described in Table 20, the two-stage stochastic linear 

programing model is formulated using Equations (2) to (4).  
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Table 20:Decision variable and parameters for Stochastic programming model. 
First-Stage Decision Variables 

𝑆𝑛 Stored (pre-positioned) quantity of supplies at supply node 𝑛 

𝑥𝑛𝑗 Quantity of supply units shipped from supply node 𝑛 to supply node 𝑗, 𝑛, 𝑗 ∈ 𝑁. 

Second-Stage Decision Variables 

𝑢ℎ,𝜔 Unmet demand quantity at node ℎ, per scenario 𝜔. 

𝑤𝑛𝑗,𝜔 Quantity of supplies shipped from supplier 𝑛 to supplier 𝑗, per scenario 𝜔. 

𝑦𝑛ℎ,𝜔 Quantity of supplies shipped from supplier node 𝑛 to demand node ℎ, per scenario 𝜔. 

Supply Node Parameters 

𝐼𝑛 Initial inventory stored at supply node 𝑛. 

𝐶𝑛 Storage capacity at supply node 𝑛. 

𝐷𝑛 Regular (Normal) donations at supplier node 𝑛 prior to the event.  

𝑅𝑛 Disaster relief donations at supplier node 𝑛 after the event.  

𝑑𝑛𝑗 Unit transportation cost from supply node 𝑛 to supply node 𝑗. 

Demand Node Parameters 

𝐹ℎ Forecasted demand at demand node ℎ prior to the event. 

𝑣ℎ Unit cost for unmet demand at demand node ℎ. 

𝑑𝑛𝑗 Unit transportation cost from supply node 𝑛 to demand node ℎ. 

𝑡𝑛ℎ Unit transportation cost from supply node 𝑛 to demand node ℎ. 

Supply and Demand Changing Factors 

𝛾ℎ,𝜔 Demand changing factor at demand node ℎ per scenario 𝜔. 

𝛿𝑛,𝜔 Donation changing factor at supply node 𝑛 per scenario 𝜔. 

∝𝑛,𝜔 Inventory changing factor at supply node 𝑛 per scenario 𝜔. 

 

 

The first stage pre-positioning model involves the movement of food between 

supply nodes only. The flow is represented by decision variable 𝑥𝑖𝑗 to indicate the flow 

between supply node 𝑖 to supply node 𝑗. The transportation cost between suppliers is 

represented as 𝑑𝑛𝑗. The response phase uses a similar decision variable 𝑤𝑛𝑗,𝜔 which 

correspond to flow between supplier to supplier under scenario 𝜔. Additionally, the flow 

from a supplier to a demand node needs to be specified using variable 𝑦𝑛ℎ,𝜔 from supply 

node 𝑛 to demand node ℎ with a transportation cost 𝑡𝑛ℎ.  

The donation changing factor represents the change in donations per scenario 𝜔. 

It is understood that donation quantity varies according to the severity of event. The 

inventory changing factor represents the functionality of food bank. In event of a severe 

hurricane, the food bank facility could find it difficult to operate and may also cease 
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operations till conditions improve. At those times, the inventory stored in facility cannot 

be used for distribution till situations become better. Similarly, the after-event demand 

changing factor (𝐹ℎ ∗ 𝛾𝑛,𝜔) involves the adjustments in demand following the hurricane. 

Sometimes, the severity of hurricane could be weaker or stronger than what was 

forecasted, then the predicted demand may vary accordingly. It may happen that people, 

where the event took place, may have not moved out after being served evacuation 

notice. Hence the demand may have increased for food. Also, people overestimating the 

severity of hurricane may have moved out without being issued an evacuation notice may 

result in decrease in demand. Also, migration of people to safer locations for shelter may 

influence the forecasted demand. The unmet demand 𝑢ℎ,𝜔 represents the potential loss of 

life and property due to insufficient supplies. In practicality, it illustrates the cost required 

to acquire goods from another source at a higher cost.  

𝑀𝑖𝑛 ∑ ∑ 𝑥𝑛𝑗

𝑗𝑛

∗  𝑑𝑛𝑗 +  ∑ 𝑝𝜔

𝜔∈𝛺

∗ {∑ ∑ 𝑦
𝑛ℎ,𝜔

ℎ𝑛

∗  𝑡𝑛ℎ + ∑ ∑ 𝑤𝑛𝑗,𝜔

𝑗𝑛

∗  𝑑𝑛𝑗 + ∑ 𝑢ℎ,𝜔

ℎ

∗  𝑣ℎ}              (2) 

 

Subject to 

 

Pre-Positioning Constraints 

Modified Flow Balance 

𝑆𝑛 =  ∑ 𝑥𝑗𝑛𝑗 +  𝐼𝑛 −  ∑ 𝑥𝑛𝑗𝑗 + 𝐷𝑛,    ∀𝑛 ∈ 𝑁                            (3𝑎) 

 

 

Pre-Positioned Storage Capacity 

𝑆𝑛 ≤  𝐶𝑛,       ∀𝑛 ∈ 𝑁                            (3𝑏)  
 

 

Response Stage Constraints 

 

 

Flow Constraint 

𝑆𝑛 ∗∝𝑛,𝜔+ 𝑅𝑛 ∗  𝛿𝑛,𝜔 + ∑ 𝑤𝑖𝑛,𝜔𝑖  ≥  ∑ 𝑤𝑛𝑗,�̅�𝑗 +  ∑ 𝑦𝑛ℎ,𝜔ℎ   ∀𝑛 ∈ 𝑁, 𝜔 ∈ 𝛺              (4𝑎) 
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Demand Requirement 
∑ 𝑦𝑛ℎ,𝜔𝑛 + 𝑢ℎ,𝜔 =  𝐹ℎ ∗  𝛾ℎ,𝜔     ∀ℎ ∈ 𝐻, 𝜔 ∈ 𝛺               (4𝑏) 

 

 

Non-Negativity Constraints 

𝑥𝑛𝑗 , 𝑤𝑖𝑛,𝜔, 𝑦𝑛ℎ,𝜔 , 𝑢ℎ,𝜔 , 𝑆𝑛, 𝐷𝑛, 𝑅𝑛 ≥ 0   ∀𝑛, 𝑗 ∈ 𝑁, ∀ℎ ∈ 𝐻, 𝜔 ∈ 𝛺            (4𝑐)  

 

The objective function minimizes the cost associated to the prepositioning of 

supplies and the expected unmet demand. The initial term of objective function illustrates 

the pre-positioning costs while remainder of it represents the response-phase of after the 

natural disaster. Constraint (3𝑎) ensures the total of outbound flows and pre-positioned 

supply quantity equals the total of inflows and initial inventory. Constraint (3𝑏) ensures 

the stored quantity is always less than or at the most equal to the capacity of warehouse. 

Constraint (4𝑎) deals with the movement of supplies after the hurricane, ensuring flow 

balance between supplier to supplier and supplier to demands. Constraint (4𝑏) confirms 

the supply and demand requirement. Constraint (4𝑐) binds all decision variables to be 

non-negative. 

