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ABSTRACT 

KNOWLEDGE FOR TEACHING MATHEMATICS TO LATINO ENGLISH 

 LANGUAGE LEARNERS: AN INSTRUMENT DEVELOPMENT STUDY 

by 

Aaron T. Wilson, B.S., B.A. 

Texas State University-San Marcos 

May 2013 

SUPERVISING PROFESSOR: M. ALEJANDRA SORTO 

The purpose of this study was to identify the domains, as well as specific aspects 

of, knowledge for teaching mathematics to Latino English Language Learners (KT-

MELL) and to develop a valid and reliable measure of this knowledge. Latino ELLs are 

rapidly becoming one of the most populous of student groups in schools—in urban cities 

especially, but across the nation increasingly. Furthermore, there is evidence that many 

mathematics teachers of these Latino ELLs may not have encountered or been given the 

opportunity to learn how to teach these students. A central element of preparation of 

teachers is the knowledge needed by effective teachers. While there exist studies of the 

knowledge needed to be effective in teaching mathematics, there is only limited, if any, 

study of what mathematics teachers of ELLs need to know in order to effectively teach
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these students. As an initial step toward filling this gap in research, this study sought to 

identify domains of knowledge needed thought to be important for to teaching math to 

ELLs.  

Based upon rigorous review of the research and practitioner literature, and upon 

many hours of mathematics classroom observations, this study defined a framework for 

the pedagogical content knowledge needed by mathematics teachers of Latino ELLs. 

Three domains of knowledge were proposed: KDIFF-knowledge of the difficulties that 

Latino ELLs may encounter in learning mathematics, KCAP-knowledge of the special 

capacities for learning mathematics that Latino ELLs may possess based upon their 

particular cultural, linguistic and learning backgrounds, and KSTRAT-knowledge of 

strategies for teaching mathematics to Latino ELLs. This framework is closely aligned 

with existing frameworks of mathematical knowledge for teaching.  

Using this framework and classroom observational data, a survey instrument was 

developed and field-tested among both pre-service and in-service teachers from diverse 

regions of the state of Texas. Based upon the results of data analysis methods central to 

both classical test theory (CTT) and item response theory (IRT), the underlying factor 

structure of the instrument was identified to be bi-dimensional; KDIFF and KCAP 

formed a single scale and KSTRAT a separate scale. Furthermore, precise psychometric 

properties of the items were uncovered, which demonstrated that the measurements 

obtained had an acceptable degree of reliability within specific ranges of ability of the 

respondents. Additionally, a number of interesting response patterns were observed along 

with several important evidences of construct validity. 
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CHAPTER 1: INTRODUCTION 

Statement of the Problem 

Many mathematics teachers in the United States may not have adequate 

opportunity to learn how to effectively instruct their Latino English Language Learners 

(ELL). Furthermore, the knowledge needed for teaching these students has not been 

defined with enough precision to allow for the development of instruments designed to 

measure this knowledge. Although extensive work has been done in defining and 

measuring mathematical knowledge for teaching (MKT; Hill & Ball, 2009) among 

general school-aged populations of students, at least two trends call for more a precise 

definition of this knowledge for the special population of Latino ELLs; while the growth 

of the number of Spanish-speaking ELLs in public schools has far surpassed the growth 

of the general school population (Francis et al., 2006; Capps et al., 2005), the gap in 

mathematics achievement between this group of students and other students has persisted, 

and in some cases increased, for more than a decade (U. S. Department of Education, 

2011). These trends imply that teachers, educators and educational administrators could 

all benefit from a more precise theory of the knowledge needed for teaching mathematics 

to Latino ELLs. Such theory could lead, not only to improvements in educational 

opportunities for mathematics teachers, but also to the development of valid and reliable 

knowledge measures. 
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Purpose of the Study 

Observing this absence of a precise theory of knowledge needed for teaching 

mathematics to Latino ELLs as well as an absence of instruments designed to measure 

this knowledge as situated in specific mathematics contexts, the purpose of this study was 

to propose, based upon a thorough review of existing research literature, domains of 

knowledge for teaching mathematics to Latino ELLs (KT-MELL), and to develop an 

instrument capable of measuring this knowledge with validity and reliability. This study 

investigated the knowledge that mathematics teachers at the early secondary grades, 

approximately grades 4 through 8, should possess to be effective teachers of Latino 

English language learners. Through review of research literature and through teacher 

observation, this study proposed domains of knowledge for teaching mathematics that 

seem to be particularly pertinent for teachers of Latino ELLs. The central exploration of 

this study concerned developing a measure of this knowledge. Hence, the study defined 

possible aspects of the domains and offered questionnaire items that may serve as 

indicators for measurement of the knowledge. Data analysis served mainly to investigate 

evidence of the validity and reliability of the measurements, but also to uncover 

important patterns in responses. 

Significance of the Study 

“Well-designed research has shown that professional development focused around 

such knowledge results in changed classroom performance and improved student 

learning.” (Hill, Ball, & Schilling, 2008, p. 373). 

The results of this study will contribute to the research base of theory about 

teaching mathematics to Latino English language learning students. By defining domains 

of knowledge, this study may inform both teacher education and teacher licensure. 
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Hence, this study may be of interest to mathematics educators involved in designing 

appropriate instructional experiences for pre-service teachers or in designing professional 

development for practicing mathematics teachers. Indeed, at the time of writing a school 

district in the Midwest region of the United States that was currently experiencing rapid 

growth of its Latino ELL population had contacted the researcher and expressed interest 

in administering the instrument to teachers of all levels (K – 12) with a view to using the 

results to inform professional development. Furthermore, because of its measurement 

component, the study may be of interest to policy-makers and those involved in defining 

criteria for evaluating the readiness of mathematics teacher candidates to enter the 

profession.  

Another application of the results of this study is related to teacher employment 

and assignment decisions. Creation of valid and reliable measures of knowledge for 

teaching mathematics to ELLs is a step forward in the direction of assessing the quality 

of mathematics teachers for teaching special populations of students. Clearly, much more 

work would need to be completed for such measures to have predictive validity in 

relation to student outcomes. However, this research may constitute part of the 

foundational work toward that end by providing an example of a valid and reliable 

measure of an important knowledge construct. 

A broader implication of the results of this research is the possibility of improving 

the quality of mathematics instructors for these students and, as a result, narrowing the 

long-standing mathematics achievement gap between Latino ELLs and other students. 

Improved teacher assessment means may imply gains in control of teacher quality for 

specific teaching assignments. Such a result also has implications for providing equitable 

access to educational opportunities and, consequently, to occupational opportunities. 



4 
 

 

Research Questions 

The specific research questions that drove this inquiry were the following: 

1.  What are the domains of knowledge needed to teach mathematics to Latino 

English Language Learners? 

2.  Drawing from the research literature and middle school mathematics classroom 

observations, what are some of the aspects of these domains of knowledge when 

teaching Latino English Language Learners at the middle school level? 

3.  What evidences of reliability and validity does an instrument developed to 

measure these domains and aspects exhibit? 

Definitions of Terms 

•   Latino(s) is used in reference to a person (or persons) that come from Spanish-

speaking homes or communities, most of whom, in Texas and the southwestern 

U.S., are of Mexican descent. This usage is similar to the U.S. Census Bureau’s 

usage, wherein the terms Hispanic and Latino synonymously refer to “those who 

classify themselves in one of the specific Hispanic or Latino categories… 

‘Mexican,’ ‘Puerto Rican,’ or ‘Cuban’ - as well as those who indicate that they 

are ‘other Spanish, Hispanic, or Latino’” (Hume, Jones, and Ramirez, 2011). For 

consistency, Latino has been used throughout this work. However, it is observed 

that using such generalizations may cause confusion or misunderstanding. As 

Téllez, Moschkovich and Civil (2011) comment, the differences among Latinos, 

because of places of origin, length of residence in the U.S., proficiency with 

English, etc., are so numerous as to make it difficult to use any label that implies 

generalizations. 
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•   English language learner(s) or ELL(s) are those students whose English 

proficiency, though it is developing, is below average for their grade level 

because of primary usage at home—or at an earlier time of life—of a language 

other than English. Similarly, the What Works Clearinghouse of the U.S. 

Department of Education says that ELLs are students “with a primary language 

other than English who have a limited range of speaking, reading, writing, and 

listening skills in English” (2013, January, p. 1). The Department of Education 

also defines ELL students as “national-origin-minority students who are limited-

English-proficient” (Francis et al., 2006, p. 3). 

Delimitations 

This study involved teachers of Latino English language learning students. 

Mainly middle school, and a very small number of high school and elementary school 

teachers, participated. Although some teachers from whom data were taken may have 

taught non-Latino ELLs, it is assumed with confidence, that most of their ELLs were 

Latino. Furthermore, the study also involved pre-service teachers, of whom it could not 

be assumed that they possessed experience teaching ELLs. Furthermore, the participating 

pre-service teachers may have been in preparation to teach any of elementary, middle or 

high school mathematics courses. Finally, both the teachers and pre-service teachers that 

participated in the study were exclusively from the state of Texas. 

Summary 

Mathematics teachers of Latino English language learners were the focus of this 

dissertation research. Understanding the dimensions of and creating valid and reliable 

measures for the knowledge needed by these teachers was the goal. The recent and 

projected increase in the number of Latino ELLs in schools motivates attention to the 
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needs of these students. Furthermore, a history of underachievement on standardized tests 

of mathematics proficiency constitutes evidence of the present inadequacy of teachers to 

provide equitable access to high quality mathematics instruction and learning for these 

students. Hence, this study sought to understand what are the important domains and 

associated aspects of the knowledge essential for mathematics teachers of Latino ELLs. 

This inquiry does not stand alone as an attempt to improve instruction for ELLs. Many 

states having large percentages of students who are ELLs have structures in place for 

both training and assessing the proficiency of their teachers to address the needs of these 

students in their classrooms. Furthermore, researchers and educators in institutions of 

higher education have embraced the needs of ELLs by drawing up standards for teachers 

of ELLs and by attempting to treat ELLs’ educational issues more frequently in the 

coursework offered to pre-service teachers. Nevertheless, many of the attempts both by 

states and by those in higher education have not addressed ELLs in the context of 

mathematics classes specifically. Current assessments and current teacher standards are 

exceedingly general and are, in large part, void of a precise mathematics instructional 

perspective. Because of this, it is questionable whether such assessments can measure 

teachers’ readiness to design mathematics instruction for ELLs. And it is doubtful 

whether current teacher standards can adequately inform decision-making for teaching 

specific mathematics topics to ELLs. In order to help mathematics teachers of Latino 

ELLs there is the need that both theory and assessment be more closely tied to the 

mathematics that they teach. 

Therefore, this study sought to define domains of knowledge that are useful for 

mathematics teachers of ELLs and to even identify important aspects of each domain. 

Possession of empirically tested knowledge constructs is essential for the effective design 
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of curriculum materials for both teacher education and professional development. 

Moreover, an understanding of the proper structure of the knowledge that capacitates 

mathematics teachers to effectively instruct Latino ELLs is central to any attempt to 

assess teachers’ readiness to teach this population. Therefore, this study may be 

significant to mathematics educators, mathematics curriculum designers and to 

educational policy-makers.  

Beyond proposing domains of knowledge needed by effective mathematics 

teachers of Latino ELLs, this study also attempted to give preliminary measures of these 

domains. It may be inadequate to define the knowledge needed by these teachers without 

also proposing a method by which said knowledge may be reliably and validly measured. 

Hence, a major product in which this study has resulted is an empirically tested scale for 

measuring teachers’ knowledge for teaching mathematics to English language learners. 
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CHAPTER 2: REVIEW OF LITERATURE 

Educational Context of the Study 

Mathematics teachers are encountering more and more Latino English language 

learners (ELLs) in their classrooms. While over the last twenty years the number of 

children aged 5—17 that speak only English at home has decreased by 2.6%, the number 

of such children that speak a language other than English at home has increased by 

138.8% and the number of children that speak English with difficulty has increased by 

36.7% (U.S. Department of Education, 2012). These demographic figures are reflected in 

schools, where ELLs are the fastest growing group of public school students. In 

comparison with the 12% growth of the general school population in the last two 

decades, ELLs have experienced a 169% increase; it is predicted that ELLs will 

constitute  thirty percent of the school-age population by the year 2015 (Francis et al., 

2006). Moreover, it is also evident that Spanish-speakers constitute the largest group of 

ELLs. Spanish is spoken by more than 70 percent of ELLs across all school grade levels 

(Francis et al., 2006; Capps et al., 2005). Thus, Spanish-speaking students, most of whom 

are Latino students, form the largest body of ELLs in mathematics classrooms in the 

United States. Statistics like these make it clear that Latino ELLs must form a significant 

object of the efforts of all educators and that the focus on this population will only 

increase.
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Cognizance of another educational trend has motivated researchers to investigate 

ELL students and their teachers for more than three decades. Educational statistics like 

those published by the Center on Education Policy (2010) have shown that a persistent, 

and large, gap exists in the achievement levels of ELLs and of other students on state 

standardized tests of learning. In the report cited above the authors observe that, although 

trends in tests scores for all students, including ELLs, were positive in the three years 

preceding publication of the findings, yet the trend of the existence of “very large 

differences in percentages proficient”, that is, meeting the standard, between ELLs and 

other students remains (Center on Education Policy, 2010, p. 2). Similarly, the National 

Center for Educational Statistics (U. S. Department of Education, 2011) reports that, over 

the last nearly twenty years, between white and non-ELL Latino students in grade 8 there 

has been a consistent difference of between 18 and 26 points in mathematics scores on 

the National Assessment of Educational Progress (NAEP). This trend was even more 

pronounced between non-ELL Latino students and Latino ELLs where the difference in 

scores ranged between 28 and 34 points in favor of non-ELLs. 

A focus on achievement gaps between student groups carries social undertones 

that have been criticized by some (Gutiérrez, 2008). Drawing attention to disparities 

between student groups has been seen as offering little contribution toward the 

advancement of lower performing groups and, rather, as perpetuating negative 

stereotypes about such groups. Nevertheless, these figures lead to questions concerning 

the quality of mathematics instruction and of the opportunity to learn mathematics 

enjoyed by Latino English language-learning students (Abedi & Herman, 2010). Under 

what conditions are ELLs being instructed in mathematics? What qualifications do their 

instructors possess? Are teachers adequately prepared to teach their Latino ELL students? 
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Given their limited English-proficiency (U. S. Department of Education terminology), it 

seems strange that most ELLs should be given instruction in mainstream, English-only 

classrooms, as is current practice in most states (Wilson, 2011). Furthermore, and of great 

relevance to this study, since most new teachers should expect to have ELLs in their 

classrooms (Meskill, 2005), one would expect that structures for assessing teachers’ 

readiness to work with this group of students would be in place. 

The No Child Left Behind Act (NCLB, 2001) holds states accountable for 

attending to the academic progress of their ELL students and also encourages institutions 

of higher education to prepare beginning teachers to work with these students. How, then, 

are mathematics teachers being prepared to teach ELLs and what theories are driving 

such efforts? An investigation of the requirements for certification to teach ELLs seems 

warranted.  

California, Texas, New York, Arizona, and Florida are among the states having 

the largest numbers of English language learners (Payán & Nettles, 2008). An exhaustive 

review of their respective departments of education websites revealed that all of these 

states have made some effort to serve their large number of ELLs. California, perhaps the 

most advanced, requires all educators that have at least one English learner (EL) in their 

classrooms to earn passing grades on a series of three CTEL (California Teacher of 

English Learners) authorization exams. These exams assess teachers’ knowledge of 

language and its development, assessment and instruction of ELs, and ELs’ culture and 

inclusion in classrooms. In Texas, teachers of English as a second language (ESL) are 

required to pass a certification exam, similar in content to the CTEL exam, but that 

includes separate sections on academic content knowledge as well. Florida requires its 

educators to pass a Professional Education exam that includes questions about research-
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based practices for teaching ELLs. Arizona requires a Structured English Immersion 

(SEI) endorsement of its teachers; the endorsement is obtained by completing 45 hours of 

SEI training including instruction and assessment strategies for ELLs. And New York 

certifies bilingual teachers to teach specific content areas in a foreign language through 

an exam that assesses their proficiency in the target language. Common to all of these 

states is assessment of teachers’ knowledge of general principles and strategies across 

differing academic content contexts. Such assessment measures may be reflective of the 

content of teacher education textbooks which offer “insufficient depth to provide the 

beginning teacher with meaningful guidelines” (Watson et al., 2005, p. 148). 

Furthermore, there is evidence that, at least at the elementary school level, these 

types of preparation have minimal impact on the achievement of ELL students (Williams 

et al., 2007). The study in question found no correlation between students’ academic 

achievement and the number of teachers in the school holding special credentials for 

teaching ELLs. Thus, the question of whether mathematics teachers in these states may 

have adequate preparation for teaching ELLs remains open. More precisely, current 

means for assessing the preparation of mathematics teachers for teaching ELLs seem to 

be lacking in specificity. This apparent deficiency draws attention to theory behind 

teacher preparation. 

 Researchers concerned with the assessment of ELLs have asserted that “with the 

rapid growth of ELL populations, states should place a substantial focus on increasing 

teacher knowledge of current ELL issues…including pre-service teacher education and 

continuing teacher education” (Wolf, Herman, & Dietel, 2010, pp. 8—9). But, how 

should states do this and what are the most poignant elements of this teacher knowledge? 

After taking a look at teacher licensure structures in view of preparing teachers of ELLs, 
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one could hope to find more answers in the theory behind the preparation of teachers. 

Knowledge needed for teaching mathematics to ELLs would seem central for the 

adequate preparation and professional development of mathematics teachers of this 

population. Furthermore, if such preparation would involve—beyond classroom 

practicums and observations of experienced teachers—explicit instruction, then what 

should be the content of such instruction and what knowledge informs the choice of said 

content? Three exemplary theoretical solutions are presented below. 

First, researchers at TESOL (Teachers of English to Speakers of Other 

Languages, Inc.), jointly with NCATE (the National Council for the Accreditation of 

Teacher Education), have produced 11 standards (Appendix A) for recognizing ESL 

education programs. These standards are grouped into the five domains of language, 

culture, instruction, assessment and professionalism. These standards are very similar in 

content to those addressed by the certification exams previously discussed and they 

appear to be equally lacking in specificity to the task of mathematics teaching. 

Second, the National Clearinghouse for English Language Acquisition (NCELA, 

2010) has offered sixteen research-based “fundamentals for every successful teacher of 

ELLs” (Leier & Fregeau, 2010, p. 22). These sixteen content knowledge and skill areas 

(Appendix B) are grouped under the four categories of language, culture, policy, and 

teaching and are proposed to be crucial understandings for effective teachers of ELLs, 

regardless of the academic subject being taught. Included are basic language acquisition 

principles, acculturation and cultural awareness principles, legal provisions for education 

of ELLs, and four teaching principles that closely align with the Sheltered Instruction 

Observation Protocol or SIOP—making input comprehensible, including both language 

and content objectives, using cognitive and cultural scaffolding, and using translation 
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services (Echevarría, Short, & Vogt, 2007). These principles, which may be important as 

foundational understandings for teachers of ELLs, again offer little suggestion of how 

mathematics teachers should think about their ELLs as mathematics learners or about 

their mathematics instruction for ELLs. 

As a third approach to addressing the need of preparing teachers to teach ELLs, 

some researchers and educators have made efforts at “infusing English language learner 

issues throughout professional educator curricula” (Meskill, 2005, p. 739).  This effort 

responds to the observation that “unfortunately, subject matter courses in teacher 

preparation programs tend to be academic in both the best and worst sense of the word, 

scholarly and irrelevant, either way remote from classroom teaching” (Ball, Thames & 

Phelps, 2008, p. 404). The Training All Teachers project, reported upon by Meskill 

(2005), involved university teacher educators, graduate students, and practicing school 

teachers in professional development centered around the topics of language acquisition, 

culture, regulations, and communication. The mathematics educator involved in the 

project, who had previously “thought that ELLs were in a ‘sink or swim’ position in the 

classroom” (p. 746), “became aware that not every ELL received adequate support” and, 

consequently, “considered it even more important for all teachers to design instruction 

based on individual learner needs” (p. 747). However, beyond the usage of hands-on 

materials and diagrams, there is little suggestion of how mathematics teachers should 

design such instruction, much less of how they should think about the task of teaching 

mathematics to ELLs. 

Current test measures for assessing teachers’ preparation for teaching 

mathematics to ELLs seem to be lacking in specificity to the task of mathematics 

teaching. More importantly, there is an apparent absence of theory that could drive the 
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improvement of such assessments. Although some states require teachers to be 

conversant in general ELL strategies, they do not require that teachers know how to use 

them in specific mathematics instructional contexts. It is possible that many teachers are 

unable to do this. Furthermore, while there exists theorization about the fundamental 

elements of effective instruction of ELLs, it seems to be difficult to find theorization, 

much less empirical evidence, related to knowing how to teach mathematics to ELLs. 

Theoretical Framework  

To address this shortage in theory, the purpose of this study was to investigate 

middle school mathematics teachers’ knowledge for teaching mathematics to English 

language learners (KT-MELL). The investigation included identification of important 

knowledge domains and also development of an instrument useful for measuring the 

knowledge. Implicit in this purpose is a framework for approaching both the theory that 

informs and the methodology that respond to the questions of this study. This study 

looked at teachers’ knowledge through the lens offered by Lee S. Shulman in 1986 when 

he coined the term pedagogical content knowledge (PCK) to describe the form of 

knowledge that teachers invoke in their work of classroom teaching. Such knowledge is a 

composite of content—in this case mathematics—and of pedagogical knowledge. The 

theoretical framework for this study was based on the theory of teachers’ knowledge 

offered by Shulman and, more recently, elaborated by Hill, Ball, & Schilling, (2008) in 

their findings concerning the domains of PCK. The methodological framework was based 

on measurement of teachers’ knowledge for teaching mathematics (Hill, Schilling, & 

Ball, 2004) and will be addressed in Chapter 3. Based upon this understanding of 

teachers’ knowledge, the first part of the literature review serves to uncover what has 

been learned not primarily of teachers’ actions but of their knowledge applied to the 
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mathematics teaching of Latino English language learners (ELLs). Nevertheless, in 

accordance with the PCK framework, this study assumed that teachers’ actions are 

motivated by their knowledge and, thus, have direct implications for the elements of their 

knowledge. Since the research questions of this study concern mathematics teachers’ 

knowledge, the ultimate section of the literature review returns to treat this topic in more 

depth. 

Consequently, the research that informed this study came from two directions: the 

mathematics education of Latino ELLs, and mathematics teachers’ knowledge. Since this 

study sought to determine what teachers need to know in order to help Latino English 

language learning students to be successful in mathematics, it necessitated consideration 

of the significant body of research focused specifically on the mathematical learning and 

teaching of ELLs. Fortunately for this study, most of the research concerning ELLs in the 

United States has dealt with Latino ELLs, since this group composes the vast majority of 

the ELLs in this country. Thus, such research serves as the point of departure for this 

attempt to shed light upon the complex nature of learning and teaching mathematics for 

this group. 

Furthermore, since a central question of this research concerned the knowledge 

that teachers should possess in order to elevate the mathematical understanding of these 

students, research into teacher knowledge, especially into knowledge for teaching 

mathematics, played a central role in this study as well. Like research concerning 

mathematics education of ELLs, this later body of research is also quite extensive; the 

search for the nature of knowledge needed for teaching has resulted in many well-worn 

trails. Some of these trails are relatively new and appeared to offer a useful route toward 
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answering the questions of this study. These will be discussed in the later part of the 

review of the literature. 

Mathematics Education of Latino English Language Learners 

This search to identify the knowledge needed by mathematics teachers of Latino 

English language learners began with careful consideration of the research concerning the 

mathematics teaching and learning of these students. Researchers have attended to the 

special needs of these students for many years. An extensive review of this literature has 

revealed that there is a natural division of the research that is roughly chronological. 

There are three sections corresponding to three foci taken by researchers concerned with 

the mathematics education of ELLs: difficulties faced by Latino ELLs in mathematics 

classrooms, assets possessed by Latino ELLs for learning mathematics, and strategies for 

teaching mathematics to Latino ELLs. Moschkovich (April 2007, 2002) has observed that 

earlier studies of the mathematics education of ELLs most frequently took a deficit 

perspective, a perspective that called attention to the difficulties and challenges that ELL 

students and their teachers face in the mathematics classroom. Furthermore, she noted 

that more recent studies have taken a sociocultural or affordance perspective, one that 

attends to the capacities that these students have for making meaning in mathematics 

classes. Finally, attention must be given to the large number of strategies that have been 

posited for helping ELLs in mathematics classes. 

This categorization of the literature fits well with the research questions of this 

study when seen through the theoretical framework described above. As is addressed in 

more detail in the later part of this chapter, pedagogical content knowledge, as 

conceptualized by Shulman (1986), informs educators both of the difficulties that learners 

face when learning specific academic content and of things that empower them to learn 
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said content. Hence, knowledge both of difficulties faced by ELLs in mathematics 

classrooms and of capacities that these students have for learning mathematics would 

seem central as elements of mathematics teachers’ knowledge for teaching this 

population. 

Difficulties Faced by Latino ELLs. This section discusses studies that have 

resulted in uncovering the difficulties that Latino ELLs can have in the mathematics 

classroom. Moschkovich (2002) has defined two distinct deficit perspectives taken by the 

research: the vocabulary acquisition perspective and the multiple-meanings perspective. 

From the vocabulary acquisition perspective, the knowledge—or lack thereof—of 

vocabulary plays a central role and difficulty in learning and teaching mathematics to 

ELLs. From the negotiating multiple-meanings perspective, however, a central difficulty 

that ELLs face in the mathematics classroom is the different meanings that words assume 

when used in mathematical contexts rather than in everyday contexts. This way of 

thinking may help to understand the difficulties of ELLs presented below. The difficulties 

faced by Latino ELLs in mathematics classes can broadly be categorized as: language 

proficiency difficulties, difficulties with word problems, difficulties with instructional 

format of classroom, and difficulties with assessment. 

Difficulties with Language Proficiency. Latino ELLs in mathematics classrooms 

find themselves in the simultaneous roles of mathematics students and English language 

students. Since these students have been viewed as being limited-English-proficient and 

since many mathematical tasks in the classroom involve understanding problem 

situations set forth verbally, it is reasonable to first consider the limited proficiency as a 

barrier to learning math. Cuevas (1984), working with Latino ELLs in Miami, was one of 

the earliest researchers to inquire into the difficulties faced by these students. Two 
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classrooms of first-grade students were selected in successive years of the study, one 

lower performing and one higher performing. Both classrooms contained mostly Latino 

students. This researcher sought to observe the difficulties that second-language learners 

have in learning mathematics. The two central questions of this research concerned 

whether the concepts were presented in a manner that matched the developmental level of 

the students and which language, English or Spanish, was the better language of 

instruction for the students. Students were evaluated in terms of their linguistic ability 

and their ability with number, numeration and simple mathematical operations. Cuevas 

(1983) concluded that some mathematical tasks were beyond the students’ level of 

maturity and could be postponed until a later stage. Furthermore, he also found that the 

language of instruction caused difficulty for Spanish monolingual students. The students 

may have benefited more from mathematical instruction in their own language, that is, in 

Spanish. Finally, it is worthy to note that this research also observed that bilingual Latino 

students performed better in mathematics tasks than did either monolingual Spanish-

speakers or Latino monolingual English-speakers. This result coincides with more recent 

research that suggests the advantage that bilingual math learners may possess (Téllez, K., 

Moschkovich, J., & Civil, M., 2011; Moschkovich, 2002). 

