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1.0 INTRODUCTION 
 

1.1 Background 

Wetlands are areas of land covered with shallow water or have soil saturated with 

moisture (Merriam-Webster). Descriptions of wetlands can vary widely as there are 

several different types of wetlands across the globe, including bog, bottomland, fen, 

marsh, mire, moor, muskeg, peatland, prairie potholes, riparian, slough, swamp, wash, 

and wet meadow. The criteria for what constitutes a wetland has been extensively 

debated in the U.S. Supreme Court throughout several cases because determining where 

wetlands begin and end has proven difficult (SWANCC V.USACE, Carabell V. 

USACE.).The ruling in Rampanos V. U.S. has left wetland designation cases to be 

decided on a case-by-case basis because adequately defining the complex variations 

between all of the nation’s wetlands is impossible (Rapanos V. U.S.).  

Wetlands have been the focus in U.S. Supreme Court cases because they maintain 

critical ecological processes that enhance water quality, support diverse habitats, and 

include some of the most abundant and economically valuable ecosystems in the world as 

they produce vital ecosystem services from the peatlands of the Andes to the mangroves 

of West Africa. Only half of the wetland ecosystems existing in the early 20th century 

remain today in Australia, China, Europe, and North America (Moreno-Mateos et al. 

2012). The growing effects of climate change threaten to accelerate wetland loss and 

sustainable management will be essential to preserve the benefits provided by productive 

wetland ecosystems (Tiner et al. 2015).  

Historically, wetlands have been considered wastelands, a useless landscape that 

ought to be filled in, destroyed, stripped of lumber and forgotten. Only recently has 
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society recognized the environmental services and necessity of natural wetlands. 

Wetlands can act as “nature’s wastewater treatment facility”, coastal wetlands can serve 

as critical storm buffers, marshes collect and contain seasonal flood waters, and prairie 

potholes provide vital nesting and migratory support for birds. The impacts of wetland 

loss can go unrecognized for several decades until the long term-consequences become 

noticeable, irreversible, and in some cases a direct threat to communities. For example, 

the vital and irreplaceable role of wetlands was obvious after rapid deterioration of 

Louisiana’s wetlands left coastal communities vulnerable to the harm of Hurricane 

Katrina and then Hurricane Rita (Houck 2015).   

In the U.S., more than 50 percent of wetland area has been lost since the arrival of 

European settlers (Houck 2015). Wetland ecosystems are vulnerable to indirect damage 

from agricultural runoff, road building, and urbanization as these factors can result in 

hydrologic alterations that affect water supply, drainage patterns, and the size of 

ecosystems dependent on these water sources. Although the rate of wetland area loss has 

declined as wetland conditions have been restored on tens of thousands of hectares of 

land throughout the US (Whigham 1999; Faibairn and Dinsmore 2001), they are still a 

fragile ecosystem that requires monitoring (Tiner et al. 2015). 

To mitigate the negative effects of wetland loss, land managers have tried to 

restore wetlands to recreate beneficial environmental processes. Constructed and restored 

wetlands attempt to mitigate the loss of natural wetlands, improve water quality, meet 

water supply demands, and support wildlife habitat. However, these efforts have resulted 

in varied degrees of success, and most have yielded ecological productivity levels 

significantly inferior than pre-degradation counterparts (Moreno-Mateos et al. 2012).  
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Wetlands are monitored with various assessment techniques and evaluated by 

several potential indicators that estimate the status of ecological health and productivity. 

At the landscape scale, GIS can be used to display wetland conditions for visual 

inspection and discriminate between wetland cover types. Wetland conditions can be 

modeled using large-scale land cover parameters such as continuity or fragmentation, 

perimeter buffer width and composition, density and proximity of roads, density of 

residential development, etc. Landscape level metrics are often used during the initial 

stages of wetland mapping to create a baseline dataset and potentially detect changes in 

wetland health. Routinely assessing spatial change of wetlands is necessary for effective 

implementation of comprehensive monitoring systems and more advanced methods of 

determining wetland productivity (Tiner et al. 2015).  

Extensive field data collection can be employed to further evaluate wetland health 

by monitoring the wetlands and its established boundaries to estimate percent cover of 

invasive vegetation, a measure used to identify the physical, chemical, and biological 

stressors in and surrounding the wetland landscape. Determining wetland health and 

productivity with more accurate and detailed metrics requires resource intensive 

monitoring efforts that include comprehensive sampling needed to conduct an accurate 

biological assessment or index of biological integrity (IBI), and acquisition of relevant 

physical and chemical measurements. When feasible, extensive site level assessments of 

wetland conditions can provide a vital tool for managers or planners to effectively 

improve wetland protection measures (Tiner et al. 2015). 

Measurements characterizing vegetation are most commonly used in evaluations 

of wetland restoration projects (Moreno-Mateos et al. 2012). Wetland vegetation is a 
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prime indicator of ecosystem health and productivity, signaling the first signs of physical 

or chemical degradation (Adam et a. 2009). Mapping wetland vegetation type by 

distribution, quality, and quantity are most commonly used as assessment metrics (Adam 

et al. 2009). Having up-to-date spatial data about the status and condition of vegetation 

cover is essential to effectively conserve, maintain, or restore wetland vegetation.   

Traditional wetland mapping practices are characterized by conducting excessive 

fieldwork with limited techniques, including visual estimation of percentage cover for 

each species, and often produce data with poor precision and questionable accuracy. 

Traditional field surveys are labor-intensive, costly, and require lengthy periods of time 

to complete. In some cases fieldwork isn’t even feasible because of poor accessibility. 

The complications associated with wetland fieldwork limits practical application to 

relatively small areas (Adam et al. 2009). 

 Remote sensing datasets and GIS analysis have been applied to the monitoring of 

wetlands as early as the late 1990s and since then the number of studies investigating 

wetland species has increased as the capabilities of technology have grown. However, 

most remote sensing applications of wetlands are conducted with moderate or low spatial 

resolution imagery where the data are classified by general land cover; not by species 

(Table 1) (Whitehead et al. 2014). Traditionally, remote sensing datasets for wetland 

monitoring have relied on aerial photography and more recently satellite imagery, both 

often lacking not only spatial resolution but also temporal resolution as datasets must be 

processed and published before publicly available (Jensen et al. 2011).  
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Table 1. Image spatial resolution 

 
 
Satellite imagery has the advantage of large-scale area acquisition when surveying 

and mapping on regional or global scales. Aerial photography can be much more 

expensive to collect as costs include employment of a pilot, a plane, and a remote sensing 

platform. However, aerial photography can be captured and processed quickly with 

higher spatial resolution than commercially available satellite imagery, potentially 

producing useful information for wetland resource managers (Sghair and Goma 2013). 

Sghair and Goma (2013) used remote sensing and GIS with ground truth data to test 

accuracy of classifying wetland vegetation change over large areas in the UK with 

Landsat Thematic Mapper (TM) data and aerial photography. Their study concluded that 

both forms of remote sensing data could provide valuable information for management of 

wetlands. Not surprisingly, results indicated that the traditional aerial photography 

yielded higher accuracy than the satellite imagery because it was of higher spatial 

resolution, and some vegetation classes inhabited areas that were smaller than the pixel 

size of the satellite imagery (Sghair and Goma 2013).  

Most cost-affordable remote sensing datasets often maintain insufficient spatial 

and temporal resolution for efficient use by wetland managers. However, Unmanned 

Aircraft System (UAS) platforms offer an economical approach to capturing valuable 

data with high temporal resolution and in some cases, can permit simultaneous collection 

of ground truth data (Lechner et al. 2012). Acquiring imagery and mapping invasive 

Image Spatial Resolution

low larger than 30m
moderate 2 - 30m
high resolution under 2m
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wetland vegetation species in a timely manner allows wetland managers to quickly make 

assessments and promptly take effective measures (Zaman et al. 2011).   

An emerging application of vegetation monitoring has been focused on using high 

spatial resolution imagery acquired from a UAS platform to perform species-level 

classifications (Moffet et al. 2013) However, traditional classification methods present 

specific challenges. The traditional method of image classification is pixel-based spectral 

imagery analysis (PBSIA) and operates by classifying each pixel independently based on 

their individual spectral values (Matinfar et al. 2007). PBSIA has been widely utilized for 

the classification of satellite imagery with low to moderate resolution. However, in some 

studies PBSIA classification of high-resolution imagery has resulted in questionable 

performance and unreliable accuracy, specifically if the area of interest is a 

heterogeneous landscape such as wetlands (Leachner et al. 2012). This is due to the fact 

that at high-resolution each pixel represents a much smaller area than at lower resolutions 

and can produce a high contrast of spectral characteristics within the same land cover 

class (Addink et al. 2007).  

Utilizing object-based image analysis (OBIA) can potentially minimize the 

likelihood of the “salt and pepper” effect, a common disadvantage of PBSIA 

classification for heterogeneous landscapes (Benz et al. 2004, Dronova et al. 2012). The 

fundamental difference in these classification methods is that instead of classifying each 

pixel independently, OBIA classification operates by segmenting the imagery and 

grouping pixels into defined objects (Walter 2000). While PBSIA classifies the entire 

scene with the same algorithm, a variety of procedures may be used to apply contextual 

information and process different classified objects (Benz et al 2004). The primary 
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advantage of OBIA includes the ability to increase spectral separation within an image 

and as a result may enhance the detection of individual wetland species (Walter 2000). 