 

4.5.  Experimental Design 

The aim of the experimental design is to gather insights for the prepositioning and 

distribution of supplies when considering the impact of a natural disaster. In this research, 

hurricane Harvey served as the case study and the parameters used in the model were 

estimated using data collected by the food banks before and after the natural disaster. The 

four experimental situations considered in this study are summarized in Table 21. The 

experiments consider four potential situations that might affect the operation of a 

network of food banks in charge of providing disaster relief. 
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Table 21: List of experiments (HFB=Houston Food Bank, CTFB=Central Texas Food 

Bank, SAFB= San Antonio Food Bank) 
Experiment 

No. 
Description HFB CTFB SAFB 

1 All food banks open Operational Operational Operational 

2 HFB is closed due to hurricane 

category 4 or 5 

Non-operational Operational Operational 

3 HFB and CTFB are closed due 

to hurricane category 4 or 5 

Non-operational Non-

operational 

Operational 

4 HFB and SAFB are closed due 

to hurricane category 4 or 5 

Non-operational Operational Non-

operational 

 

 

Natural disasters, such as hurricane Harvey, disrupt the normal operations of food 

bank facilities by damaging structures, flooding, among other circumstances. The four 

experiments discussed in Table 21 seek to understand the robustness of the food bank 

network in terms of operational capacity when one or two facilities in the network 

become nonoperational after the impact of a hurricane category 4 or 5. Operational 

facilities will need to pick up the extra workload if one or two facilities shut down after a 

natural disaster. The situations defined in the experiments try to determine the 

applicability of pre-positioning and explore the system capability of meeting the demands 

for supplies. 

 

4.5.1. Model Data and Scenario Generation 

The data used in this research is obtained from the historical data provided by 

Houston Food Bank, Central Texas Food Bank, and San Antonio Food Bank. The food 

banks provided the data for donations, inventory, distribution, disaster relief donations, 

and disaster relief distribution. Table 22 illustrates the data subsequently used to calculate 

the capacity for the food bank facility.  
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Table 22: Supply node parameter values 

Parameters 
Houston Food 

Bank 

Central Texas 

Food Bank 

San Antonio 

Food Bank 

𝐼𝑛 
Initial inventory stored at supply node n 

(daily) 
7,995,435.16 5,484,931.36 5,484,931.36 

𝐶𝑛 Storage capacity at supply node n 17,500,000.00 9,000,000.00 9,000,000.00 

𝐷𝑛 
Forecasted donations at supplier node n 

prior to the event (daily) 
261,445.20 44,989.85 44,989.85 

𝑅𝑛 
Forecasted disaster relief donations at 

supplier node n after the event (daily) 
610,363.92 57,367.28 57,367.28 

 

A total of 21 scenarios are considered in the two-stage stochastic programming 

model. The probabilities for each scenario are computed using the product of two factors 

(1) probability of the strength of the natural disaster (i.e. how likely is to be impacted 

either by a tropical storm or a hurricane level 1, 2, 3, 4, or 5) and (2) probability of 

citizens reaction to a forecasted event as presented in Table 23 [47].  

 

Table 23: Supply and demand change based on citizen reaction to a natural disaster 
Reaction 

Case 

Supply 

Change 

Demand 

Change 
Assumption 

1 Decrease No Change 
Structural integrity is compromised and thus supply decreases. 

The level of decrease depends on the event severity. 

2 Decrease Increase 

Demand increases because warnings may have been ignored 

and the number of actual victims is larger than expected. 

Structural integrity of supply centers is compromised. 

3 Decrease Decrease 

Demand forecast decreases due to a false alarm (for category 1 

or 2 event) or because the number of victims is less than 

expected. Structural integrity of supply centers is 

compromised. 

4 
No 

Change 
Increase 

Event causes little structural damage and thus supply is not 

affected. Demand increases due to overreaction by the affected 

population. 

5 
No 

Change 
No Change 

Event has no effect on the supply or demand, which is only 

true if the event does not occur. 

 

 

Data from [48] and [49] was used to compute the probability of the strength of the 

natural disaster (i.e. how likely is to be impacted either by a tropical storm or a hurricane 

level 1, 2, 3, 4, or 5) in Texas. Historical data that containing data from tropical storms 

and hurricanes that occurred since 1970 were considered for the data analysis. The 
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probability of each hurricane is calculated considering the number of times they occurred. 

The probabilities are based on the number of landfall hurricanes per year and the 

categorization of the Saffir/Simpson Hurricane Scale [50]. Hurricanes are categorized 

from least damaging hurricane to most damaging on a scale of 1 to 5. Category 1 is the 

least damaging and is considered not to affect the supply and demand to a large extent. 

Category 5 hurricanes are the most damaging hurricanes affecting a larger population. 

Table 24 summarizes the data used to compute the probabilities per scenario. The 

probability of each scenario is presented in the sixth column of the table. 

 

Table 24: Experimental scenario and corresponding probabilities 

Event P(Event) 
Reaction 

Case 
P (Reaction Case | Event) Ω P (𝝎) 

No Hurricane 0.49 5 1 ω1 0.493671 

Category 1 0.13 

1 (no change) 0.32 ω2 0.040506 

2 (increase) 0.32 ω3 0.040506 

3 (decrease) 0.04 ω4 0.005063 

4 (increase) 0.32 ω5 0.040506 

Category 2 0.10 

1 (no change) 0.1 ω6 0.010127 

2 (increase) 0.6 ω7 0.060759 

3 (decrease) 0.1 ω8 0.010127 

4 (increase) 0.2 ω9 0.020253 

Category 3 0.06 

1 (no change) 0.3 ω10 0.018987 

2 (increase) 0.4 ω11 0.025316 

3 (decrease) 0.1 ω12 0.006329 

4 (increase) 0.2 ω13 0.012658 

Category 4 0.13 

1 (no change) 0.05 ω14 0.006329 

2 (increase) 0.75 ω15 0.094937 

3 (decrease) 0.15 ω16 0.018987 

4 (increase) 0.05 ω17 0.006329 

Category 5 0.09 

1 (no change) 0.1 ω18 0.008861 

2 (increase) 0.74 ω19 0.06557 

3 (decrease) 0.15 ω20 0.013291 

4 (increase) 0.01 ω21 0.000886 

 

The level of impact of the hurricane and the behavior of the people before and 

after the event, as indicated in Table 23, triggers changes in the demand. In this work, the 
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demand changing factor (𝛾𝑛,𝜔) at demand node ℎ is defined to represent the changes in 

demand per scenario 𝛀. The values for demand changing factors are available in 

Appendix.  