The Cuevas (1984) study just discussed looked at the ways in which deficiencies 

in linguistic proficiency hindered students’ access to mathematical concepts. Also taking 

the view that linguistic deficiency causes difficulty in learning mathematics for ELLs, 

Lager (2006) used an extremely narrowly focused lens to determine precisely which 

words caused the most difficulty for ELLs and non-ELLs on an assessment of algebraic 

thinking involving determining formulas from geometric patterns. A sample of 221, 

mostly (82%) Latino sixth and eighth grade students, 133 of whom were ELLs, took the 
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assessment. From this sample, 26 students were interviewed concerning the errors that 

they had committed on the test. Lager (2006) categorized the errors that students had 

made as errors of confusing words or phrases, shifts of application—for example, using 

the term number in its cardinal sense versus nominal sense—, and polysemy—words 

having two or more different meanings. This type of error is an example of the difficulty 

caused by the multiple-meanings (Moschkovich, 2002) that words can take on in 

mathematics classes. A major finding of the work was to conclude that the words pattern, 

previous, and extension were the most troubling to students. Furthermore, the researcher 

noted that while pattern is part of the mathematical register, previous and extension are 

everyday—but abstract—terms being used to describe the meaning of pattern. The ELLs’ 

linguistic deficiency is seen as obscuring the meaning of the words and, thus, the 

mathematics. 

Difficulties with Word Problems. The two studies just discussed looked at the 

ways in which ELLs’ limited English proficiency and lack of familiarity with certain 

vocabulary have hindered their achievement in mathematics. Other research has focused 

on the difficulty that word problems specifically can pose to ELLs.  Martiniello (2009) 

investigated nonmathematical linguistic complexity as a source of difficulty for ELLs in 

word problems. By investigating the differential item functioning (DIF), that is, the ways 

in which the varying levels of linguistic complexity of items affects the performance of 

ELLs and non-ELLs of similar ability levels, the researcher  found that “the greater the 

item nonmathematical lexical and syntactic complexity, the greater are the differences in 

difficulty parameter estimates favoring non-ELLs over ELLs” (p.160). This would be 

expected. But, what may be even more informative for this study was Martiniello’s 

(2009) finding that inclusion of nonlinguistic representations reduced the difficulty that 
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linguistic complexity caused for the ELLs. This could be interpreted as empirical 

evidence that pictures, diagrams, and other semantic mappings can be used to help ELLs 

make sense in mathematical learning and problem solving tasks. However, usage of 

visual images does not guarantee comprehension—Lager (2006) noted that many 

students missed a problem that was assumed to be accessible to them because of the 

clarity of the picture. Nevertheless, evidence that schematic representations may have the 

capacity to provide specific assistance to ELL students that have difficulty with verbal 

representations is noteworthy for this study. 

Difficulties with Classroom Format. Some researchers have tried to understand 

the ways in which instructional practices affect language minority students. Chang (2008) 

used data from the Early Childhood Longitudinal Study Kindergarten Cohort (ECLS-K), 

available from the National Center for Education Statistics (NCES), to assess the extent 

to which four different types of student grouping strategies—teacher-directed whole class 

activity, teacher-directed small-group activity, teacher-directed individual activity, and 

student-selected activity—were related to gains or losses in mathematics achievement 

among the different ethnic, socio-economic, and language proficiency groups. The 

comparison of grouping strategies revealed that, compared to Caucasian and African 

American English-only students, whose achievement improved, Latino ELL students’ 

achievement suffered under the whole-class, teacher-centered instructional format. This 

study gave no indication of the reason for which Latino ELLs’ scores diminished under 

this type of instruction. However, it would appear that teachers’ usage of English as the 

primary language of instruction under this mode is related. Cuevas’s (1983) conclusion 

that Spanish may be a more appropriate language of instruction for elementary school 

Latino ELLs would seem to confirm this reasoning. 
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Difficulties with Assessments. Llabre and Cuevas (1983) observed that, “Given 

the inevitable dependence of achievement and intelligence tests on language, it seems 

logical to assume that any such tests in English would have decreased validity and 

reliability for nonnative English speakers” (p.318). To better understand how the 

language in which a mathematics test is given affects student outcomes on the test, these 

researchers administered two equivalent versions of a mathematics achievement tests, 

one in Spanish and the other in English, to 408 bilingual 4th and 5th graders in Miami, 

Florida. Each child took both versions of the test, the language order being 

counterbalanced in the sample. A major finding of this work was that the students 

performed better on the English version of the test. This seemed to contradict the 

researchers’ initial doubts concerning validity and reliability; one would have expected 

that a significant number of these bilingual students would have performed better on the 

Spanish version. However, the researchers were careful to note that these students were 

selected because of their possession of certain minimal proficiency levels in both 

languages.  

More pertinent to the notion of mathematics teacher knowledge may be Llabre 

and Cuevas’s (1983) finding concerning the levels of achievement on two broad types of 

questions. The researchers found that the items on the instruments divided themselves 

broadly into conceptual and application questions. While students generally performed 

better on conceptual problems than they did on application problems, the researchers’ 

observed that students with higher levels of English comprehension performed more 

equally on application problems and comprehension problems. Although the article does 

not explain the difference between these two types of problems, one can guess that the 

difference was between computational problems that tested comprehension of 
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mathematical concepts and word problems that tested students’ ability to apply the 

computational ability in a problem situation. This interpretation is supported by 

Moschovich’s (2002) criticism that much of the early research in mathematics education 

of ELLs focused on narrow definitions of classroom mathematical activity, including 

arithmetic computation and solving word problems. The interpretation of application 

problems in the Llabre & Cuevas (1983) study as word problems along with their finding 

that bilingual students performed more poorly on such problems echoes other research 

concerned with the difficulty that ELLs have with interpreting linguistically complex 

mathematical tasks (Lager, 2006; Martiniello, 2009). This research points to the complex 

issue of test-language in mathematics assessments of ELLs as well as to the difficulty that 

all students, and ELLs especially, have in solving word problems on assessments. 

Summary. This section has looked at the difficulties that Latino ELLs in the 

elementary and middle school grades can have in the mathematics classroom. Broadly, 

these difficulties may be classified as language proficiency difficulties, difficulties with 

word problems, difficulties with instructional formats, and difficulties with assessments. 

There is evidence that ELLs’ limited proficiency with English can interfere with their 

mathematics learning in English classrooms. When working with word problems, beyond 

the basic difficulty that many students have of mathematizing verbal problem situations, 

it appears that ELLs can struggle, more than do other non-ELL students, with certain 

words because of not knowing the words or because the words have been applied in ways 

in which they are not familiar. ELLs in the early grades appear to also have difficulty 

when learning mathematics in an English-speaking classroom in which the teacher 

directly instructs all students as a class, rather than working with individual ELLs alone. 

Finally, assessment poses a particular challenge for some Latino ELLs. While students 
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that have some English fluency may perform better on assessments given in English, the 

language of instruction, it is also probable that they may struggle more with application 

problems than with more simplistic conceptual, that is computational, problems. 

Mathematical Learning Capacities Possessed by Latino ELLs. The foregoing 

section has reviewed the difficulties in learning mathematics that research has ascribed to 

Latino English language learners. Although these difficulties may seem to, at least 

partially, explain the observed differences in mathematics achievement between Latino 

ELLs and other groups, studies that focus on the limited ability of these students have 

been criticized as offering little constructive contribution to the understanding of how 

these students learn and, hence, of how to elevate their achievement (Moschkovich, 

2007). This section will consider studies that have drawn attention to the assets or 

capacities that Latino ELLs bring to the classroom, and to ways that teachers have drawn 

upon them, for learning mathematics. It begins with a definition of mathematical 

competence that is central to many of these studies, one that goes beyond mere arithmetic 

fluency and problem-solving skill. 

Moving to More Inclusive Views of Mathematical Competence. Perspectives on 

what constitutes mathematical activity and mathematical competence have developed 

over the last twenty years. To a great extent this move has gained momentum through 

publications of standards for teaching and learning mathematics like those offered by the 

National Council of Teachers of Mathematics. The NCTM (2000) vision of mathematics 

education defines mathematics learning as being a communicative activity in which 

students should “communicate their mathematical thinking coherently and clearly to 

peers, teachers, and others” (p. 61). Researchers like Moschkovich (2002) have embraced 

this more recent, broader view of mathematics learning and have criticized earlier deficit 
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views of ELLs’ math learning as being too simplistic in their definition of what 

constitutes mathematics learning in the classroom. She has pointed out that mathematics 

learning involves more than memorizing mathematical vocabulary and solving word 

problems, more even than negotiating the different meanings of words in the everyday 

and mathematics registers. To researchers like Moschkovich (2002), mathematical 

communication involves more than simple arithmetic and problem solving; it is 

characterized by explaining solutions, describing conjectures, proving conclusions, and 

presenting arguments.  

Linguistic Creativity and Mathematical Argumentation Ability. Building on 

Gee’s (1999) definition of Discourse, Moschkovich’s (2002) defined participation in 

mathematical discourse thus:  

“Participating in classroom mathematical Discourse practices can be understood 

in general as talking and acting in the ways that mathematically competent people 

talk and act.” (p. 199) 

This understanding has led her to observe mathematics ability in Latino ELLs that 

may have otherwise been overlooked if language proficiency had been the focus. 

Moschkovich (2002) offered two examples of Latino ELL students, between grades 6 and 

9, demonstrating proficiency with mathematical objects and explanations while in neither 

case were all of the correct English mathematical words found. In the first case, a group 

of four students differentiated the properties of a quadrilateral with four right angles from 

other quadrilaterals and, in the process, created the word rangle to denote such shapes 

(for ignorance of the word rectangle). In the second case, a Latino student, engaged in a 

discussion concerning the slope of the graph of a linear function, used mainly Spanish to 

justify a statement concerning the steepness of the line. The mathematical strength of the 
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argument was found not in the correctness of the words but in the correctness of the 

mathematical practice of justifying a claim by invoking assumptions about the 

mathematical situation and by using mathematical representations as examples to support 

the claim. Moschkovich (2002) used these vignettes to demonstrate the ways in which a 

deficit perspective of the mathematics learning of Latino ELLs can fail to capture the 

learning that is actually taking place. These two cases exemplify the communicative 

ability that Latino ELL students may possess based upon their linguistic 

resourcefulness—seen in the creation of new words to describe mathematical objects—

and on their ability to argue mathematically in their fluent tongue. 

By embracing a broader view of what constitutes mathematical discourse, some 

researchers (Téllez, K., Moschkovich, J., & Civil, M., 2011; Moschkovich, 2007) are 

attempting to move away from a deficit perspective of ELLs as being less capable toward 

an affordance perspective in which alternative forms of mathematical expression—forms 

that may not require the usage of correct or standard terminology—can be seen as valid 

demonstrations of mathematical proficiency. In their view, ELLs can show signs of 

advanced mathematical proficiency that are missed by focusing simply on the language 

used or on the precision of the arithmetic operations.  

Discursive and Communicative Ability. Researchers have investigated the role 

that participating in mathematical discourse plays for Latino ELLs. Khisty and Morales 

(2004) have considered the interplay of students’ academic language proficiency and 

mathematics teaching and learning. Although they adopt the deficit viewpoint held by 

language acquisition theorist Cummins (1981), believing that ELLs’ limited knowledge 

of academic language is a major limitation to their mathematical learning, yet their case 

study presents examples both of how academic language deficiency hinders ELLs’ math 
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learning and of how ELLs’ Spanish fluency can actually capacitate them to think 

mathematically and to express mathematical ideas. One high school pre-calculus student 

is barely able to utter a mathematical thought in response to the teacher’s questioning and 

this is attributed both to the teacher’s excessive control over the conversation and to this 

student’s severe deficiency in academic language. However, another pre-calculus student, 

of the same teacher, gives rich explanation of the same exponential function question 

using her native Spanish tongue. It is noted that neither student had extensive command 

of English academic mathematical language and a conclusion of the study is that learning 

the mathematical words is essential, even precedent, to obtaining mathematical literacy 

and mathematical thought. However, that the Spanish-speaking student explained the 

concept with such accuracy, in Spanish, seems to warrant more attention to the ability 

that this student possesses than was given in the article. In fact, perhaps the most striking 

finding, from an affordance perspective, is that Latino ELLs can demonstrate extensive 

mathematical understanding in their native tongue, when allowed such expression. It 

would seem that more mathematical understanding could have been observed in the 

language deficient student, had he been given opportunity to speak in Spanish. 

Linguistic and Cultural Identity. Researchers have observed that Latino students, 

many of whom frequently have the additional status of being from low income homes, 

have sometimes been perceived by their teachers as having inferior support structures for 

learning mathematics in their homes and as having diminished motivation for learning 

mathematics (Anderson & Tate, 2008). Nevertheless, some researchers, and educators, 

have taken a more positive view of the backgrounds of Latino students and have observed 

teachers that capacitate their students to learn mathematics by relating the mathematics to 

students’ culture—making mathematics culturally relevant (Gutstein et al., 1997)—and 
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by allowing students to work in their primary language and drawing upon their previous 

knowledge (Gutiérrez, 2002). Henderson & Landesman (1995) evaluated the 

effectiveness of making mathematics socio-culturally relevant for Mexican and Mexican-

American 7th grade students by comparing levels of student achievement in two treatment 

groups: thematically integrated mathematics instruction and traditional mathematics 

instruction. The themes in the experimental treatment were jointly selected by students 

and teachers and were believed to be relevant and of interest for the students. While the 

study found no difference in computational skills gained, in attitudes about mathematics 

or in student self-perceptions of mathematical motivation, students participating in 

thematically integrated instruction showed greater achievement in mathematical concepts 

and applications. Both this work and that by Gutstein et al. (1997) and Gutiérrez (2002) 

indicate that the lived experiences and interests of Latino students can positively affect 

their mathematics achievement when incorporated into mathematics instruction. To the 

researchers and educators who view them thus, the cultural and linguistic experiences of 

their Latino ELL students can become assets that can both motivate and empower these 

students to learn mathematics. 

Fischer & Perez (2008) have provided an actual example of how a mathematics 

teacher of high school aged Latino ELLs can effectively use students’ linguistic and 

cultural backgrounds to strengthen their mathematical learning. The teacher in the case-

study demonstrated effectiveness in improving the mathematics achievement of his 

Algebra 1 students. The research reported that, as a long-term trend, on average 70—90% 

of his students passed the state standardized mathematics test every year compared with 

the 15—25% passing rate at the school. The teacher’s method involved a thoughtful 

sequencing of instructional decisions including: activating prior student knowledge 
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through brainstorming, directly teaching and reinforcing Spanish and English academic 

vocabulary through definitions and cognate usage, specific instruction in translating 

between verbal and algebraic expressions/equations, gradually increasing the level of 

difficulty, and motivating students through using their names and products in the 

classroom activities. This teacher’s method exemplified an affordance perspective of 

Latino ELLs’ mathematics learning; the teacher drew upon students’ ideas and upon 

aspects of students’ cultural and linguistic background to capacitate them to learn 

mathematics, rather than seeing these as a barrier to acquiring mathematical knowledge. 

The Issue of Equity. Some researchers have attended to the inequities that are 

evident in schools and in mathematics classrooms. Taking narrow definitions of 

mathematics and of what constitutes participation in classroom mathematical activity and 

of evidence of mathematical achievement can have a negative effects on Latino ELLs’ 

learning of mathematics (Moschkovich, 2007; Gutiérrez, 2002, 2009; Téllez, K., 

Moschkovich, J., & Civil, M., 2011). Additionally, other researchers (Ball, Hill, & Bass, 

2005), involved in measuring teachers’ mathematical knowledge for teaching, have found 

that “higher-knowledge teachers tended to teach non-minority students, leaving minority 

students with less knowledgeable teachers who are unable to contribute as much to 

students’ knowledge over the course of a year” (p. 44). This finding may be explained by 

the comparatively low level of preparation for mathematics teaching experienced by 

some teachers of poor students and of minority students. In their review of the research 

literature concerned with inequities in school mathematics, Anderson & Tate (2008) 

observe that students who have been traditionally marginalized are more likely to be 

taught by math teachers who hold no degree or certification in mathematics; this trend 

was most prevalent among the highest poverty schools and in classrooms with the most 
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minority students, they say. Clearly, this situation is in direct contradiction to NCTM’s 

(2000) first principle for school mathematics: the equity principle “requires resources and 

support for all classrooms and all students” (p. 14). 

Summary. This section has presented an affordance perspective of Latino ELLs in 

the mathematics classroom. While much research has focused on the difficulties and 

linguistic challenges that Latino ELLs face in mathematics classes, other research has 

seen the unique cultural background and linguistic background of these students as 

powerful for capacitating them to learn mathematics. Specifically, this section has 

highlighted the ways in which Latino ELL students may use their linguistic resources in 

creative ways to communicate mathematically. It has also shown how bilingualism can 

capacitate these students to participate in mathematical discussions. Furthermore, this 

section has summarized evidence showing that Latino ELLs’ linguistic and cultural 

identity can be positively activated in mathematics classrooms to bolster learning. 

Even though they may lack the correct English words, Latino ELLs have 

demonstrated accurate mathematical understanding and explanation (Khisty and Morales, 

2004). This observation is fundamental to the belief held by some researchers who 

embrace an affordance perspective of the mathematics learning of Latino ELLs, 

observing in Latino ELLs their communicative ability rather than inability (Moschkovish, 

2002, 2005; Carrasquillo & Rodriguez, 2001). In classrooms where mathematics is seen 

as a communicative activity, rather than mere computation and vocabulary acquisition, 

the communicative ability and interests of Latino ELLs has been positively drawn upon 

to help these students acquire mathematical proficiency. This section also briefly 

reviewed research that shows ways in which deficit perspectives can lead to inequities in 

the opportunity that Latino ELLs have for learning mathematics. Motivated by the 
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problem of this inequity, researchers like Mochkovich (2002) have argued that, rather 

than focusing on the mathematics that these students are incapable of doing, it may be 

more informative to observe these students using whatever communicative resources they 

find in their experiences and environment to learn and do mathematics in the ways that 

can be considered mathematically sound. 

The previous two sections have presented perspectives most frequently taken in 

consideration of the mathematics learning and teaching of Latino ELLs: the affordance 

and deficit perspectives. From the theoretical framework of pedagogical content 

knowledge adopted for this research, teachers need “an understanding of what makes the 

learning of specific topics easy or difficult” (Shulman, 1986, p. 9). Hence, research 

results from these perspectives seem to directly inform what teachers need to know about 

teaching mathematics to these students, which is directly related to the central questions 

of this dissertation research.  

Up to this point the review of literature has been concerned with the Latino ELLs’ 

learning of mathematics. That is, the focus of research considered thus far has been on 

the qualities of these students as they affect their capacity to achieve mathematically.  In 

response to—and actually mingled throughout—this literature is a solid body of 

instructional interventions that are posited to advance the mathematics achievement of 

ELLs. The next section will give expression to these. 

Mathematics Instructional Strategies for Teaching Latino ELLs. What 

teachers do with their students has a powerful impact on the achievement of their 

students. Because of this, researchers and educators have attended not only to what 

teachers do, but to what they could or should do to improve the mathematics achievement 

of their ELLs. Therefore, this section of the review of the literature is concerned with 
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instructional choices that are believed to be of benefit in helping Latino ELLs to learn 

mathematics. This section will begin by considering instructional models and strategies 

for usage with ELLs generally and then for teaching mathematics to ELLs specifically. In 

line with the theoretical framework adopted for this study, these strategies may be seen as 

forming another central component of teachers’ pedagogical content knowledge. 

Instructional Models and Strategies for ELLs Generally. In attempting to 

identify the instructional factors that lead to achievement for ELLs in schools, Thomas & 

Collier (2002) have undertaken large longitudinal comparisons of instructional models 

for teaching ELLs in the U.S. Their focus was on identifying the most beneficial mix of 

language and content instruction for the appropriate age and linguistic proficiency groups 

of students. After comparing state standardized test data on more than 210,000 students 

across the nation, these researchers determined that students, both ELL and monolingual 

English speakers, showed the greatest levels of achievement when enrolled in two-way 

bilingual immersion programs, programs in which at least 50% and up to 90% of 

academic content instruction is given in L2, that is, the second language, and the 

remainder in the first language. These students attained to between the 50th and 83rd 

percentile on state tests, whereas students enrolled in pull-out programs, in which ELLs 

are briefly removed from class for instruction in their native language and then returned 

to traditional classes, reached between the 11th and 18th percentiles only. 

A strategy frequently associated with bilingual academic content instruction is 

sheltered instruction. Thomas & Collier (2002) define it thus: “The integration of 

language and content instruction, where teachers use strategies such as speaking slowly 

and clearly (but using natural language), using visual aids and manipulatives, and 

building on prior knowledge” (p. 10). They also found this instructional strategy, being a 
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fundamental component of language immersion programs, was among the most effective 

for improving the achievement of ELL students. Echevarría, Short, & Vogt (2007) 

formalized sheltered instruction through creation of the SIOP or Sheltered Instruction 

Observation Protocol. Initially the SIOP was a tool to collect data on the teachers 

involved in their research, research aimed at refining professional development for 

teachers of ELLs. The SIOP contains thirty strategies for classroom practice that are 

believed to assist English language learners in any academic content area. The strategies 

are grouped into the three instructional goals of Preparation, Instruction, and 

Review/Evaluation, and are evaluated on a five-point Likert scale. The Instruction section 

contains the largest group of strategies (20). Two examples of strategies useful for 

Building Background are that teachers should explicitly link concepts with students’ 

background experiences and link them with their prior knowledge. Examples of strategies 

useful for promoting Interaction are that teachers should use student grouping 

configurations that support language and content objectives and should provide wait time 

for student responses, allowing them time to think about question prompts. The SIOP is 

worthy of note as an important development in strategies for teaching all subjects to 

ELLs because of its proliferation; the framework and associated professional 

development programs have been widely adopted by teachers, school districts and 

professional developers of educators in the U.S. as fundamental to teaching the academic 

contents to ELLs. Notwithstanding its widespread adoption as an instructional strategy 

for teaching ELLs, the What Works Clearinghouse (2013, February) has issued a report 

calling for the need of more research that can establish the effectiveness of the SIOP 

framework of instruction. 
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Instructional Models for ELLs in Mathematics Classes. The instructional 

models and strategies discussed above apply to general classrooms and not to 

mathematics classrooms specifically. They are useful both to researchers and educators in 

laying a general understanding of how to help ELLs in schools. Several researchers have 

attempted to draw up instructional models and strategies for helping ELLs to learn 

mathematics specifically. One such model is the SLAMS (Second Language Approach to 

Mathematics Skills) (Cuevas, 1984). The SLAMS model incorporates Cummins’s (1981) 

theory of language learning as composite both of the general, everyday language and of 

academic language components. The SLAMS model suggests that, parallel to planning of 

mathematics content interventions, teachers should consider the parts of language that 

will be required in learning the mathematics and should explicitly address these through 

language instruction. This strategy is also found in the SIOP, which assesses the extent to 

which both content and language objectives are “clearly defined, displayed, and reviewed 

with students” (Echevarría et al., 2007, p. 288). 

 Similar to SLAMS, Chamot & O’Malley (1986) incorporated both academic 

language and mathematics instruction, but added the additional component of specific 

instruction in learning strategies in their ELL instructional model, the Cognitive 

Academic Language Learning Approach (CALLA). CALLA was created as a means of 

assisting ELL students to transfer from bilingual education programs to mainstream 

classrooms in which instruction is predominantly in English. A comparison of traditional 

classrooms and classrooms implementing CALLA found that, when the model was 

implemented with a high degree of fidelity, ELL students were found to complete 

sequences of problem solving steps with more accuracy (Chamot et al., 1992). The 

authors claimed that such a finding constituted evidence of the value of providing 
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specific problem-solving instruction for ELLs. CALLA has also been implemented in a 

school district in south Texas under the acronym CAPE (Content Area Program 

Enhancement) (Montes, 2002). In the south Texas school district, 94% of the students in 

the district were Latino, 25% of which were ELLs. Montes (2002) concluded that ELL 

students enrolled in CAPE showed greater signs of improvement on the state’s 

standardized mathematics test than did students enrolled in non-CAPE courses. This may 

constitute further evidence of the effectiveness of the CALLA instructional model. 

To address the challenges faced by ELLs who are simultaneously learning 

English and Mathematics, Diaz et al. (2011) have presented a framework for “developing 

mathematics literacy for bilingual learners” (title). This instructional model ties together 

three theoretic strands: principles of learning, effective pedagogy, and second language 

acquisition. The authors hypothesized—and illustrated by means of an imagined 

mathematics classroom scenario—that usage of these three strands results in a learner-

centered environment conducive to obtaining literacy in mathematics. The authors 

emphasized that allowing ELLs “to discuss the mathematics requirements of the lesson in 

both English and Spanish is empowering and fundamentally important in supporting a 

learner-centered environment…. [The proposed model] is based on the premise that 

teachers must view bilingualism as a strength and not as an obstacle to teaching and 

learning” (p. 17). Thus, central to this model is the affordance perspective of ELLs that 

holds bilingualism as a benefit for their mathematics learning (Moschkovich, 2002; 

Gutiérrez, 2009). 

Instructional Strategies for ELLs in Mathematics Classes. In addition to broad 

instructional models and frameworks for teaching mathematics to ELLs, a large number 

of specific instructional strategies have also been offered. Indeed, many books have been 



35 
 

 

written that concern strategies for teaching ELLs generally. However, this section 

considers some of the research and summarizes many of the strategies suggested that are 

aimed at specifically improving the mathematics achievement of ELL students. 

Entities that support the efforts of teachers, mathematics educators, and 

researchers have all generated lists of instructional strategies aimed at improving the 

achievement of ELLs in mathematics. Some make very general suggestions like those 

offered by the Center on Instruction (Francis et al., 2006). They recommend that (a) 

“ELLs need early explicit and intensive instruction and intervention in basic mathematics 

concepts and skill”, (b) ELLs struggle with academic language and (c) ELLs need 

support in learning academic language in order to solve word problems (pp. 35—39). 

Because of their emphasis on basic mathematics concepts and skills, academic language 

and word problems, these recommendations seem to come from an understanding of the 

mathematics education of ELLs that is informed by earlier research and a deficit 

perspective of ELLs’ learning of math (Martiniello, 2009; Lager, 2006; Cuevas, 1984; 

Llabre & Cuevas, 1983). 

r4 Educated Solutions (2010), which provides professional development, training 

and information to school districts in Texas and Canada having large numbers of ELLs, 

offers a different focus in its suggestions for making math accessible to English language 

learners. Strategies are grouped according to three types of support that can be applied to 

learners of different English proficiency levels: affective supports, linguistic supports, 

and cognitive supports. The myriad specific strategies recommended for making the three 

types of support—such as smiling at students (affective), using word-sorts (linguistic) 

and using the see-plan-do-reflect model (cognitive, adapted from Polya (1957))—are 

largely educational strategies found in many educational methods texts. 
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Coggins, Kravin, Coates, & Carroll (2007) have drawn, from research concerned 

with educating ELLs, seven strategies for helping ELLs in mathematics classes. Based on 

Cummins’ (2000, 1979) conceptualization of language acquisition, the first two strategies 

concern developing conversational language and developing academic language, 

respectively. Suggestions for developing conversational language include structuring a 

conversational classroom climate, using group work and providing ample opportunities 

for discourse. Suggestions for developing academic language are similar to those found 

in other places (r4, 2010; Kersaint et al., 2009), including, among others, using Spanish-

English cognates, word walls, and modeling correct usage of academic vocabulary. Based 

on Vygotsky’s (1978) theory of learning and on Echevarría, Short, and Vogt’s (2007) 

SIOP model, Coggins et al. (2007) offer scaffolding instruction—by doing such things as 

building on students’ prior knowledge using advance organizers and connecting with 

their prior experiences—as the third strategy for helping ELLs to learn mathematics. 