 

1.2 Problem Statement 

In rural East Texas, the Richland Creek Wildlife Management Area (RCWMA) 

maintains a large-scale constructed wetland that occupies nearly 900 ha of wetland cover 

divided into 20 inundated cells or paddocks. RCWMA’s first system of four wetland cells 

was operational in two years and all cells were operational a decade layer. RCWMA 

supports an abundance of wildlife and improves Trinity River water quality through bio-

filtration to assist Tarrant Regional Water District’s (TRWD) in meeting the water supply 

demands of the Dallas-Fort Worth Area. Trinity River water is cycled through a series of 

wetland cells over 6.5 days in order to reduce phosphorus, nitrogen, heavy metals, and 

other nutrients.  

 Current efforts to monitor vegetation type and abundance in the RCWMA involve 

time-consuming field surveys. Moreover, a complete map of vegetation composition is 

currently unavailable. This study will employ UAS-based remote sensing to classify 

vegetation within the RCWMA to establish baseline maps for which future imagery can 

be compared and thus, provide a relatively low-cost monitoring framework. Additionally, 

this study will assist in defining the accuracy and advantages/disadvantages of using 

pixel-based or object-based classification methods to survey wetland vegetation cover. 

Results will additionally assist in monitoring vegetation response to different 

management strategies, establishing annual growth rates, and evaluating habitat 

suitability for populations of indigenous and migratory bird species. 



 

8 

 

1.3 Research Objectives 

This research will address the following objectives: 

Objective 1: Perform PBSIA and OBIA classification on UAS imagery 
acquired in 2014  
 
Objective 2: Compare accuracies resulting from the two classification 
methods used on UAS imagery acquired in 2014 
 
Objective 3:  Use the more accurate classification method identified in 
objective 2 to classify UAS imagery acquired in 2015 and perform post 
classification change detection 

 

1.4 Justification 

 The completion of this research is necessary because it is of interest to natural and 

constructed wetland managers who seek to survey and monitor their wetlands. Research 

regarding the mapping of constructed wetlands is limited as the science of wetland 

restoration is an emerging field. Constructed wetlands and wetland landscapes in general 

are commonly mapped at low to moderate resolution. Moreover, when higher-resolution 

imagery is used, most studies lack species-level classification and are more commonly 

classified by general land cover type. This research provides a unique case study in 

mapping constructed wetland vegetation at the species level with high-resolution UAS 

imagery and a comparative analysis of the accuracies between two remote sensing 

classification methods.  

Benefits of this research include a documented analysis of two well-known 

methods, detailing reasons for differences in accuracy, and the practical 

advantages/disadvantages for both. The findings detailed within this study can assist 

natural resource managers in determining which method is more applicable to meet 
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individual specific goals based on their area of interest, desired accuracy, temporal and 

spatial resolution availability, species class priority, and availability of financial or 

technological resources.  
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2.0 LITERATURE REVIEW 

 
2.1 Ecological role of wetlands and wetland construction/restoration 

Wetlands provide habitat for an array of amphibians, invertebrates, and 

populations of indigenous and migratory bird species. These habitats are vital as their 

heterogeneous hydrology and soil composition enable a robust mix of ecological niches 

that maintain high biodiversity (Sghair and Goma 2013). 

Research has confirmed that wetland bird species can populate a restored wetland 

in just a few years but certain species of birds are initially less likely to be found in 

restored wetlands until vegetative communities are more developed (Fairbairn and 

Dinsmore 2001). Eventually the vegetative and bird communities of restored wetlands 

become more similar to those of natural wetlands (Young 1999).  

 “Because vegetation plays a critical role in nutrient cycles and productivity of 

many terrestrial and aquatic systems, accurate classifications of plant cover from remote 

sensing data are essential for broad-scale assessments of ecosystem structure and 

dynamics,” (Dronova et al.2012). North American resource agencies invested 70 billion 

dollars in an attempt to restore 3,000,000 ha of wetlands (Moreno-Mateos et al. 

2012).Awareness of their environmental and functional value has increased in recent 

years. Wetlands maintain several environmental processes including flood mitigation, 

groundwater recharge, carbon sequestration, erosion regulation, and water filtration 

(Sghair and Goma 2013). From 1991 to 2011,  
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2.2 Constructed wetlands management and monitoring 

 Constructed wetlands are treatment systems that recreate the natural functions of 

wetland vegetation, soils, and their microbial accumulation for the primary purpose of 

enhancing water quality (EPA 2004). Constructed wetlands offer unique scientific 

research opportunities as their long-term dynamics are not well studied The science of 

wetland restoration and creation is still in its early stages with limited information 

available to ensure wetlands are constructed with a high degree of success. 

Understanding the distribution of wetland vegetation is essential to assessing the health of 

wetland ecosystems and accurate mapping of wetland vegetation has been a goal of 

science, environmental management, and restoration (Moffet et al. 2013). 

Multifunctional wetlands provide a range of benefits including flood prevention, 

wildlife food and habitat production, aesthetic beauty, and educational and recreational 

uses. Constructed wetlands are also low-carbon systems that require minimal engineering 

infrastructure and simple management practices, making them an ideal alternative to 

wastewater treatment facilities (Semeraro et al. 2015, Masi et al. 2013). 

Over the past decade, constructed wetlands have become more common in developed 

countries. Constructed wetlands treatment is not a new concept as over 5,000 constructed 

wetlands have been built in Europe and approximately 1,000 are currently operating in 

the U.S. (EPA 2004).  

Constructed wetlands must be designed with careful consideration of site-specific 

conditions, including vegetation, hydrology, soil suitability, and presence of endangered 

species. If the wetland location has highly permeable soil an impervious clay liner can be 

used and original soil is applied on top. Depending on local factors wetland vegetation 
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can be planted or left to develop naturally. Adequate water control structures must be 

installed to provide efficient response to any alteration in water quality, depth, and flow. 

Constructed wetlands are typically built on highlands located in the flood plain as a 

precaution to limit impairment of any proximate aquatic resources in the event of a minor 

flood. Most constructed wetlands are formed through iterations of excavating, 

backfilling, and grading, followed by installation of water control infrastructure. 

Appropriate precautions must be taken during each phase of wetland construction to 

prevent harmful environmental repercussions, such as disruption of natural hydrology, or 

the onset of an invasive plant species.  

 In Southern Italy a small-scale artificial wetland system has been successfully 

utilized to provide multiple benefits and mitigate the effects of 60 years of urban sprawl. 

The 8.3 ha facility was constructed and operational within only a year. With only 5.1 ha 

of actual wetland cover the operation treats the wastewater of approximately 41,000 

inhabitants from three municipalities and still manages to preserve the aesthetic value 

critical to tourism in the area (Semeraro et al. 2015, Masi et al. 2013). 

Mapping and monitoring of wetland vegetation is a goal of science, management, 

and restoration because patterns can serve as great indicators of wetland health and 

development. The demand for wetland mapping continues to grow as the global 

population increases and the importance of wetlands becomes more widely recognized as 

their complex dynamics are better understood (Tiner et al. 2015). Management of 

wetlands typically entails monitoring development of vegetation over a certain period of 

time. Valid identification of invasive species is an integral component of wetland 

management as it assists in application of adequate control practices. Traditionally, 
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wetland vegetation estimates involved conducting transect field surveys, which required 

more labor, time, and the disturbance of fragile ecosystems. Today, remote sensing 

technologies provide a more efficient, less intrusive technique for surveying wetland 

vegetation (Moffet et al. 2013). Accounting for distribution patterns in wetland 

vegetation is an essential component to understanding the complex ecological and 

hydrologic processes (Moffet et al. 2013). The science of mapping wetlands for 

monitoring purposes has advanced over several decades; from transect surveying to 

interpreting aerial photographs, and more recently by employing advanced remote 

sensing data, including the tools associated with remote sensing technologies (Tiner et al. 

2015). 

 

2.3 Remote Sensing of Wetlands 

Numerous researchers have applied both multispectral data including Landsat TM 

and SPOT imagery to classify general vegetation communities and hyperspectral data to 

define wetland vegetation at the species level. In addition, remote sensing methods have 

progressed to estimating biophysical and biochemical characteristics of wetland 

vegetation, such as leaf area index (LAI), biomass and water content. 

While remote sensing capabilities have expanded, the data produced is only an 

image, and not the actual information desired (i.e., a detailed map of vegetation 

distribution). The image simply captures electromagnetic radiation from the surface and 

in wetlands this often results in very low contrast between landscape features (Moffet et 

al. 2013). Remote sensing vegetation indices are derived from absorption, transmittance, 

and reflectance of vegetation in the red and near infrared regions of the electromagnetic 
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spectrum. Research has demonstrated that the ratio of near infrared and red correlate 

directly with levels of biomass (Lyon et al. 1998). Most vegetation indices take 

advantage of this effect by formulating basic algorithms, including subtraction of the 

near-infrared and red, division of near infrared by the red, and combining both to produce 

a normalized difference vegetation index (NDVI) (Lyon et al. 1998). 

Another method of wetland mapping and monitoring with remote sensing data 

involves image classification and post-classification comparison methods. Baker et al. 

(2007) applied these techniques to determine the total area of change within a restored 

wetland. In restored wetlands, using landscape parameters at high spatial resolution for 

detecting pattern difference is difficult, and selection of a minimum mapping unit 

selection is crucial. While Baker et al. (2007) concluded that health of habitat is not 

limited to only measures of abundance, Kelly et al. (2011) added that configuration and 

heterogeneity are also important factors. Investigation of wetland vegetation changes in 

the UK indicated that different types of imagery created classification outcomes with a 

range of accuracies (Sghair and Goma 2013). With some exceptions, the majority of 

research conducted on remote sensing applications to wetlands has been limited to the 

moderate or low resolution of publicly available satellite imagery. In some cases, lack of 

resolution can limit classifications to broad scales and general land cover classes. Today, 

alternative platforms are becoming more affordable and highly detailed classification 

schemes will likely replace broad scale remote sensing trends (Whitehead et al. 2014). 