 

4.6. Results and Discussion 

The four experimental situations considered in this study are summarized in Table 

21. The experiments consider four potential situations that might affect the operation of a 

network of food banks in charge of providing disaster relief. The experiments seek to 

study the impact of shutting down one or two supply nodes due to the direct impact of a 

hurricane category 4 or 5. The donation changing factor (𝛿𝑛,𝜔) and the inventory 

changing factor (∝𝑛,𝜔) are used to make the donations and inventory unavailable on 

those facilities closed due to the impact of a hurricane category 4 or 5 in order to 

represent the four potential situations. Table 25 and Table 26 summarizes the inventory 

changing factors and donation changing factors respectively for each experiment. These 

values are computed based on the inventory and donation behavior observed at the food 

banks in years 2016 and 2017. These values are computed based on the inventory and 

donation behavior observed at the food banks in years 2016 and 2017.   

Table 25: Inventory changing factors for experiments 1 to 4 (HFB=Houston Food Bank, 

CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank) 
Scenari

o 
Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Ω 
HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

ω1 1 1 1 1 1 1 1 1 1 1 1 1 

ω2 1 1 1 1 1 1 1 1 1 1 1 1 

ω3 1 1 1 1 1 1 1 1 1 1 1 1 

ω4 1 1 1 1 1 1 1 1 1 1 1 1 

ω5 1 1 1 1 1 1 1 1 1 1 1 1 

ω6 1 1 1 1 1 1 1 1 1 1 1 1 

ω7 1 1 1 1 1 1 1 1 1 1 1 1 
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Scenari

o 
Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Ω 
HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

ω8 1 1 1 1 1 1 1 1 1 1 1 1 

ω9 1 1 1 1 1 1 1 1 1 1 1 1 

ω10 1 1 1 1 1 1 1 1 1 1 1 1 

ω11 1 1 1 1 1 1 1 1 1 1 1 1 

ω12 1 1 1 1 1 1 1 1 1 1 1 1 

ω13 1 1 1 1 1 1 1 1 1 1 1 1 

ω14 1 1 1 0 1 1 0 0 1 0 1 0 

ω15 1 1 1 0 1 1 0 0 1 0 1 0 

ω16 1 1 1 0 1 1 0 0 1 0 1 0 

ω17 1 1 1 0 1 1 0 0 1 0 1 0 

ω18 1 1 1 0 1 1 0 0 1 0 1 0 

ω19 1 1 1 0 1 1 0 0 1 0 1 0 

ω20 1 1 1 0 1 1 0 0 1 0 1 0 

ω21 1 1 1 0 1 1 0 0 1 0 1 0 

 

 

Table 26: Donation changing factors for experiments 1 to 4 (HFB=Houston Food Bank, 

CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank) 

Scenari

o 
Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Ω 
HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

ω1 1 1 1 1 1 1 1 1 1 1 1 1 

ω2 1 1 1 1 1 1 1 1 1 1 1 1 

ω3 1 1 1 1 1 1 1 1 1 1 1 1 

ω4 1 1 1 1 1 1 1 1 1 1 1 1 

ω5 1 1 1 1 1 1 1 1 1 1 1 1 

ω6 1 1 1 1 1 1 1 1 1 1 1 1 

ω7 1 1 1 1 1 1 1 1 1 1 1 1 

ω8 1 1 1 1 1 1 1 1 1 1 1 1 

ω9 1 1 1 1 1 1 1 1 1 1 1 1 

ω10 1 1 1 1 1 1 1 1 1 1 1 1 

ω11 2 1 1 2 1 1 2 1 1 2 1 1 

ω12 2 1 1 2 1 1 2 1 1 2 1 1 

ω13 2 1 1 2 1 1 2 1 1 2 1 1 

ω14 1 1 1 0 1 1 0 0 1 0 1 0 

ω15 2.3 1.3 1.3 0 1.3 1.3 0 0 1.3 0 1.3 0 

ω16 1 1 1 0 1 1 0 0 1 0 1 0 

ω17 2.3 1.3 1.3 0 1.3 1.3 0 0 1.3 0 1.3 0 

ω18 1 1 1 0 1 1 0 0 1 0 1 0 
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Scenari

o 
Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Ω 
HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

HF

B 

CTF

B 

SAF

B 

ω19 2.7 1.5 1.5 0 1.5 1.5 0 0 1.5 0 1.5 0 

ω20 1 1 1 0 1 1 0 0 1 0 1 0 

ω21 2.7 1.5 1.5 0 1.5 1.5 0 0 1.5 0 1.5 0 

 

Figure 15 depicts the prepositioning cost, distribution cost, and combined cost 

incurred under each experiment. Experiment 1 has the smallest cost and not 

prepositioning cost associated to it. Under this experiments the network of food banks is 

capable of supplying to all counties. Figure 16 represents the distribution of food banks to 

different counties by the three food banks. The Venn diagram illustrate the demand nodes 

served by each food bank facility. The movement of supplies between the three food 

banks delivering to common counties varies according to scenarios. The scenarios are 

associated with the reaction case and hence, quantity shipped varies accordingly. There is 

no unmet demand in Experiment 1. Thus, the number supplies are expected to be 

sufficient to maintain a balance of supplies between food banks and the demand nodes. 

Figure 16 indicates the counties served by the active food banks. Demand nodes depicted 

in the intersection of the Venn diagram depicts areas that are supplied by more than one 

food bank facility. The figure shows that the Houston Food Bank is serving a limited 

number of counties. Since Houston is closer to the Gulf Coast, their expected demand is 

higher than that for the other two food banks. The computational results indicate that 

counties in Houston after a natural disaster are served by the other two food banks in the 

supply network.   
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Figure 15: Cost associate to each experiment 

 

 
Figure 16: Counties served per food bank in Experiment 1 (HFB=Houston Food Bank, 

CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank)  

 

 

Experiment 2 studies the situation in which the Houston Food Bank becomes non-

operational or inaccessible during category 4 and category 5 hurricane. This model 

intends to investigate the kind of activities that needs to be performed before and after the 
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hurricane. The donation changing factor (𝛿𝑛,𝜔) and the inventory changing factor (∝𝑛,𝜔) 

for Experiment 2 are listed in Table 25 and Table 26 respectively. It can be observed that 

from scenario 14 to scenario 21, the Houston Food Bank inventory changing factor and 

donation changing factor are zero. This implies that the Houston Food Bank got 

adversely affected and became non-operational during category 4 and category 5 

hurricane. Thus, the resultant pre-positioned supplies and donations at the Houston Food 

Bank became unavailable for distribution. 