Fourthly, as a means of further scaffolding learning, appealing to different types of 

learners, and at the same time reducing dependence on verbal explanations, they suggest 

the usage of concrete materials in mathematics activities. The fifth strategy concerns the 

judicious usage of visual representations, such as diagrams, pictures, models, posters, 

charts, etc., to augment verbal explanations. Another strategy offered as an aid to 

developing mathematical and linguistic fluency is the usage of questioning strategies 

(Socratic, with varying levels of complexity) that elicit more than simplistic responses 

from students. The final strategy suggested by Coggins et al. (2007) is the provision of 

comprehensible input (Echevarría, Short, & Vogt, 2007), by which the authors signify 

that teachers should conscientiously monitor their own speech patterns and explanations 

to ensure that ELLs can make sense of what they are receiving. 
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Kersaint, Thompson, and Petkova (2009) have offered a lengthy list of research-

based “best practices to support English language learners in the mathematics classroom” 

(p. 77). Categories of strategies offered include strategies for developing mathematics 

classroom discourse, academic language in ELLs, and problem solving ability, as well as 

strategies for making assessments equitable, for making mathematics instruction 

responsive to students’ cultural background and strategies that teachers who are 

themselves ELLs may use to draw upon their own experience in order to strengthen their 

mathematics instruction for ELLs. The specific discourse strategies given by Kersaint et 

al. (2009) mirror some of those seen in other places (r4 Educated Solutions, 2010; 

Coggins et al., 2007; Francis et al., 2006) and involve making language comprehensible 

to ELLs through reduction of linguistic complexity by incorporating visual aids such as 

pictures and gestures (Shein, 2012). As central to helping ELLs to learn mathematics 

academic language, Kersaint et al. (2009) suggest that vocabulary instruction be based on 

the mathematical concepts being taught: “students can explore a mathematics concept 

and then attach related language to it” (p. 95). They offer a variety of well-known literacy 

tools such as word-walls, graphic organizers, usage of concrete objects, comparing and 

contrasting activities, and reading and writing strategies to aid in this endeavor. The 

problem-solving strategies recommended center on helping students to enter deeply into 

the problem situation, usually found in the context of solving word problems, by 

elaborating on the meanings of words, using visual models, and making connections with 

real-life experiences. Furthermore, they recommend specific instruction in mathematics 

problem-solving algorithms like Polya’s (1957).  

Observing that ELLs, because of their limited linguistic proficiency, may tend to 

perform lower than others on written assessments (Martiniello, 2009; Abedi et al., 2006; 



38 
 

 

Lager, 2006; Abedi et al., 2001), Kersaint et al. (2009) also recommend allowing ELLs to 

use learning tools, such as notes, organizers, and glossaries, during testing. Providing test 

accommodations such as reduced linguistic complexity of problems and more time, and 

also the usage of alternative forms of assessment, such as journals and projects, can make 

assessments more equitable for ELLs, they argue. The authors observe that ELLs benefit 

from mathematics instruction that responds to their specific cultural background 

(Gutiérrez, 2002; Gutstein et al., 1997) and recommend that teachers be considerate of 

their own culture and that of their students. Furthermore, they recommend that students 

be allowed to use their own language while working on mathematics (Khisty & Morales, 

2004; Gutiérrez, 2002; Moschkovich, 2002) and that teachers make efforts to connect 

with students families. Finally, the authors offer strategies that teachers who are ELLs 

may use to both overcome their own linguistic limitations and to draw upon their 

experience as ELLs to create classrooms that are accepting of cultural and linguistic 

differences. 

This section has presented a sampling of the many instructional strategies that 

have been posited to help ELLs learn mathematics. It is interesting to note that, although 

almost innumerable strategies have been offered, yet claims to their actual effectiveness 

are largely anecdotal. The next section will present empirical results concerned with 

assessing the effectiveness of certain strategies for teaching mathematics to ELLs. 

Effectiveness of Strategies. While there exists a large number of strategies 

prescribed for helping ELLs to learn mathematics, there is less research that has 

evaluated the effectiveness of the strategies in actually obtaining the promised 

improvements in mathematical achievement among ELLs. Pray & Ilieva (2011) sought to 

find associations between strategy usage and higher achievement in mathematics among 
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(mostly Latino) ELLs in Utah. From a sample of 11 teachers and their students, 

classroom observational data and interviews were collected and coded to arrive at 

conclusions regarding the extent of the usage of specific strategies. Then, using factorial 

analysis of variance, the researchers found associations between three levels of strategy 

usage and students’ scores on the state standardized test of achievement. The most 

significant finding was that ELLs in the earliest stages of language development and who 

were enrolled in classrooms that had higher usage of visual and speech strategies, 

performed slightly higher on average on the exam. The visual strategies employed 

included using manipulatives and hands-on objects for explanation, using illustrations 

and visual representations, and using graphic organizers. The speech strategies included 

gesturing, speaking slowly with reduced usage of idioms, using simple sentence 

structures and clear explanations. The findings of this study may provide evidence of the 

specific benefit granted to ELLs by the usage of visual and speech strategies in 

mathematics lessons. Further evidence in support of this conclusion was provided by 

Martiniello (2006) in her finding that the inclusion of visual images can mitigate the 

difficulty of linguistically complex word problems. 

As the above sources have suggested, mathematics teachers of ELLs should 

attend to ways in which linguistic complexity can be alleviated through the usage of other 

forms of nonlinguistic communication. Kersaint et al. recommend that teachers “use 

dramatic gestures, actions, and verbal intonations” (p. 87) as cues to assist ELLs as they 

grapple with unfamiliar concepts and words. Shein (2012) investigated one teacher’s 

usage of gestures in repairing 5th grade students’ mathematical errors. The study shows 

that teachers can use gestures for at least three pedagogical functions: grounding 

questions, revoicing students’ strategies, and narrating the meaning of mathematical 
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objects. This research provided an illustration of ways in which math teachers of ELLs 

can augment verbal explanations with gestures so as to reduce the dependence of the 

discourse on linguistic sources alone and, as a result, elicit the participation of ELLs in 

mathematical conversations. 

As previously mentioned, Chang (2008) investigated the effectiveness of four 

student grouping models, finding that Latino ELL students performed poorest in 

situations of whole-class teacher directed activity, such as lecture. Conversely, the study 

also found that Latino ELLs showed greatest achievement in classrooms that employed 

teacher-directed individual activity, i.e., students working individually with one-on-one 

tutoring from the teacher. As a result of this finding, the authors suggest that teachers of 

underperforming Latino ELLs should choose this instructional method as a strategy for 

improving the achievement of their students.  

Strategies like that offered by Chang (2008) have resulted from observations of 

effective practice. First, the researchers takes note of what seems to be working. Then, as 

is most frequently found in the discussion section of the paper, the researchers translates 

the observation into a suggestion. In essence, the argument is the following: this seems to 

improve achievement for ELLs, therefore mathematics teachers should probably do this. 

A number of mathematics strategies for ELLs have resulted in this way from research 

concerned with assessment, and these are presented below. 

Assessment Strategies as Instructional Strategies. “As an integral part of 

mathematics instruction, assessment contributes significantly to all students’ learning” 

(NCTM, 1995, p. 13).  From the perspective that assessment serves as a central 

component of instruction, assessment strategies may be interpreted as instructional 

strategies. Hence, a final source of instructional strategies for helping ELLs to learn 
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mathematics comes from research concerned with the mathematics assessment of ELLs. 

Based on their analysis of the results of administering both English and Spanish versions 

of a mathematics test to Latino students, Llabre & Cuevas (1983) recommend that, “the 

primary language of instruction (English or Spanish), the level of reading proficiency in 

the language of instruction, and the skill being measured should be taken into account 

when interpreting the mathematics achievement test scores of bilingual students” (p. 

323). They note that “just because a student's first language is Spanish, it does not follow 

that his or her performance in Spanish will be superior” (p. 322). For some students, 

assessing them in the language of instruction may lead to more valid inferences about 

their achievement than assessing them in their first language. 

Researchers have also investigated the relative effectives of providing certain 

types of assistance to students on mathematics tests. Abedi et al. (2001), using items from 

the 1996 NAEP Grade 8 Bilingual Mathematics test, compared the scores of ELL and 

non-ELL students that were given combinations of testing accommodations: standard 

items, modified (simplified) English items, extra time, and access to a glossary. While all 

of these accommodations improved the scores of ELL students, the only one that 

narrowed the difference in scores between ELL and non-ELL students was the modified 

English items. The result strengthens the importance of an aforementioned strategy: 

teachers should reduce the linguistic complexity of instruction. However, in another 

study (Abedi et al., 2006), this strategy appeared to benefit both ELLs and non-ELLs 

equivalently, and not surprisingly. Thus, when teachers intentionally reduce the linguistic 

complexity of their instruction or of mathematics problems, a probable result will be an 

increase in achievement scores not only for ELLs, but for all students. 
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Summary. Research has investigated both the broad instructional models and 

specific instructional strategies for usage in teaching the academic content areas, 

generally, and mathematics, specifically, to ELLs. Thomas & Collier (2002) found that 

dual-language instruction maximizes achievement for ELLs. Other researchers (Diaz et 

al., 2011; Montes, 2002; Chamot and O’Malley, 1986; Cuevas, 1984) have suggested 

instructional frameworks for helping ELLs grasp both the language of and skills of 

mathematics. Furthermore, a very large collection of specific strategies for teaching 

mathematics to ELLs have been generated by researchers, educators and educational 

support organizations (r4 Educated Solutions, 2010; Francis et al., 2006; Coggins, 

Kravin, Coates, & Carroll, 2007; Kersaint, Thompson, and Petkova, 2009). A number of 

strategies for assessment have also been drafted (Abedi et al., 2006, 2001; Llabre & 

Cuevas, 1983). A useful synthesis of the research-based strategies for instructing ELLs in 

mathematics is that offered by Chval & Chávez (2011). Duplicated from page 262 of that 

work these are: 

1.  “Connect mathematics with students’ life experiences and existing 

knowledge.” 

2.  “Create classroom environments that are rich in language and mathematics 

content.” 

3.  “Emphasize meaning and the multiple meanings of words. Students may need 

to communicate meaning using gestures, drawings, or their first language 

while they develop command of the English language and mathematics.” 

4.  “Use visual supports such as concrete objects, videos, illustrations, and 

gestures in classroom conversations.” 
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5.  “Connect language with mathematical representations (e.g., pictures, tables, 

graphs, equations).” 

6.  Write essential ideas, concepts, representations, and words on the board 

without erasing so that students can refer to them throughout the lesson.” 

7.  “Discuss examples of students’ mathematical writing and provide 

opportunities for students to revise their writing.” 

These seven strategies were chosen to conclude this section on mathematics instructional 

strategies for usage with ELLs because they may be seen as generalizations of the many 

strategies that have been posited for this purpose. Futhermore, Chval & Chávez (2011) 

were careful to link each of the seven with established research done with ELLs. As such, 

they may be seen as a suitable synopsis of the research-based strategies for instructing 

ELLs in mathematics. 

The foregoing sections of the literature review have focused on research aimed at 

improving the mathematics achievement of English language learners. Framed from the 

three perspectives of affordances, deficits, and strategies, they have summarized the 

linguistic difficulties that Latino ELLs face in mathematics classes, along with the 

particular linguistic and cultural traits that can serve to help them to be successful in 

mathematics. These sections have also overviewed the many instructional strategies 

posited for helping these students be successful in mathematics classes. From the 

perspective of pedagogical content knowledge, knowledge of these deficits and 

affordances, of what makes learning mathematics difficult for ELLs as well as what 

empowers them to learn mathematics, seem to be fundamental elements of the teachers’ 

knowledge that this study seeks to determine. Furthermore, knowledge of the “strategies 

most likely to be fruitful in reorganizing the understanding of learners” is important for 
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effective instruction (Shulman, 1986, p. 9). To further address the question of what 

constitutes such knowledge, the next section of the review is concerned with research that 

focuses on knowledge needed for teaching mathematics. 

Teacher Knowledge 

“…quality of instruction depends fundamentally on what teachers do with 

students to develop their mathematical proficiency, and … what teachers can do 

depends fundamentally on their knowledge of mathematics…”  

(RAND, 2003, p. 15). 

A central purpose of this study is to describe the type of knowledge prerequisite 

for the effective mathematics instruction of Latino ELLs and to evaluate the extent to 

which it can be measured. It is clear that what teachers know has an impact on their 

ability to instruct students. Conceptualizations of what teachers should know have taken a 

number of different forms over the years (Petrou, & Goulding, 2011; Wilson, Shulman, 

& Richert,1987). This section will consider one of the more significant of these and then 

review a recent, and related, framework for understanding knowledge for teaching 

mathematics. 

Pedagogical Content Knowledge. Dewey (1902) asserted that: 

 “Every study or subject thus has two aspects: one for the scientist as a scientist; 

the other for the teacher as a teacher. These two aspects are in no sense opposed 

or conflicting. But neither are they immediately identical (p. 29).” 

Most recently, conceptions of teachers’ knowledge have embraced the 

dichotomous nature of knowledge as proposed by Dewey. Related to this view is that 

held by Schon (1983) who theorized that professionals possess a special kind of 

knowledge, knowledge-in-practice; that is, knowledge of their profession that can only be 
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obtained through the practice of the profession. Such knowledge may even be difficult for 

the possessors of it to disclose verbally. Calderhead (1987) applied knowledge-in-

practice to teachers, the kind of knowledge that teachers gain through their classroom 

experience. From this perspective, the knowledge used by teachers of mathematics in the 

act of teaching would be qualitatively different, because of their specific professional 

experience, than that possessed by mathematicians and other non-teachers of 

mathematics. 

In the same line of thinking, Lee S. Shulman (1986) proposed that, besides having 

knowledge of the academic subject that they teach, teachers need pedagogical content 

knowledge of the subject. By his definition, such knowledge—“subject matter knowledge 

for teaching”—is composite of “the most useful forms of representation of those ideas, 

the most powerful analogies, illustrations, examples, explanations, and demonstrations—

in a word, the ways of representing and formulating the subject that make it 

comprehensible to others” (p. 9). Furthermore, “pedagogical content knowledge also 

includes an understanding of what makes the learning of specific topics easy or difficult: 

the conceptions and preconceptions that students of different ages and backgrounds bring 

with them to the learning of those most frequently taught topics and lessons” (p. 9). This 

conceptualization of the knowledge that teachers possess was a result of research focused 

on describing the ways in which teachers change through their classroom experience 

(Wilson, S. M., Shulman, L. S., & Richert, A., 1987). These researchers observed that 

teachers transform their understanding of content through teaching it. That is, teachers’ 

pedagogy shapes their content knowledge. Shulman’s concept of pedagogical content 

knowledge is currently one of the most prevalent (Ball, Thames, & Phelps, 2008) 
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conceptions taken by researchers who study knowledge invoked by teachers in their 

profession. 

Teachers’ Mathematical Knowledge for Teaching. Building on Shulman’s 

(1986) concept of pedagogical content knowledge, researchers (Hill, Ball, & Schilling, 

2008; Hill, Schilling, & Ball, 2004) have undertaken to unpack the domains of 

pedagogical content knowledge in the context of mathematics classrooms. Based on their 

reviews of mathematics education literature, and on their combined research and 

educational experiences, these researchers have created a large number of survey 

measures of teachers’ mathematical knowledge for teaching (MKT). The authors define 

mathematical knowledge for teaching as “the mathematical knowledge that teachers use 

in classrooms to produce instruction and student growth” (Hill, Ball & Schilling, 2008, p. 

374). Figure 1 explains their understanding of the domains of knowledge for teaching 

mathematics. 

 

Figure 1. Domains of Mathematical Knowledge for Teaching (MKT). Adapted 
from “Unpacking Pedagogical Content Knowledge: Conceptualizing and 
Measuring Teachers’ Topic-Specific Knowledge of Students,” by H.C. Hill, D. L. 
Ball, and S. G. Schilling, 2008, Journal for Research in Mathematics Education, 
39(4), pp. 372-400. Copyright 2008 by the National Council of Teachers of 
Mathematics. 
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This model depicts knowledge for teaching mathematics by providing three 

domains of knowledge for each of Shulman’s (1986) subject matter knowledge and 

pedagogical content knowledge. Hill, Ball & Schilling (2008) proposed that within 

subject matter knowledge, there are three domains: common content knowledge (CCK), 

knowledge at the mathematical horizon, and specialized content knowledge (SCK). CCK 

includes “mathematical knowledge and skill used in settings other than teaching” (Ball, 

Thames, & Phelps, 2008, p. 399), such as might be possessed by a mathematician or 

“well-educated adult” (p. 398). Knowledge at the mathematical horizon, however, 

concerns the mathematical context of a topic, “a kind of ‘peripheral vision’ needed in 

teaching, that is, a view of the larger mathematical landscape that teaching requires” (Hill 

& Ball, 2009, p.70). Furthermore, SCK “is mathematical knowledge, not pedagogy. It 

includes knowing how to represent quantities … using diagrams, how to provide a 

mathematically careful explanation …, or how to appraise the mathematical validity of 

alternative solution methods for a problem” (Hill, Rowan & Ball, 2005, p. 377—378). 

Each of these domains is considered as knowledge of mathematics and as distinct from 

pedagogical knowledge. 

Pedagogical content knowledge, as theorized for the teaching of mathematics by 

Hill, Ball & Schilling (2008), is also consistent of three domains: knowledge of content 

and students (KCS), knowledge of content and teaching (KCT), and knowledge of the 

curriculum. The authors define KCS as “content knowledge intertwined with knowledge 

of how students think about, know, or learn this particular content [mathematics]. KCS is 

used in tasks of teaching that involve attending to both the specific content and something 

particular about learners, for instance, how students typically learn…and the mistakes or 

misconceptions that commonly arise during the process” (Hill, Ball & Schilling, 2008, p. 
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375).  KCT “combines knowing about teaching and knowing about mathematics” (Ball, 

Thames, & Phelps, 2008, p. 401). It concerns knowing how to design instruction for 

learning particular mathematics concepts and skills, including selection of appropriate 

examples and representations as well as appropriate sequencing of concepts. Finally, 

knowledge of curriculum, as theorized by Hill, Ball, & Schilling (2008), is equivalent 

with Shulman’s (1986) description of it as knowledge of “the full range of programs 

designed for the teaching of particular subjects and topics at a given level, the variety of 

instructional materials available in relation to those programs, and the set of 

characteristics that serve as both the indications and contraindications for the use of 

particular curriculum or program materials in particular circumstances” (p. 10). Examples 

of items used to operationalize the KCS and KCT domains are given in the table below. 

Table 1 

Sample KCS and KCT Survey Items 

Domain Item 

KCS 

Mrs. Jackson is getting ready for the state assessment, and is planning 
mini-lessons for students focused on particular difficulties that they 
are having with adding columns of numbers. To target her instruction 
more effectively, she wants to work with groups of students who are 
making the same kind of error, so she looks at a recent quiz to see 
what they tend to do. She sees the following three student mistakes: 
 

 
 
 
 
 
 
 

Which have the same kind of error? (Mark ONE answer.) 
a.I and II 
b.I and III 
c.II and III 
d.I, II, and III 

1d 1d 1d 
38 45 32 
49 37 14 

+65 +29 +19 
142 101 64 
(I) (II) (III) 
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Table 1-Continued 

Sample KCS and KCT Survey Items  

 

Note. Adapted from “Unpacking pedagogical content knowledge: 
Conceptualizing and measuring teachers' topic-specific knowledge of 
students.” by H. C. Hill, D. L. Ball, & S. G. Schilling, 2008, Journal 
for Research in Mathematics Education, 39(4), 372-400. Copyright 
2008 by the National Council for Teachers of Mathematics, Inc. 

KCT 

While planning an introductory lesson on primes and composites, Mr. 
Rubenstein is considering what numbers to use as initial examples. He 
is concerned because he knows that choosing poor examples can 
mislead students about these important ideas. Of the choices below, 
which set of numbers would be best for inroducing primes as 
composites? (Mark one answer.) 
 

Primes                 Composites 
a)         3, 5, 11                6, 30, 44 
b)         2, 5, 17                8, 14, 32 
c)         3, 7, 11                4, 16, 25 
d)         2, 7, 13                9, 24, 40 
 
Note: Adapted from “Assessing teachers’ mathematical  
knowledge: What knowledge matters and what evidence counts?” by 
H.C. Hill, D.L. Ball, L. Sleep, & J.M. Lewis, 2007, in F. Lester (Ed.), 
Second Handbook for Research on Mathematics Education, p. 111-
155. Copyright 2007 by Information Age Publishing, Inc. 

 

Measurement of MKT. Working from this framework, which offers a more 

detailed explanation of pedagogical content knowledge, Hill, Schilling, & Ball (2004) 

have made considerable effort at providing valid and reliable, paper-and-pencil format, 

survey measures of their posited domains. Furthermore, the results of this work have not 

only given robust evidence, through survey administration and factor analysis of the data, 

for the existence of multiple dimensions of pedagogical content knowledge, but have also 

shown a correlation between teachers’ level of knowledge and the quality of their 

mathematics instruction (Hill et al., 2008). Thus, this research seems to provide empirical 
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evidence both of the existence and of the structure of a particular form of knowledge that 

capacitates teachers to effectively teach mathematics to their students.  

A couple limitations of this research should be noted here. Not all hypothesized 

domains of MKT have performed well under statistical analysis. Many of the items 

designed to measure knowledge of content and students (KCS) domain showed very low 

reliability, α < .70 (Hill, Ball, & Schilling, 2008). This result speaks to the difficulty of 

creating measures of this domain of knowledge. However, of even more interest to the 

present study is the fact that the MKT measures were not created with certain populations 

of students in view, as is the goal of this study. Extant measures of teachers’ 

mathematical knowledge for teaching do not differentiate levels of knowledge for 

teaching diverse students populations. Moreover, the MKT measures make no mention of 

English language learners specifically; none of the items are framed in the context of 

instructing this special population of students. 

Summary. This section of the literature review has summarized research related 

to one of the most influential conceptualizations of knowledge needed by teachers, 

pedagogical content knowledge (Shulman, 1986). PCK is different from academic 

knowledge because it is informed by knowledge of the instructional decisions, details of 

the curriculum, and qualities of their students that teachers encounter daily. Mathematical 

knowledge for teaching (MKT) is an influential application and explanation of PCK in 

the context of mathematics classrooms. The aspects of MKT include knowledge of 

content and students (KCS), knowledge of content and teaching (MCT), and knowledge 

of curriculum. Efforts to provide survey measures of these domains of knowledge have 

given evidence of their existence and of the potential for those teachers who possess such 

knowledge to improve the achievement of their students. 
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Summary of Literature and Research Gap. This literature review has 

considered two strands of research and educational theorization that inform this study. 

Research concerned with the mathematics education of English language Learners, many 

of whom are Latino, has been categorized as taking either of a deficit, an affordance, or a 

strategic perspective. Deficit perspective literature gives evidence of the difficulties that 

English language learners have in learning mathematics. These difficulties include 

limited fluency with the English language and associated deficiency with both 

conversational and academic language, difficulties with understanding word problems, 

difficulties with participating in classroom activities, and difficulties with assessments. 

Affordance perspective literature has drawn attention to the special qualities of ELLs that 

can capacitate them to learn mathematics, in spite of their perceived limitation. Their 

bilingualism and their cultural identity can serve them to assist their participation in 

mathematical conversation and in contextualization of mathematical concepts. Strategic 

perspective literature has provided a large number of strategies for assisting English 

language learners in schools generally and in mathematics specifically. Strategies for 

helping ELLs learn mathematics include, among many others, linguistic strategies, 

representational strategies, cognitive and problem solving strategies, and strategies for 

making instruction comprehensive to ELLs. 

The second related strand of research is concerned with describing and measuring 

teachers’ knowledge. Building upon Shulman’s (1986) conception of the blending of 

content and pedagogical knowledge, pedagogical content knowledge, upon which 

teachers rely during instructional activities, researchers (Ball, Thames, & Phelps, 2008; 

Hill et al., 2008; Hill, Rowan, Ball, 2005; Hill, Schilling, & Ball, 2004) have conceived 

of mathematical knowledge for teaching (MKT) as being shaped by a combination of 
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mathematics content knowledge and knowledge of the qualities of students, of 

instructional decisions, and of curriculum. This research has given rich description to the 

elements of pedagogical content knowledge that mathematics teachers draw upon when 

making instructional decisions. Furthermore, there is evidence that MKT is positively 

correlated with improvements in the quality of mathematics instruction.  

Based upon the research concerned with teachers’ knowledge, it makes sense to 

ask concerning the kind of knowledge needed by mathematics teachers of ELLs. In view 

of the rich research literature concerned with ELLs’ learning of mathematics, it would 

seem that effective teachers of ELLs should possess, at the least, knowledge of how to 

teach mathematics to these students, including knowledge of instructional strategies, for 

example. However, what form does such knowledge take? What knowledge do ELL 

teachers call upon when deciding how to provide comprehensible mathematics 

instruction to their ELLs or when deciding which representations to use for specific 

mathematics concepts when choosing instructional strategies? 

There appears to be a paucity of literature concerned with knowledge for teaching 

mathematics to ELLs. While there are studies of mathematics teachers’ perceptions of 

ELLs (Hansen-Thomas, & Cavagnetto, 2010) and of efforts to improve pre-service 

teachers’ attitudes about ELLs (Pappamihiel, 2007), it is difficult to find any 

investigation, or even theorization, about knowledge for teaching mathematics to ELLs. 

Indeed, at the time of writing, extensive searches of multiple research literature databases 

returned fewer than 40 results that contain combinations of the most important search 

terms related to this study, those related to ELLs and to teachers’ knowledge. Several of 

these have already been cited in this paper. However, none specifically addresses the 

questions of this study which pertain to knowledge for teaching mathematics to ELLs. 
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Rather, the articles that concern ELLs and mathematics treat either teachers’ perspectives 

of students, the effectiveness of certain curriculum materials, the experiences of specific 

mathematics teachers, equity issues, or teacher education and professional development, 

a closely related topic, the limitations of which have been addressed in the introduction. 

However, investigation or even theorization concerning teachers’ knowledge for teaching 

mathematics to ELLs is severely lacking. It is this lack, the absence of studies of 

teachers’ knowledge for teaching mathematics to English language learners, which 

motivates this study. 
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CHAPTER 3: METHODOLOGY 

This chapter presents the research design and methods that were used to answer 

the questions of this study. The research questions for this study were the following: 

1.  What are the domains of knowledge needed to teach mathematics to Latino 

English Language Learners (KT-MELL)? 

2.  Drawing from the research literature and middle school mathematics classroom 

observations, what are some of the aspects of these domains of knowledge when 

teaching Latino English Language Learners at the middle school level? 

3.  What evidences of reliability and validity does an instrument developed to 

measure these domains and aspects exhibit? 

As the title of this dissertation research indicates, this work may be classified as an 

instrument development study. As such, the methods employed served the three purposes 

of 1) identifying domains of knowledge for teaching mathematics to Latino ELLs, 2) 

developing an instrument to serve as the exploratory measure of the knowledge and 3) 

seeking validity and reliability evidence concerning the measures obtained. These 

purposes are in correspondence with the three questions of this study. 

Selection of the methods to be used by this study involved careful consideration 

of methods used in related studies. Hill, Ball, Sleep, & Lewis (2007) discuss three 

principle methods that have been used in recent research to investigate mathematics 

teachers’ knowledge for teaching mathematics. These methods have been classroom
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observations, mathematical tasks and interviews and paper-pencil, multiple-choice tests. 