The number of studies exploring the application of remote sensing to investigate 

wetland species has rapidly increased since the late 1990s, coinciding with advancements 

and commercialization of technology related to remote sensing platforms, including 
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sensors and computer processing power.(Adam et al. 2010). These advancements are also 

responsible for the increased implementation of unmanned aircraft systems (UAS) for 

remote sensing applications (Lyon et al. 1998). 

 

2.4 UAS remote sensing  

Most remote sensing systems used to survey the distribution of vegetative species 

are either too expensive to utilize consistently or lack efficient temporal resolution to be 

of significant value to resource management (Jensen et al. 2011). High-resolution 

imagery used for vegetation classification is generally collected with a fixed-wing 

manned aircraft. However, this form of acquisition is often very expensive; and the UAS 

platform offers a similar product at lower cost. High spatial and temporal resolutions are 

requirements for producing useful remote sensing products that monitor vegetation in a 

timely manner so that findings may support resource managers on use of appropriate 

techniques (Whitehead et al. 2014).  

UAS platforms often cost less money than traditional acquisition of very high-

resolution satellite remote sensing data and UAS’s can collect more accurate data (Jensen 

et al. 2011). At low flight altitudes, UAS’s may operate with an inexpensive camera to 

collect imagery at meter to sub-meter spatial resolution and fine scale temporal resolution 

ranging from minutes to hours. However, low altitude data acquisition also decreases the 

footprint size or the total area that each image can cover. Smaller footprint size requires 

more processing and georeferencing work in order to accurately stich images together 

(Jensen et al. 2011).  
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This limitation may create two significant disadvantages for UAS remote sensing 

referred to as the coverage control problem and the georeference problem. The coverage 

control problem requires UAS technicians to closely check the UAS’s flight path multiple 

times and ensure adequate coverage of the entire area (Jensen 2008). The georeference 

problem involves precise alignment of each pixel from the UAS images with the 

appropriate GPS coordinates during or after image acquisition. In addition to these main 

limitations, small footprint size can lead to challenging circumstances when surveying a 

large-scale site due to the time-consuming nature of UAS image acquisition and limited 

flight times (Jensen 2008).   

There are two different solutions to the two major complications of UAS remote 

sensing called the open-loop and closed-loop solution. The open-loop solution addresses 

the problems independently, meaning that the coverage control problem is resolved prior 

to acquisition and the georeferencing problem resolved after image acquisition. The 

open-loop solution is straightforward and robust but dependent on a considerable degree 

of experience to appropriately calculate various settings including overlapping percentage 

and minimal camera shooting interval (Jensen 2008). Georeferencing complications can 

be resolved by performing feature-based stitching, a process that stitches images together 

using identifiable features as tie points. These features can manually be selected by the 

user or identified automatically with algorithms used by image processing software 

platforms. Automatic tie point identification is more effective if each photo shares at least 

a few common features, thus requiring the images to have sufficient overlap (Jensen 

2008). The closed-loop solution addresses both problems simultaneously by utilizing 

georeferencing data in real-time, which allows the path planning controller to monitor 
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each and every moment during flight. Another method uses positional data recorded by 

the UAS to map each individual image back to a relevant ground reference image and 

synchronizes each pixel with their corresponding ground coordinates (Jensen 2008).  

UAS’s can provide site-based image acquisition at high spatial resolutions, and 

the potential to collect imagery simultaneously with ground truth data (Lechner et al. 

2012). Many of these platforms are feasible because of the recent miniaturization and 

commercialization of multispectral cameras (Lyon et al. 1998). Once imagery is acquired, 

it is stitched together into mosaics, georeferenced, and used to classify vegetation for 

restoration monitoring (Zaman et al. 2011). 

 The suitability of UAS-derived hyperspectral imagery has been demonstrated by 

accurately delineating the composition of salt marsh vegetation (Silvestri et al. 2013). 

Another UAS platform was successfully employed to assess the extent of a swamp area 

using an object-based analysis for the classification of a hyper-spectral resolution dataset 

comprised of several hundred independent spectral bands. However, the purpose of the 

study limited classification to a broad two-class scheme (Lechner et al. 2012). The 

capabilities of object-based methods and ultra-high resolution UAS imagery are 

increasing as levels of pest infestation can be detected on a branch level by designating 

specific object features (Lehman et al. 2015).  

 

2.5 Object-based Image Analysis  

Object-based image analysis (OBIA) has typically been applied to wetlands using 

moderate resolution imagery, however, at 30 x 30 m, the data’s value are limited, 

particularly in the highly heterogeneous landscapes of wetlands. OBIA is inextricably 
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linked to multi-scale analysis concepts (Blaschke 2010). The primary operation of OBIA 

is segmentation, the division of the image into spatially continuous and homogenous 

areas referred to as image objects or image candidates (Conchedda et al. 2008). The 

process distributes neighboring pixels in image candidates by integrating spectral and 

shape parameters throughout a pair-wise clustering operation. Segmentation examines 

standard spectral values, but also addresses region-oriented properties such as context, 

texture, structure, size, and shape. Each stage of the pair-wise clustering function merges 

couples of image candidates that create the least increase of variance. This iterative 

optimization procedure terminates when the least increase is greater than the parameter 

set. Parameters apply to primary object characteristics, such as texture, shape, color, and 

heterogeneity-defined weights. Segmentation applied at multiple scales with separate 

scale parameters permits the creation of hierarchical networks between objects. These 

networks construct relationships between objects at each scale, creating sub- and super-

object interactions that can be used multiple times throughout the classification 

(Conchedda et al. 2008). 

Advantages of using OBIA include a lower likelihood of producing outputs 

influenced by the salt-and-pepper effect prominent in PBSIA (Dronova et al 2013). The 

salt-and-pepper effect can be described as the distribution of speckled pixels between 

different classes (Benz et al 2004), for which PBSIA classifications are common. While 

the salt-and-pepper effect can be minimized for PBSIA classifications, this requires 

additional post-processing techniques such as applying a low-pass filter.   

Since OBIA offers hundreds of variables, combinations, and overall options, this 

essentially allows endless revision and reclassification of OBIA classification outputs, as 
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well as the application of expert knowledge-based interpretation. However, OBIA 

classification can require an extensive dedication of time as hundreds of variables and 

combinations can burden the investigator with an overwhelming plethora of information 

and decisions (Benz et al. 2004). For example, if compact circular assemblages of 

vegetation characterize the distribution of a particular wetland species typically found in 

clusters, this knowledge can be applied to the classification through utilization of relevant 

object feature statistics such as, elliptical nature, compactness, dissimilarity, and distance 

to sub-object neighbor of the same class (Lechner et al. 2012). General advantages of 

OBIA include relevant statistic and texture processing that enhance separation of classes 

within the feature space, including the use of numerous features such as length, shape, or 

number of edges, and incorporating relationships between super and sub-object neighbors 

(Benz et al. 2004). Ultimately, this increases the transparency between real-world objects 

and the image objects used to classify the imagery because OBIA is intrinsically linked to 

multi-scale analysis (Benz et al. 2004). High-resolution imagery provides a situation in 

which the specific advantages and flexible nature of OBIA can be fully utilized (Blaschke 

2010). 

 High-resolution data using OBIA provides an alternative method to monitoring 

wetland cover. Typically, it is difficult to separate heterogeneous wetland features based 

on only spectral information of single pixels without the inclusion of surrounding spectral 

characteristics at a range of broad scales(Benz et al. 2004). Research has demonstrated 

that methods of segmentation and class hierarchy can be beneficial in swamp or wetland 

areas where vegetation species lack spectral contrast (Lechner et al. 2012). 



 

20 

Despite several potential benefits offered by OBIA, several problems can arise 

with this method. Segmentation, the first step required to perform an OBIA classification, 

can be a disadvantage if the image is difficult to segment in a manner that represents the 

reality of vegetation distribution, and requires several iterations of segmentation to 

produce an adequate output. If each class is not carefully considered during this crucial 

step, the segmentation level used may be insufficient, complications can arise during 

classification, and resulting maps may not meet accuracy requirements (Lechner et al. 

2012). 

In addition to the challenges posed by high-resolution imagery, OBIA does not 

have the efficiency and minimal user input of PBSIA as it requires user-defined 

parameters for segmentation and classification. Another disadvantage of OBIA is related 

to processing time due to the extensive data required to calculate statistics for each object 

and the hundreds of feature variables that may be selected in a variety of combinations 

(Benz et al. 2004). However, OBIA processes can increase classification accuracy, 

because the user can apply expert background knowledge of the area to enhance 

interpretation (Benz et al. 2004). For example, if a certain wetland species is typically 

found in clusters and distributed as dense elliptical assemblages of vegetation, this 

information can be applied to the classification for that specific class. Separation between 

that specific class and all other classes is enhanced through utilization of relevant object 

feature statistics such as elliptical nature, density, dissimilarity, and distance to sub-object 

neighbor of the same class (Lechner et al. 2012). 

Dronova et al. (2012) conducted research that tested image-segmentation scale 

suitability for the classification of six families of plant functional types and determined 
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none of segmentation techniques consistently offered advantages over the others. This 

study concluded that automated segmentation techniques are useful for vegetation 

detection with OBIA and advocated a thorough consideration of the spatial scale for 

image segmentation (Dronova et al. 2012). OBIA techniques of image segmentation and 

texture analysis have been applied to ultra-high resolution imagery to accurately 

distinguish six vegetation classes throughout riparian areas (Ehlers et al 2006).  