Figure 17 indicates the counties served by the active food banks for the scenarios 

were hurricane categories 1 to 3 are considered. Demand nodes depicted in the 

intersection of the Venn diagram depicts areas that are supplied by more than one food 

bank facility. The figure shows that the Houston Food Bank is serving a limited number 

of counties. Since Houston is closer to the Gulf Coast, their expected demand is higher 

than for the other two food banks. The computational results indicate that counties in 

Houston, after a natural disaster, are served by the other two food banks in the supply 

network.  
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Figure 17: Counties served per food bank in Experiment 2 for hurricane categories 1 – 3 

(HFB=Houston Food Bank, CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank)  

 

Figure 18 shows that the Central Texas Food Bank does majority of distribution 

when the Houston Food Bank goes down under scenarios considering a hurricane 

category 4 or 5. The San Antonio Food Bank aids by distributing to counties in Houston 

and in the Austin area. The three food banks work together to satisfy the demand. The 

initial inventory and prepositioning actions play an important role in satisfying the 

demand of the counties. Figure 19 illustrates the counties with unmet demand in 

Experiment 2. 
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Figure 18: Counties served per food bank in Experiment 2 for hurricane categories 4 – 5 

(HFB=Houston Food Bank, CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank) 

 

 
Figure 19: Unmet demand under Experiment 2  

 

Experiment 3 studies the situation in which the Houston Food Bank and the 

Central Texas Food Bank become non-operational or inaccessible during category 4 and 

category 5 hurricane. This model intends to investigate the kind of activities that needs to 

be performed before and after the hurricane. The donation changing factor (𝛿𝑛,𝜔) and the 

inventory changing factor (∝𝑛,𝜔) for Experiment 3 are listed in Table 25 and Table 26 

respectively. It can be observed that from scenario 14 to scenario 21, the Houston Food 

Bank and Central Texas Food Bank inventory changing factor and donation changing 
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factor are zero. This implies that the Houston Food Bank and Central Texas Food Bank 

got adversely affected and became non-operational during category 4 and category 5 

hurricane. Thus, the resultant pre-positioned supplies and donations at the Houston Food 

Bank and Central Texas Food Bank became unavailable for distribution. 

Figure 20 indicates that the counties served by the operational food banks for 

hurricane categories 1 to 3. Demand nodes depicted in the intersection of the Venn 

diagram depicts areas that are supplied by more than one food bank facility. The figure 

shows that the Houston Food Bank is serving a limited number of counties. Since 

Houston is closer to the Gulf Coast, their expected demand is higher than for the other 

two food banks. The computational results indicate that counties in Houston, after a 

natural disaster, are served by the other two food banks in the supply network.  

 

 
Figure 20: Counties served per food bank in Experiment 3 for hurricane categories 1 – 3 

(HFB=Houston Food Bank, CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank). 
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Figure 21 shows that the San Antonio Food Bank does majority of distribution 

when the Houston Food Bank and the Central Texas Food Bank go down under scenarios 

considering a hurricane category 4 or 5. The San Antonio Food Bank aids by distributing 

to counties in Houston and in the Austin area. The three food banks work together to 

satisfy the demand. The San Antonio Food Bank tries to meet the demand requirement of 

each demand node keeping the transportation cost minimum. The initial inventory and 

prepositioning actions play an important role in satisfying the demand of the counties. 

Figure 22 illustrates the counties with unmet demand in Experiment 3 and indicates there 

are sixteen counties which could potentially be undersupplied during category 4 and 

category 5 hurricane. 

 

 
Figure 21: Counties served per food bank in Experiment 3 for hurricane categories 4 – 5 

(HFB=Houston Food Bank, CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank) 
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Figure 22: Unmet demand under Experiment 3 

 

Experiment 4 studies the situation in which the Houston Food Bank and the San 

Antonio Food Bank become non-operational or inaccessible during category 4 and 

category 5 hurricane. This model intends to investigate the kind of activities that needs to 

be performed before and after the hurricane. The donation changing factor (𝛿𝑛,𝜔) and the 

inventory changing factor (∝𝑛,𝜔) for Experiment 4 are listed in Table 25 and Table 26 

respectively. It can be observed that from scenario 14 to scenario 21, the Houston Food 

Bank and San Antonio Food Bank inventory changing factor and donation changing 

factor are zero. This implies that the Houston Food Bank and San Antonio Food Bank got 

adversely affected and became non-operational during category 4 and category 5 

hurricane. Thus, the resultant pre-positioned supplies and donations at the Houston Food 

Bank and San Antonio Food Bank became unavailable for distribution. 

Figure 23 indicates the counties served by the active food banks for the scenarios 

were hurricane categories 1 to 3 are considered. Demand nodes depicted in the 

intersection of the Venn diagram depicts areas that are supplied by more than one food 

bank facility. The figure shows that the Houston Food Bank is serving a limited number 

of counties. Since Houston is closer to the Gulf Coast, their expected demand is higher 

than for the other two food banks. The computational results indicate that counties in 
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Houston, after a natural disaster, are served by the other two food banks in the supply 

network.  

 

 

Figure 23: Counties served per food bank in Experiment 4 for hurricane categories 1 – 3 

(HFB=Houston Food Bank, CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank) 

 

Figure 24 shows that the Central Texas Food Bank does majority of distribution 

when the Houston Food Bank and the San Antonio Food Bank go down under scenarios 

considering a hurricane category 4 or 5. The Central Texas Food Bank aids by 

distributing to counties in Houston and in the San Antonio area. The three food banks 

work together to satisfy the demand. The Central Texas Food Bank tries to meet the 

demand requirement of each demand node keeping the transportation cost minimum. The 

initial inventory and prepositioning actions play an important role in satisfying the 

demand of the counties. Figure 25 illustrates the counties with unmet demand in 

Experiment 4 and indicates there are fifteen counties which could potentially be 

undersupplied during category 4 and category 5 hurricane. 
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Figure 24: Counties served per food bank in Experiment 4 for hurricane categories 4 – 5 

(HFB=Houston Food Bank, CTFB=Central Texas Food Bank, SAFB= San Antonio Food Bank) 

 

 
Figure 25: Unmet demand under Experiment 4 
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5. CONCLUSION 

  The goal of this research is to analyze and forecast the amount of donations 

received by food bank facilities impacted by natural disasters and implement the 

decision-making model. This research is based on data compiled by Central Texas Food 

Bank in Austin TX and the Houston Food Bank in Houston TX, before and after the 

impact of a natural disaster. Forecast models were studied to gather insights on the 

uncertain behavior of product donations faced by food banks during “normal” and 

“disaster relief” operational periods. The donation behavior is analyzed using two years 

of data and considering various classes such as donor type, donated product type and/or 

combination of both, at each food bank.  

  The results showed that forecast models performed better when all donations were 

considered together as a group for each food bank when compared to the ones generated 

for particular donors or product types. However, investigating different clusters and 

combination of donor type and/or product type provided better insights about measures 

food banks can take to be better prepared on what to anticipate during hurricanes. The 

information will help food banks prepare better in future similar scenarios. The forecast 

models can help food banks to predict what type of product will be donated and avoid 

accumulation of it by collaborating with subsidiaries or their affiliates in need.  

  The latter part of this research used a two-stage stochastic programming model to 

develop a response policy for food banks that would help in assigning the food and food 

products to the correct demand locations based on probability of an event. The model 

suggested a pre-positioning policy that would enable food banks to align their resources 

prior to the occurrence of disaster. The decisions were based on minimizing the transport 
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cost, since food banks are a non-profit organization. It is assumed that pre-positioning 

would prioritize movement of goods considering the event path. Nodes that were closer 

to disaster impact were assigned higher priority as they suffered most damage.  