The later method offers a number of benefits to researchers. The foremost of these is the 

possibility of developing valid and reliable instruments that can be used for finding 

relationships between teacher knowledge and other important variables, such as student 

achievement. A great deal of recent research has employed this methodology to the 

advancement of the field (Hill, Ball, Sleep, & Lewis, 2007). 

The present study builds on this body of research. Moreover, the theoretical 

framework of teacher knowledge that guides this study has largely been advanced 

through research that has made effective usage of survey methodology (Hill, Schilling, & 

Ball, 2004). Consequently, the research design selected to answer the questions of this 

study was a survey design as well.  

The remainder of this chapter is given to the discussion of the processes that 

resulted in the creation of a survey intended to serve as a measure of KT-MELL. 

Development of the final instrument central to this study involved two distinct instrument 

development and pilot-study phases. The exploratory Phase 1 involved initial theorization 

concerning the domains of KT-MELL as well as the writing of items intended to capture 

aspects of the knowledge. The first pilot-study assisted in identifying both the strengths 

and weaknesses of the hypothesized domains, of the items and of the instrument format. 

Following the first pilot-study, Phase 2 involved much more extensive review of the 

research literature as well as many more hours of observations of middle school 

classrooms. Based upon the further reading, the hypothesis of the domains of KT-MELL 

was refined, which resulted in formalization of the test framework for the instrument used 

in this study. Using this test framework as guide, a larger number of items intended to 

measure the hypothesized domains were developed. Many of the items developed both in 
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this phase and in the initial phase were adapted from observed classroom situations. 

These contexts were seen as contributing to the instrument by providing realistic 

mathematics teaching situations.  

As this narrative makes clear, initial theorization concerning the knowledge 

domains of KT-MELL proceeded simultaneous to survey item-writing. As was shown in 

the review of literature (Chapter 2), KT-MELL is a novel knowledge construct for which 

minimal prior theorization exists. Indeed, the development of items intended to capture 

KT-MELL served an important step in helping to identifying the domains of KT-MELL. 

This chapter is given to describing the two phases of instrument development including 

their respective pilot-studies, the implementation of the survey and the data analysis 

methods that were used to obtain validity and reliability information concerning the 

measurements obtained. 

Phase 1: Exploration 

 Initial work toward developing theory concerning the domains of knowledge for 

teaching mathematics to Latino ELLs and toward developing a measure of such 

knowledge was begun in the fall of 2011. The details of this work, which included an 

exploratory first pilot-study, are presented here. Specifically, theorization about the 

construct in question, the development of the initial test framework and survey, the first 

pilot-study participants and survey administration, and the results of this first pilot-study 

are presented. 

Initial Construct Definition and Instrument Development. Initial readings of 

the research literature concerned with the mathematics education of Latino ELLs, as well 

as informal classroom observation, resulted in the hypothesis of the existence of four 

distinct domains of KT-MELL. They were: knowledge of mathematical academic 
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Spanish (MAS), knowledge of mathematics instructional strategies for ELLs (MISE), 

knowledge of difficulties faced by ELLs in mathematics (DEM), and knowledge of 

mathematics (MATH). Guided in part by the work of Hill, Schilling, & Ball (2004), who 

have operationalized mathematical knowledge for teaching (MKT) in the context of 

elementary school classrooms, initial theorization concerning the domains of knowledge 

for teaching mathematics to ELLs attempted to define this knowledge as mathematical 

knowledge. For this reason, beyond including knowledge of difficulties and of strategies, 

knowledge of mathematical academic Spanish and basic mathematics content knowledge 

were initially thought to be elements of KT-MELL. As is explained later, in the section 

concerning the second phase of instrumentation development, further theorization 

concerning the domains of KT-MELL resulted in substantial transformation of the 

hypothesized domains. 

Initial Instrument Framework. Based upon the above theorization concerning the 

domains of KT-MELL, an attempt was made to create an explanatory survey in the form 

of a paper-pencil test. Explanatory surveys are useful for, among other things, evaluating 

the validity of the proposed knowledge domains and for evaluating the relationships of 

these domains, that is, of the latent variables operationalized through the survey items, 

with one another.  

Without exception, all of the items on the first KT-MELL survey were adapted 

either from research literature or from actual classroom observation. As an instance of the 

later, a middle school teacher at a central Texas middle school was observed during a 6th 

grade mathematics lesson. The final two items on the initial survey described an actual 

mathematical problem and student response captured during that observation. After 

crafting a number of survey items, the items passed through two revision processes, one 
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concerned with content validity and the other with ascetic appearance. A scholar of the 

mathematics education of ELLs, who is fluent in Spanish, scrutinized the survey. This 

person afforded valuable insight into the salience of the items. Additionally, this reviewer 

provided critical comments regarding the quality of the Spanish language used in the 

survey. Additionally, the survey was submitted to a graphic design consultant for 

aesthetic review. The designer was able to comment on the clarity of the items and on the 

visual appeal of the document as a whole. The final initial instrument (Appendix C) had 

the following test-framework. 

Table 2 

First Pilot Study Test Framework 

Knowledge 
Domains 

Mathematical 
Academic 
Spanish (MAS) 

Mathematics 
Instructional 
Strategies for 
ELLs (MISE) 

Difficulties 
faced by ELLs 
in Mathematics 
(DEM) 

Mathematics 
Content 
Knowledge 
(MATH) 

Descriptions of 
Domains 

Teacher can 
interpret and 
use 
mathematical 
academic 
Spanish 
language 
related to 
mathematical 
objects and 
operations 
found in the 
classroom. 

Teacher knows 
and selects 
appropriate 
mathematics 
instructional 
strategies for 
English 
language 
learners. 

Teacher 
understands the 
difficulties that 
ELLs face in 
mathematics 
classes. 

Teacher is 
competent in 
the 
mathematics 
that is to be 
taught. 

Items 
Numbers 

6, 8 2, 3, 4, 5, 7  1, 8 

 
First Pilot-Study Sample and Results. The initial survey that was designed 

under the above test framework contained eight items and was given to 50 individuals, 2 

practicing middle school teachers in central Texas, and 48 pre-service teachers at Texas 
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State University - San Marcos. The group of pre-service teachers was composite of two 

sub-groups: 34 pre-service high school mathematics teachers who were given the survey 

as an in-class assignment and 14 pre-service elementary school teachers who were given 

the survey as an out-of-class, voluntary task. No attempt was made to collect a 

representative sample of any population. Rather, descriptive data, such as means and 

variances on responses, useful for making judgments about the qualities of the items were 

sought. 

 Answers to survey items were scored dichotomously, right or wrong, and each 

survey was given a score equivalent to the percent of correct responses. The mean score 

was 58% (median 62.5%), the maximum was 87.5% and the minimum was 25%. The test 

scores followed an approximately normal distribution, as seen in Figure 2 below. 

However, the reliability, measured by Cronbach’s (1951) alpha, of the survey across all 

eight items was very low, α = .009. The low reliability called for several improvements. 

Most importantly, there was the need to develop many more items. Additionally, the item 

response formats, though all multiple-choice, varied greatly, from two right-wrong 

options to Likert scaled items. By reducing the variation in response formats, there was 

an expectation of improved internal consistency of the instrument. Finally, the low 

reliability indicated the need of further theorization concerning the structure of the 

knowledge being measured by the instrument. It is also worthy of note that, while the 

reliability of the test among both pre-service high school and pre-service elementary  

school teachers was quite low, as mentioned above, the reliability of the instrument using 

only responses from pre-service elementary school teachers was slightly improved (α = 

.182). Figure 2 below exhibits the distribution of scores fort the first pilot-study. 
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Figure 2. Distribution of First Pilot-Study Test Scores. 

Although the approximately normal distribution of test scores satisfied statistical 

assumptions required for performing other tests with these data, as desired, yet both the 

low reliability of the test and the inclusion of only eight items on the first pilot-survey—a 

factor in the low reliability—made it difficult to answer many questions including those 

concerning the underlying latent variables. Furthermore, the distribution of items was 

unbalanced across variables; whereas MISE enjoyed five distinct items, MAS and MATH 

had only two, one of which (item 8) was shared between the domains, and DEM had 

none. Hence, the survey used for the first pilot-study did not represent all hypothesized 

domains equally. Nevertheless, a number of important observations were made 

concerning the performance of specific items.  

Judging by its having the highest percentage of correct responses (90%), item 8 

appeared to be the easiest question on the survey. This result was unexpected for the 

following reason. The item required respondents to identify whether a student had given 

the correct response when a teacher had asked concerning finding the proportion of 
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shaded squares out of 100 squares. Although the student’s response was correct and the 

mathematics not difficult, yet the student’s answer was given in (grammatically incorrect) 

Spanish. Thus, respondents, only 14% of whom had self-identified as Hispanic and who 

may not have understood Spanish, had to first interpret the Spanish statement before 

determining its correctness. For this reason it is surprising that so many answered 

correctly. At least two possible explanations for this phenomenon existed. First, since 

respondents were required to circle their choice of “YES / NO”, primacy may have been 

a factor (Dillman, Smyth, & Christian, 2009). They may have selected the correct answer 

because it appeared first in the list of options. The difficulty of the question may have 

also contributed to the primacy effect on this item (Shuman & Presser, 1996). Second, 

respondents may have observed the Spanish-English cognate divisas [you divide] in the 

student’s response and deduced that the student had indicated the correct mathematical 

operation for finding proportions. 

Another interesting quality of item 8 is that it was significantly correlated (p < 

.05) with items 3 and 4, having Pearson r = .361 and r = – .451, respectively. Item 3 

asked concerning the effectiveness of using key words as an instructional strategy to 

remind ELLs how to solve certain types of problems. Item 4 asked respondents to 

determine the extent to which the image of a gymnast’s parallel bars would be culturally 

relevant for ELLs as an illustration of the parallel property in geometry. Based on 

research literature (Kersaint et al., 2009), the theoretically correct answer was not very 

relevant. (See Gutstein et al., 1997 for a discussion of cultural relevance in the context of 

mathematics education.) The correlation of item 8 with item 3 could indicate that 

knowledge of effective instructional strategies for teaching mathematics to ELLs is 

positively associated with knowledge of academic Spanish, with competence in 
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mathematics, or with both, since item 8 operationalized both of these constructs. Any of 

these inferences would agree with the theoretical framework for this test. However, the 

negative correlation with item 4 could indicate a negative correlation with either or both 

of these constructs. This would contradict the previous inference and disagree with 

theory. This apparent contradiction with theory helped to further explain the low 

reliability and to sound another call for more careful theorization concerning the 

underlying knowledge constructs. 

Summary. The results of the first pilot-study gave valuable information as to how 

to proceed with the full study. Although the test scores were approximately normally 

distributed, as was hoped, the reliability of the test was quite low. Furthermore, a number 

of contradictory correlations indicated that theoretical problems existed with the test 

framework and with operationalizations of the aspects of the proposed domains. It 

became clear that the domains of KT-MELL were in need of further clarity and 

definition. This process necessitated further review of literature as well as further 

classroom observation. Moreover, the first pilot-study instrument was deficient both in 

the number of items it contained and in the number (and description) of the respondents. 

Without greater numbers of both of these, it proved impossible to perform the statistical 

analyses that could have helped to assess the validity of the survey measures. Therefore, 

in order to improve the quality of the instrument used to answer the research questions of 

this study, that is to identify the domains of KT-MELL and their aspects, and to give a 

measure of such knowledge, improvements in both reliability and validity were required. 

The following section of this chapter will explain how these issues were addressed with 

the goal of obtaining more useful survey data for answering the questions of this study. 
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Phase 2: Formalization 

This section discusses the further development of the hypothesized domains of 

KT-MELL and of the survey instrument intended to measure such knowledge. The 

research theory and observational evidence that guided the development of the test 

framework will be presented. As illustrations of the theoretical domains of knowledge, 

several specific items are given. This section closes with an account of the results of a 

second pilot-study. 

Construct Identification, Test Framework and Item Development. DeVellis 

(2003) explains that the first step in scale development is to “determine clearly what it is 

you want [author’s emphasis] to measure” (p. 60). Accordingly, this section explains the 

boundaries of the knowledge construct at the heart of this study and presents the test 

framework that guided the development of a measure of this knowledge. The central 

construct of interest to this investigation is teachers’ knowledge for teaching mathematics 

to Latino ELLs (KT-MELL). This construct is closely associated with and builds upon 

the theory related to a similar one, mathematical knowledge for teaching (MKT) (Hill & 

Ball, 2009; Hill et al., 2008; Hill, Rowan, & Ball, 2005; Hill, Schilling, & Ball, 2004). 

Both of these constructs represent descriptions of the kind of knowledge that is called 

upon by mathematics teachers in the act of teaching. Hence, they are domains of applied 

knowledge. Furthermore, both of these constructs intend to elucidate what Shulman 

(1986) meant when he referred to the pedagogical content knowledge that informs the 

instructional decisions that teachers make in the classroom. 

The theorization concerning KT-MELL presented in this study builds upon, and 

thus, is more closely aligned with, exhaustive review of the literature that is concerned 

with the mathematics education of Latino ELLs and with teachers’ knowledge. As has 
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been explained in the literature review section of this paper, findings concerning the 

mathematics teaching and learning of Latino ELLs have been categorized according to 

one of three emphases: difficulties experienced by ELLs in mathematics classes, 

capacities that Latino ELLs bring to the classroom for learning mathematics, and 

strategies for teaching mathematics to ELLs. Considering that the majority, if not all, of 

this research has been conducted by educators, many of whom have taught mathematics 

in public schools and among ELLs, it was not surprising to observe that the three 

emphases of the research literature very closely mirrored the elements of pedagogical 

content knowledge as explained by Shulman (1986). That is, researchers have uncovered 

“what makes the learning of specific topics [of mathematics] easy or difficult” for ELLs 

and what are, “for the most regularly taught topics in one’s subject area [i.e., in 

mathematics], the most useful forms of representation of those ideas, the most powerful 

analogies,…”, i.e., the most effective instructional strategies for ELLs (Shulman, 1986, p. 

9). Perhaps unconsciously, their pedagogical content knowledge has informed the choice 

of research foci taken by researchers interested in the mathematics education of Latino 

ELLs. Figure 3 below presents the conceptual model of KT-MELL that resulted from 

more careful incorporation of findings in the research literature concerned with the 

mathematics education of ELLs and with teachers’ pedagogical content knowledge. This 

model depicts the situation of KT-MELL within the extant theoretical framework of 

mathematical knowledge for teaching. 
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Figure 3. Knowledge for Teaching Mathematics to ELLs (KT-MELL). This 
figure depicts KT-MELL in its relation to mathematical knowledge for teaching, 
MKT. The curved arrow between KDIFF and KCAP indicates the likelihood of 
the existence of a correlation between these knowledge domains. The straight 
arrows from KDIFF and KCAP to KSTRAT indicate that knowledge of 
difficulties and of capacities may be seen as potentially informing knowledge of 
strategies. The (ovular) MKT model was adapted from “Unpacking Pedagogical 
Content Knowledge: Conceptualizing and Measuring Teachers’ Topic-Specific 
Knowledge of Students,” by H.C. Hill, D. L. Ball, and S. G. Schilling, 2008, 
Journal for Research in Mathematics Education, 39(4), p. 377. Copyright 2008 
by the National Council of Teachers of Mathematics. 
 
As Figure 3 illustrates, the conceptualization of KT-MELL taken in this paper is 

seen, not as independent of, but as a subset of two specific knowledge domains contained 

within the MKT framework. Knowledge of content and teaching (KCT) has been 

explained by Hill et al. (2007) to be “mathematical knowledge of the design of 

instruction, [which] includes how to choose examples and representations, and how to 
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guide student discussions toward accurate mathematical ideas” (p. 133). Hence, KCT 

may be seen as knowledge of effective mathematics instructional strategies. Moreover, 

examples of survey items provided by these researchers as operationalizations of KCT 

demonstrate strategic choices being made in response to common student misconceptions 

(see Table 1 in Chapter 2). Thus, KT-MELL is seen as being a subset of KCT. It is the 

application of this knowledge domain to the mathematics instruction of Latino ELLs. 

KT-MELL is also seen as intersecting knowledge of content and students (KCS). 

Hill et al. (2007) explain that KCS is “the amalgamated knowledge that teachers possess 

about how students learn contents” and that KCS concerns knowledge of misconceptions 

frequently possessed by students (p. 133). Table 1 of Chapter 2 gave an example of a 

survey item used by these researchers that was intended to capture KCS. It is clear from 

this item that the current understanding of KCS implies that teachers who possess this 

knowledge should be versed in the kinds of difficulties that students encounter in learning 

to do mathematics. As is explained below, KT-MELL includes this kind of knowledge as 

applied to Latino ELL students. 

As theorized in this dissertation research, knowledge for teaching mathematics to 

English language learners—KT-MELL—includes knowledge of the most common 

difficulties that Latino English language learners face in learning mathematics (KDIFF), 

knowledge of ways in which the linguistic, academic, and cultural background of these 

students can capacitate them and be an asset to the learning of mathematics (KCAP), and 

knowledge of the instructional strategies that can effectively respond to both of these 

qualities of Latino ELLs to promote their mathematical achievement (KSTRAT). This 

theorization is based upon exhaustive review of the research literature and upon more 

than 30 hours of structured observations (see Appendix D for observation protocol) of the 
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mathematics classrooms of teachers of ELLs. Knowledge of difficulties that Latino ELLs 

may face in mathematics classrooms includes knowledge of linguistic difficulties that 

ELLs may encounter, knowledge of words that may be difficult for them, and knowledge 

of the ways in which verbal expressions in mathematics classes can obscure 

understanding for Latino ELLs. Knowledge of such difficulties also includes knowledge 

of the ways that the multiple meanings of English words can challenge ELLs and of the 

ways in which certain classroom instructional formats and decisions may limit their 

access and participation in mathematics in the classroom. KT-MELL also includes 

knowledge of the ways in which certain cultural attributes as well as fluency in the 

Spanish language, or being bilingual in both Spanish and English, can leverage the 

mathematical learning of Latino ELLs (KCAP). Furthermore, it includes knowledge of 

the ways in which the prior mathematical learning of Latino ELLs, including alternative 

algorithmic methods or notation systems, explanations and representations, may 

empower them to learn mathematics (KCAP) or serve as a barrier to mathematical 

learning (KDIFF). Finally, KT-MELL includes knowledge of the mathematics 

instructional strategies, the representations, models, explanations, algorithms and 

verbalization methods that are most effective for producing mathematics achievement in 

Latino ELLs (KSTRAT). These three components are the hypothesized domains of KT-

MELL. For simplicity, they are given the acronyms of KDIFF, KCAP, and KSTRAT, 

representing knowledge of difficulties, capacities, and strategies, respectively.  

Based upon this understanding of the KT-MELL construct, the test framework 

given in Table 3 was used to craft survey items intended to operationalize this knowledge 

construct and that, it was hoped, would result in empirical evidence concerning the 
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dimensions of the construct, its composite domains, their aspects and relationships with 

one another. 

Table 3 

KT-MELL Test Framework 

 

Based upon the above test framework, a large number of multiple-choice items 

were written that were intended to serve as indicators of particular aspects of each of the 

DOMAIN ASPECTS 
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 1.Limited English proficiency in speaking, reading and writing 

2.Word problems 
a.Specific words (vocabulary), multiplicity of words (linguistic complexity), 

shifts of application, polysemy 
3.Classroom format 

a.High speech formats (direct teaching) 
4.Assessments 

a.Low performance because of: 
i.Word problems, time limitation, high stakes, cultural-irrelevance 
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1.Linguistic creativity, mathematics discursive and communicative ability 
a.Fluency in L1 (i.e., first language) 
b.Bilingualism 
c.Usage of gestures, objects, and verbal inventions to convey meaning 

2.Linguistic and cultural identity 
a.Association with Latino culture, icons, people, values, traditions etc. 
b.Appreciation of Spanish language 
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1.Usage of students’ background knowledge—academic, linguistic and cultural—to 
promote understanding 

2.Maintenance of classroom environment rich in linguistic and mathematics content 
3.Emphasis on meanings of words and/or provisions for students’ usage of multiple 

modes of communication to express mathematics 
4.Usage of visual supports to—gestures, objects, illustrations—to convey the meanings 

of classroom conversations 
5.Connection of mathematical language with multiple forms of mathematical 

representation 
6.Available visual display of classroom mathematics concepts, representations and 

words during instruction 
7.Rich usage of students’ own mathematical writings and speech with opportunity for 

them to make revisions 
 



69 
 

 

knowledge domains. During item-writing, each item underwent repeated revisions of 

both content and format in consultation with a mathematics educator engaged in research 

concerned with the quality of mathematics instruction of Latino ELLs. From among the 

full set of possible items, thirty-two were selected for inclusion in the final KT-MELL 

survey instrument. These thirty-two items underwent further content validation 

Content Validation. During its development, three efforts were made to ensure 

the content validity of the KT-MELL survey. These were strict adherence to theory and 

actual practice, instrument review by a panel of experts, and investigation of the 

instrument by a focus group of middle school mathematics teachers of ELLs. The first of 

these involved careful theorization about the underlying knowledge domains of the 

instrument. The model of knowledge domains offered above (in Figure 3) is the result of 

theorization that draws heavily on established research concerning the mathematics 

learning of ELLs and concerning mathematics teachers’ knowledge for teaching. 

Furthermore, all of the items that have been developed, which correspond to specific 

aspects of the domains of knowledge, were written in view of specific research findings. 

In addition to the alignment of items with theory, the items quite frequently were framed 

in mathematics learning contexts taken from specific instances of classroom 

observations. More than thirty hours of classroom observations were conducted during 

this research. These observations provided a rich source of material from which realistic 

contexts could be derived. Thus, content validation was first addressed through strict 

adherence to research-based theory as well as to actual mathematics classroom practice. 

A second means of ensuring content validity was through review of the KT-

MELL survey by a panel of experts in closely related fields. In his recommendations of 

the steps involved in scale development, DeVellis (2003) recommended that after 
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generating a pool of items, researchers should submit the items to a panel of experts 

knowledgeable about the construct of interest. Although KT-MELL is a novel construct, 

as has been explained, its conceptualization was closely tied to research concerned with 

the mathematics education of ELLs and with teachers’ knowledge. For this reason, the 

panelists that reviewed the instrument were chosen for their expertise in closely related 

fields. From the seven letters (Appendix E) that were sent to elicit participation as expert 

panelists, four researchers, not all from the same institution, participated. Two of the 

experts were foremost researchers in the mathematics education of ELLs. One of the 

panelists was expert in the education of bilingual students. Another expert had experience 

in investigating both mathematics teachers’ knowledge and the mathematics instruction 

of ELLs. 

The content validation process requested of the experts consisted of two steps: 

categorization of items according to one of the three proposed domains of knowledge, 

and provision of optional comments about the items. Thus, information gained from the 

expert review process provided evidence of the extent to which each of the items seemed 

to serve as an indicator of the domain of knowledge for which it was intended. Results 

from the expert review indicated overwhelmingly that the items represented aspects of 

the domains of knowledge that they were intended to represent. For only three of the 

thirty-two items that were submitted for review was the consensus of the experts at odds 

with the theoretical orientation. Specific categorizations of the items, provided by each of 

the experts on all items, are given in Appendix F. 

The final means of content validation involved presentation of the KT-MELL 

survey to a panel of eight practicing middle school mathematics teachers of ELLs from a 

mid-sized school district in central Texas. This collection of teachers was purposefully 
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selected; the teachers were participating in professional development sessions focused on 

understanding the quality of mathematics instrument of ELLs. The eight teachers were 

asked to both take the survey and to comment on the extent to which the items in the 

survey captured the most important aspects of KT-MELL. In the context of whole group 

discussion, the teachers verbally agreed that the survey was comprehensive in the sense 

of its capturing the intended knowledge domain; they suggested no substantive changes. 

Exemplary Survey Items. An exemplary selection of items is given below. This 

sample is not representative of all of the aspects of the knowledge domains measured by 

the entire instrument. Rather, it is offered to give a sense of the format, style and contents 

of items used as indicators of the three domains of KT-MELL: KDIFF, KCAP, and 

KSTRAT. 

 

Figure 4. Example KDIFF Survey Item. 

The item, which was adapted from the observation of an actual mathematics 

classroom containing a large number of Latino ELLs, begins with a common stem from 
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which a series of survey items draw. In the item above, respondents are asked to select 

the word that could cause difficulty for ELLs. The correct answer is the fourth option, the 

only option that is not a Spanish-English cognate. This item represents an aspect of the 

KDIFF domain—namely, knowledge of words that can be unknown or misunderstood by 

ELLs—and should differentiate between respondents that are familiar with the linguistic 

challenges faced by ELLs in mathematics classes and those that are not. The following 

item is an example of an item that operationalizes an aspect of the KCAP domain. 

 

Figure 5. Example KCAP Survey Item. 

The item above is intended to elicit knowledge of alternative, yet no less 

mathematically valid, mathematical notation that ELL students from Latin America may 

use to perform long division. In this item, Luis has used the long division notation that is 

typically taught in the United States while Armando and Samantha have used notations 

commonly found in Central and South America. All methods are valid. Although they 

differ in appearance, Armando’s and Luis’s work are quite similar; both students have 

shown the same number of steps in their computations. This KCAP item is intended to 
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differentiate between respondents that can recognize when a Latino ELL has given a 

valid, though non-traditional, mathematical solution and those that cannot.  

A third item, one that operationalizes knowledge in the KSTRAT domain, is the 

following: 

 

Figure 6. Example KSTRAT Survey Item.  

The item above is intended to measure teachers’ knowledge of strategies that may 

improve ELLs’ achievement in mathematics. In this item, an ELL has used the Spanish 

language to give a mathematical response to the teacher’s English mathematical question. 

Respondents must then select the best way for the teacher to respond to the student. 

Based upon research that has exhibited the value of allowing ELLs to use their native 
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language to express mathematics (Moschkovich, 2002) and that has recommended, as an 

instructional strategy, that teachers make usage of students’ mathematical productions 

(Chval & Chavez, 2011), the correct answer to this item should be the fourth option. This 

item serves as an indicator of knowledge in the KSTRAT domain; it should differentiate 

between respondents that can select the most appropriate mathematics instructional 

strategy for teaching Latino ELLs and those that cannot. These few exemplary items 

represent a sample of the many items that were drafted and of the thirty-two items use in 

the final KT-MELL survey. 

Second Pilot-Study Sample and Results. Following the review of the KT-

MELL survey by a panel of experts, a pilot-study sample of more than 150 university 

students who were pre-service elementary, middle or high school teachers was selected to 

take the survey during the summer and early fall semesters of 2012. Students were 

selected based upon their enrollment in mathematics courses offered to future teachers. 

While the instrument was written to assess the knowledge of middle school teachers and 

not necessarily of pre-service middle school teachers, the attempt to select only future 

middle school teachers at the university level proved impractical for several reasons. The 

first of these reasons was that several mathematics courses served multiple levels of pre-

service teachers, either both elementary and middle school, or middle school and high 

school. Another reason was that many pre-service teachers could not be certain of their 

future teaching assignments at the time of taking the content courses in which they were 

enrolled. Hence, the pilot-study sample represented a large variety of mathematical 

ability levels and of (intended) mathematics teaching levels. The instrument was 

administered in a paper and pencil format during students’ regularly scheduled 

mathematics classes. After removal of surveys containing missing data (i.e., large 
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numbers of unanswered items), 146 survey responses were retained for analysis of the 

pilot-study data.  