 

2.6 Comparison of OBIA and Pixel-based Spectral Image Analysis  

OBIA can improve classification accuracy of different plant species in complex 

wetland landscapes, compared to the traditional pixel-based spectral image analysis 

(PBSIA) (Matinfar et al. 2007). The main differences between methods are that in a 

traditional PBSIA classification, each pixel is classified independently, and in OBIA 

classification, all pixels within defined objects are included to define spectral behavior 

through an iterative classification process (Walter, 2000). 

 Desclée et al. (2006) tested the suitability of object-based techniques for detecting 

forest land cover change and results were compared to pixel-based outputs. The study 

crafted a new method to map land cover changes in forest by exploiting image 

segmentation, image differencing, and statistical analysis. Using high spatial resolution 

imagery, their method offers a straightforward approach that can be applied according to 

site-specific variables. The new technique was also assessed with multi-date SPOT-HRV 

imagery and accuracy was compared to the pixel-based method utilizing RGB-NDVI 

approach. The OBIA approach minimized the processing time because pixels were 

aggregated and reduced to segmented objects. The object-based change detection method 
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outlined in the study resulted in accuracy higher than 90% and an overall Kappa 

coefficient of agreement greater than 0.80. This technique enhances change detection 

mapping because parameters and classification algorithms can be fine-tuned to the 

dynamics of each individual class and the site-specific conditions (Desclée et al. 2006). 

Yu et al. (2006) applied an object-based approach to complete a comprehensive 

vegetation inventory at Point Reyes National Seashore in Northern California. Using high 

spatial resolution Digital Airborne Imaging System (DAIS) imagery, minimum image 

objects were produced with eCognition’s Fractal Net Evolution Approach (FNEA). Fifty 

two spectral, texture, topographic, and geometric features were calculated for every 

object. A classification and regression tree algorithm (CART) was used to rank features 

by significance and apply the most valuable features to classification. The technique was 

tested against a pixel-based maximum likelihood classification (MLC) and effectively 

overcame the salt-and-pepper effect found in the pixel-based output by using minimum 

image objects. Significant increase in accuracy was accomplished by applying a 

hierarchical classification scheme and results well exceeded the 40 percent hurdle often 

encountered when remotely sensed data is used to map detailed vegetation classifications 

(Yu et al. 2006).   

Matinfar et al. (2007) mapped land cover and land use in Iran with Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) data and compared pixel-based and object-

based performance. An error matrix was produced using the same reference data and 

results indicated that OBIA was superior in overall accuracy for all land cover classes. 

Improved performance using the object-based method was a result of effective image 
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segmentation and efficient handling of class hierarchy by the nearest neighbor classifier 

(Matinfar et al. 2007).  

Finally, Conchedda et al. (2008) tested OBIA and PBSIA methods for mapping 

mangrove change in Southwestern Senegal. Using multispectral SPOT data, the OBIA 

approach included multi-resolution segmentation and definition of class-specific rulesets 

that integrated spectral values and patterns amongst objects at independent hierarchal 

levels. The study reported higher accuracy for PBSIA when mapping classes of change. 

The OBIA method mapped areas of mangrove decrease with poor accuracy and instead 

produced higher accuracy for mapping mangrove increase. OBIA accuracy was limited 

by the selected Minimum Mapping Unit (MMU) because any change smaller than the 

MMU was prevented from being detected. Advantages of OBIA included being 

straightforward and easy to replicate, class-specific ruleset development, application of 

user knowledge to improve change detection accuracy, and the ability to conduct change 

detection analysis without single-date classifications required (Conchedda et al. 2008).  

Most of these comparative studies lack detailed species-group classification of 

wetland vegetation and utilization of ultra-high resolution imagery acquired by a UAS 

system. More importantly, few studies explicitly provide information on the feature 

properties applied or parameter values set in OBIA classification, and few justify how 

they determined these threshold values. Due to this fact, the majority of OBIA research is 

not straightforward and lacks detailed procedural information fit for precise replication.   
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3.0 MATERIALS AND METHODS 
 

3.1 Study Area 

 Richland Creek Wildlife Management (RCWMA) is located in Fairfield, Texas, 

approximately 110 kilometers southeast of Dallas, Texas. The RCWMA encompasses 

5,762 ha and includes a large constructed wetland (Figure 1). The wetland covers 

approximately 699 ha and incorporates an interconnected system of five sediment basins 

and twenty inundated cells. The area averages approximately 1 meter of annual rainfall, 

and is located downstream from the Richland-Chambers Reservoir, about half way in 

between Corsicana and Palestine, Texas. This places the site in an ecotone between the 

Post Oak Savannah and Blackland Prairie ecological regions.  

RCWMA has identified several desirable vegetation species for wildlife habitat 

support. Desirable vegetation includes Algae (Chlorophyta), Duckweed (Lemna L.), 

Sedge (Abildgaardia Vahl), Barnyard grass (Echinochloa P. Beauv.), Smartweed 

(Polygonum L), Burhead (Echinodorus Rich. ex Engelm), and a variety of Bulrush 

(Schoenoplectus (Rchb.) Palla )(USDA 2016). Smartweed and Barnyard grass are highly 

desirable as they provide ideal habitat for waterfowl and RCWMA is currently working 

to expand this habitat through innovative wetland management (USDA 2016).  

Identifying the most undesirable species of vegetation, Cattail (Typha L.), is of 

considerable importance for the RCWMA staff because it is capable of displacing the 

former desirable plant community (USDA 2016). Secondary nuisance plants include 

Sesbania (Sesvania Scop.) and American lotus (Nelumbo lutea Willd.). This process 

involves the movement of water through a wetland cell system comprised of two to four 

individual wetland cells.  
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Initially, nutrient-rich Trinity River water that is 95% effluent at low flow, 

releases into a primary cell and sits for a minimum of 6.5 days to guarantee adequate 

absorption of phosphorus, nitrogen, heavy metals, and other nutrients. The process 

repeats for all following cells and allows the former cells to dry out for several days. 

Next, the cells are prepared for the next flow by removing wetland bed soil containing the 

majority of unfavorable constituents. The last phase of this process involves the sediment 

basin where the final step of settling occurs at an ideal time of 8 hours. Wetland cell 

systems have been active for a range of time, from anywhere between six months to two 

years, and has subsequently resulted in distinctive cells that contain a variety of plant 

species, at different stages of development and abundance. Surveying wetland vegetation 

to estimate species distribution is essential to guaranteeing the success of this constructed 

wetland facility. 
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Figure 1. Study area 
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3.2 Image data acquisition  

 The Meadows Center for Water and the Environment (MCW) utilized an UAS 

system to conduct four flights and acquire 1,699 photos on October 31, 2014. The entire 

study area was broken into four overlapping flights to ensure adequate coverage of each 

of the 20 inundated cells. The images were acquired using two Canon digital cameras. 

The first camera acquired RGB imagery and measures spectral wavelengths between 400 

-700 nm (Red, Green and Blue (RGB) wavelength intervals). The second camera 

acquired NIR imagery and measures spectral wavelengths between 700 – 1,200 nm 

(Near-Infared or NIR wavelength intervals). At the beginning of the flights imagery was 

captured at a minimum altitude of approximately 400 m and at a maximum altitude of 

588 m. Most of the imagery was acquired at an altitude ranging between 571 m and 588 

m. The four flights were conducted over a total time of 4 hours and 35 minutes, between 

the initial launch for flight 1 at 8:45am and the final retrieval of flight 4 at 1:20pm.  

 

3.3 Image-processing 

 Pre-processing was conducted using Agisoft’s Photoscan professional. Red-

Green-Blue (RGB), and Near-infrared (NIR) mosaics for each flight were produced 

throughout a series of pre-processing steps. First, photos were aligned with recorded GPS 

data, followed by placement of marker coordinates to be used as ground control points. 

Then, camera alignment was optimized and followed by definition of the bounding box. 

The last steps included creating a dense point cloud, constructing a photo mesh, and 

finally generating an orthorectified photo. 
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 After mosaics were finalized, NIR, red, green, and blue bands were exported 

independently for the calculation of the Normalized Difference Vegetation Index (NDVI) 

and final layer stacking. The final layer stacking creates one imagery file containing all 

five independent bands so that they can be utilized simultaneously for classification 

purposes. NDVI increases the spectral differentiation of vegetation and non-vegetation 

features by using an algorithm which divides the sum of the near-infrared band (NIR) and 

red band values, by the difference of the NIR and red band values (Zhan and Xie 2012). 

The final step in image processing is conducting a five-band layer stack consisting of red, 

green, blue, NIR and NDVI bands. Utilization of this five-band layer stack enables 

maximum spectral separation between five components of spectral values and optimal 

conditions to perform an accurate classification. 

 

3.4 Vegetation data collection 

 Vegetation data were collected on October 5th, 6th, and 7th 2014. Samples were 

selected based on the guidance of Matthew Symmank’s expert knowledge, and careful 

consideration of species importance, vegetation variability, density, and cell-specific 

characteristics. GPS data were collected by traveling cell-to-cell in field teams of 3 to 8 

people. Trimble units were used to acquire GPS information and document species of 

vegetation as point and line features. After GPS features were processed they were 

ranked according to horizontal and vertical precision statistics. The most accurate and 

reliable features were selected for classification and confirmed by visual interpretation. 

Symmank’s background information of the area was applied to digitize polygons of 

various species that lacked representation in certain wetland cells. All GIS data were 
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segregated by class and each flight to increase ease of accessibility in ERDAS Imagine 

and eCognition Developer. 

 

3.5 Image classification  

Wetland vegetation cover was classified into eight management priority ranked 

classes: Class 1(Cattail), Class2 (Bullrush/Burhead/Toothcup), Class 3 

(Spikerush/Sedge), Class 4 (Arrowhead), Class 5(Algae/Duckweed/Pondweed), Class 6 

(Smartweed/Barnyard Grass/Millet), Class 7(Open Water/Submerged), and Class 8 

(American Lotus/Primrose). For each class, the most accurate and precise GTD was 

selected, then compiled into datasets designated for each flight, and ultimately used to 

justify the assignment of classification to appropriate classes.  