  This study highlights the impact initial inventory has on food banks’ execution of 

decisions. In the scenarios analyzed, pre-positioning was required as food banks lacked 

enough reserves for distribution to meet the increasing demand and additional population 

to be served. Pre-position was also done considering hurricane category 4 and category 5 

which could potentially render food banks non-functional and unable to transport food to 

the demand locations. The donations, both regular and disaster-relief, added to the strong 

inventory such that only required quantity of pre-positioning was done. Response phase 

involved a reduced amount of movement of food during the post-disaster period. Increase 

in initial inventory and capacity had a direct impact on movement of food and the unmet 

demand for category 4 and category 5 hurricane.  

  The model was also tested considering different food banks being non-operational 

due to hurricane under different scenarios. Different costs pertaining to the two stages 

was analyzed. It can be observed that Houston Food Bank and Central Texas Food Bank 

becoming non-functional is potentially the costliest situation. Further research could be 

done in terms of transportation cost variation before and after disaster. Often, after 

disaster, the transportation cost from one place to another may change depending on 

severity of hurricane. Also, the roads condition may be damaged after hurricane, such 

that transport may have to take a longer route. This research is modeled around Hurricane 

Harvey as natural disaster; future research could undertake other natural disaster such as 

earthquake and perform the analysis. This model used 3 supply nodes, and 55 demand 



 

 

78 

nodes. It could be made a more complex numerical problem involving other food banks 

of different volumes. Moreover, the time needed for transportation is not considered in 

this research which could play a vital role in future study.  

  This research covered three food banks in state of Texas. Future research could 

include more food banks that are at greater distance to emphasize more on pre-

positioning. Also, the input parameters for different food banks could be different and it 

could lead to different decisions. Increasing number of natural disasters such as 

hurricane, earthquakes, typhoons, etc. require better decision-making models and a well-

structured supply chain to work for aiding humanity in times of trouble. Future work 

could consider an ensemble of different activities such that loss of life and property due 

to natural disasters can be minimized, if not eliminated.  
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APPENDIX SECTION 

 

APPENDIX A 

ALL PRODUCT TYPE 

1 Household cleaning product 

2 Meat/fish/poultry 

3 Pet food/pet care 

4 Dairy/prepared/perishable food 

5 Produce 

6 Packed food 

7 Assorted nonfood 

8 Pharmacy 

9 Baby food / formula 

10 Snack food / cookies 

11 Water 
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APPENDIX B 

ALL DONOR TYPES 

1 Individual/family 

2 Wholesale 

3 Manufacturer 

4 Retail 

5 Company/corporation 

6 Government 

7 Foundation 

8 Schools/Church 

9 Red Barrels (Houston) 

10 Hotel/kitchen/restaurants 

11 Nonprofit community/ food drives 

12 Hospital /Healthcare/ Banks /Events 
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APPENDIX C 

DEMAND CHANGING FACTOR FOR HOUSTON FOOD BANK 
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APPENDIX D 

DEMAND CHANGING FACTOR FOR CENTRAL TEXAS FOOD BANK 

Scen
ario 
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APPENDIX E 

DEMAND CHANGING FACTOR FOR SAN ANTONIO FOOD BANK 

Scenari

o 
SAN ANTONIO FOOD BANK 
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APPENDIX F 

LIST OF LIBRARIES USED IN R 

 

library(lubridate) 

library(tidyverse) 

library(readxl) 

library(xts) 

library(zoo) 

library(xlsx) 

library(ie2misc) 

library(githubinstall) 

library(remotes) 

library(tidyquant) 

library(MLmetrics) 

library(forecast) 
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APPENDIX G 

 R- program illustrating ARIMA code. 

 

data1 <- read_excel("Unaltered_Has_Peak_and_Missing_Dates_File.xlsx") 

 

data.forecast <- group_by(.data = data1, DATE) %>% # groups observations by DATE 

  filter(`FOOD BANK`=="Houston", `DATE`<="2016-12-31") %>%  

  summarise(Total_Amount = sum(AMOUNT)) 

 

data.forecast.v <- group_by(.data = data1, DATE) %>% # verification vector 

  filter(`FOOD BANK`=="Houston", `DATE`>="2017-01-01",`DATE`<="2017-08-31") 

%>%  

  summarise(Total_Amount = sum(AMOUNT)) 

 

          

data.forecast.w <- tq_transmute(data.forecast, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

 

data.forecast.w <- data.forecast.w[2:53, ] 

 

data.forecast.wv <- tq_transmute(data.forecast.v, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 
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df1 <- adf.test(data.forecast.w$Total_Amount, alternative = c("explosive")) 

 

acf(data.forecast.w$Total_Amount) 

 

pacf(data.forecast.w$Total_Amount) 

 

arima.w <- arima(data.forecast.w$Total_Amount, order = c(1,0,0)) 

 

pred1 <- predict(arima.w, n.ahead = 35) 

 

MAPE(y_pred = pred1$pred, y_true = data.forecast.wv$Total_Amount) 
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APPENDIX H 

 R- program illustrating HOLT code. 

data1 <- read_excel("Unaltered_Has_Peak_and_Missing_Dates_File.xlsx") 

 

data.forecast <- group_by(.data = data1, DATE) %>% # groups observations by DATE 

  filter(`FOOD BANK`=="Houston", `DATE`<="2016-12-31") %>%  

  summarise(Total_Amount = sum(AMOUNT)) 

          

data.forecast.w <- tq_transmute(data.forecast, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

 

data.forecast.w <- data.forecast.w[2:53, ] 

 

data.forecast.xts <- as.xts(x = data.forecast.w$Total_Amount, order.by = 

data.forecast.w$DATE) 

 

data.forecast.v <- group_by(.data = data1, DATE) %>% # verification vector 

  filter(`FOOD BANK`=="Houston", `DATE`>="2017-01-01",`DATE`<="2017-08-31") 

%>%  

  summarise(Total_Amount = sum(AMOUNT)) 

 

data.forecast.wv <- tq_transmute(data.forecast.v, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 
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#data.forecast.xtsv <- as.xts(x = data.forecast.wv$Total_Amount, order.by = 

data.forecast.wv$DATE) 

 

holt1 <- holt(y = data.forecast.xts, h = 10, damped = FALSE, level = 0.9, alpha = NULL, 

beta = NULL, gamma = FALSE) %>% 

          forecast(n.ahead = 35) 

 

MAPE(y_pred = holt1$fitted, y_true = data.forecast.wv$Total_Amount) 
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APPENDIX I 

R- program illustrating HOLT-WINTERS code. 

data1 <- read_excel("Unaltered_Has_Peak_and_Missing_Dates_File.xlsx") 

 

data.forecast <- group_by(.data = data1, DATE) %>% # groups observations by DATE 

  filter(`FOOD BANK`=="Houston", `DATE`<="2016-12-31") %>%  

  summarise(Total_Amount = sum(AMOUNT)) 

          

data.forecast.w <- tq_transmute(data.forecast, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

 

data.forecast.w <- data.forecast.w[2:53, ] 