While the second pilot-study sample was not representative of the intended 

sample of this study (i.e., practicing mathematics teachers), nevertheless this sample was 

purposefully selected for a number of reasons. One of the reasons for selecting pre-

service teachers to participate in the pilot-study was that it was relatively simple to obtain 

a moderately large number (N = 146) of responses to the survey, from which valuable 

information concerning the clarity of the items and of response formats could be 

obtained. Responses from pre-service teachers also gave a sense of the response and 

scoring patterns that could possibly result from administration to the intended sample of 

teachers, and of the psychometric properties of the items. However, a most important 

goal in selecting pre-service teachers as the pilot-study sample was the possibility of 

using the pilot-study group of pre-service teachers for comparison with the intended 

sample of practicing teachers. It was hoped that results of this comparison would provide 

evidence of the validity of the measurements obtained from practicing teachers. 

Results from this second pilot-study indicated that items and response patterns 

posed no difficulty in terms of linguistic clarity or of understanding the cognitive task 

being required of respondents. This inference was made based on verbal and written 

feedback received from participants upon the completion of the survey. Additionally, the 

second pilot-study indicated that respondents required approximately twenty minutes to 

complete the survey. This finding was important as it later informed the communications 

used to elicit survey responses from practicing mathematics teachers. 

One of the principal purposes of conducting the second pilot-study was to obtain 

preliminary estimates of the distribution of the test scores, of the reliability (internal 
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consistency) of the instrument, and of the properties of item responses. As with the first 

pilot-study so with the second pilot-study, test scores were approximately normally 

distributed as seen in Figure 7 below.  

 
 

Figure 7. Distribution of Scores on Second-Pilot Study 

The measure of internal consistency found by Cronbach’s (1951) alpha for the 

second pilot-study data was α = .345. Although this statistic implied that the survey had 

low reliability, it was significantly improved over the reliability (α = .009) of the survey 

used in the first pilot-study. Furthermore, since alpha reliability assumes 

unidimensionality of the latent variable, and the test framework upon which this survey 

was built implied the existence of three variables, this finding was taken as potentially 

confirmative of the underlying factor structure of the survey. To investigate this 

possibility, it was also observed that a smaller, conceptually related subset of items 

obtained reliability α = .538. Futhermore, a two-parameter item response theory model 

(IRT is discussed in the section of this chapter concerning data analysis) that included 
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this reduced set of items demonstrated acceptability of the psychometric properties of 

these items. Based upon these anecdotal indications that the underlying latent variables 

were multiple, conforming with the theory of the survey, and that many items 

demonstrated good psychometric properties, and also based upon the goal of comparing 

pre-service teachers to in-service teachers, the decision was made to go forward with 

collection of survey data from practicing teachers using the same thirty-two items that 

were used in the second pilot-study.  

Summary. This section has recounted the means employed to develop a measure 

of KT-MELL. The first two questions of this dissertation study concern defining domains 

of KT-MELL and identifying aspects of these domains, respectively. To a great extent 

the answers to these questions provided by this study are offered in this chapter 

concerning the methods used in this study. More specifically, the domains and aspects of 

KT-MELL identified in this study are embodied in the instrument that was developed and 

find expression in the theoretical model given in Figure 3 (above) and in the test 

framework given in Table 3 (above). Hence, answering the first two of the research 

questions mainly involved review of the research literature, classroom observation and 

careful theorization. As described above, the instrument that resulted from these 

processes also passed through a stage of content validation, as required in part by the 

third of the research questions of this study, and through a pilot-study phase.  

The third of the research questions concerned assessing the reliability and validity 

of the measures obtained using the instrument developed in this study. This question was 

addressed by collecting responses from actual, practicing mathematics teachers. To this 

end, the remaining sections of this chapter describe the survey administration methods, 
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the population and sample, as well as the data analysis methods that were used to answer 

the questions of this study. 

Survey Administration, Population and Sample 

With a view toward increasing the quality (independence) of responses, 

minimizing cost and facilitating data collection, internet survey administration was 

selected over the paper and pencil method. (Telephone surveys were impractical since 

many items required that respondents view mathematical symbols and representations.) 

An additional benefit of the internet survey method was the possibility of avoiding the 

difficulty of handling missing data by requiring that all fields receive responses for 

completion. Data were collected in the fall of 2012. 

The means of obtaining contact information for practicing middle school teachers 

involved sending two documents to administrators of the school districts: a formal letter 

explaining the research request, and also eliciting teacher contact information, was 

accompanied with a flyer specifically designed to attract the participation of mathematics 

teachers. It was hoped that interested districts would distribute this flyer among schools 

and teachers. The letter that was sent to school districts is attached as Appendix G and the 

flyer is attached as Appendix H. Once teacher contact information was obtained, eliciting 

responses from teachers was done by sending a series of email communications 

addressed to teachers by name. These communications described the kind of participation 

being requested and also offered the possibility of a small token financial incentive. 

(Such incentives have been shown to improve response rates (Dillman et al., 2009)). The 

survey software used to collect survey data also enabled teachers to receive personally 

addressed emails inviting their participation and providing a link to the internet survey. 

Teachers received a total of three requests of participation—one initial contact and two 
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reminders—provided they had not completed the survey after the first or second contact. 

These participation letters are found as Appendices I, J, and K respectively. 

 Population. Having a very large number of Latino ELLs, Texas is an appropriate 

setting for this study. Practicing mathematics teachers of middle school students in Texas 

form the population under investigation for this study. This study sought to define 

domains of knowledge for teaching mathematics to Latino ELLs and to attempt to 

develop a measure of such knowledge. This knowledge is of importance to practicing 

teachers; knowledge possessed by such teachers may be informed by both formal and 

experiential learning and could potentially lead to greater capacity to teach mathematics 

to Latino ELLs. 

Teachers of middle school were chosen because, for many ELLs, the classrooms 

of these teachers may be the students’ first experience in being instructed in English only. 

In Texas, with very few exceptions, only elementary school students have access to 

bilingual education programs. Therefore, middle school (and high school) teachers are 

expected to teach mathematics using English, even though their students may lack 

English proficiency. As a result, proficiency with teaching ELLs is sought in these 

teachers, making them an appropriate population for investigation. Intuitively, it would 

seem that more experienced teachers would perform better on the measure than would 

inexperienced teachers. This hypothesis was one justification for the comparison of the 

results of practicing teachers with those of the pre-service teachers obtained in the second 

pilot-study. Such findings assisted in answering the third research question that is 

concerned with the validity of the measure. 

 Intended Sampling and Sample. This study sought to draw a stratified random 

sample of 300 middle school mathematics teachers in Texas. The purpose for selecting 
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this sampling method was so that survey responses could be used to make generalizations 

about teachers in Texas. Stratification would enable the separation of teachers into 

subgroups defined by percentages of Latino ELLs in their school districts. Assumedly, 

this classification of strata would be useful as it would facilitate the comparison of survey 

responses from groups of teachers exposed to differing numbers of Latino ELLs; it was 

expected that patterns would exist in survey responses across such strata. Random 

selection of participants within strata would ensure, at much as possible, representation of 

the population. 

As it would result in a larger pool from which the random samples within strata 

could be drawn, the method selected for obtaining lists of potential survey respondents 

was to select Texas school districts according to their student population, their population 

of Latino students, and finally their population of ELLs. These data were publicly 

available on the Texas Education Agency website. Larger school districts would be 

contacted first because of their access to more teachers. Once the lists of teachers had 

been obtained, equivalently sized simple random samples of teachers would be drawn 

from within the separate strata. 

The decision of sample size for this study was driven by the requirements of the 

type of statistical analyses to be performed, which included, among others, confirmatory 

factor analysis (CFA) and item response theory (IRT). Responding to the third research 

question of this investigation, a primary goal of the study was to determine the extent to 

which the measures of KT-MELL obtained in this study had validity and reliability. CFA 

is fundamental to verifying the underlying structure of the knowledge constructs in 

question and to developing scales for such knowledge. Based upon recommendations 

given by DeVellis (2003) for CFA, a “good” sample size would be 300 participants, and 
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even 200 may be adequate (p. 137). The required sample sizes for IRT are more 

ambiguous. de Ayala (2009) emphasized the importance of not imposing “hard-and-fast 

rules” to determine appropriate sample sizes for IRT (p. 42). Furthermore, while both de 

Ayala (2009) and Orlando (2004) agree that, for calibration of a measure, larger sample 

sizes (more than 500) are better, the later author conceded that “one does not need large 

sample sizes for a clear picture of response behavior” (p. 8). Based upon the needs of 

CFA and upon the desire to use IRT for the realistic purposes of obtaining a sense of item 

response patterns rather than full calibration, it was decided that a sample of 300 

practicing middle school mathematics teachers would suffice. Based upon evidence that 

internet surveys (a discussion of the selection of this method is given in a later section) 

can suffer very low response rates (Dillman et al., 2009), a conservative estimated 

response rate of 5% was assumed. Given this response rate, obtaining the desired 300 

respondents would require collection of contact information for 6,000 teachers. 

Furthermore, data publicly available from the website of the Texas Education Agency 

indicated that, in the 2010-2011 school year, there were more than 99,000 mathematics 

teachers employed in the state of Texas, making this figure seem obtainable. 

Obtained Sample. Complete survey responses were obtained from forty-two 

mathematics teachers from diverse parts of Texas. Early in the survey administration 

process, it became clear that severe barriers, given the temporal and financial limitations 

of this study, stood in the way of contacting teachers and would obfuscate the collection 

of the desired stratified random sample. In following the plan outlined in the previous 

subsection of this chapter, many school districts of varying sizes, having large numbers 

of Latino ELLs were contacted by phone and by email to request participation in the 

study. Contacts were made at different levels of administration, beginning at the 
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superintendent level and down to the individual school principal level. While some of this 

effort was fruitful in terms of obtaining teacher contact information, because of the 

overwhelming infrequency of returned phone calls and emails, it became evident that this 

method of seeking distribution lists would not suffice. (Fewer than 50 contacts were 

obtained in this way.) As a result, efforts were redirected toward seeking support from 

state-level administrators. Separate communications with two representatives at high 

levels in the state department of educational administration indicated that this state entity, 

although concerned with the mathematical education of ELLs, would not provide formal 

support for the study. However, one of the representatives referred the researcher by 

name to the president of a state professional organization of mathematics teachers, 

suggesting that this could be a potentially profitable alternative route. Following this 

guidance, several dozen educational leaders in executive or administrative roles of 

diverse statewide professional organizations concerned with mathematics and bilingual 

education were contacted to request support for this study. These requests of support 

involved asking by email for names and contact information of practicing middle school 

mathematics teachers. Ultimately, this method of eliciting teacher contact information 

was the most effective; a few key leaders provided distribution lists of mathematics 

teachers. 

Given the difficulty of obtaining contact information for teachers, the 199 names 

and email addresses of teachers obtained during the four months of survey administration 

were gratefully received. Because of the small number of contacts, the intention of 

drawing a stratified random sample was abandoned and letters of request for participation 

(Appendices I, J, and K) were sent to all of these teachers. From these 199 contacts, 42 

complete survey responses were received, constituting a 21.1% response rate. Although 
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generalization of the results should, at best, be made with caution and, at worst, not be 

made at all, it can be observed that the characteristics of the sample, in terms of gender, 

years of teaching experience, and ethnicity, hold some resemblance to the population of 

Texas mathematics teachers. The properties of the sample are given in Table 4 below. For 

comparison purposes, statistics concerning the sample of pre-service teachers used in the 

second pilot-study, as well as statistics publicly available on the Texas Education Agency 

website concerning mathematics teachers in the state of Texas are given in this table. 

Table 4 

Characteristics of Sampled Teachers, Pilot-Study Sample of Pre-Service Teachers, and 
State of Texas Mathematics Teachers 
 
 Practicing Teachers, 

N = 42 
 
Frequency (Percent) 

Pre-service Teachers, 
N = 146 
 
Frequency (Percent) 

State of Texas 
mathematics 
teachers 
(Percent) 

Gender 
Female 
Male 

 
31 (73.8) 
11 (26.2) 

 
115 (78.8) 
31 (21.2) 

 
(63.3) 
(36.7) 

Years of teaching experience 
0 – 9 years 
10 – 19 years 
more than 20 years 

 
25 (59.5) 
14 (33.3) 

3 (7.1) 

 
- 
- 
- 

 
(57.3) 
(25.6) 
(17.1) 

Grade level taught 
Elementary grades 
Middle school grades 
High school grades 

 
3(7.1) 

34(81.0) 
5(11.9) 

 
- 
- 
- 

 
- 
- 
- 

Courses taught 
K-5 math course 
6th grade math 
7th grade math 

 
2 (4.8) 

14 (33.3) 
22 (52.4) 

 
- 
- 
- 

 
- 
- 
- 

8th grade math 
Algebra I 
Geometry 
Algebra II 
Mathematical Models 
Precalculus 
Calculus 
Statistics 

23 (54.8) 
13 (31.0) 
10 (23.8) 
6 (14.3) 
5 (11.9) 
4 (9.5) 
2 (4.8) 
1 (2.4 

- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 

 



84 
 

 

Table 4-Continued 

Characteristics of Sampled Teachers, Pilot-Study Sample of Pre-Service Teachers, and 
State of Texas Mathematics Teachers 
 
Extent of mathematical study in 
college 

Basic math, like College  
Algebra 

Several higher level math  
courses 

Bachelor or higher degree  
in math 

 
 

14 (33.3) 
 

15 (35.7) 
 

13 (31.0) 

 
 
- 
 
- 
 
- 

 
 
- 
 
- 
 
- 

Largest percent of ELLs taught 
0 – 20% 
20 – 40% 
40 – 60% 
60 – 80% 
80 – 100% 

 
16 (38.1) 
11 (26.2) 
6 (14.3) 
4 (9.5) 

5 (11.9) 

 
- 
- 
- 
- 
- 

 
- 
- 
- 
- 
- 

Types of professional development 
experiences for teaching ELLs 

None 
College course-work 
Sheltered Instruction 
ELPS Academy 
LPAC 
Other 

 
 

13 (31.0) 
13 (31.0) 
13 (31.0) 
12 (28.6) 
8 (19.0) 
5 (11.9) 

 
 
- 
- 
- 
- 
- 
- 

 
 
- 
- 
- 
- 
- 
- 

Knowledge of the Spanish language 
None at all 
A few words 
The basics 
Conversation 
Very fluent 

 
3 (7.1) 

13 (31.0) 
11 (26.2) 
9 (21.4) 
6 (14.3) 

 
64 (43.8) 

- 
63 (43.2) 

9 (6.2) 
10 (6.8) 

 
- 
- 
- 
- 
- 

Knowledge of languages other than 
Spanish or English 

German 
French 
Chinese 
Russian 
Japanese 
Sign language 
Filipino 
Malay 
Portuguese 

 
 

1 (2.4) 
1 (2.4) 
1 (2.4) 
1 (2.4) 
2 (4.8) 
1 (2.4) 
1 (2.4) 
1 (2.4) 
1 (2.4) 

 
 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 

Table 4 indicates that the gender of sampled mathematics teachers was very 

similar in proportion to the sample of pre-service teachers used in the second pilot-study 

and to the population of Texas mathematics teachers (within ten percentage points). The 

years of experience held by the sampled teachers was also very similar to the population 
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of Texas mathematics teachers. While the instrument designed in this study was 

developed in view of measuring the knowledge of middle school mathematics teachers, 

which composed the majority of the sample, a small number of mathematics teachers of 

high school and elementary school students were also included as well. Reflective of 

teacher level was the finding that the specific mathematics courses most taught by this 

group of teachers were the middle school level courses of 6th grade, 7th grade, 8th grade 

math, and Algebra 1. (Some teachers taught various other mathematics courses as well.) 

Furthermore, the mathematical training enjoyed by the teachers ranged nearly 

equivalently between having taken “basic math like College Algebra” to “several higher 

level mathematics courses” to having a “bachelor or higher degree in math”. The 

statistics just presented concern the teachers’ gender, mathematical training and 

mathematical teaching experience. 

Data also gave indications concerning other variables potentially related to 

performance on the KT-MELL instrument, such as teachers’ experience of teaching ELLs 

and of participating in professional development focused on teaching ELLs. For instance, 

slightly more than half of the teachers (27) had obtained experience teaching classrooms 

composed of between 0% and 20% ELLs, or between 20% and 40% ELLs. The 

remainder had taught in classrooms with higher percentages of ELLs. Furthermore, while 

approximately one third of respondents claimed to have received no formal training 

related to working with ELLs, the same numbers of respondents claimed to have been 

exposed to ELL issues during their college course work. Additionally, one third of 

respondents claimed to have received professional development concerned with the well-

known Sheltered Instruction principles (see Chapter 2) for teaching ELLs. Smaller 

numbers of respondents also admitted to having participated in professional development 
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programs specific to Texas such as the ELPS Academy (English Language Proficiency 

Standards Academy) or related to LPAC (the Language Proficiency Assessment 

Committee), or in “Other” professional development experiences. 

The survey also asked respondents concerning their proficiency in the Spanish 

language. Among the mathematics teachers sampled, only three of them (7.1%) claimed 

total ignorance of the Spanish language; interestingly, 43.8% of pre-service teachers from 

the second pilot-study made such a claim. The majority of practicing teachers (57.2%) 

claimed to know “a few words” or “the basics”, and a few admitted to being conversant 

in Spanish or to being “very fluent”. 

Finally, although the ethnicity of teachers was not assessed by means of this 

survey instrument, based upon using a combination of the names of the teachers and their 

Spanish language fluency as anecdotal evidence, a cautious estimate of the count of 

sampled teachers who were of Hispanic ethnicity may be given. Because of the 

possibility of name-changes, this figure, 13 (31%) should probably be considered an 

upper bound on the number of Hispanic teachers in the sample. This figure is slightly 

higher than the percentage of Hispanic mathematics teachers (19.2%) reported for the 

state of Texas. Furthermore, more than 16 school districts and 23 schools were 

represented, which covered a wide geographic sector of the state. A map depicting the 

geographic distribution of responses is given in Figure 8 below. 
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Figure 8. Map of Participating School Districts. 

Data and Data Analysis 

 This study involved the collection of survey data from both pre- and in-service 

mathematics teachers. Thus, data collected were almost exclusively quantitative. The KT-

MELL survey instrument administered in both the second pilot-study and in the full study 

of practicing teachers contained thirty-two multiple-choice knowledge items in addition 

to several multiple-choice items intended to capture descriptive data concerning 

respondents. It also contained one open-ended response question. 

 The knowledge items were coded in two ways. First, each survey item response 

was coded with a positive integer that indicated which option had been chosen. (For 

example, “1” indicated that the first option had been chosen, “2” the second, etc.) 

Following this coding of all responses, the thirty-two KT-MELL items were re-coded 

with a “0” or “1” indicating whether the respondent had given the correct or incorrect 

response, respectively. Thus, the final data set was composite of two distinct tables, one 

containing categorical data and the other containing dichotomously scored data. The 
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open-ended question was coded according to whether or not a response had been given, 

and responses to this item were recorded separately as text, with no other coding schema 

applied. 

 As described earlier in this chapter, the first two of the research questions, which 

concern identification of the knowledge domains and aspects of KT-MELL, were 

addressed through careful reading of the research literature, observation of mathematics 

classrooms, and thoughtful theorization. Hence, the data analysis methods described in 

this section apply principally to the third research question, which concerns the properties 

of the instrument that was developed in this study and of the measurements obtained 

using this instrument. The data analysis methods employed in this study were chosen for 

their applicability to the goal of developing a measurement instrument of KT-MELL. 

Methods were needed that could identify the psychometric properties of the survey items, 

but that could also lead to evidence concerning the reliability and validity of the 

measurements obtained by the instrument. Furthermore, as this work was exploratory in 

the sense that it involved the development of an instrument to measure a novel 

knowledge construct, several methods were chosen for their utility in identifying patterns 

in responses from different populations of respondents and in identifying the factor 

structure of the KT-MELL instrument. The data analysis methods employed in this study 

were founded in two well-known measurement theories related to test development: 

classical test theory and item response theory. 

Classical Test Theory and Item Response Theory. Both classical test theory 

(CTT) and item response theory (IRT) provided frameworks for considering the results of 

and evaluating the properties of the measurements obtained from the KT-MELL 

instrument. Whereas CTT is the older of the two and was “the mainstay of psychological 
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test development for most of the 20th century”, IRT has become a central theoretical 

framework for the development of psychological measures (Embretson & Reise, 2000, p. 

13). These frameworks differ in a number of important ways. The fundamental difference 

between CTT and IRT is this: whereas in CTT the unit of consideration is the total test 

score, that is, the sum of correct responses to all items in an instrument, in IRT the 

individual responses to items (as the name suggests) are the units of consideration (de 

Ayala, 2009; Embretson & Reise, 2000). Thus, researchers working from the standpoint 

of CTT investigate the properties of and relationships between respondents’ total scores 

on an instrument. Respondents’ ability levels on the underlying trait of investigation, 

then, are described by the percentages of correct responses to all items. Researchers 

working from the standpoint of IRT, however, wish to model respondents’ ability on the 

underlying trait by understanding how the individual items are related to the underlying 

trait. Estimations of the properties of items, such as their levels of difficulty on the 

continuum of ability and their capacity to discriminate between respondents of varying 

levels of ability, are used to obtain estimates of the abilities of the respondents. The 

possibility of estimating both item and person locations on an ability continuum of the 

latent trait is an example of one of the practical and substantive advantages that IRT 

offers over CTT (Embretson & Reise, 2000). 

This dissertation study employed analysis methods pertaining to both CTT and 

IRT as they found utility in understanding the properties of the measurements obtained 

from the KT-MELL instrument. From the perspective of CTT, it was meaningful to 

consider the percentage of correct responses to items for a number of reasons. Analyses 

of test scores were useful for understanding both the distribution of scores and the 
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possible sources of variation in scores. These and other usages of CTT are detailed in 

subsequent sections of this chapter. 

IRT is more complicated than CTT. As Embretson & Reise (2000) point out, “few 

readers would want to understand IRT solely for its psychometric elegance” (p. 39). 

Nevertheless, IRT was useful for understanding how individual items on the KT-MELL 

instrument behaved and how they contributed to the quality of the measurements 

obtained. This study used a two-parameter IRT model, described below. 

The Two-parameter IRT Model. The IRT model selected for usage with the data 

in this study is the two-parameter logistic IRT model (2PL). The two parameters from 

which this model obtains its name are the item difficulty and discrimination parameters. 

(In comparison, one-parameter logistic IRT models (1PL) include only estimates of the 

difficulty of the items.) Item difficulties describe the locations of the items on an ability 

continuum of the latent trait: “In general, the items that are considered to be ‘easy’ are the 

ones that persons with low proficiencies have a tendency to answer correctly. Conversely, 

the ‘harder’ items are the items that persons with high proficiencies tend to get correct” 

(de Ayala, 2009, p. 15). Clearly, item difficulties constitute important psychometric 

properties. 

However, the discrimination of the items is at least (and perhaps more) important. 

Discrimination refers to the capacity of the items to differentiate between respondents of 

varying ability levels of the latent trait, in this case, knowledge. As seen below, the 

discrimination parameter, α, is a multiplier in the model that results in different 

predictions for persons of differing abilities. Hence, the discrimination parameter allows 

researchers to distinguish between respondents of different ability levels (de Ayala, 

2009). Since this research is an instrument development study, and it cannot be assumed 
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that all items in the instrument discriminate equally well, selection of the 2PL model 

allowed for varying estimates of discrimination. Indeed, the exploratory nature of this 

work implies the possibility of the existence of profoundly different levels of both 

difficulty and discrimination in the items. Hence, the intended result of using a 2PL IRT 

model was a fuller picture of the psychometric properties possessed by the survey items. 

IRT models estimate the probability of correct responses to the items, given 

certain parameters. The 2PL IRT models used to analyze the data collected in this study 

took the following form: 
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, (de Ayala, 2009). 

This model predicts the probability of a correct response on the jth item by a person of θ 

ability, given that item j has discrimination and difficulty parameters ja  and jδ , 

respectively. The above function p is called the item probability function and its graph, 

which has an ogival (S-shaped) form, the item characteristic curve (ICC). Estimates for 

the difficulty and discrimination parameters of all items were accomplished by means of 

the method of marginal maximum likelihood estimation using Gauss-Hermite quadrature 

(Rizopoulos, 2006). This method has a number of advantages, among which are its 

applicability to the 2PL model and also its efficiency for tests of differing length 

(Embretson & Reise, 2000). Usage of IRT models also requires satisfaction of a series of 

assumptions. 

Assumptions Required of the Two-parameter IRT Model. Using the 2PL IRT 

model above requires satisfaction of three strong assumptions: the unidimensionality 

assumption, the conditional independence assumption and the functional form 

assumption (de Ayala, 2009). Under the unidimensionality assumption, the latent trait of 
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interest, in this case knowledge for teaching mathematics to Latino ELLs, is taken as 

containing only one dimension or factor. That is, all survey items should serve as 

manifest indicators of a single latent variable, a single domain of knowledge. Since, the 

theoretical test framework of the KT-MELL instrument implied multiplicity of latent 

variables, it seemed likely that, for the full set of items, this assumption would fail and 

that multiple 2PL models would be applied to separate unidimensional subsets of items. 

Indeed, IRT models proved invaluable in helping to validate the structure of the 

knowledge domains underlying the KT-MELL instrument of this study. 

The second assumption of IRT models, conditional independence, requires that 

responses to items are entirely determined by the respondents’ locations on the 

continuum of ability and not by their responses to other items of the instrument (de 

Ayala, 2009). Difficulties with conditional independence occur when responses to certain 

items inform responses given to other items. When this happens, responses may not only 

be determined by the respondents’ locations but by responses that they have given to 

other items on the instrument. In the context of attitude surveys, Schuman & Presser 

(1996) investigated such order effects. They found that “merely placing two questions 

with similar content next to each other does not necessarily create an order effect” (p. 

35). They argued that responses to similar questions will only influence one another if 

respondents have a need to seem consistent. Since respondents to the KT-MELL survey 

were assured of their anonymity and that the results would be used only for research, 

such a need for consistency would seem to be absent. Additionally, since the KT-MELL 

survey items represent a variety of the aspects of knowledge found in three hypothetically 

separate domains, and are contextualized in many different teaching situations, it would 

seem that most items would be substantially different from others so as to satisfy 
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conditional independence by invoking responses based upon knowledge and not upon 

other survey responses. While a very few of the items do draw upon common classroom 

situational strands, the cognitive tasks required of most such items vary substantially. 

Upon these bases and for the purposes of applying the 2PL IRT model above, this study 

assumed the conditional independence of responses to the KT-MELL survey items. 

The third assumption, the functional form assumption, required of IRT models is 

that the data follow the S-shaped curve given by logistic models (de Ayala, 2009). This 

shape implies that, at the extremes of the ability continuum, small changes in ability 

result in very small changes in the probability of responding correctly to items.  In the 

center of the continuum, that is, at the item’s location on the continuum, small changes in 

ability can result in substantial changes in the probability of correct responses. In 

applying the 2PL models, this study assumed that the KT-MELL items have this 

functional form, while admitting along with de Ayala (2009) that both this assumption 

and the unidimensionality assumption “are rarely ever exactly met in practice” (p. 21).  

The sections that follow describe the specific analytic methods that were used for 

observing and assessing the psychometric properties of the items, the reliability of the 

measurements, patterns in responses, and also the validity of the measurements. 