A supervised pixel-based classification was performed in ERDAS Imagine 2015. 

Spectral samples are collected using standard spectral distance values to ensure adequate 

coverage of vegetation assemblages, and are often class-specific. After class signatures 

have been adequately represented, classification is completed using a minimum distance 

to means classifier. 

 Next, eCognition Developer 64 8.4 (Trimble Germany GmbH 2015) was utilized 

to perform a supervised object-based classification by using image object feature 

statistics. These parameters include a priority class hierarchal structure correlated with 

the estimated class abundance and object-thresholds relative to each vegetation class. 

After inclusion of these object-specific parameters, objects for each class and respective 

spectral signatures are recalculated to include all pixels within class objects. 

 



 

30 

3.6 Accuracy assessment of classified images   

 Statistical analysis of classification accuracy was conducted using ERDAS 

Imagine. The accuracy assessment calculates the overall kappa and conditional kappa for 

each class, which represent agreement between classification results, and ground 

reference data, and an estimate of how much agreement is caused by chance. Other 

statistics produced by the assessment include producer’s accuracy, user’s accuracy, and 

overall accuracy. Producer’s accuracy and user’s accuracy are related to commission and 

omission error, respectively. Commission error refers to misclassification that occurs 

because pixels of another class are labeled by the user as belonging to the class of 

interest. Omission error takes place when pixels belong to the ground truth class, but are 

assigned to a different class (Conchedda et al. 2008). Error matrices for both 

classification methods were produced and compared. Resulting values for both the 

PBSIA and OBIA classification were then assessed to determine which vegetation classes 

were accurately classified.  

 

3.7 Statistical analysis 

 The classifications for both methods and each flight were spatially joined using 

ESRI’s ArcMap and a nearest neighbor algorithm. After the join was complete the area 

for both methods was calculated for all vegetation classes. Calculated area results for 

both classification methods were determined using the calculate geometry tool in 

ArcMap. The resulting spatial statistics assisted in further assessing the key differences 

between classification accuracy outcomes and understanding why vegetation area varies 

by class and by cell.
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4.0 RESULTS 
 

4.1 Results of 2014 PBSIA and OBIA classifications  

The pixel-based method classified a total area of 354,167 m² for Class 1 (Cattail), 

1,028,433 m² for Class 2 (Bulrush/Burhead/Toothcup) and 609,465 m² for Class 3 

(Spikerush/Sedge),149,301 m²  as Class 4 (Arrowhead), 2,783,367 m² as Class 5 

(Algae/Pondweed/Duckweed), 448,351 m² as (Smartweed/Barnyard Grass/Millet), 

131,422 m² as Class 7 (Open Water/Submerged), and 36,695 m² as Class 8 (American 

Lotus/Primrose) (Figure 2) (Table 2). 

The object-based classification yielded a total area of 531,054 m² for Class 1 

(Cattail), 656,226 m² for Class 2 (Bulrush/Burhead/Toothcup), 467,988 m² for Class 3 

(Spikerush/Sedge), 252,375 m² for Class 4 (Arrowhead), and 2,885,467 m² for Class 5 

(Algae/Duckweed/Pondweed) (Table 2). OBIA area totals classify 306,556 m² of Class 6 

(Smartweed/Barnyard Grass/ Millet), 1,414,634 m² of Class 7 (Open Water/Submerged), 

and 269,459 m² of Class 8 (American Lotus/Primrose) (Figure 3) (Table 2).  

In addition, class area totals for individual wetland cells were calculated in order 

to provide a comparison between the classification methods (Tables 3 and 4). The pixel-

based classification resulted in minimum class area values in cell 15, including 66 m² for 

Class 1 (Cattail) and 254 m² for Class 2 (Bulrush/Burhead/Toothcup) (Table 3). Cell 12 

represented maximum area values of 352,944 m² and 79,526 m² for Class 5 

(Algae/Duckweed/Pondweed) and Class 6 (Smartweed/Barnyard Grass/Millet), 

respectively (Figure 2) (Table 3). 

Object-based classification outcomes consist of minimum class values in cell 15, 

including 1,572 m² for Class 3 (Spikerush/Sedge), 1,525 for Class 6 
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(Smartweed/Barnyard Grass/Millet) and 154 m² for Class 1 Cattail, and 11 m² for Class 4 

(Arrowhead) (Table 4). Maximum class values identified in cell 14 consist of 65,532 m² 

for Class 8 (American Lotus/Primrose), 157,473 m² for Class 2 

(Bulrush/Burhead/Tootcup), and 217,976 m² for 7 (Open water/Submerged) (Figure 3) 

(Table 4). 

The classifications share the most comparable maximum values in cell 5 for Class 

1 (Cattail) as the difference between the OBIA and PBSIA area totals is 4,231 m². 

However, both methods produced contrasting results for most of the remaining classes 

and wetland cell area totals vary widely (Tables 3 and 4). Both classification results 

included maximum area values for Class 2 (Bulrush/Burhead/Toothcup) that were greater 

than any other class, excluding Class 5 (Algae/Duckweed/Pondweed) (Tables 3 and 4). 

Class 2 maximum area for the PBSIA classification totaled to 206,126 m², while the 

OBIA classification resulted in 157,473 m². The classification results also ended up with 

similar mean values for Class 5 (Algae/Duckweed/Pondweed) as the OBIA output 

averaged 144,273 m² and the PBSIA resulted in a mean of 133,168 m² (Tables 3 and 4). 

In addition, the classification outputs share nearly equal median values for Class 4 

(Arrowhead) as the differed by only 36 m² (Tables 3 and 4). The object-based output 

yielded a median value of 5,347 m² and the pixel-based method resulted in a median 

value of 5,251 m² (Tables 3 and 4). While these area calculations provide similar values, 

the statistics associated with the results are mainly due to the different approaches 

employed by the classification method (Tables 3 and 4). 
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Table 2. Total area (m²) results for pixel-based and object-based classification of UAS 
imagery acquired in 2014  
 

 

2014 - Total Area (m²) of Pixel-based & Object-based Classification Methods 

Class #                          
Class 
Name  

1            
Cattail 

2            
Bulrush/ 
Burhead/ 
Toothcup 

3       
Spikerush/ 

Sedge 

4       
Arrowhead 

5               
Algae/ 

Duckweed/ 
Pondweed 

6     
Smartweed/ 
Barnyard 

Grass/ 
Millet 

7                
Open 

Water/ 
Submerged 

8                   
Am. 

Lotus/ 
Primrose 

Method          

PBSIA 354,167 1,028,433 609,465 149,301 2,783,367 448,351 131,422 36,695 

OBIA 531,054 656,226 467,988 252,375 2,885,467 306,556 1,414,634 269,459 
           

Difference             
(OBIA - 
PBSIA) 

176,887 -372,207 -141,477 103,074 102,100 -141,795 1,283,212 232,764 
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Table 3.Wetland cell class area (m²) results for pixel-based classification of UAS 
imagery acquired in 2014 

 

 

Table 4. Wetland cell class area (m²) results for object-based classification of UAS 
imagery acquired in 2014 

Class 1 Cattail 2 Bulrush/ 
Burhead/ 
Toothcup

3 Spikerush/ 
Sedge

4 Arrowhead 5 Algae/ 
Duckweed/ 
Pondweed

6 Smartweed/ 
Barnyard 

Grass/ Millet

7 Open Water/ 
Submerged

8 Am. Lotus/ 
Primrose

Cell Number
2 7,541 9,323 72,760 25,340 68,997 52,813 5,378 NA
3 16,465 33,675 78,141 9,149 68,096 25,925 15,939 NA
4 9,878 3,965 31,259 3,965 7,933 12,240 3,018 NA
5 122,455 53,329 118,144 5,251 74,932 52,467 8,398 NA
6 58,180 94,778 86,339 4,175 10,297 62,572 30,724 NA
7 9,733 25,997 20,918 25,997 286,806 22,286 4,559 NA
8 6,169 20,503 21,896 9,817 102,136 9,469 12,876 NA
9 2,319 1,984 12,476 9,293 245,798 26,447 1,988 NA
10 3,796 8,490 4,774 6,529 259,033 28,665 10,544 NA
11 11,106 3,668 8,152 307 212,857 2,727 37,998 NA
12 639 6,751 NA NA 352,944 79,526 NA NA
13 5,941 172,368 NA NA 94,625 NA NA NA
14 NA NA NA 2,132 179,569 66,075 NA 36,695
15 66 254 NA NA 129,144 NA NA NA
16 19,165 45,198 117,081 19,078 114,604 3,626 NA NA
17 29,929 38,663 106,551 19,030 105,824 2,503 NA NA
18 2,881 206,126 327 1,249 157,750 NA NA NA
19 4,654 55,848 6,197 3,139 64,509 879 NA NA
20 12,413 54,340 5,183 4,043 54,340 NA NA NA
21 24,250 193,173 2,255 807 193,173 131 NA NA