 

data.forecast.xts <- as.xts(x = data.forecast.w$Total_Amount, order.by = 

data.forecast.w$DATE) 

 

data.forecast.v <- group_by(.data = data1, DATE) %>% # verification vector 

  filter(`FOOD BANK`=="Houston", `DATE`>="2017-01-01",`DATE`<="2017-08-31") 

%>%  

  summarise(Total_Amount = sum(AMOUNT)) 

 

data.forecast.wv <- tq_transmute(data.forecast.v, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 
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data.forecast.xtsv <- as.xts(x = data.forecast.wv$Total_Amount, order.by = 

data.forecast.wv$DATE) 

 

m1 <- HoltWinters(x = na.omit(data.forecast.xts),gamma = FALSE) %>% 

      forecast(h = 35) 

 

pred1 <- predict(object = m1) 

pred1 <- as.numeric(pred1[[4]]) 

 

MAPE(y_pred = pred1, y_true = data.forecast.wv$Total_Amount) 
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APPENDIX J 

 R- program illustrating NAÏVE code. 

data1 <- read_excel("Unaltered_Has_Peak_and_Missing_Dates_File.xlsx") 

 

data.forecast <- group_by(.data = data1, DATE) %>% # groups observations by DATE 

  filter(`FOOD BANK`=="Houston", `DATE`<="2016-08-31") %>%  

  summarise(Total_Amount = sum(AMOUNT)) 

          

data.forecast.w <- tq_transmute(data.forecast, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

 

data.forecast.w <- data.forecast.w[2:36, ] 

 

data.forecast.v <- group_by(.data = data1, DATE) %>% # verification vector 

  filter(`FOOD BANK`=="Houston", `DATE`>="2017-01-01",`DATE`<="2017-08-31") 

%>%  

  summarise(Total_Amount = sum(AMOUNT)) 

 

data.forecast.wv <- tq_transmute(data.forecast.v, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

 

MAPE(y_pred = data.forecast.w$Total_Amount, y_true = 

data.forecast.wv$Total_Amount) 
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APPENDIX K 

 R- program illustrating Centered Moving Average code. 

 

data1 <- read_excel("Unaltered_Has_Peak_and_Missing_Dates_File.xlsx") 

 

data.forecast <- group_by(.data = data1, DATE) %>% # groups observations by DATE 

  filter(`FOOD BANK`=="Houston", `DATE`<="2016-12-31") %>%  

  summarise(Total_Amount = sum(AMOUNT)) 

 

data.forecast.v <- group_by(.data = data1, DATE) %>% # verification vector 

  filter(`FOOD BANK`=="Houston", `DATE`>="2017-01-01",`DATE`<="2017-08-31") 

%>%  

  summarise(Total_Amount = sum(AMOUNT)) 

          

data.forecast.w <- tq_transmute(data.forecast, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

 

data.forecast.wv <- tq_transmute(data.forecast.v, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

data.forecast.w$CMA_3 <- rollmean(x = data.forecast.w$Total_Amount, k = 3, fill = 

"extend", n.ahead = 35) 

 

MAPE(y_pred = data.forecast.w$CMA_3, y_true = data.forecast.wv$Total_Amount)  
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APPENDIX L 

 R- program illustrating ECONOMETRIC code. 

 

data1 <- read_excel("Unaltered_Has_Peak_and_Missing_Dates_File.xlsx") 

data1$Unemployment <- as.numeric(data1$Unemployment) 

data1$GP <- data1$`Gas Prices` 

data1$`Gas Prices` <- NULL 

 

data.forecast <- group_by(.data = data1, DATE) %>% # groups observations by DATE 

  filter(`FOOD BANK`=="Houston", `DATE`<="2016-12-31") %>%  

  summarise(Total_Amount = sum(AMOUNT), Unemployment1 = 

mean(Unemployment, na.rm = TRUE), GP = mean(GP, na.rm = TRUE), 

            Productivity =  mean(Productivity, na.rm = TRUE), 

            CPI = mean(CPI, na.rm = TRUE)) 

 

 

data.forecast.w1 <- tq_transmute(data.forecast, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

 

data.forecast.w2 <- tq_transmute(data.forecast, select = Unemployment1, mutate_fun = 

apply.weekly, FUN = mean) 
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data.forecast.w3 <- tq_transmute(data.forecast, select = GP, mutate_fun = apply.weekly, 

FUN = mean) 

 

data.forecast.w4 <- tq_transmute(data.forecast, select = Productivity, mutate_fun = 

apply.weekly, FUN = mean) 

 

data.forecast.w5 <- tq_transmute(data.forecast, select = CPI, mutate_fun = apply.weekly, 

FUN = mean) 

 

data.forecast.w <- data.frame(data.forecast.w1, data.forecast.w2, data.forecast.w3, 

data.forecast.w4, data.forecast.w5) 

   

econo_1 <- data.forecast.w 

 

econo_1$period <- 1:53 

# Unemployment 

ccf(x = econo_1$Unemployment1, y =  econo_1$Total_Amount, lag.max = NULL, type 

= c("correlation","covariance"), 

    plot = TRUE, na.action = na.fail) 

#Gas Prices 

 

ccf(x = econo_1$GP, y = econo_1$Total_Amount, lag.max = NULL, type = 

c("correlation","covariance"), 
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plot = TRUE, na.action = na.fail) 

 

#Productivity 

 

ccf(x = econo_1$Productivity, y = econo_1$Total_Amount, lag.max = NULL, type = 

c("correlation","covariance"), 

    plot = TRUE, na.action = na.fail) 

 

#CPI 

 

ccf(x = econo_1$CPI, y = econo_1$Total_Amount, lag.max = NULL, type = 

c("correlation","covariance"), 

    plot = TRUE, na.action = na.fail) 

 

#CPI Lags 

 

econo_1$CPIL1 <- lag(econo_1$CPI, n = 1) 

 

econo_1$CPIL2 <- lag(econo_1$CPI, n = 2) 

 

econo_1$CPIL3 <- lag(econo_1$CPI, n = 3) 

 

econo_1$CPIL4 <- lag(econo_1$CPI, n = 4) 
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econo_1$CPIL5 <- lag(econo_1$CPI, n = 5) 

 

econo_1$CPIL6 <- lag(econo_1$CPI, n = 6) 

 

econo_1$CPIL7 <- lag(econo_1$CPI, n = 7) 

 

econo_1$CPIL8 <- lag(econo_1$CPI, n = 8) 

 

econo_1$CPIL9 <- lag(econo_1$CPI, n = 9) 

 

econo_1$CPIL10 <- lag(econo_1$CPI, n = 10) 

 

econo_1$CPIL11 <- lag(econo_1$CPI, n = 11) 

 

econo_1$CPIL12 <- lag(econo_1$CPI, n = 12) 

 

econo_1$CPIL13 <- lag(econo_1$CPI, n = 13) 

 

obj2 <- lm(Total_Amount ~ CPIL1 + CPIL2 + CPIL3 + CPIL4 + CPIL5 + 

             CPIL6 + CPIL7 + CPIL8 + CPIL9 + CPIL10 + 

             CPIL11 + CPIL12 + CPIL13, data = econo_1) 