Assessing the Factor Structure of the KT-MELL Instrument. One of the 

analyses that involved application of methods pertaining to both CTT and IRT was the 

assessment of the underlying factor structure of the KT-MELL instrument. Since both the 

calculation of the reliability coefficient α and the application of the 2PL IRT model 

required the assumption of unidimensionality, it was necessary to determine whether this 

assumption was met. Indeed, the hypothetical factor structure of the KT-MELL 

instrument implied the existence of three distinct knowledge domains and survey items 
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were constructed with the intent of measuring these domains. To the end of assessing 

whether this goal had been achieved the step of confirmatory factor analysis (CFA) 

preceded other analyses.  

“CFA is almost always used during the process of scale development to examine 

the latent structure of a test instrument” (Brown, 2006). Assessing the latent structure of 

the KT-MELL instrument was essential for understanding the kind of knowledge that was 

being measured by the instrument. This step was helpful for informing both the kinds of 

analyses to be done as well as their interpretations. In addition to evidence concerning the 

multiplicity of the underlying factor structure that could be obtained from computations 

of α and from inspections of multiple IRT models, this study employed the CFA method 

of principal component analysis with Promax rotation. This factor analytic method aligns 

with methods used to understand the underlying factor structure of the closely related 

construct mathematical knowledge for teaching (Hill, Schilling, & Ball, 2004). 

Uncovering the Psychometric Properties of the KT-MELL Items. The 

psychometric properties of the KT-MELL survey items found and reported in this study 

were the following: the percentage of correct responses received by each of the items, 

point-biserial correlations of items responses with total test score, inter-item correlations, 

the item difficulty and discrimination parameters, and the item and total test information 

estimates. Calculating the percentages of correct responses involved simple computation 

of the ratio of correct to incorrect responses per item. This item property is given merely 

to give a sense of the characteristics of the entire instrument; it cannot be construed as a 

measure of the difficulty of the items. Point-biserial correlation is a special case of 

Pearson product-moment correlation for usage when considering the correlation of a 

dichotomous variable (such as a graded response) with a continuous variable (such as a 
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total test score) (Nunnally & Bernstein, 1994). The interpretation of this correlation is 

that it measures the strength of the association of the variation of individual item 

responses with the variation of the total test score. 

The difficulty, discrimination and information estimates were found using the 

2PL IRT model described above. As mentioned, estimation of difficulty and 

discrimination parameters was accomplished by means of the method of marginal 

maximum likelihood estimation using Gauss-Hermite quadrature (Rizopoulos, 2006). 

The interpretation of the difficulty parameter is that it locates the item on the continuum 

of ability, indicating the level of ability above which respondents tend to give correct 

responses and below which they tend to answer incorrectly. The interpretation of the 

discrimination parameter is that it indicates the extent to which an item serves to 

differentiate between respondents of higher and lower abilities.  

The IRT information estimate is found as a function of an item’s discrimination 

parameter as follows:  

( ) 2 (1 )j j j jI p pθ α= − , 

 where pj is the probability of a correct response on item j, and αj is the item’s 

discrimination (DeAyala, 2009). The interpretation of the information estimate is that it 

serves as an indicator of the precision to which an individual’s location on the ability 

continuum—in this case the continuum is knowledge—may be estimated. More 

precisely, greater information provided by items and instruments implies reduction in the 

uncertainty about the position of the individuals on the continuum of interest. Since IRT 

information estimates concern the quality of the measurements obtained using the 

instrument for which data are modeled, IRT information is discussed further in the 
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following section that concerns the means employed by this study for assessing 

reliability. 

Assessing Reliability. As defined by Carmines and Zeller (1979), reliability 

“concerns the extent to which an experiment, test, or any measuring procedure yields the 

same results on repeated trials” (p. 11). Researchers depend on having reliable 

measurement instruments since, as the above definition implies, an unreliable instrument 

would potentially produce differing measurements even though the object being 

measured has experienced no qualitative change. In the case of psychometric measures 

such as that being developed by this study, this kind of reliability implies that reliable 

instruments will give similar results for different respondents who have similar levels of 

knowledge. But as the above definition of reliability also implies, reliability can be 

improved by increasing the number of very similar items: “A scale’s reliability is 

increased by reduncancy” (DeVellis, 2003, p. 138). This understanding of reliability 

pertains to classical test theory. However, from the IRT perspective, “Reliability is 

enhanced not by redundancy but by identifying better items” (DeVellis, 2003, p. 138). 

Because of its long-standing acceptance in psychometric research, this study first 

addresses reliability from the perspective of internal consistency that is central to CTT. 

However, because of its more recent acceptance and because it is especially suited to 

developing scales for tests of ability (DeVellis, 2003), emphasis in the discussion of 

reliability is given to IRT methods. These frameworks treat reliability in different ways as 

described below. 

Internal Consistency Analysis. The standard CTT measure of reliability is 

Cronbach’s (1951) alpha: the “Alpha formula is constructed to apply to data where the 

total score … will be taken as the person’s observed score” (Cronbach, 2004, p. 13). 
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Precisely speaking, Cronbach’s alpha is a generalization of Kuder-Richardson’s formula 

20, KR-20, which is a measure of internal consistency useful for sets of dichotomously 

scored items, such as those found in the instrument used in this study (Cronbach, 1951). 

That is, in the case of dichotomously scored items, KR-20 is equivalent to Cronbach’s 

alpha. Hence, as a measure of internal consistency, this study used Cronbach’s alpha, the 

computation of which is given by the following formula: 
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In this equation, k gives number of items on the instrument, 2
iσ∑ gives the sum of 

individual (non-communal) variances across all items, and 2
iyσ gives the total variance, 

both individual and covariances (communal). This alpha is, thus, the proportion of total 

variation across all items that is accounted for by covariation between items. That is, it is 

a measure of the extent to which variation in item scores is explained by covariation 

among the items. It is considered to be a lower-bound on the internal consistency of the 

instrument. The multiplier k/(k – 1) serves to ensure that values of alpha range between 0 

and 1, with a value of 1 indicating that all items are perfectly correlated and 0, that there 

is absolutely no correlation.  

A scale that is internally consistent has the property that all of the items in the 

scale measure the same thing; they are indicators of the same phenomenon. As a result, 

the items are highly inter-correlated. An obvious assumption of α as a measure of 

reliability is the unidimensionality of the latent construct. In the case of the KT-MELL 

survey instrument, this measure of internal consistency may have limitations. As 

addressed in an earlier section of this chapter, knowledge for teaching mathematics to 
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Latino ELLs is hypothesized to be multidimensional and the KT-MELL instrument 

contains items intended to capture the different dimensions. Indeed, Lee J. Cronbach 

(2004) has recently stated, “I doubt whether coefficient alpha is the best way of judging 

the reliability of the instrument to which it is applied” (p. 3). To address this limitation, in 

addition to investigating its internal consistency, assessing the reliability of the KT-

MELL instrument involved a detailed investigation of the qualities of the items and of the 

total information obtained from the instrument as seen from the perspective of IRT. 

IRT Information. In addition to the difficulty and discrimination parameters 

offered by IRT models as psychometric properties of items, these models also offer an 

additional psychometric property useful for making judgments about the quality of the 

measurements obtained by items individually and by sets of items as scales: “To obtain 

an idea of how well an item and the entire instrument can estimate person locations [on 

the continuum of knowledge], we examine the item and total information” (de Ayala, 

2009, p. 31). Item and total information estimates are indicative of the extent to which the 

uncertainty about person locations has been reduced. That is, information is inversely 

related to the standard error of estimation given by IRT models. Mathematically, the item 

information function is just the first derivative of the item probability function (Revelle, 

2013). As mentioned above, an item’s information is given as: ( ) 2 (1 )j j j jI p pθ α= − , 

where pj is the probability of a correct response on item j, and αj is the item’s 

discrimination (DeAyala, 2009). Furthermore, the total information function for a set of 

items is just the sum of the item information functions, that is, ( )
1

( )
L
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item information and the total information are descriptive of the capacity with which the 
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item and total test, respectively, are useful for estimating person’s locations on the ability 

continuum.  

Furthermore, as indicated by the notation I(θ), information is a function of the 

location, θ, on the ability continuum. Hence, the item and total information estimates not 

only indicate the extent to which persons’ locations may be accurately determined, but 

they indicate the specific ranges on the ability continuum within which these estimates of 

person locations are most accurate. It is possible that items may serve differently for 

measuring ability levels at different locations along the continuum. For example, an 

“easier” item that discriminates well may give good information at a lower level of ability 

than would a more “difficult”, but equally discriminating item.  

Whereas reliability, as measured by Cronbach’s (1951) α, gives an indication of 

the internal consistency of the instrument to which it is being applied, IRT information 

gives an indication of the extent to which the instrument (and specific items) serve well 

in measuring persons’ ability levels, at specific locations along the continuum.  An 

advantage of IRT information over conventional reliability is that, “unlike the concept of 

reliability that depends on both instrument and sample characteristics, an instrument’s 

total information is a property of the instrument itself” (De Ayala, 2009, p. 29). Hence, in 

addressing the issue of reliability—a central component of the third research question of 

this instrument development study—the focus is on understanding what information 

properties the KT-MELL instrument possesses. 

Construct Validation. Beyond investigating the reliability of the measurements 

obtained using the KT-MELL instrument, their validity was the second major focal point 

of the third research question. This study employed a number of means intended to avoid 

common threats to validity. As has been explicated in the section of this chapter 
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concerned with the KT-MELL test framework, efforts to ensure the content validity of the 

KT-MELL instrument involved three directions: strict adherence to research findings, 

usage of actual classroom observation for item-contextualization, and review of survey 

items by a panel of experts in fields related to the mathematics education of ELLs. The 

effort to ensure the external validity of the results involved the attempt to collect a large 

enough stratified random sample so that generalization of results to the population of 

Texas middle school mathematics teachers might be possible. These validity issues were 

addressed through the design of the study. An additional source of validity that was 

addressed using data analytic means was construct validity. 

Construct validity concerns the extent to which an intended measure of a 

construct actually measures the construct that it is intended to measure. More precisely, it 

involves “Determining what psychological constructs account for test performance” and, 

by implication, what constructs do not account for test performance (Cronbach & Meehl, 

1955, p. 176). This interpretation of construct validity has implications for the behavior 

of the measures obtained and assessing the extent to which the measures behave 

accordingly is central to assessing construct validity. The two means for assessing 

construct validity employed by this study involved assessing A) both the convergent and 

discriminant validity of the measurements (Campbell & Fiske, 1959) and B) the extent to 

which the KT-MELL measures are described by a nomological network (Cronbach & 

Meehl, 1955).  

“…for the establishment of construct validity, discriminant as well as convergent 

validation is required” (Campbell & Fiske, 1959, p. 81). Convergent validity refers to the 

extent to which different measures of the same construct are correlated while 

discriminant validity refers to the extent to which measures of different, theoretically 
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unrelated, constructs are uncorrelated. Since KT-MELL is a novel construct and the 

instrument developed in this study stands alone as a measure of KT-MELL, at the time of 

this research, no other measures of KT-MELL were extant. Hence, for this study, the 

assessment of convergent and discriminant validity served the purpose of assessing the 

extent to which separate sets of theoretically related items served as measures of distinct 

domains (scales) within KT-MELL. Whereas the correlation among items in the same 

scale should be relatively high (convergent validity), “Tests can be invalidated by too 

high correlations with other tests from which they were intended to differ” (Campbell & 

Fiske, 1959, p. 81). That is, construct (discriminant) validation of the separate scales 

involved assessing the extent to which items and scores were uncorrelated across scales. 

The method chosen for assessing both convergent and discriminant validity was an 

adaptation of the multitrait-multimethod (MTMM) matrix (Campbell & Fiske, 1959). 

While the different scales could be considered as different traits, the method for all 

measurements was the same. That is, measurements were not obtained using different 

methods, as required of MTMM. As a result, this method gave limited evidence of 

convergent and discriminant validity. 

The second method of assessing construct validity involved the nomological 

validity of the measures. “Construct validation takes place when an investigator believes 

that his instrument reflects a particular construct, to which are attached certain meanings. 

The proposed interpretation generates specific testable hypotheses, which are a means of 

confirming or disconfirming the claim” (Cronbach & Meehl, 1955, p. 187). These authors 

proposed that validation involves describing a nomological network, an “interlocking 

system of laws which constitute a theory” (p. 187). This understanding of validity is 

closely related to that offered by DeVellis (2003): “It is the extent to which a measure 
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‘behaves’ the way that the construct it purports to measure should behave with regard to 

established measures of other constructs” (p. 53). As a knowledge construct situated 

within the construct mathematical knowledge for teaching (MKT), a network of variables 

that could potentially be related to KT-MELL at once emerges. As researchers concerned 

with measuring MKT have done, this study has also investigated the relationship of KT-

MELL with such teacher factors as years of mathematics teaching experience, 

certification status, and mathematical training (Hill, Rowan, & Ball, 2005). Additionally, 

many other variables that could potentially be related to KT-MELL (experience teaching 

ELLs, Spanish language proficiency, ELL professional development experiences, etc.) 

were also investigated.  

Ross et al. (2003) recommend that, “In determining construct validity, the 

instrument developer describes a network of relationships that includes the survey score. 

If the observed relationships correspond to the hypothesized relationships, the validity of 

the survey is confirmed” (p. 352). For simplicity, and because of its conventional usage 

for assessing relationships between teacher knowledge and other factors (Hill, Ball, 

Schilling, 2008), this investigation was done using linear-regression modeling. The 

different variables of interest were regressed on teachers’ KT-MELL scale scores. The 

application of linear-regression models requires the assumption that data be 

approximately normally distributed; distribution of scale scores is treated in the results 

section. The results of the linear-regression models were sought as evidences concerning 

the construct (nomological) validity of the measures obtained as measures of the 

knowledge construct KT-MELL. 

Observing Response Patterns. A number of additional statistical methods were 

useful for uncovering and attempting to explain patterns of responses that existed within 
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the KT-MELL survey data. Pearson’s chi-squared test of independence (Pearson, 1900) 

was used to understand the ways in which different categories of respondents gave 

correct and incorrect responses to individual survey items. This statistical method 

requires that a number of assumptions be made that were, generally, easily satisfied by 

the data. The foremost of these concern the independence of the observations (individual 

responses to items) and the required minimum cell count required for the test (5 or more 

were sought for usage in this study). Another method used to understand response 

patterns was the calculation of Pearson’s r as a measure of the correlation between pairs 

of items. A final statistical method that was used to understand response patterns was 

analysis of variance, ANOVA. ANOVA was used to test the null hypothesis of the 

equivalence of mean scale scores between differing categorical groups of teachers. In the 

case of two groups, this method is equivalent to a linear regression model involving only 

two variables. Hence, the results of ANOVA were also useful for investigating possible 

sources of construct validity. 

Software Used for Data Analysis. For this study, data collection, data handling 

and data analysis were accomplished by using five software programs. SNAP 10 

Professional was used to both email teachers with requests for survey participation and to 

collect survey data. Microsoft Excel was used to assemble and “clean” spreadsheets of 

data for analysis. IBM SPSS Statistics (Version 20) and R (version 2.13.1) were used for 

computations related to a large number of statistical tests. ltm (Rizopoulos, 2006) is a 

software package available for R  that was used to compute IRT models. 

Summary. This study involved the design and field-testing of an instrument for 

measuring mathematics teachers’ knowledge for teaching Latino English Language 

Learners (KT-MELL). Presented in this chapter were the processes that resulted in a 
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three-dimensional framework of knowledge, as the testing framework from which 

operationalizations in the form of survey items were developed. This conceptual model 

and testing framework (Figure 3 and Table 3, respectively) are the results of careful 

theorization based upon results found in the research literature concerned with the 

mathematics education of ELLs and with mathematics teachers’ knowledge, as well as of 

more than thirty hours of the observation of the classrooms of middle school mathematics 

teachers in central Texas. During their development, survey items underwent two 

successive pilot-study phases that involved samples of pre-service mathematics teachers, 

as well as content validation by a panel of experts in related fields, before being 

administered to actual practicing middle school mathematics teachers. 

The quantitative survey data collected from teachers in this study were analyzed 

using methods pertaining to two theoretical perspectives of test development: classical 

test theory and item response theory. Methods were chosen for their utility in giving 

evidence of the reliability and validity of the measurements obtained using the thirty-item 

KT-MELL instrument. Specifically, data analysis methods were selected that could 

answer questions regarding the underlying factor structure of the instrument, the 

psychometric properties of the items, the reliability and validity of the measurements, and 

the particular patterns of responses that emerged. Several well-known statistical software 

packages available at the time of the study were used, which were capable of performing 

computations needed for the required analyses. 
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CHAPTER 4: RESULTS 

Responding to the methodological framework presented in the previous chapter, 

this chapter presents the results of the data collection and data analysis. To more clearly 

focus the treatment of these, the research questions of this study are reconsidered here. 

1.  What are the domains of knowledge needed to teach mathematics to Latino 

English Language Learners (KT-MELL)? 

2.  Drawing from the research literature and middle school mathematics classroom 

observations, what are some of the aspects of these domains of knowledge when 

teaching Latino English Language Learners at the middle school level? 

3.  What evidences of reliability and validity does an instrument developed to 

measure these domains and aspects exhibit? 

The first two questions have been addressed by the chapter concerned with reviewing the 

research literature that treats the mathematics teaching and learning of ELLs, and even 

more directly, by the methodology chapter that gave a theoretical framework of domains 

of knowledge potentially needed for teaching mathematics to ELLs as well as specific 

aspects of these domains.  (See Figure 3 and Table 3 of that chapter for domains and 

aspects, respectively.) The focus of this chapter concerns the third research question. 

Specific topics addressed in this chapter include the internal consistency and empirical 

factor structure of the instrument given both by classical test theory and item response
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theory analyses, properties of the items and scales, analysis of item response patterns, and 

validity of the measurements.  

Evidence of Internal Consistency and Factor Structure. 

The third of the research questions that guided this study concerned the reliability 

and validity of the measurements obtained using the exploratory KT-MELL survey 

instrument. This section addresses reliability while the penultimate section of this chapter 

addresses validity. Interweaved in this section is the assessment of the underlying factor 

structure of the KT-MELL instrument. The methods for evaluating the worth of this 

instrument’s measurements in terms of their capacity for accurately estimating the 

knowledge possessed by respondents drew from classical test theory (CTT) and item 

response theory (IRT). Both of these frameworks assume the unidimensionality of the 

underlying latent factor structure of the instrument being investigated. Hence, 

determining whether the KT-MELL instrument was unidimensional or multidimsional (as 

hypothesized) was crucial before further analyses could be accomplished. This 

determination was accomplished based upon the theoretical orientation of the items and 

by using evidence gained from the measures of internal consistency. That is, the 

assessment of the reliability of the measures lead to results concerning the underlying 

latent factor structure. 

Internal consistency refers to “the homogeneity of the items within a scale” 

(DeVellis, 2003, p. 27). That is, a scale that is internally consistent has the property that 

all of the items in the scale measure the same thing; they are indicators of the same 

phenomenon. As a result, the items are highly inter-correlated. Indeed, measures of 

reliability such as Cronbach’s (1951) coefficient alpha are, equivalently, measures of 

internal consistency. That is, “a measure’s [alpha] reliability equals the proportion of total 



107 
 

 

variance among its items that is due to the latent variable and thus is communal” 

(DeVellis, 2003, p. 35). This measure of internal consistency is central to CTT. 

Computation of Cronbach’s coefficient alpha assumes unidimensionality of the 

latent construct. As explained in the chapter on the methodology of this study, knowledge 

for teaching mathematics to Latino English Language Learners was, hypothetically, 

composite of three distinct domains of knowledge. These domains were: knowledge of 

difficulties encountered by these students in mathematics classes (KDIFF), knowledge of 

their capacities for learning mathematics (KCAP), and knowledge of strategies for 

teaching them mathematics (KSTRAT). Hence, it was conceivable and even expected 

that the instrument being used in this study would exhibit the psychometric properties of 

a multidimensional scale rather than a unidimensional one. Usage of traditional measures 

of reliability that depend on unidimensionality of the instrument then became 

questionable. Indeed, Lee J. Cronbach (2004) has recently stated, “I doubt whether 

coefficient alpha is the best way of judging the reliability of the instrument to which it is 

applied” (p. 3). To address this limitation, this assessment of the reliability of the 

instrument was accomplished from two perspectives: classical test theory and the more 

recent, item response theory. Indeed, assessing the reliability of the instrument proved 

invaluable as a means of understanding it underlying factor structure. 

Classical Test Theoretic Evidence of Reliability. Classical test theory (CTT) 

takes, as the unit of analysis, the individual respondent’s observed score; that is, the sum 

of the item scores on the entire instrument (de Ayala, 2009). Indeed, as a measure of the 

construct in question, knowledge for teaching mathematics to Latino ELLs, it would 

seem useful to obtain a single descriptive score. (The later section concerning the 

properties of scales addresses with the properties of this score.) It is important to note 
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here that Cronbach’s “Alpha formula is constructed to apply to data where the total score 

… will be taken as the person’s observed score” (Cronbach, 2004, p. 13). Thus, from a 

CTT viewpoint, it is meaningful and appropriate to consider what evidence of reliability 

can be seen from calculations of alpha on the full set of items and on subsets of items. 

These findings had direct implications for the internal consistency of the instrument, and 

indirect implications for it underlying factor structure. This section does just that. 

Precisely speaking, Cronbach’s alpha is a generalization of Kuder-Richardson’s formula 

20, KR-20, which is a measure of internal consistency useful for sets of dichotomously 

scored items, such as those found in the instrument used in this study (Cronbach, 1951.) 

That is, in the case of dichotomously scored items, KR-20 is equivalent to Cronbach’s 

alpha. The formula for computing this alpha is given below: 
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In this equation, k gives number of items on the instrument, 2
iσ∑ gives the sum of 

individual (non-communal) variances across all items, and 2
iyσ gives the total variance, 

both individual and covariances (communal). This alpha is, thus, the proportion of total 

variation across all items that is accounted for by covariation between items. That is, it is 

a measure of the extent to which variation in item scores is explained by covariation 

among the items. It is considered to be a lower-bound on the internal consistency of the 

instrument. The multiplier k/(k – 1) serves to ensure that values of alpha range between 0 

and 1, with a value of 1 indicating that all items are perfectly correlated and 0, that there 

is absolutely no correlation. 
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 To evaluate the internal consistency of the instrument, and also to evaluate the 

validity of the unidimensionality assumption, Cronbach’s alpha was computed for the full 

set of thirty-two items used in this study. Based upon responses from the 42 participating 

teachers, it was found that α = 0.450. This amounted to saying that less than 50% of the 

variation of scores on the items is attributable to covariation among the items. There is 

disagreement about acceptable cutoff points for α. Nunnally and Bernstein recommend 

that “In the early stages of predictive or construct validation research, time and energy 

can be saved using instruments that have only modest reliability, e.g., .70” (p. 264). 

Indeed, based upon the argument given by these authors, .70 is frequently used as a rule 

of thumb in social science research. However, others consider that, for dichotomously 

scored items, KR-20 greater than .5 is acceptable (McGahee, T. W., & Ball, J., 2009).  

One interpretation of the alpha found for the items on the instrument in this study 

is that they are imperfectly representative of the construct in question. This is an issue of 

content validity and has been addressed in the chapter on methodology. Based upon the 

positive results of review of the instrument by a panel of experts, an alternative 

interpretation seemed in order. One such alternative interpretation of this alpha was that 

the instrument contained too few items. Indeed, the Spearman-Brown prophecy formula 

showed that an additional fifty-nine similar items (total of 91 items) would bring 

reliability to .70. It should also be noted here that reliability for the full set of items was 

higher for practicing teachers, α = .450, than it was for pre-service teachers in the second 

pilot-study, α = .345. This difference seemed to indicate that another interpretation was 

appropriate. 

An interpretation that seemed to conform more closely to the test-framework from 

which the instrument was created was that variation of item scores could probably not be 
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explained by variations of the true score on a single underlying construct. This 

interpretation implied that knowledge for teaching mathematics to Latino ELLs would be 

composite of multiple factors. To investigate this possibility, a set of items that was 

maximally reliable in terms of coefficient alpha was found. 

Through a process of item-deletion, a reduced set of 13 items was found that were 

conceptually related and that had a measure of internal consistency α = .642. Thus, 64.2% 

of the variation of item scores among this reduced set of items was attributable to 

covariation among the items. This amounted to a nearly 20% increase in internal 

consistency. Furthermore, the 13 items that composed this subset were almost exclusively 

taken from the KDIFF and KCAP domains; they were concerned with knowledge of the 

difficulties that Latino ELLs face and with knowledge of the capacities for learning 

mathematics that such students may have because of their background knowledge and 

cultural-linguistic attributes.  

This finding was important in at least two ways. First, it seemed to confirm the 

multiplicity of the underlying latent constructs, negating the assumption of 

unidimensionality. But this finding also seemed to confirm an earlier suspicion (see 

Chapter 3) that knowledge of difficulties and capacities may not be distinct domains. 

Rather, based upon the great improvement in internal consistency obtained using items in 

these domains, it appeared that they pertained to a single domain. That is, this result gave 

evidence that the two hypothetical domains of KDIFF and KCAP could, in fact, be 

indistinct.  

While, this set of items was interesting as a scale in and of itself. However, a 

more encompassing theory of internal consistency, and one that could make usage of a 

larger number of the items in the instrument, was sought. Item response theory (IRT) was 
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useful as an aid in the search for the appropriate factor structure and understanding of 

reliability. The next section presents the results of an analysis of internal consistency that 

made usage of (IRT). 

Item Response Theoretic Evidence of Reliability. In comparison with CTT, 

which takes the observed score on the entire instrument as the unit of analysis, IRT takes 

the item as the unit of analysis (De Ayala, 2009). Thus, IRT models aim to predict 

observed responses based upon characterizations of the respondents’ and of the items’ 

positions on a continuum of ability level of the latent trait, that is, the underlying 

construct of interest. (In this case, KT-MELL.) In comparison with CTT models that 

compute correlations of items as a measure of reliability, IRT models are useful for 

computing item and test information estimates. Such estimates of information serve as 

indicators of the precision to which an individual’s location on a continuum of ability—in 

this case the continuum is knowledge—may be estimated. That is, greater information 

provided by items and instruments implies a reduction in the uncertainty about the 

position of the individuals on the continuum of interest. An advantage of IRT information 

over conventional reliability is that, “unlike the concept of reliability that depends on 

both instrument and sample characteristics, an instrument’s total information is a property 

of the instrument itself” (De Ayala, 2009, p. 29). Hence, in this instrument development 

study, IRT information estimates are extremely useful as indicators of the worth of the 

instrument in question. 

As was explained in the chapter concerning methodology, the IRT model selected 

for usage with the data in this study is the two-parameter logistic IRT model (2PL). 

While a 1PL model includes only estimates of the difficulty of the items—and this is an 

important statistic—the discrimination of the items is at least (and perhaps more) 
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important. Discrimination refers to the capacity of the items to differentiate between 

ability levels of the latent trait, in this case, knowledge. Since this research is an 

instrument development study, it cannot be assumed that all items in the instrument 

discriminate equally well. The exploratory nature of this work even implies the 

possibility of profoundly different levels of both difficulty and discrimination. For this 

reason, 2PL IRT models are considered in this section, as they add to the difficulty 

parameter the additional parameter of discrimination. The intended result is a fuller 

picture of the psychometric properties possessed by the survey items. 

The IRT models considered in this chapter take the following form: 
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This model predicts the probability of a correct response on the jth item by a person of θ 

ability given that item j has discrimination and difficulty and values ,j ja δ , respectively. 