2014 Pixel-based - Class Area by Wetland Cell (m²)

Class 1 Cattail 2 Bulrush/ 
Burhead/ 
Toothcup

3 Spikerush/ 
Sedge

4 Arrowhead 5 Algae/ 
Duckweed/ 
Pondweed

6 Smartweed/ 
Barnyard 

Grass/ Millet

7 Open Water/ 
Submerged

8 Am. Lotus/ 
Primrose

Cell Number
2 66,101 22,649 19,517 23,838 66,102 29,317 11,603 NA
3 76,585 23,210 22,297 22,117 64,690 17,904 19,207 NA
4 34,995 6,458 9,008 6,156 19,371 8,829 3,560 NA
5 118,224 70,481 89,261 NA 60,880 73,794 21,626 NA
6 110,483 28,029 22,649 26,037 74,933 13,222 15,120 NA
7 24,860 5,270 17,782 50,260 240,819 18,978 13,667 NA
8 8,616 4,646 9,364 18,648 110,624 7,542 61,540 NA
9 11,709 3,115 11,275 32,598 216,233 14,757 7,892 NA
10 20,040 3,690 11,410 41,648 210,192 9,570 20,445 NA
11 1,699 34,993 11,115 115 167,196 6,338 16,803 39,591
12 3,428 87,840 6,072 1,654 217,711 91,775 132,668 60,479
13 615 120,462 2,251 227 130,624 6,996 193,519 49,262
14 3,399 157,473 2,255 1,050 165,636 6,009 217,976 65,532
15 154 77,993 1,572 11 36,696 1,525 43,027 54,593
16 6,770 1,602 36,154 3,425 292,973 NA 54,796 NA
17 13,230 816 60,832 14,227 226,466 NA 34,325 NA
18 4,816 2,211 37,700 2,563 189,211 NA 188,085 NA
19 3,300 507 42,414 1,670 86,353 NA 153,551 NA
20 20,017 3,741 17,922 5,347 106,887 NA 63,708 NA
21 2,020 1,038 37,139 785 201,874 NA 141,531 NA

2014 Object-based - Class Area by Wetland Cell (m²)



 

35 

 
Figure 2. 2014 Pixel-based classification 
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Figure 3. 2014 Object-based classification 



 

37 

4.2 Accuracy results of 2014 PBSIA and OBIA classifications 

 The accuracy of both classification methods was assessed using accuracy reports 

generated in ERDAS Imagine. The pixel-based method resulted in an overall 

classification accuracy of 43.33% (Table 5). Most class specific accuracies were poor as 

the overall accuracy indicates, but a few classes produced accuracies of moderate 

agreement (Table 5). Classes with moderate agreement include Class 5 

(Algae/Pondweed/Duckweed), which resulted in a producer’s accuracy of 61%, as well 

as a user’s accuracy of 67% (Table 5). Class 7 (Open water/Submerged) also 

demonstrated moderate agreement with producer’s and user’s accuracy at 78% and 60%, 

respectively (Table 5). Class 8 (American Lotus/Primrose) also resulted in moderate 

agreement as producer’s and user’s accuracies were both approximately 60% (Table 5). 

Class 1 (Cattail) provided poor agreement with producer’s and user’s accuracies just 

below 50% (Table 5). The outcome for Class 2 (Bullrush/Burhead/Toothcup) exhibited 

even less agreement, with producer’s and user’s accuracies of 28% and 27%, respectively 

(Table 5). Class 3 (Spikerush/Sedge) resulted in the lowest accuracies with extremely 

poor producer’s (8%) and user’s (10%) accuracies (Table 5).   

 The object-based classification yielded an overall classification accuracy of 

62.92% and demonstrated a stronger agreement between reference and classified objects 

for all classes (Table 6). Class 1 (Cattail) showed strong agreement with a producer’s 

accuracy of nearly 83% and a user’s accuracy of 80% (Table 6). Classes 2, 6, 7 and 8 

indicated moderately strong agreement with producer’s accuracies just under 70% (Table 

6). Class 5 resulted in a producer’s accuracy of 59% and a user’s accuracy of 67% (Table 
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6). Class 4 (Arrowhead) indicated a weak agreement with producer’s and user’s 

accuracies of 40% (Table 6). 

 Kappa coefficient of agreement statistics further support the strong agreement of 

the OBIA classification as demonstrated in the accuracy assessment report (Table 7). The 

overall Kappa statistic of 0.5762 indicates moderate agreement for the object-based 

classification, while a value of 0.324 for the PBSIA classification indicates poor 

agreement and unreliable accuracy revealed in the initial accuracy report (Table 7). The 

object-based conditional Kappa of 0.3208 for Class 4 (Arrowhead) is the only value that 

indicates weak agreement (Table 7). Other OBIA conditional Kappa’s all indicate 

moderate to very strong agreement, including a value of 0.7725 for Class 1 (Cattail) 

(Table 7). The pixel-based Kappa conditional for Class 3 (Spikerush/Sedge), -0.064, 

demonstrates a complete lack of agreement and unreliable accuracy of the PBSIA 

classification for that class (Table 7). 

 Based on these accuracy outcomes of the classification methods used on the UAS 

imagery acquired in 2014, the object-based method was identified as the more accurate 

method to be used to classify the UAS imagery acquired in 2015 (Tables 5, 6, and 7).  
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Table 5. Accuracy results for pixel-based classification of UAS imagery acquired in 2014 

 
 

Table 6. Accuracy results for object-based classification of UAS imagery acquired in 
2014 

Class Number and  Name
Reference 

Totals
    Classified 

Totals # Correct
  Producer's 

Accuracy
 User's 

Accuracy

1 Cattail 29 30 14 48.28% 46.67%
2 Bulrush/Burhead/Toothcup 29 30 8 27.59% 26.67%
3 Spikerush/Sedge 37 30 3 8.11% 10.00%
4 Arrowhead 38 30 12 31.58% 40.00%
5 Algae/Duckweed/Pondweed 33 30 20 60.61% 66.67%
6 Smartweed/Barnyard /Millet 21 30 11 52.38% 36.67%
7 Open Water/Submerged 23 30 18 78.26% 60.00%
8 Am. Lotus/Primrose 30 30 18 60.00% 60.00%

         Totals 240 240 104

Overall Classification Accuracy =    43.33%

2014 Pixel-based Classification Accuracy Results

Class Name
Reference 

Totals
    Classified 

Totals # Correct
  Producer's 

Accuracy
 User's 

Accuracy

1 Cattail 29 30 24 82.76% 80.00%
2 Bulrush/Burhead/Toothcup 32 30 21 65.63% 70.00%
3 Spikerush/Sedge 32 30 17 53.13% 56.67%
4 Arrowhead 28 30 12 42.86% 40.00%
5 Algae/Duckweed/Pondweed 34 30 20 58.82% 66.67%
6 Smartweed/Barnyard /Millet 25 30 17 68.00% 56.67%
7 Open Water/Submerged 34 30 23 67.65% 76.67%
8 Am. Lotus/Primrose 26 30 17 65.38% 56.67%

         Totals 240 240 151

Overall Classification Accuracy =     62.92%

2014 Object-based Classification Accuracy Results
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Table 7. Kappa statistic results for pixel-based and object-based classification of UAS 
imagery acquired in 2014 

Pixel-based Object-based

Overall Kappa Statistics 0.3524 0.5762

Conditional Kappa for each Category
Class Name           Kappa           Kappa

1 Cattail 0.3934 0.7725
2 Bulrush/Burhead/Toothcup 0.1659 0.6538
3 Spikerush/Sedge -0.064 0.5
4 Arrowhead 0.2871 0.3208
5 Algae/Duckweed/Pondweed 0.6135 0.6117
6 Smartweed/Barnyard /Millet 0.3059 0.5163
7 Open Water/Submerged 0.5576 0.7282
8 Am. Lotus/Primrose 0.5429 0.514

2014 UAV Imagery Classification KAPPA (K^) Statistics



 

41 

4.3 2015 UAS imagery classification results 

 Object-based classification was used to classify the UAS imagery acquired in 

2015. To assess the annual variations of wetland vegetation cover, the 2014 and 2015 

object-based classifications were compared in a post-classification change detection. 

The 2015 object-based classification yielded a total area of 531,054 m² for Class 1 

(Cattail), 2,014,366 m² for Class 2 (Bulrush/Burhead/Toothcup), 314,405 m² for Class 3 

(Spikerush/Sedge), 686,916 m² for Class 4 (Arrowhead), and 312,498 m² for Class 5 

(Algae/Duckweed/Pondweed) (Table 9). 2015 area totals also include 555,113m² of Class 

6 (Smartweed/Barnyard Grass/ Millet), 2,121,975m² of Class 7 (Open 

Water/Submerged), 503,977m² of Class 8 (American Lotus/Primrose), 46,412 m² of 

Class 9 (Sesbania/Button Bush), and 24,377 m² of Class 10 (Ash Tree) (Figure 4) (Table 

9).  
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Table 8. Total area (m²) results for object-based classification of UAS imagery acquired 

in 2015 

2015 Total Area (m²) of Object-based Classification 

Class #                          
Class Name  Total Area (m²) 

1                        
Cattail 1,276,529 

2                      
Bulrush/ 
Burhead/ 
Toothcup 

2,014,366 

3                         
Spikerush/ Sedge 314,405 

4                        
Arrowhead 686,916 

5                            
Algae/ 

Duckweed/ 
Pondweed 

312,498 

6                        
Smartweed/ 

Barnyard Grass/ 
Millet 

555,113 

7                                  
Open Water/ 
Submerged 

2,121,975 

8                                    
Am. Lotus/ 
Primrose 

503,977 

9                           
Sesbania/ Button 

Bush 
46,412 

10                                  
Ash Tree 24,377 
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Figure 4. 2015 Object-based classification 
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4.4 Accuracy results of 2015 classification  

The 2015 object-based classification yielded a poor overall classification accuracy 

of 29.00% and demonstrated weak agreement between reference and classified objects 

for all classes (Table 9). Class 1 (Cattail) showed weak agreement with a producer’s 

accuracy of 13.73% and a user’s accuracy of 23.33% (Table 9). Classes 2 

(Bulrush/Burhead/Tootchup) indicated weak agreement with a producer’s accuracy of 

13.89% and a user’s accuracy of 16.67% (Table 9). Class 5 (Algae/Duckweed/Pondweed) 

resulted in better accuracy with a user’s accuracy of 50% (Table 9). Class 4 (Arrowhead) 

also demonstrated more moderate agreement with a producer’s accuracy of 40% (Table 

9). Class 7 (Open Water/Submerged) demonstrated the highest user’s accuracy at 53.33% 

and Class 9 (Sesbania/Button Bush) demonstrated the poorest user’s accuracy at 6.67% 

Kappa coefficient of agreement statistics further indicated the weak agreement of 

the 2015 object-based classification with an overall kappa statistic of 0.2111 (Table 10). 