 

summary(obj2) 
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#2017 

 

data.forecast_f <- group_by(.data = data1, DATE) %>% # groups observations by DATE 

  filter(`FOOD BANK`=="Houston", `DATE`>="2016-12-31") %>%  

  summarise(Total_Amount = sum(AMOUNT), Unemployment1 = 

mean(Unemployment, na.rm = TRUE), GP = mean(GP, na.rm = TRUE), 

            Productivity =  mean(Productivity, na.rm = TRUE), 

            CPI = mean(CPI, na.rm = TRUE)) 

 

data.forecast.w1_f <- tq_transmute(data.forecast_f, select = Total_Amount, mutate_fun = 

apply.weekly, FUN = sum) 

 

data.forecast.w2_f <- tq_transmute(data.forecast_f, select = Unemployment1, mutate_fun 

= apply.weekly, FUN = mean) 

 

data.forecast.w3_f <- tq_transmute(data.forecast_f, select = GP, mutate_fun = 

apply.weekly, FUN = mean) 

 

data.forecast.w4_f <- tq_transmute(data.forecast_f, select = Productivity, mutate_fun = 

apply.weekly, FUN = mean) 

 

data.forecast.w5_f <- tq_transmute(data.forecast_f, select = CPI, mutate_fun = 

apply.weekly, FUN = mean) 
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data.forecast.w_f <- data.frame(data.forecast.w1_f, data.forecast.w2_f, 

data.forecast.w3_f, data.forecast.w4_f, data.forecast.w5_f) 

econo_2 <- data.forecast.w_f 

econo_2$period <- 1:53 

 

# Unemployment 

ccf(x = econo_2$Unemployment1, y =  econo_2$Total_Amount, lag.max = NULL, type 

= c("correlation","covariance"), 

    plot = TRUE, na.action = na.fail) 

 

#Gas Prices 

 

ccf(x = econo_2$GP, y = econo_2$Total_Amount, lag.max = NULL, type = 

c("correlation","covariance"), 

    plot = TRUE, na.action = na.fail) 

 

#Productivity 

ccf(x = econo_2$Productivity, y = econo_2$Total_Amount, lag.max = NULL, type = 

c("correlation","covariance"), 

    plot = TRUE, na.action = na.fail) 

 

#CPI 
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ccf(x = econo_2$CPI, y = econo_2$Total_Amount, lag.max = NULL, type = 

c("correlation","covariance"), 

    plot = TRUE, na.action = na.fail) 

 

#LAGS 

econo_2$Unemployment1L <- lag(econo_2$Unemployment1, n = 1) 

econo_2$Productivity1 <- lag(econo_2$Productivity, n = 1) 

econo_2$Productivity2 <- lag(econo_2$Productivity, n = 2) 

econo_2$Productivity3 <- lag(econo_2$Productivity, n = 3) 

econo_2$Productivity4 <- lag(econo_2$Productivity, n = 4) 

econo_2$CPIL1 <- lag(econo_2$CPI, n = 1) 

econo_2$CPIL2 <- lag(econo_2$CPI, n = 2) 

econo_2$CPIL3 <- lag(econo_2$CPI, n = 3) 

econo_2$CPIL4 <- lag(econo_2$CPI, n = 4) 

 

obj3 <- lm(Total_Amount ~ Unemployment1L + 

             CPIL1 + CPIL2 + CPIL3 + CPIL4 +  

             Productivity1 + Productivity2 + Productivity3 + Productivity4, data = econo_2)  

summary(obj3) 

# MAPE 

MAPE(y_pred = obj2$fitted.values, y_true = obj3$model$Total_Amount)  
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APPENDIX M 

GAMS CODE FOR STOCHASTIC PROGRAMMING MODEL 

$ontext 

Experiment 1- Policy in use 

$offtext 

 

set 

n supplier /n1*n3/ 

h Demand node /h1*h55/ 

omega scenario /o1*o21/ 

 

alias( n, j, i); 

 

parameters 

 

In(n) InitialInventory / 

n1  7995435.16 

n2  5484931.36 

n3  5484931.36 

/ 

 

C(n) SCapacity/ 

n1  17500000.00 
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n2  9000000.00 

n3  9000000.00 

/ 

 

E(n) RegDonations/ 

n1 261445.20 

n2 44989.85 

n3 44989.85 

/ 

 

F(n) DisDonations/ 

n1 610363.92 

n2 57367.28 

n3 57367.28 

/ 

 

ForcD(h) Forecasted Demand / 

h1   628.54 

h2   7682.92 

h3   10809.83 

h4   559.23 

h5   741.49 

h6   12789.20 
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h7   8400.96 

h8   1019.79 

h9   159302.49 

h10  2678.38 

h11  530.45 

h12  11292.33 

h13  561.14 

h14  1032.70 

h15  790.51 

h16  2368.01 

h17  1506.45 

h18  995.53 

h19  2251.84 

h20  9500.03 

h21  242.86 

h22  1074.58 

h23  1252.98 

h24  2305.73 

h25  772.95 

h26  692.76 

h27  557.61 

h28  528.74 

h29  6038.48 
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h30  562.71 

h31  433.30 

h32  1072.85 

h33  547.08 

h34  9887.82 

h35  805.57 

h36  147.63 

h37  208.99 

h38  30790.92 

h39  7452.74 

h40  1623.01 

h41  628.44 

h42  70191.87 

h43  2164.62 

h44  87.55 

h45  1119.74 

h46  2859.04 

h47  701.03 

h48  703.37 

h49  1496.77 

h50  458.05 

h51  1286.98 

h52  129.35 
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h53  1263.23 

h54  1124.88 

h55  787.92 

/; 

table dss(n,j) SSDist 

    n1    n2    n3 

n1  1000  165   208 

n2  165   1000  86 

n3  208   86    1000 

; 

table dsd(h,n) Supplier to Demand Dist 

     n1    n2     n3 

h1   68.9  102   152 

h2   48.2  175   217 

h3   103   105   186 

h4   106   85    160 

h5   45.5  208   251 

h6   41.6  138   181 

h7   44.7  203   246 

h8   76.2  122   190 

h9   2.4   162   205 

h10  47    208   253 

h11  108   140   220 
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h12  45.9  169   232 

h13  137   105   187 

h14  60    180   246 

h15  111   192   262 

h16  80    151   220 

h17  58.3  119   175 

h18  82.4  93.3  161 

h19  1000  29.6  108 

h20  1000  84.1  155 

h21  1000  54.6  78.1 

h22  1000  62.5  107 

h23  1000  24.6  74.7 

h24  1000  109   178 

h25  1000  110   183 

h26  1000  62.6  124 

h27  1000  168   253 

h28  1000  83.9  77.7 

h29  1000  29.3  75.9 

h30  1000  92.3  147 

h31  1000  54.4  134 

h32  1000  135   215 

h33  1000  81.9  111 

h34  1000  107   186 
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h35  1000  74.6  157 