Satisfying the Assumptions Required of the Two-parameter IRT Model. Usage 

of the 2PL IRT model above required satisfaction of three strong assumptions: the 

unidimensionality assumption, the conditional independence assumption and the 

functional form assumption (de Ayala, 2009). Under the unidimensionality assumption, 

the latent trait of interest, in this case knowledge for teaching mathematics to Latino 

ELLs, is taken as containing only one dimension or factor. That is, all survey items 

should serve as manifest indicators of a single latent variable, a single domain of 

knowledge. The relationship of the IRT models that are considered in this chapter with 

the unidimensionality assumption was critical. Indeed, the models themselves were partly 

instrumental in evaluating the assumption and arriving at conclusions regarding the 

underlying factor structure of the KT-MELL instrument. Since, the theoretical test 
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framework of the KT-MELL instrument implied multiplicity of latent variables, it 

seemed likely that, for the full set of items, this assumption would fail and that multiple 

2PL models would be applied to separate unidimensional subsets of items.  

The second assumption of IRT models, conditional independence, required that 

responses to items be entirely determined by the respondents’ locations on the continuum 

of ability and not by their responses to other items of the instrument (de Ayala, 2009). 

Difficulties with conditional independence occur when responses to certain items inform 

responses given to other items. When this happens, responses may not only be 

determined by the respondents’ locations but by responses that they have given to other 

items on the instrument. In the context of attitude surveys, Schuman & Presser (1996) 

investigated such order effects. They found that “merely placing two questions with 

similar content next to each other does not necessarily create an order effect” (p. 35). 

They argued that responses to similar questions will only influence one another if 

respondents have a need to seem consistent. Since respondents to the KT-MELL survey 

were assured of their anonymity and that the results would be used only for research, 

such a need for consistency was assumed absent. Additionally, since the KT-MELL 

survey items represent a variety of the aspects of knowledge found in three hypothetically 

separate domains, and are contextualized in many different teaching situations, it seemed 

that most items were substantially different from others so as to satisfy conditional 

independence by invoking responses based upon knowledge and not upon other survey 

responses. While a very few of the items draw upon common classroom situational 

strands, the cognitive tasks required of most such items vary substantially. Upon these 

bases and for the purposes of applying the 2PL IRT model above, conditional 

independence of responses to the KT-MELL survey items was assumed. 
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The third assumption, the functional form assumption, required of IRT models is 

that the data follow the S-shaped curve given by logistic models (de Ayala, 2009). This 

shape implies that, at the extremes of the ability continuum, small changes in ability 

result in very small changes in the probability of responding correctly to items.  In the 

center of the continuum, that is, at the item’s location on the continuum, small changes in 

ability can result in substantial changes in the probability of correct responses. In 

applying the 2PL models, this study assumed that the KT-MELL items have this 

functional form, while admitting along with de Ayala (2009) that both this assumption 

and the unidimensionality assumption “are rarely ever exactly met in practice” (p. 21).  

A Unidimensional 2PL IRT Model. As a help in understanding how the survey 

items behaved together under the unidimensionality assumption, a two-parameter IRT 

model that took all thirty-two of the survey items as a single conceptual factor, estimated 

on the set of forty-two practicing teachers, was computed. This model yielded the item 

difficulties and discriminations given in Table 5 below. 
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Table 5 

2PL IRT Item Difficulty and Discrimination Estimates on Full 32 Items 
 Instrument 
 
Item Difficulty Discrimination  Item Difficulty Discrimination 

1 0.079 2.695  17 0.178 -0.684 

2 0.789 -0.903  18 2.249 -1.090 

3 8.777 0.033  19 4.611 -0.515 

4 1.764 -0.565  20 0.552 0.845 

5 6.733 -0.304  21 6.058 0.032 

6 -0.292 0.666  22 .4.038 0.410 

7 9.839 -0.275  23 -2.159 0.274 

8 4.327 -0.275  24 10.192 -0.090 

9 1.749 1.169  25 -8.099 0.113 

10 -1.032 -0.485  26 12.273 -0.132 

11 -2.174 -0.497  27 -54.865 0.026 

12 2.247 -0.636  28 -1.802 -0.533 

13 3.158 0.384  29 -0.796 -0.235 

14 -5.183 0.315  30 5.732 0.162 

15 -6.190 0.211  31 2.797 0.557 

16 1.059 25.942  32 -0.149 0.595 

 

Inspection of the item difficulties yielded evidence that the items varied widely in 

the level of difficulty; negative values could be considered “easier” while positive values 

were “more difficult”. Of more interest in Table 5, though, were the signs found on the 

discrimination figures. Positive discriminations indicated that respondents of higher 

ability had a better probability of responding correctly to these items, as would be 

expected. However, negative discriminations indicated that respondents of higher ability 
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had reduced probability of responding to these items correctly. Another way to consider 

these data was by looking at the item characteristic curves (ICCs) for the set of items 

under this IRT model. The ICCs shown in Figure 9 below model the relationship between 

ability level (x-axis) and the probability of a correct answer (y-axis). The item 

discriminations are seen in the slopes of the curves. Items with positive discrimination 

have ICCs with positive slopes while items with negative discriminations have ICCs with 

negative slopes. Furthermore, steepers slopes indicate higher discriminations. 

 

Figure 9. 2PL IRT Item Characteristic Curves (ICCs) of the Full 32 Item Test 

As mentioned above, the large number—about half—of items that have negative 

discriminations indicated that many of the items performed counterintuitively; higher 

ability teachers tended to have less likelihood of responding correctly to these items. As 

discussed in the section concerning alpha reliability, one interpretation of this result was  

that items are poorly representative of the construct of interest. However, just as with 
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alpha reliability, so with IRT models, an assumption of unidimensionality was being 

made. Therefore, as evidenced by the results of alpha reliability on the reduced test 

discussed in the previous subsection, by the difference in signs of IRT discriminations on 

these items, and as supported by the theoretical framework of the instrument under study, 

a serious look at multiple scales was in order. The remainder of this discussion of internal 

consistency of the instrument presents the IRT results of separating the items into two 

distinct domains of knowledge. 

Multidimensionality: Creating Separate IRT Models. Based upon the results of 

the IRT model just described, the complete set of items was partitioned into two distinct 

scales according to the sign of the discrimination coefficient: scale 1 contained items with 

positive discriminations and scale 2 contained items with negative discriminations. 

Intuitively, these sets of items appeared to be measuring distinct kinds of knowledge 

since the probability of giving a correct response to the items held similar relationships 

with the contiuum of ability under the unidimensionality assumption. The alpha 

reliability of these two factors was α = .5325 and α = .5168 respectively. It was at once 

apparent that separating the items into two distinct scales resulted in improved reliability, 

as predicted. 

However, a number of the items in each of these scales were arguably divergent 

in conceptual orientation from other items in the scales. Several items that did not appear 

to be conceptually related and that were not highly correlated as a result, or that appeared 

to constradict theory by having negative item discriminations, were removed. A total of 

eleven items were omitted from inclusion in either domain. The two resulting scales were 

composite of items that pertained mainly to the KDIFF and KCAP domain or mainly to 
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the KSRAT domain. Table 6 below identifies the scales, lists the items composing the 

scale and gives α as a measure of internal consistency. 

Table 6 

Knowledge Domains, Items and Internal Consistency of the Two Separate Scales 

Scale Items α 
KDIFF/ 
KCAP  

Q1 Q6 Q9 Q13 Q15 Q16 Q20 Q22 Q25 Q31 Q32 0.6214 

             

KSTRAT Q5 Q7 Q8 Q10 Q11 Q18 Q19 Q24 Q26 Q29  0.6056 
 

This table shows that  a total of twenty-one items were included in these scales, 

eleven items in the KDIFF/KCAP domain and ten items in the KSTRAT domain. This 

table also shows substantial improvement in the reliability of the scales over the 

reliability of the full set of thirty-two items. Although this figure falls below that 

recommended by Nunnally and Bernstein (1994), the Spearman-Brown prophecy formula 

(op. cit.) indicates that adding as few as five similar items to each of the scales would 

result in both of them achieving α = .70. 

As a means of verifying the validity of this partition of items, a confirmatory 

factor analytic (CFA) step computed factor loadings on two distinct factors. Factor 

loadings are given in Table 7 below. Based upon CFA, the items were then categorized as 

pertaining to the factor upon which the items loaded more heavily. For example, Q1 

loaded more heavily on the first factor (.584) than on second (-.313). As is seen in Table 

7, the results of this factor analysis, which used the method of principal component 

analysis, very closely coincided with the partitioning of items according to their 

conceptual orientation and the sign of their IRT discrimination parameters. (Component 1 
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corresponds with the KDIFF/KCAP domain and Component 2 corresponds with the 

KSTRAT domain.) 

Table 7 
 
CFA Item Loadings on  
Two Factors 
 

Structure Matrix 

Item 
              Factor                            

   2         1      
Q1 -.313 .584 
Q5 .595 .087 
Q6 .073 .341 
Q7 .556 .044 
Q8 .467 -.066 
Q9 -.019 .592 
Q10 .492 -.092 
Q11 .293 -.202 
Q13 .027 .276 
Q15 .367 .497 
Q16 -.273 .738 
Q18 .444 -.354 
Q19 .564 -.040 
Q20 -.073 .448 
Q22 .130 .317 
Q24 .488 .177 
Q25 .340 .259 
Q26 .342 .020 
Q29 .309 -.209 
Q31 -.077 .273 
Q32 .100 .500 

Extraction Method: Principal 
Component Analysis.  
Rotation Method: Promax with 
Kaiser Normalization. 
 

It is important to note here that CFA typically requires sample sizes that are 

significantly greater than the sample obtained for this study (N = 42). Hence, this factor 

loadings are very likely to be innacurate. Notwithstanding this limitation, it was notable 
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that factor loadings were in overwhelming agreement with the the assignment of items to 

scales obtained from their conceptual alignment and using their IRT discrimination 

coefficients. That is, for each of the items, the value of the factor loading was greater on 

the factor that corresponded with the scale to which the item had been assigned using its 

conceptual orientation and the sign of its disrimination coefficient, excepting only item 

Q25 (discussed below). The agreement of these three evidences—the conceptual 

alignment of the items, the parity of the signs of IRT disrimination coefficient, and factor 

loadings—were taken as strong evidence of the existence of the two scales. 

 Furthermore, it came as no surprise that the resulting assignment of items agreed 

fairly well with the hypothesized test framework of the instrument. Items with positive 

discriminations, and that were more heavily loaded on Factor 2, were mostly concerned 

with knowledge of the ways in which language can cause difficulties or capacitate 

learning in mathematics classes. Items with negative discriminations, more heavily 

loaded on Factor 1, were mostly concerned with knowledge of appropriate strategic 

decisions involving ELLs in specific mathematics tasks. The only item that differed in 

assignment location based upon its discrimination coefficient and factor loading was item 

Q25. This item concerns knowledge of linguistic complexity in mathematics as a source 

of difficulty for understanding problems. Thus, it aligns more closely with the items in 

the KDIFF/KCAP domain and was so assigned.  

As discussed extensively in Chapter 3, the IRT analog to CTT’s reliability is 

information, that is, the reduction in the uncertainty with which person’s ability levels 

can be estimated. The continuation of this discussion of reliability is found in the 

appropriately subsections of the following section, which fully explicate the properties of 

the two scales identified during the process of reliability assessment. The following 
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section of this chapter is given to presentation of the two scales of knowledge that were 

found to compose the KT-MELL instrument. 

Two Scales: Difficulties/Capacities and Strategies 

The section that precedes this section has explained how the process of reliability 

assessment resulted in the identification of two scales forming the underlying structure of 

the KT-MELL instrument. The three goals of this study were identification of the 

knowledge domains required for teaching mathematics to Latino ELLs, documentation of 

specific aspects of these domains, and development of an instrument that could measure 

the aspects of these domains in a valid and reliable way. The initial conceptual 

framework (Figure 3) expressed the hypothesis of the existence of three, distinct domains 

of knowledge: knowledge of difficulties that Latino ELLs may encounter in mathematics 

classes (KDIFF), knowledge of ways in which their bilingual, cultural, and prior learning 

can capacitate Latino ELLs to learn mathematics (KCAP), and knowledge of strategies 

for teaching mathematics to Latino ELLs (KSTRAT). However, evidences obtained from 

methods pertaining to CTT and to IRT indicated that the KDIFF and KCAP domains 

seemed to form a single underlying latent construct; items belonging to these domains 

seemed to be drawing on one body of knowledge. For this reason, the KDIFF and KCAP 

domains were combined, KDIFF/KCAP. The remaining subsections of this chapter treat 

the KDIFF/KCAP and KSTRAT domains separately, first explaining the psychometric 

properties of the items and scales as well as the descriptive scale statistics. After this, 

item analyses begins with descriptions of the items and are followed by observations of 

inter-item correlations and teacher factors that were associated with item responses. 

The KDIFF/KCAP Scale. Items forming the KDIFF/KCAP scale are concerned 

with how language can be both a source of difficulty and an avenue for communication 
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for Latino ELLs in mathematics classrooms. They call upon knowledge of the ways in 

which linguistic complexity in mathematics problems can be a source of difficulty for 

Latino ELLs. They also call upon knowledge of the ways in which students can use their 

first language to express mathematics effectively and that teachers can use students’ 

written and spoken productions to positively affect learning. Item specifications for the 

KDIFF/KCAP scale are given in Appendix L. 

Psychometric Properties of the KDIFF/KCAP Scale. The items forming the 

KDIFF/KCAP scale showed improvements over the full set of 32 items, not only in alpha 

reliability, but also in the IRT coefficients of difficulty and discrimination. For this set of 

items, all discriminations were positive. Hence, there was evidence that, for all of the 

items in this scale, respondents of greater ability on the underlying construct were more 

likely to give correct responses. This formed part of the confirmation that these items 

formed a unidimensional scale. A summary of the psychometric properties of items in 

this scale is given in Table 8 below. 

Table 8 

Psychometric Properties of KDIFF/KCAP Items 

Item Percent 
Correct (%) 

Point-biserial 
correlation 

Difficulty Discrimination Information Percent (%) of total 
information 

Q1 47.6 .378 0.099 1.365 1.35 4.92 
Q6 54.8 .223 -0.284 0.716 0.72 2.62 
Q9 16.7 .371 1.738 1.169 1.17 4.26 
Q13 23.8 .270 5.447 0.217 0.15 .55 
Q15 78.6 .293 -1.195 1.485 1.49 5.43 
Q16 16.7 .473 1.034 19.160 19.16 69.83 
Q20 40.5 .317 0.886 0.467 0.46 1.68 
Q22 83.3 .166 -2.148 0.843 0.84 3.06 
Q25 71.4 .178 -2.769 0.337 0.31 1.13 
Q31 19.0 .177 2.854 0.542 0.53 1.93 
Q32 52.4 .272 -0.094 1.260 1.26 4.59 

Total            27.44 100.00 
 



123 
 

 

In addition to the percentage of correct responses received by each item, the table 

above gives the IRT difficulty estimates as well. Although percentage of correct 

responses and difficulty are related, they are not equivalent. Percentage of correct 

responses may give an intuitive conception of the difficulty of the items. However, the 

IRT difficulty parameters are more descriptive because they estimate locations of the 

items on the continuum of ability. Table 8 illustrates that item difficulties ranged from 

very easy (-2.769) to very difficult (5.447). An item’s difficulty parameter is the point on 

the continuum at which, as ability increases, the probability of a correct response to the 

item becomes fifty percent. Thus, although items Q9 and Q16 received the least 

percentage of correct responses of items in this scale, item Q13 was more difficult that 

both of these items because its location on the ability continuum is greater; the 

probability of answering item Q13 correctly was associated with a greater level of ability 

than was the same probability for items Q9 and Q16. Futhermore, excepting item Q16, 

their discriminations were approximately quite similar, varying between 0.217 and 1.485. 

(More is said about Q16 in the analysis of items forming this scale.) An additional 

statistic given in Table 8 is the point-biserial correlation of items with the total scale 

score (sum of correct responses). That all point-biserials were positive indicates that 

correctly responding to each of these items was correlated with obtaining higher total 

scale scores. This is another indicator of the unidimensionality of the scale. 

Another way to consider the difficulty and discrimination properties is by looking 

at the graphs of the item probability functions, that is, at the item characteristic curves 

(ICCs). Figure 10 gives the ICCs for the items in this scale, which are also exhibitive of 

the improved coefficients described above. The slopes of all curves, item discriminations, 

are positive. Furthermore, as evidenced by the steepness of the slopes, many of the items 
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have similar levels of discrimination. Items with significantly different discriminations 

are apparent by their differences in slope, either more or less steep. 

 

Figure 10. ICCs for the KDIFF/KCAP Items. 

Of interest to this discussion of the reliability of this scale, and closely related to 

the item discriminations seen in Figure 10, is the information given by the items in the 

scale and by the total information. The item information and total information functions 

give estimates of how well the items and instrument can estimate the locations of 

respondents on the knowledge continuum. Thus, it is important to assess the level of 

information provided by this set of items. On the item level, “the maximum amount of 

information provided by an item varies as a direct function of the magnitude of αj”, that 

is, of the item’s discrimination (De Ayala, 2009, 101). The item information function is 

just the first derivative of the item probability function, represented by the ICC (Revelle, 

n.d.). Hence, an item gives its maximum information when the probability of a correct 

reponse to the item is 50%. An item’s information is given as: ( ) 2 (1 )j j j jI p pθ α= − , 
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where pj is the probability of a correct response on item j, and αj is the item’s 

discrimination (DeAyala, 2009).  

Among the psychometric properties given in Table 8, an important figure to 

notice is the percentage of total information given by the scale that is provided by the 

individual items. For the eleven items in the KDIFF/KCAP scale, the amount of total 

information obtained by the scale is 27.44, which indicates that this collection of items 

functions well as a scale in reducing the uncertainty about individual person locations on 

the ability continuum. The percentage of total information given by items in this scale 

ranges from 0.55% (Q13) to 69.83% (Q16). Item Q16 clearly gives the most information 

in this scale. Items Q15, Q1, Q32, and Q9 all have information estimates greater than 4. 

The remaining six items, in the order of decreasing information, are Q22, Q6, Q31, Q20, 

Q25, and Q13. There is a direct relationship between discrimination and information. 

Items that discriminate better reduce the uncertainty about the ability of the respondents, 

and thus provide more information concerning the level of knowledge of respondents. 

Of chief importance to the question of reliability is the total information given by 

this scale. The total information gives an indication of how well the scale functions in 

estimating person locations. Furthermore, it also describes precisely for which kind of 

respondents—that is, respondents possessing which level of knowledge—the scale is 

most reliable. The total information function is just the sum of the item information 

functions. Hence, ( )
1

( )
L

J
j

I Iθ θ
=

=∑  (de Ayala, 2009). The total information function for 

the KDIFF/KCAP scale is given in Figure 11 below.  



126 
 

 

 

Figure 11. KDIFF/KCAP Total Information Function. 

Figure 11 shows that the KDIFF/KCAP scale provided maximum information for 

respondents who had ability slightly greater than zero, that is, slightly greater than 

average ability. In other words, the uncertainty of person locations for respondents who 

were of slightly greater than average ability was minimized. Important to notice is that 

the high peak evident in this figure implies that the items in this domain functioned very 

well in reducing the uncertainty with which estimates of person abilities could be made, 

at these given ability levels. For persons of less than average ability, or of very great 

ability on the KDIFF/KCAP scale, very little could be assessed of their level of 

knowledge. This estimation capacity is a property of this scale of items and responds 

directly to the question of the reliability of the measurements. 

 Analysis of KDIFF Items. This subsection of the results takes a much closer look 

at responses to the KDIFF scale items in the attempt to better understand what factors 

influenced teachers to choose correct and incorrect survey responses. The purpose of 

making such an analysis is to attempt to answer questions such as the following: how 
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were items conceptually related in the minds of teachers?, what characteristics of the 

sampled teachers were related to correct and incorrect item responses within the 

respective knowledge domains and across domains?, what patterns seemed to exist in the 

ways that the sampled teachers thought about the aspects of knowledge presented in the 

survey items? As a result of this analysis, it is hoped that a better understanding of the 

teacher characteristics associated with higher levels of knowledge will be gained. Based 

upon empirical identification of the two scales that composed the survey instrument, the 

analysis is separated into two sections: knowledge of linguistic issues that either cause 

difficulty for or capacitate mathematics learning for Latino ELLs (KDIFF/KCAP), and 

knowledge of strategies for helping Latino ELLs to learn mathematics (KSTRAT). Each 

section begins with a description of the items composing the scale. Inter-item correlations 

are then discussed. Finally, significant associations between teacher factors and the items 

are addressed. 

KDIFF/KCAP: Knowledge of Linguistic Issues that Either Cause Difficulty for or 

Capacitate Mathematics Learning for Latino ELLs. This section presents an item analysis 

of the eleven items composing the KDIFF/KCAP scale: knowledge of linguistic issues 

that either cause difficulty for or capacitate mathematics learning for Latino ELLs. 

Survey items in this domain require that teachers choose specific linguistic elements of 

mathematics tasks that can be troublesome for ELLs, or that ELLs linguistic background 

or prior learning can hinder mathematics learning. They also require that teachers identify 

ways in which ELLs’ linguistic capacity, such as knowledge of the Spanish language, can 

help them to express mathematics ideas.  

KDIFF/KCAP Item Descriptions. The item analysis begins with brief descriptions 

of the items composing the KDIFF/KCAP scale. These item descriptions are intended to 



128 
 

 

provide a context for the descriptions of psychometric properties given above and of 

statistical associations with teacher factors that follow. Each description begins by 

framing the task posed to the respondent and closes with a statement of what a correct 

response to the item should indicate about teachers’ knowledge. 

Item Q1 presents a situation in which a mathematics teacher has posed a question 

to students regarding the solution to a common proportions problem. A student has 

responded with the correct procedural answer to the teacher’s question, but has done so in 

Spanish. The item, which belongs to the set of items concerned with strategies for ELLs, 

requires teachers to determine the best response to be given to the student. This item 

requires that teachers be knowledgeable of the ways in which ELL students’ own 

mathematical expressions, verbal or written, (Chval and Khisty, 2009) can be used 

pedagogically to improve mathematical learning for the students. Correct responses to 

this item may indicate that teachers understand that requiring ELL students to explain 

their own mathematical reasoning, by using additional means of expression such as 

gesturing (Shein, 2012), are beneficial for their mathematical learning. 

Item Q6 is similar to Q1 in that it presents a students’ solution to a mathematics 

problem and then requires the respondent to choose the best way to respond to the 

student. The student has solved a long division problem, yet using an algorithm that is 

different than the one traditionally taught to students in the United States; this algorithm 

is more commonly used in Central America. The respondent must choose between 

options that either lead the student to learn a different method or require the student to 

give an explanation of the method that has been used. As with Q1, correct responses to 

this item may indicate that teachers understand that requiring ELL students to explain 

their own mathematical reasoning are beneficial for their mathematical learning. 
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Item Q9 is an item which elicits knowledge of ways in which linguistic 

complexity in a mathematics problem can cause difficulty for ELLs. In this item, the 

teacher has given to the students a mathematics problem that requires students to read and 

interpret several instructional phrases before approaching the problem with their peer 

groups. The item asks teachers to decide which part of the task could pose particular 

difficulty for Latino ELLs. Correct responses to this item may indicate that teachers 

understand that interpreting written mathematics instructions can be a significant source 

of difficulty for ELLs. 

Q13 is an additional item that elicits knowledge of linguistic complexity as a 

source of difficulty for Latino ELLs. In this item student groups have been given a 

geometric task involving measuring the surface area of a geometric solid and then 

determining how the area changes by the application of a scale factor. The respondent 

must choose which specific mathematics word used in the instructions may be difficult 

for Latino ELLs to understand. Correct responses to this item may indicate that teachers 

are familiar with the relative difficulty for Latino ELLs of certain English words 

(Spanish-English cognates and non-cognates) used in mathematics classes.  

Item Q15 elicits knowledge of the ways in which students’ bilingualism can 

capacitate, rather than impede, their mathematical reasoning (Moschkovich, 2002). The 

item presents an example of a student’s mathematical reasoning (algebraic manipulation) 

about the relationship between the surface area of a sold and the surface area that results 

from application of a scale factor to the dimensions of the sold. In her work the student 

has used both mathematical symbols and Spanish mathematical words. The respondent 

must decide whether or not the student’s usage of Spanish is reflective of poor 

understanding. Correct responses to this item may indicate that teachers are aware that 
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ELLs may prefer to use their first language to express mathematics and that teachers are 

observant of when such usage has assisted the student to express mathematics concepts. 

Item Q16, which draws upon the same problem situation as that posed in Q15, 

asks teachers to decide whether the ELL student’s mathematical reasoning about the 

relationship between the surface area of a three-dimensional solid and a scale factor is 

mathematically precise or not. In this item, the student has used a mixture of both 

Spanish language and mathematical symbols to carry out the steps of the reasoning. 

Teachers must determine whether the reasoning is mathematically precise. The item is 

intended to capture teachers’ knowledge of the ways in which bilingualism can facilitate 

mathematical expression for some Latino ELLs. Correct responses to this item may 

indicate that teachers are able to correctly understand and evaluate the precision of ELL 

students’ mathematical logic. 

Item Q20 elicits knowledge of the ways in which ELL students’ bilingualism can 

capacitate them to understand mathematics (Moschkovich, 2002). In this item a 

mathematics teachers has required students to read and speak a series of different English 

words that explain the concept of slope. The respondent to this item is asked to select, 

from a list of words, the word that ELL students may grasp more readily than other 

students. Correct responses to this item may indicate that teachers are familiar with 

specific English mathematics words that have Spanish cognates that assist Latino ELLs to 

readily grasp the meaning of the English words. 

Item Q22, like Q20, elicits knowledge of the ways in which ELL students’ 

bilingualism can capacitate them to understand mathematics (Moschkovich, 2002). In this 

problem situation, the teacher has asked students to describe the properties of rectangles. 

Three students have responded in succession to the question, one of whom has used the 
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Spanish word paralela and gestures to describe the relationship of the sides. The 

respondent must make a judgment, based upon students’ responses, concerning the extent 

to which the students understand the properties of rectangles. Correct responses to this 

item may indicate that teachers are aware that ELL students may use multiple modes of 

expression, including their native language and gestures, to correctly express 

mathematical concepts. 

Item Q31 elicits knowledge of linguistic complexity in mathematics as a source of 

difficulty for some ELLs. This item requires the respondent to select the correct words, 

phrases, or a combination of both words and phrases, in a particular mathematics word 

problem, that could be confusing to ELLs. Correct responses to this item may indicate 

that teachers are aware of ways in which linguistically complex mathematics problems, 

especially involving polysemy (Martiniello, 2009), can cause difficulty for ELLs. 

Item Q32 calls upon knowledge of the ways in which connecting mathematical 

symbols with English language can be difficult for some ELLs. More specifically, it calls 

upon knowledge of the difficulty that ELLs may have in translating between symbolic 

mathematical expressions and verbal mathematical expressions. To answer this item, the 

teacher is required to decide which incorrect phrase would most likely have been 

provided by an ELL as the verbal translation of a given algebraic expression. Correct 

responses to this item may indicate that teachers are familiar with a specific way in which 

translating mathematical symbols to English statements can be difficult for ELLs. 

 KDIFF/KCAP Inter-item Correlations. As a further means of shedding light on 

patterns of responses that could be observed in the data, all pair-wise inter-item 

correlations were considered. This part of the analysis was aimed at understanding how 
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responses to different items were related. Table 9 below gives the correlation matrix 

(Pearson’s r) for the eleven KDIFF/KSTRAT items. 

Table 9 

Inter-Item Correlations for KDIFF/KCAP Items. 