The highest conditional Kappa’s were 0.4253 for Class 5 (Algae/Duckweed/Pondweed) 

and 0.4553 for Class 7 (Open Water Submerged) (Table 10). The weakest conditional 

Kappa’s were 0.053 for Class 2 (Bulrush/Burhead/Toothcup) and 0.0244 for Class 9 

(Sesbania/Button Bush) (Table 10).  
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Table 9. Accuracy results for object-based classification of UAS imagery acquired in 
2015 

 

Table 10. Kappa statistic results for object-based classification of UAS imagery acquired 
in 2015 

 

 



 

 

46 

4.5 Change detection results of 2014 and 2015 classifications  

Analysis was concluded with a post classification change detection between the 

2014 and 2015 object-based classifications, despite the poor accuracy yielded by the 

2015 classification. The 2015 classification included additional areas of RCWMA as 

requested by management, however, these areas were excluded from the change detection 

as they were not classified for 2014.  

From 2014 to 2015, 23% of Class 1 (Cattail) was unchanged and 22% transitioned 

to Class 2 (Bulrush/Burhead/Toothcup) (Table 11). Twenty seven percent of Class 2 

remained Class 2 and 19% transitioned to Class 1 by 2015 (Table 12). Nearly 21% of 

Class 3 (Spikerush/Sedge) transitioned to Class 1 and almost 30% transitioned to Class 2 

according to the 2015 classification (Table 13). Class 4 (Arrowhead) also experienced 

similar differences as transition included 23 % for Class 1 and 26% for Class 2 (Table 

14).  For Class 5 (Algae/Duckweed/Pondweed) transition included a nearly 30% shift to 

Class 2, as well as 21% to Class 8 (Open Water/Submerged) (Table 15). Class 6 

(Smartweed/Barnyard/Millet) underwent similar change as previously described for 

Classes 3 and 4 (Table 16). Class 7 (Open Water/Submerged) largely remained 

unchanged but also experienced a transition of 27% to Class 2 (Table 17). Class 8 

(American Lotus/Primrose) experienced a 28% transition to Class 2 and a 23% transition 

to Class 8 (Table 18).
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Table 11. Class 1 change detection results 
Classified as Class 1 (Cattail) in 2014    

    
2015 Classification  % Area (m²) 

    
Class 0 (Unclassified)  0 1,180 
Class 1 (Cattail)  23.17 89,010 
Class 2 (Bulrush/Burhead/Toothcup)  22.34 85,830 
Class 3 (Spikerush/Sedge)  4.85 18,610 
Class 4 (Arrowhead)  9.83 37,760 
Class 5 (Algae/Duckweed/Pondweed)  8.11 31,160 
Class 6 (Smartweed/Barnyard /Millet)  13.5 51,850 
Class 7 (Open Water/Submerged)  9.34 35,870 
Class 8 (Am. Lotus/Primrose)  5.6 21,530 
Class 9 (Sesbania/Button Bush)  2.69 10,320 
Class 10 (Ash Tree)  0.58 2,230 

 Total   
  100 384,180 

 

Table 12. Class 2 change detection results 
Classified as Class 2 (Bulrush/Burhead/Toothcup) in 2014  

    
2015 Classification  % Area (m²) 

    
Class 0 (Unclassified)  0 2,430 
Class 1 (Cattail)  18.95 56,220 
Class 2 (Bulrush/Burhead/Toothcup)  26.79 79,450 
Class 3 (Spikerush/Sedge)  3.36 9,980 
Class 4 (Arrowhead)  12.38 36,720 
Class 5 (Algae/Duckweed/Pondweed)  3.8 11,290 
Class 6 (Smartweed/Barnyard /Millet)  7.53 22,350 
Class 7 (Open Water/Submerged)  18.27 54,180 
Class 8 (Am. Lotus/Primrose)  7.44 22,060 
Class 9 (Sesbania/Button Bush)  1.12 3,330 
Class 10 (Ash Tree)  0.36 1,060 

 Total   
  100 296,630 
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Table 13. Class 3 change detection results 
Classified as Class3 (Spikerush/Sedge) in 2014   

    
2015 Classification  % Area (m²) 

    
Class 0 (Unclassified)  0 2,440 
Class 1 (Cattail)  20.78 71,500 
Class 2 (Bulrush/Burhead/Toothcup)  28.54 98,190 
Class 3 (Spikerush/Sedge)  4.99 17,170 
Class 4 (Arrowhead)  7.59 26,110 
Class 5 (Algae/Duckweed/Pondweed)  5.19 17,870 
Class 6 (Smartweed/Barnyard /Millet)  11.99 41,270 
Class 7 (Open Water/Submerged)  13.75 47,320 
Class 8 (Am. Lotus/Primrose)  5.84 20,110 
Class 9 (Sesbania/Button Bush)  1.06 3,660 
Class 10 (Ash Tree)  0.26 890 

 Total   
  100 344,090 

 

Table 14. Class 4 change detection results 
Classified as Class 4 (Arrowhead) in 2014    

    
2015 Classification  % Area (m²) 

    
Class 0 (Unclassified)  0 840 
Class 1 (Cattail)  22.5 56,320 
Class 2 (Bulrush/Burhead/Toothcup)  26.36 65,980 
Class 3 (Spikerush/Sedge)  4.38 10,960 
Class 4 (Arrowhead)  6.47 16,190 
Class 5 (Algae/Duckweed/Pondweed)  4.44 11,120 
Class 6 (Smartweed/Barnyard /Millet)  13.1 32,800 
Class 7 (Open Water/Submerged)  15.16 37,950 
Class 8 (Am. Lotus/Primrose)  5.63 14,090 
Class 9 (Sesbania/Button Bush)  1.48 3,690 
Class 10 (Ash Tree)  0.48 1,190 

 Total   
  100 250,290 
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Table 15. Class 5 change detection results 
Classified as Class 5 (Algae/Duckweed/Pondweed) in 2014  

    
2015 Classification  % Area (m²) 

    
Class 0 (Unclassified)  0 13,430 
Class 1 (Cattail)  18.11 527,580 
Class 2 (Bulrush/Burhead/Toothcup)  29.64 863,540 
Class 3 (Spikerush/Sedge)  4.4 128,260 
Class 4 (Arrowhead)  7.35 214,070 
Class 5 (Algae/Duckweed/Pondweed)  3.88 113,170 
Class 6 (Smartweed/Barnyard /Millet)  8.67 252,510 
Class 7 (Open Water/Submerged)  21.39 623,140 
Class 8 (Am. Lotus/Primrose)  5.93 172,920 
Class 9 (Sesbania/Button Bush)  0.48 13,900 
Class 10 (Ash Tree)  0.16 4,730 

 Total   
  100 2,913,820 

 

Table 16. Class 6 change detection results 
Classified as Class 6 (Smartweed/Barnyard /Millet) in 2014  

    
2015 Classification  % Area (m²) 

    
Class 0 (Unclassified)  0 2,450 
Class 1 (Cattail)  21.49 93,250 
Class 2 (Bulrush/Burhead/Toothcup)  24.03 104,270 
Class 3 (Spikerush/Sedge)  5.29 22,940 
Class 4 (Arrowhead)  5.98 25,970 
Class 5 (Algae/Duckweed/Pondweed)  2.25 9,780 
Class 6 (Smartweed/Barnyard /Millet)  17.03 73,890 
Class 7 (Open Water/Submerged)  14 60,770 
Class 8 (Am. Lotus/Primrose)  8.94 38,800 
Class 9 (Sesbania/Button Bush)  0.76 3,320 
Class 10 (Ash Tree)  0.21 900 

 Total   
  100 433,880 
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Table 17. Class 7 change detection results 
Classified as Class 7 (Open Water/Submerged) in 2014   

    
2015 Classification  % Area (m²) 

    
Class 0 (Unclassified)  0 14,530 
Class 1 (Cattail)  11.81 196,590 
Class 2 (Bulrush/Burhead/Toothcup)  27.03 449,860 
Class 3 (Spikerush/Sedge)  3.03 50,460 
Class 4 (Arrowhead)  9.13 152,000 
Class 5 (Algae/Duckweed/Pondweed)  5.17 86,110 
Class 6 (Smartweed/Barnyard /Millet)  2.54 42,240 
Class 7 (Open Water/Submerged)  35.63 593,050 
Class 8 (Am. Lotus/Primrose)  5.33 88,730 
Class 9 (Sesbania/Button Bush)  0.26 4,390 
Class 10 (Ash Tree)  0.06 1,070 

 Total   
  100 1,664,490 

 

Table 18. Class 8 change detection results 
Classified as Class 8 (Am. Lotus/Primrose) in 2014   

    
2015 Classification  % Area (m²) 

    
Class 0 (Unclassified)  0 2,070 
Class 1 (Cattail)  15.78 95,410 
Class 2 (Bulrush/Burhead/Toothcup)  28.24 170,780 
Class 3 (Spikerush/Sedge)  3.18 19,200 
Class 4 (Arrowhead)  15.61 94,360 
Class 5 (Algae/Duckweed/Pondweed)  0.81 4,900 
Class 6 (Smartweed/Barnyard /Millet)  4.09 24,760 
Class 7 (Open Water/Submerged)  23.43 141,650 
Class 8 (Am. Lotus/Primrose)  8.59 51,960 
Class 9 (Sesbania/Button Bush)  0.24 1,450 
Class 10 (Ash Tree)  0.03 170 

 Total   
  100 604,640 
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5.0 DISCUSSION 
 

5.1 UAS Classification of Vegetation  

 The UAS imagery utilized in this research permitted the production of a wetland 

vegetation cover dataset at a high spatial resolution (16-18 cm) for both 2014 and 2015. 