h36  1000  126   179 

h37  1000  117   148 

h38  1000  1.7   87.7 

h39  1000  46.1  126 

h40  1000  120   45.7 

h41  1000  125   65.2 

h42  1000  85.6  1.3 

h43  1000  58.6  49.4 

h44  1000  198   164 

h45  1000  138   59 

h46  1000  50.2  50.9 

h47  1000  94.7  61.4 

h48  1000  82    53.8 

h49  1000  129   94.8 

h50  1000  185   105 

h51  1000  114   28.8 

h52  1000  166   107 

h53  1000  176   90.5 

h54  1000  83.1  37.7 

h55  1000  172   92.1 

; 

table scenario(omega,*) scenario probabilities 
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      P 

o1  0.494 

o2  0.041 

o3  0.041 

o4  0.005 

o5  0.041 

o6  0.010 

o7  0.061 

o8  0.010 

o9  0.020 

o10 0.019 

o11 0.025 

o12 0.006 

o13 0.013 

o14 0.006 

o15 0.095 

o16 0.019 

o17 0.006 

o18 0.009 

o19 0.066 

o20 0.013 

o21 0.001 

; 
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table Rd(h,omega) PreP Demand change per Scenario 

           o1          o2          o3          o4          o5          o6          o7          o8          o9          o10         

o11         o12         o13         o14         o15         o16         o17         o18         o19         o20         

o21 

h1         51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h2         51.0        51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        

51.0        51.5        50.9        51.5        51.0        51.6        50.9        51.6        51.0        51.7        

50.9        51.7 

h3         51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h4         51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h5         51.0        51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        

51.0        51.5        50.9        51.5        51.0        51.6        50.9        51.6        51.0        51.7        

50.9        51.7 

h6         51.0        51.0        51.2        50.9        51.2        51.0        51.3        50.9        51.3        

51.0        51.4        50.9        51.4        51.0        51.5        50.9        51.5        51.0        51.6        

50.9        51.6 

h7         51.0        51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        
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51.0        51.5        50.9        51.5        51.0        51.6        50.9        51.6        51.0        51.7        

50.9        51.7 

h8         51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h9         51.0        51.0        51.2        50.9        51.2        51.0        51.3        50.9        51.3        

51.0        51.4        50.9        51.4        51.0        51.5        50.9        51.5        51.0        51.6        

50.9        51.6 

h10        51.0        51.0        51.2        50.9        51.2        51.0        51.3        50.9        51.3        

51.0        51.4        50.9        51.4        51.0        51.5        50.9        51.5        51.0        51.6        

50.9        51.6 

h11        51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h12        51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h13        51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h14        51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 
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h15        51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h16        51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h17        51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h18        51.0        51.0        51.1        50.9        51.1        51.0        51.2        50.9        51.2        

51.0        51.3        50.9        51.3        51.0        51.4        50.9        51.4        51.0        51.5        

50.9        51.5 

h19        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h20        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h21        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h22        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        
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51.0        51.4 

h23        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h24        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h25        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h26        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h27        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h28        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h29        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h30        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        
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51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h31        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h32        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h33        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h34        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h35        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h36        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h37        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 
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h38        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h39        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h40        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h41        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h42        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h43        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h44        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h45        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        
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51.0        51.4 

h46        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h47        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h48        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h49        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h50        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h51        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h52        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h53        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        
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51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h54        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

h55        51.0        51.0        51.0        51.0        51.0        51.0        51.1        51.0        51.1        

51.0        51.2        51.0        51.2        51.0        51.3        51.0        51.3        51.0        51.4        

51.0        51.4 

 

; 

 

table del(n,omega) DonationRateChangePerScenario 

    o1   o2   o3   o4   o5   o6   o7   o8   o9   o10  o11  o12  o13  o14  o15  o16  o17  o18  

o19  o20  o21 

n1  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  2.0  2.0  2.0  1.0  2.3  1.0  2.3  1.0  2.7  1.0  

2.7 

n2  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.3  1.0  1.3  1.0  1.5  1.0  

1.5 

n3  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.3  1.0  1.3  1.0  1.5  1.0  

1.5 

; 

table inv1(n,omega) InventoryRateChangePerScenario 

    o1   o2   o3   o4   o5   o6   o7   o8   o9   o10  o11  o12  o13  o14  o15  o16  o17  o18  
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o19  o20  o21 

n1  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  

1.0 

n2  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  

1.0 

n3  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  

1.0 

; 

scalar v penalty cost for unmet /2000/; 

positive variables 

S(n) PrePSupplies 

x(i,n) inbound PPFlow 

x(n,j) outbound PPFlow 

Sr(n,omega) Resultant supply 

w(n,j,omega) SS Response Flow 

y(n,h,omega) SD Response flow 

u(h,omega) unmet demand at h; 

 

Free variables 

first first stage cost 

second second stage cost 

combined obj fctn combined val; 
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Equations 

*Descretized SLP 

zfirst stage decision 

zsecond stage decision 

zcombined summation of SLP 

 

*1st stage 

FloBal(n) cns: Stored = inbound + InitialInventory + RegDonations - outbound 

StorCap(n) cns: Stored < Capacity 

 

*Damage 

StoDon(n,omega) PreP Storage Addition 

 

*2nd stage 

RDemReq(h,omega) cns: inbound > demand 

RFloBal(n,omega) cns: Sr(n) * InventoryRateChangePerScenario + In(s-s) + 

(DisDonations * Donation Rate change per scenario) > Out(s-s) + (S-D); 

 

*Descretized SLP-------------------------------------------------------- 

zfirst .. first =e= 

sum((n,j), x(n,j) * dss(n,j)); 

 

zsecond .. second =e= 
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sum(omega, scenario(omega,'P')*(sum((n,j), w(n,j,omega)*dss(n,j)) + sum((n,h), 

y(n,h,omega)*dsd(h,n)) 

+ sum(h, u(h,omega)*v) 

)); 

zcombined .. combined =e= first + second; 

 

*--subject to------------------------------------------------------------- 

*1st stage constraints 

FloBal(n) .. S(n) =e= sum(i, x(i,n)) - sum(j, x(n,j)) + In(n) + E(n); 

StorCap(n) .. S(n) =l= C(n); 

 

*Prepos Addition 

StoDon(n,omega) .. Sr(n,omega) =e= S(n) + (F(n)*del(n,omega)) ; 

 

*2nd stage Constraints 

RFloBal(n,omega) .. sum(j, w(n,j,omega)) + sum(h, y(n,h,omega)) =l= (Sr(n, omega) * 

inv1(n, omega)) + sum(i, w(i,n,omega)); 

RDemReq(h,omega) .. sum(n, y(n,h,omega)) + u(h,omega) =e= (Rd(h,omega)) * 

ForcD(h); 

*--Solve statements------------------------------------------------------- 

model PPos /zfirst, zsecond, zcombined, FloBal, StorCap, StoDon, RFloBal, RDemReq/ ; 

Solve PPos using lp minimizing combined ; 
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