However, low altitude data acquisition limited the footprint size and the total area each 

individual image covered. This reduction in footprint size, similar to the study conducted 

by Jensen et al. (2011), required the majority of time be dedicated to extensive processing 

and geo-referencing tasks.  

In addition, when using a UAS to acquire imagery, limited footprint size also 

delays and complicates classification performance when surveying a large-scale site due 

to the time sensitive limitations related to variation in lighting conditions. Imagery 

acquired in 2014 was divided into four separate flights which provided overlap over 

certain cells and wetland area. This required pre-processing of not only four RGB 

mosaics, but four NIR mosaics as well, in addition to ensuring that the corresponding 

RGB and NIR mosaics aligned precisely. Despite these complications, this research 

outlines an innovative procedure for effective monitoring and classification of a large-

scale site, while the majority of UAS classification of vegetation studies are conducted 

over minor areas (Semeraro et al. 2015, Masi et al. 2013).. 

The results of this research support the conclusions of other UAS vegetation 

classification studies, including Lehman et al.’s (2015) detection of pest infestation on a 

branch level utilizing object specific features, which demonstrates the evolving 

proficiencies of object-based methods and high-resolution UAS imagery. By addressing 

vegetation classes independently, the object-based classification was able to implement 



 

 

52 

background user knowledge, also an advantage reinforced by Lehman’s et al. (2015) 

OBIA vegetation classification. For example, the tendency of Class 1 (Cattail) to form in 

adjacent circular clumps was accounted for in the classification by including elliptical fit 

and shape index as a primary weighted feature employed to identify Class 1.  

The accuracy outcomes of the 2014 object-based classification established high 

accuracy standards for large-scale classification of wetland vegetation using high-

resolution UAS imagery. The reliability of the 2014 dataset is comparable to existing 

research regarding vegetation classification at high spatial resolution (Desclée et al. 2006; 

Yu et al. 2006). The superior results of the 2014 object-based classification support the 

findings outlined in comparative vegetation classification studies conducted by Desclée et 

al. (2006), Yu et al. (2006), Mantifar et al. (2007), Conchedda et al. (2008), and Dronova 

et al. ( 2012). Supported findings include evidence that object-based classification offers 

alternative means to address the complex and heterogeneous nature of wetlands, improve 

overall classification accuracy, and prevent production of the “salt-and-pepper effect”. 

 

5.2 Influence of Classification Method on Outcomes 

These results demonstrate that object-based classification can provide outputs 

where the effect of interspersed, fine spatial scale vegetation mixing is mitigated. 

Traditional pixel-based classification is efficient and straightforward as opposed to 

object-based classification, which required dedication of more time for processing tasks, 

algorithm modifications, and general demand of user input. Object-based classification 

can fully utilize background user knowledge by readily applying spatial concepts to the 

classification approach (Benz et al. 2004). By including contextual information, rather 
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than only spectral information, object-based classification offers the opportunity to 

maximize accuracy and minimize the likelihood of producing results significantly 

affected by the “salt-and-pepper effect.” However, the initial segmentation of imagery 

into objects does not always prevent the “salt-and-pepper effect” (Blaschke 2010). If the 

user does not utilize the appropriate segmentation approach and apply suitable spatial 

information to the classification, spectral characteristics of image objects may produce 

the “salt-and-pepper effect” only at a larger minimum mapping unit (Matinfar et al. 

2007). 

The minimum mapping unit or unit of analysis is important to consider when 

comparing the two classification methods used in this research. As previously verified in 

a study conducted by Baker et al. (2007), defining classification parameters with high 

spatial resolution is delicate when detecting pattern differences in heterogeneous wetland 

areas, and careful assessment of the minimum mapping unit is crucial. For the purposes 

of this research, the unit of analysis for the pixel-based classification was defined, by 

default, as the spatial resolution of the imagery or the size of the pixel. The object-based 

classification defines the unit of analysis depending on the scale parameter used for the 

segmentation process and is generally larger than the size of a pixel. Therefore, the 

segmentation step of OBIA can potentially mitigate this issue before classification has 

even begun (Mantifar et al. 2007). Alternatively, if the segmentation is performed with 

little scrutiny of the minimum mapping unit, this step could inversely increase the odds of 

producing the “salt-and-pepper effect” among larger units of analysis (Conchedda et al. 

2008). However, as demonstrated by Dronova et al. (2012), who tested segmentation 
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scale suitability for the classification of six plant functional type families, it is possible 

that none of the segmentation scales offer any measurable advantage over the others.  

 Another notable consideration when comparing PBSIA and OBIA is the 

difference in the classification algorithm used. While OBIA methods can employ a nearly 

endless combination of classification algorithms to a weighted variety of vegetation 

classes, the PBSIA classification presented in this research utilized a single nearest 

neighbor classification algorithm applied to five bands of data. 

 More importantly, an extensive amount of time was dedicated to the object-based 

classification in order to test variations of segmentation and alter the classification 

algorithm, sometimes up to three or four times. If a similar amount of time was devoted 

to the PBSIA classification through additional post-processing techniques like application 

of a low pass-filter, accuracy of the pixel-based results may have been enhanced (Walter 

2000). Because significantly more time was committed to the object-based classification 

and a minimal amount of time to the pixel-based classification, these results may reflect 

this difference in time spent as shown in a comparative study completed by Yu et al. 

(2006), and therefore may serve as a source of error and uncertainty. 

 

5.3 Sources of Error and Uncertainty  

As mentioned previously, the small footprint size of the imagery acquired in 2014 

required the study area to be separated into four individual image mosaics, and as a 

result, in tandem with the time sensitive characteristics of UAS imagery collection, 

created classification complexities and challenges. These complexities should be 

considered as a potential source of error and uncertainty as ground truth data was 
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collected inconsistently throughout the four flights. Ground truth data collection was 

conducted under the assumption that spectral signatures of vegetation classes from one 

cell or individual flight could be used to classify the vegetation class for the entire area. 

However, as the imagery was collected at different times of day, with varying cloud 

cover conditions, and some cells were individually classified, this option was not feasible 

and required some improvisation through visual interpretation. Additionally, some 

classes were simply challenging to classify because of the lack of ground truth data for 

cells imaged during different flights. 

The 2015 object-based results exhibit poor, unreliable accuracy, and is largely the 

consequence of classifying imagery collected under less than ideal acquisition conditions. 

Under these acquisition conditions, an enhanced payload that should have allowed 

imagery of the entire study area to be collected in two flights, instead required the 

collection of imagery in four flights. All four flights were acquired under dissimilar 

illumination conditions and cloud cover, ultimately requiring twice the amount of 

processing and georefrencing time simply to determine which imagery would be most 

reliable for the classification. Due to inconsistent illumination conditions, three out of the 

four flights resulted in extremely dark imagery, only usable in the middle section of the 

mosaic. Consequently, three mosaics, all acquired from different flights were necessary 

for classification of the entire study area.  

In addition, partial cloud cover created spectral inconsistency, prevented uniform 

segmentation, and complicated adequate separation of classes. The poor accuracy of the 

2015 classification also limits the value of performing an annual change detection from 

2014 to 2015. While the purpose of this research was to assess the accuracy of 
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classification methods, the 2015 classification results and annual change detection for this 

study area and the time period of analysis would be of limited benefit to wetland 

managers.  
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6.0 CONCLUSION 
 

6.1 Conclusion 

 UAS platforms provide an economical approach to acquire imagery with 

high temporal and spatial resolutions. UAS platforms are ideal for wetland and other 

natural resource managers because UAS image acquisition enables detailed species-level 

mapping to be conducted efficiently. Monitoring wetland vegetation is critical to 

assessing wetland health and productivity. To effectively assess the spatial complexities 

of wetland vegetation, species-level mapping should be completed once a year at 

minimum.  

This research used GIS, remote sensing, and statistical analysis to assess the 

accuracy of pixel-based, and object-based classification methods for mapping of wetland 

vegetation with imagery acquired by UAS. The 2014 classification results indicate that 

object-based classification produced more accurate results than the pixel-based 

classification method. In addition, overall accuracy statistics demonstrate how these 

methods can produce drastically different results. Assessing these statistics at each 

individual cell also reveals the contrast between results of pixel-based and object-based 

classification. 

In addition, the low accuracy of the 2015 classification was primarily due to the 

lack of image quality. These results demonstrate the importance of comprehensive 

mission planning and disciplined image acquisition. Thorough preparation of acquisition 

procedure can minimize processing complications related to time of day differences and 

contrast of lighting conditions. The potential accuracy of classification results can be 
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maximized if multiple flights are conducted only under a strict protocol that guarantees 

practical compatibility of imagery.  
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APPENDIX SECTION 

 



 

 

60 

 
Figure 1. Study Area 
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Figure 2. 2014 Pixel-based classification 
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Figure 3. 2014 Object-based classification 
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Figure 4. 2015 Object-based classification
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Figure 5. Permission to use data 
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