  Q1 Q6 Q9 Q13 Q15 Q16 Q20 Q22 Q25 Q31 Q32 
Q1 1 .196 .341* .139 .033 .469** .282 .171 .075 .023 .050 
Q6 .196 1 .150 .059 .108 .278 -.030 -.021 .166 .075 .091 
Q9 .341* .150 1 .050 .234 .314* .282 .029 .283 -.054 .043 
Q13 .139 .059 .050 1 .019 -.100 .564** .100 .106 .156 .085 
Q15 .033 .108 .234 .019 1 .234 .076 .078 .183 .106 .315* 
Q16 .469** .278 .314* -.100 .234 1 .152 .200 .000 .108 .426** 
Q20 .282 -.030 .282 .564** .076 .152 1 .108 .092 .094 -.088 
Q22 .171 -.021 .029 .100 .078 .200 .108 1 -.141 .054 .213 
Q25 .075 .166 .283 .106 .183 .000 .092 -.141 1 .038 .030 
Q31 .023 .075 -.054 .156 .106 .108 .094 .054 .038 1 .220 
Q32 .050 .091 .043 .085 .315* .426** -.088 .213 .030 .220 1 
*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 
 

As can be seen in the table, among the KDIFF/KCAP items, the only correlations 

that were statistically significant were positive ones; no negative correlation was 

statistically significant. The two items that were the most highly correlated were Q13 and 

Q20. This correlation was expected since both of these items involve knowing that 

Spanish-English cognates can mediate the difficulty of, or in other words, capacitate the 

learning of mathematics concepts for ELLs. Items Q16 and Q1 were also positively 

correlated. Q16 involved assessing the precision of a students’ mathematical reasoning, a 

mixture of Spanish language and mathematical symbols, and Q1 involved responding to a 

students’ mathematical explanation given in Spanish. As an explanation for this 

correlation, it is conceivable that the two thought processes could be related. An item that 

was positively correlated with both Q1 and Q16 was Q9. This item involves knowledge 

that interpreting written instructions in English can be a source of great difficulty for 

ELLs. Q16 was also positively correlated with Q32. Q32 involved knowledge of a 
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specific way in which translating mathematical symbols to English statements can be 

difficult for ELLs. An additional item that was positively correlated with Q32 was Q15. 

The latter of these involves knowledge of bilingualism as a capacity for the expression of 

mathematical thought. The remaining items, Q6, Q22, Q25, and Q31 held no specific 

inter-item correlations. 

Teacher Factors Associated with the KDIFF/KCAP Items. The final section of 

the analysis of the KDIFF/KCAP scale was aimed at identifying the teacher factors that 

were associated with correct responses given to the items in this scale. Pearson’s chi-

squared test of independence (Pearson, 1900) was used to determine whether differences 

in numbers of correct responses seemed to be associated with teacher factors. A summary 

of the statistically significant results, is presented in Table 10 below. 
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Table 10 

Teacher Factors Associated with Difference in Percentages of Correct  
Responses to KDIFF/KCAP Items. 
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 NO YES NO YES NO YES NO YES 

Q1         

         

Q6 14.3% 75.0% 40.7% 80.0%     

 χ2 = 13.888*** χ2 = 5.999**   
         

Q9   7.4% 33.3%

 

  9.1% 44.4% 

  χ2 = 4.667**  χ2 = 6.364 ** 
         

Q13       18.2% 44.4% 

       χ2 = 2.689* 

Q15         

     
         

Q16         

     
         

Q20   29.6%% 60.0%

 

    

  χ2 = 3.692*   
Q22         

         

     
Q25     60.0% 88.2% 63.6 100.0 

   χ2 = 3.953** χ2 = 4.582** 
         

Q31       24.2% 0.0% 

    χ2 = 2.695* 
Q32         

*.  χ2 statistic is significant at the 0.10 level. 
**. χ2 statistic is significant at the 0.05 level. 
***. χ2 statistic is significant at the 0.01 level. 
 

These data should be interpreted with caution. Strictly speaking, a significant Chi-

square statistic only gives evidence that the percentage of correct (or incorrect) responses 
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received by a particular category of teacher appears to be different than what may have 

been expected if responses had been evenly, and randomly, distributed across categories 

of teachers. Although it cannot be said that any teacher factor has caused a correct 

response, it is informative to observe that a number of teacher factors have statistically 

significant differences in correctness of responses on the items of the survey. 

Furthermore, excepting gender, all teacher factors that appeared to indicate greater 

experience (years of teaching, percentage of ELLs taught, multiplicity of educational 

certifications), or greater interest in teaching ELLs (response given to open question) 

were statistically associated with a greater percentage of correct responses to the items. 

Among these teacher factors, no statistically significant result was associated with a 

lower percentage of correct responses. 

Summary of KDIFF/KCAP Item Analysis. Up to this point the analysis of the 

KDIFF/KCAP scale has presented the psychometric properties of the items, including the 

item information, the inter-correlations, and several teacher factors that were significantly 

associated with item responses. The KDIFF/KCAP scale concerns knowledge of issues 

that either cause difficulty for or capacitate learning in mathematics for Latino ELLs. 

Brief descriptions of the items preceded these results of item analysis to aid in their 

interpretation. As a way of summarizing the results of the KDIFF/KCAP item analysis, 

Figure 12 presents a graphic representation of the items composing the scale. In this 

weighted-node and weighted-edge graph, the relative magnitude of the information 

provided by each items is indicated by the size of its node and the strength of the inter-

item correlations are given adjacent to the edges connecting nodes (“*” denotes 

significance at the .05 level and “**” at the .01 level). Furthermore, teacher factors that 
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were associated with differences in percentages of correct responses are represented by 

an appropriate letter placed adjacent to the node, as explained in the footer. 

 

 

Figure 12. Semantic Map of Information, Inter-item Correlations, and Significant 
Teacher Factors for KDIFF/KCAP Items. The size of the nodes corresponds to the 
relative amount of information provided by the items. Furthermore the size of the 
connecting edges corresponds to the strength of the correlation; large edges 
indicate stronger correlation. Teacher factors associated with differences in 
numbers of correct responses to the items are indicated by the following 
abbreviations: Y-more than 5 years of mathematics teaching experience, E-
experience teaching classrooms containing 40% or more ELLs, B-breadth of 
educational licensure (multiplicity of educational certifications), R-response given 
to the open question concerning teaching ELLs. 

 
Figure 12 may offer a semantic map of the KDIFF/KCAP scale. Three clusterings 

of items can be identified. The most informative cluster, containing items Q1, Q9, Q15, 

Q16, and Q32, exhibits of number of inter-item associations. Items Q6, Q22, Q25, and 
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Q31 provide nearly equivalent amounts of information, and shared no statistical 

correlation between themselves or with other items in the scale. Finally, two items that 

were strongly inter-correlated, and that contributed smaller amounts of total information 

to the scale, were Q13 and Q20. These relationships were investigated in the attempt to 

better understand the patterns of correct responses to the items in this scale. The semantic 

map given in Figure 12, though incapable of explaining causation, is merely offered as a 

synthesis of the psychometric properties of the KDIFF/KCAP items and of item 

relationships and as possibly indicative of directions for future cognitive research related 

to the analyses which follow. 

 This subsection of the results has offered an explanation of the properties of the 

KDIFF/KSTRAT items and scale. It began with a summary of the psychometric 

properties of the items, offering comparisons of the item difficulty and discriminations 

parameters, and focusing on the information given by the items and the total scale. The 

item and total information obtained by this scale indicated that the scale performed 

acceptably in reducing the uncertainty with which persons’ locations on the knowledge 

continuum could be estimated, for persons of greater than average ability, and very 

poorly elsewhere. The interpretation of this IRT statistic is analogous to reliability 

(internal consistency) central to CTT. The purpose of this investigation was to respond to 

third research question of this study as it asks concerning the reliability of the KT-MELL 

measures. 

 This subsection also gave a thorough item analysis. It began with detailed 

descriptions of the items, followed by observations of inter-item correlations and of 

teacher factors that were associated with differences in numbers of correct responses. The 

findings concerning item information, inter-item correlations and significant teacher 
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factors were presented in synthesized form in Figure 12, which may serve as a semantic 

map of the KDIFF/KCAP scale. The following subsection is given to a detailed analysis 

of the items forming the KSTRAT scale. 

The KSTRAT Scale. Items forming the KSTRAT scale are concerned principally 

with knowledge of teaching strategies that result in the creation of environments that are 

rich in language and mathematics (Chval and Chavez, 2011). These items required that 

teachers justify strategic decisions regarding the teaching of specific mathematics 

concepts to ELLs. They also required knowledge of alternative mathematics notation and 

of algorithms that Latino ELLs may bring with them as prior knowledge and that can, as 

a result, capacitate or hinder their learning of mathematics. Item specifications for the 

KSTRAT scale are given in Appendix M. 

Psychometric Properties of the KSTRAT. This section describes the 

psychometric properties of the ten items that form the scale for Domain 2. The items 

forming the KSTRAT scale showed improvements over the full set of 32 items, not only 

in alpha reliability, but also in the IRT coefficients of difficulty and discrimination. For 

this set of items, all discriminations were positive. Hence, there was evidence that, for all 

of the items in this scale, respondents of greater ability on the underlying construct were 

more likely to give correct responses. This formed part of the confirmation that these 

items formed a unidimensional scale. A summary of the psychometric properties of items 

in this scale is given in Table 11 below. 
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Table 11 

Psychometric Properties of KSTRAT Items 

Item Percent 
Correct (%) 

Point-biserial 
correlation 

Difficulty Discrimination Information Percent (%) of total 
information 

Q5 88.1 .354 -1.446 2.366 2.37 20.36 
Q7 88.1 .309 -1.816 1.471 1.47 12.63 
Q8 76.2 .257 -1.447 0.939 0.94 8.08 
Q10 38.1 .320 0.421 1.787 1.79 15.38 
Q11 26.2 .266 1.255 0.984 0.98 8.42 
Q18 88.1 .265 -2.301 1.027 1.03 8.85 
Q19 90.5 .332 -2.329 1.184 1.18 10.14 
Q24 71.4 .274 -1.625 0.608 0.6 5.15 
Q26 83.3 .250 -2.481 0.712 0.71 6.10 
Q29 45.2 .240 0.360 0.576 0.57 4.90 

Total       11.64 100.00 
 

In comparison with the items in KDIFF/KCAP scale, the items forming the 

KSTRAT scale were evidently easier. Seven of the ten items received correct responses 

from more than 70% of respondents. Furthermore, the difficulty parameters of these 

seven items, which are more precise estimates of difficulty, are nearly all negative. This 

means that, on the ability continuum, these items are located below the average ability 

level. Hence, respondents with less than average ability on this scale have a greater than 

50% likelihood of giving correct responses to many of these items. An additional statistic 

given in Table 11 is the point-biserial correlation of items with the total scale score (sum 

of correct responses). That all point-biserials were positive indicates that correctly 

responding to each of these items was correlated with obtaining higher total scale scores. 

This was taken as another indicator of the unidimensionality of the scale. 

As another way to consider the difficulty and discrimination properties given in 

Table 11, Figure 13 depicts the item characteristic curves (ICCs). These curves are also 

exhibitive of the improved coefficients described above. The slopes of all curves, item 

discriminations, are positive. Furthermore, as evidenced by the steepness of the slopes, 
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many of the items have similar levels of discrimination. Items with significantly different 

discriminations are apparent by their differences in slope, either more or less steep.  

 

Figure 13. ICCs for the KSTRAT Items. 

Another indication that this scale of items is “easier” than the KDIFF/KCAP scale 

is the locations of the ICCs. An item’s difficulty is the point on its ICC as which the 

probability of a correct response to the item becomes greater than 50%, hence, the point 

of inflection. As seen in Figure 13, nearly all ICC have inflection points to the left of 

zero, indicating that nearly all items could be correctly answered by persons of less than 

average ability. Another interesting property of these items was that their discriminations 

were more uniform. This property can be seen in the approximately parallel curves. 

Of interest to the discussion of the reliability of this scale, and closely related to 

the item discriminations seen in Figure 13, is the information given by the items in the 

scale and by the total information. There is a direct relationship between discrimination 

and information. Items that discriminate better reduce the uncertainty about the ability of 

the respondents, and thus provide more information concerning the level of knowledge of 
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respondents. The item information and total information functions give estimates of how 

well the items and instrument can estimate the locations of respondents on the knowledge 

continuum. Thus, it is important to assess the level of information provided by this set of 

items. 

The information estimates for the KSTRAT items, like the discrimination 

parameters, were more evenly distributed than those of the KDIFF/KCAP scale. They 

ranged in value from 0.57 to 2.37. Alternatively, no item provided less than 4.9% (Q29) 

of the total information and none provided more than 20.36% (Q5). Of chief importance 

to the question of reliability is the total information given by this scale. The total 

information gives an indication of how well the scale functions in estimating person 

locations. Furthermore, it also describes precisely for which kind of respondents—that is, 

respondents possessing which level of knowledge—the scale is most reliable. The total 

information provided by this scale is 11.64, which indicates that the scale functioned well 

in reducing the uncertainty about person locations on the ability continuum. The total 

information function for the KDIFF/KCAP scale is given in Figure 14 below.  
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Figure 14. KSTRAT Total Information Function. 

Figure 14 shows that the KSTRAT scale provided information for respondents 

who had a wide range of ability levels. (The range of measurment capacity for this scale 

is greater than that of the KDIFF/KCAP scale.) However, information was maximized for 

persons who were of slightly less than average ability.  In other words, the uncertainty of 

person locations for respondents who were of slightly less than average ability was 

minimized. Important to notice is that the peak evident in this figure implies that the 

items in this domain functioned well in reducing the uncertainty with which estimates of 

person abilities could be made, at these given ability levels. As indicated by the curve, 

information slightly leveled off for persons of around average ability before. This small 

rise should indicate that a few items of greater difficulty give their maximum information 

for persons of average or greater ability. For persons of extremely low or extremely high 

ability on the KSTRAT scale, very little could be assessed of their level of knowledge. 

This estimation capacity is a property of this scale of items and responds directly to the 

question of the reliability of the measurements. 
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Analysis of KSTRAT Items. This subsection of the results takes a much closer 

look at responses to the KSTRAT scale items in the attempt to better understand what 

factors influenced teachers to choose correct and incorrect survey responses. As a result 

of this analysis, it is hoped that a better understanding of the teacher characteristics 

associated with higher levels of knowledge will be gained. This section begins with a 

description of the items composing the scale. Inter-item correlations are then discussed. 

Finally, significant associations between teacher factors and the items are addressed. 

KSTRAT: Knowledge of strategies for instructing Latino ELLs in Mathematics. 

This section presents a thorough item analysis of the ten items composing the KSTRAT: 

knowledge of strategies for instructing Latino ELLs in mathematics. Items in this scale 

are concerned principally with knowledge of strategic teaching decisions that may 

improve the opportunity for students to communicate about mathematics. They are also 

concerned with teachers’ knowledge of mathematical notations that are commonly taught 

in the United States or in Central America that can, because of the students’ familiarity 

(or lack of familiarity) with these, facilitate mathematics communication or become a 

barrier to such for Latino ELLs. 

KSTRAT Item Descriptions. The analysis of KSTRAT items begins with brief 

descriptions of the items composing the scale for this domain. These item descriptions are 

intended to provide a context for the descriptions of psychometric properties given above 

and of statistical associations with teacher factors that follow. Each description begins by 

framing the task posed to the respondent and closes with a statement of what a correct 

response to the item should indicate about teachers’ knowledge. 

Item Q5 requires respondents to evaluate the validity of a student’s solution to a 

division problem. In this item the student’s work has been presented in such a way as to 
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allow comparison with the work of two other students. The two other students have used 

alternative notation for the division algorithm. The student in item Q5 has used the long 

division algorithm and notation commonly taught in the United States. Correct responses 

to this item may indicate that teachers have knowledge of division algorithms used by 

ELL students and can evaluate the validity of a student’s work.  

Item Q7 involves knowledge of teaching strategies that may encourage the 

creation of a classroom environment that is conducive to the rich usage of language and 

mathematics (Khisty & Chval 2002). In this item, the teacher has given students a 

linguistically complex problem involving arithmetic sequences. Respondents must 

choose, from a list of options, the best reason for the teacher to use cooperative grouping 

as an instructional mode for this mathematics task. Correct responses to this item may 

indicate knowledge of the benefit to ELLs that encouraging them to speak about 

mathematics brings. 

Item Q8 is conceptually attached to Q7. In this item respondents must decide 

whether having students work in groups on a mathematical task was a good idea on the 

part of the teacher or a bad idea. Two options give reasons for which group work may be 

a good idea and two options give reasons for which it may be a bad idea. Correct 

responses to this item may indicate knowledge of strategies that can promote 

mathematical communication among ELLs.  

Item Q10 is similar to Q7 and Q8 in that it assesses knowledge of strategies for 

promoting a linguistically and mathematically rich classroom environment for ELLs. In 

this item the respondent must decide from a list of instructional decisions, all of which 

have been implemented in the particular mathematics task, which of the decisions is most 

supportive of ELLs’ understanding of the nature of the task. Correct responses to this 
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item may indicate knowledge of strategies that support ELLs’ learning of mathematics by 

involving them in active discourse about mathematics. Items Q7, Q8, and Q10 are 

designed to serve as multiple indicators of this particular strategic knowledge. 

Item Q11 presents a situation in which an ELL from Central America has 

responded incorrectly to a subtraction problem involving the English numeric word 

billion. The respondent must identify which incorrect solution the ELL would most likely 

have provided. Correct responses to this item may indicate knowledge of ways in which 

differences in commonly used mathematical language can be a potential barrier to 

mathematics achievement for Latino ELLs. 

Item Q18 assesses teachers’ knowledge of an alternative notation, commonly used 

in much of Latin America, for the division algorithm. In this item student work is given 

for a division problem. Based solely upon the student’s work, the respondent must 

correctly determine which division operation the student intended to perform. Correct 

responses to this item may indicate knowledge of mathematical capacities that Latino 

ELLs may possess for solving mathematics problems using different, yet no less valid, 

notation. 

Item Q19 is a further item intended to measure knowledge of strategies that 

encourage ELLs to practice speaking mathematically. In this item the teacher has 

presented to the students a series of mathematics learning objectives, in the form of 

English sentences, to the class and has required students to read them aloud. The 

respondent must then select the appropriate reason for which this instructional decision 

would be beneficial for ELLs. Correct responses to this item may indicate knowledge of 

visual displays that promote the connection of mathematics concepts with mathematics 
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language and of strategies that promote a language-rich environment for ELLs (Chval 

and Chavez, 2011). 

Item Q24 is intended to measure knowledge of ways in which mathematical 

language can cause difficulty in carrying out mathematical tasks for Latino ELLs. This 

item presents a mathematical task in which students must select the appropriate 

probability of the occurrence of an event, given certain conditions. The problem and 

conditions are linguistically complex and involve polysemy; number words have been 

used in their demonstrative sense rather than numerical sense. Correct responses to this 

item may indicate that teachers have knowledge of ways in which words with multiple 

meanings can cause difficulty for ELLs in mathematics classes. 

Item Q26 is a further item intended to measure knowledge of ways in which ELLs 

may express themselves using valid, yet non-traditional, notation. Similar to items Q5 

and Q18, this item presents examples of two students’ work of mathematical division. 

Respondents must decide which student has given a correct solution to the division 

problem. Correct responses to this item may indicate knowledge of mathematical 

capacities that Latino ELLs may possess for solving mathematics problems using 

different, yet no less valid, notation. 

Item 29 presents a linguistically complex multi-step mathematics problem. The 

problem involves four different sentences, multiple subordinate clauses, and differing 

monetary notations. Respondents are told that the problem causes difficulty for ELLs. 

They must then select, from a series of options, the best way to reword the mathematics 

problem so as to make it more understandable to the students. Correct responses to this 

item may indicate knowledge of strategies for reducing linguistic complexity while 

retaining mathematical integrity (Truball & Solano-Flores, 2010). 
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 KSTRAT Inter-item Correlations. The next section of the analysis of KSTRAT 

items seeks to identify inter-item correlations. Inter-item correlations may be helpful in 

explaining response patterns. Table 12 below gives the correlation matrix (Pearson’s r) 

for the eleven KSTRAT items. 

Table 12 

Inter-Item Correlations for KSTRAT Items 

  Q5 Q7 Q8 Q10 Q11 Q18 Q19 Q24 Q26 Q29 
Q5 1 .319* .312* .288 .052 .319* .131 .093 .033 .039 
Q7 .319* 1 .312* .137 .052 .092 .382* -.070 .033 .186 
Q8 .312* .312* 1 .093 .079 .140 .200 .265 -.100 -.053 
Q10 .288 .137 .093 1 .313* .137 .087 .062 .219 .075 
Q11 .052 .052 .079 .313* 1 .052 .009 .017 .121 .329* 
Q18 .319* .092 .140 .137 .052 1 .131 .093 .230 .039 
Q19 .131 .382* .200 .087 .009 .131 1 .333* .073 .132 
Q24 .093 -.070 .265 .062 .017 .093 .333* 1 .283 .151 
Q26 .033 .033 -.100 .219 .121 .230 .073 .283 1 .150 
Q29 .039 .186 -.053 .075 .329* .039 .132 .151 .150 1 
*. Correlation is significant at the 0.05 level (2-tailed). 
 

This correlation matrix demonstrates that many items were significantly 

correlated with others at the p < .05 level, as would be expected among conceptually 

related items. Furthermore, no negative correlations were statistically significant. Item 

Q7 was correlated with Q8 and Q19.  All of these items concern knowledge of strategies 

for creating language rich mathematics classroom; they are conceptually related. Q5, 

which concerns knowledge of division algorithms used by students, was also correlated, 

surprisingly, with Q7 and Q8. The correlation of Q5 with Q18 was expected, since both 

of these items are related to knowledge of division algorithms used by students. Items 

Q11 and Q10 were correlated. These items concern, respectively, the difficulty that false 

Spanish-English cognates (words that appear similar in Spanish and English but that 

carry different meanings) in a mathematics problem can cause for Latino ELLs and 
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strategies for creating language-rich mathematics classrooms. Furthermore, item Q11 was 

also correlated with item Q29, which concerns knowledge of strategies for reducing the 

linguistic complexity of mathematics problems while retaining mathematical integrity. 

Q19 and Q24 were correlated. The former concerns a strategy for promoting mathematics 

discourse among ELLs and the latter concerns the potential difficulty for Latino ELLs 

that polysemy can cause. Item Q26 alone was not significantly correlated with any other 

item. This was surprising, since the item is related to knowledge of division algorithms 

used by students, as were items Q5 and Q18.  

Teacher Factors Associated with the KSTRAT Items. The final section of the 

analysis of the KSTRAT scale was aimed at identifying the teacher factors that were 

associated with correct responses given to the items in this scale. As was mentioned in 

the similar section of the KDIFF/KCAP scale analysis, a battery of Chi-squared tests of 

independence (Pearson, 1900) were used to determine whether differences in numbers of 

correct responses seemed to be associated with teacher factors. A summary of the 

statistically significant results is presented in Table 13 below. 
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Table 13 
 
Teacher Factors Associated with Difference in Percentages of Correct 
 Responses to KSTRAT Items 
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 NO YES NO YES NO YES NO YES 

Q5     96.3% 73.3%   

     χ2 = 4.848**   

Q7 71.4% 96.4% 96.0% 76.5%     

 χ2 = 5.562** χ2 = 3.680*     
         

Q8 57.1% 85.7%       

 χ2 = 4.200**      
         

Q10         

         

       
Q11   16.0% 41.2%     

  χ2 = 3.318*     
         

Q18     96.3% 73.3%   

   χ2 = 4.848**   

         

Q19         

       
Q24   60.0% 88.2%     

   χ2 = 3.953**     

       
Q26         

       
         

Q29       36.4% 77.8% 

     χ2 = 4.896** 
         
*.  χ2 statistic is significant at the 0.10 level.     
**. χ2 statistic is significant at the 0.05 level.     
 

 Table 13 illustrates the statistical association (or lack thereof, if no data given) of 

the percentages of correct responses on the KSTRAT items with teacher factors: having 
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taught mathematics for more than 5 years, possessing multiple educational certifications, 

having taught mathematics classes containing more than 40% ELLs, and offering a 

response to the open question (In your experience, is there anything else that effective 

teachers of Latino ELLs need to know?). Percentages of correct responses to items Q7 

and Q8, which concern knowledge of strategies for creating linguistically rich 

mathematics classrooms, were greater (p < .05) for teachers who had more than five years 

of teaching experience. Possession of multiple educational certifications was statistically 

associated with higher percentages of correct responses to items Q24 (p < .05) and Q11 

(p < .10). These two items concern knowledge of difficulty that Latino ELLs may find in 

solving mathematics problems that involve words that can have confusing meanings to 

ELLs, either words with multiple meanings (polyemy) or false Spanish-English cognates. 

For Q7, possession of multiple educational certificates was also associated (p < .10) with 

a slightly lower percentage of correct. It is interesting to note that on both items Q5 and 

Q18, teachers that had experience teaching in mathematics classrooms containing more 

than 40% ELLs tended to answer incorrectly to these items. Both of these items concern  

valid division algorithms that may be used by Latino ELLs in mathematics classes. 

Finally, teachers who had given a response to the open question that asked about 

knowledge that teachers need for teaching mathematics to ELLs tended to answer item 

Q29 correctly. This item required that respondents select the most appropriate way to re-

word a linguistically complex mathematics task so that ELLs could understand it better. 

Summary of KSTRAT Item Analysis. Up to this point the analysis of the 

KSTRAT scale has presented the psychometric properties of the items, including the item 

information, the inter-correlations, and several teacher factors that were significantly 

associated with item responses. The KSTRAT scale concerns knowledge of strategic 



151 
 

 

teaching decisions that may improve the opportunity for students to communicate about 

mathematics and of mathematical notations that are commonly taught in the United States 

or in Central America that can, because of the students’ familiarity (or lack of familiarity) 

with these, facilitate mathematics communication or become a barrier to such for Latino 

ELLs. Brief descriptions of the items preceded these results of item analysis to aid in 

their interpretation. As a way of summarizing the results of the KSTRAT item analysis, 

Figure 15 presents a graphic representation of the items composing the scale. In this 

weighted-node and weighted-edge graph, the relative magnitude of the information 

provided by each items is indicated by the size of its node and the strength of the inter-

item correlations are given adjacent to the edges connecting nodes (“*” denotes 

significance at the .05 level). Furthermore, teacher factors that were associated with 

differences in percentages of correct responses are represented by an appropriate letter 

placed adjacent to the node, as explained in the footer. 
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Figure 15. Semantic Map of Information, Inter-item Correlations, and Significant 
Teacher Factors for KSTRAT Items. The size of the nodes corresponds to the 
relative amount of information provided by the items. Furthermore the size of the 
connecting edges corresponds to the strength of the correlation; large edges 
indicate stronger correlation. Teacher factors associated with differences in 
numbers of correct responses to the items are indicated by the following 
abbreviations: Y-more than 5 years of mathematics teaching experience, E-
experience teaching classrooms containing 40% or more ELLs, B-breadth of 
educational licensure (multiplicity of educational certifications), R-response given 
to the open question concerning teaching ELLs. 

 
Figure 15 may offer a semantic map of the KSTRAT scale. In this graph, four 

clusterings of items can be identified. The most informative cluster, containing the items 

Q5, Q7, Q8, and Q18 are a highly correlated set, with the most informative item in the 

scale (Q5) occupying a place of prominence because its correlation to the other three 

items in the cluster. Items Q10, Q11, and Q29 appear to follow this cluster in terms of 

amount of information contributed to the total information and in terms of the strength of 
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inter-item correlations. Items Q19 and Q24 were correlated and provided smaller 

amounts of combined information. Finally, item Q26, though not minimal in terms of 

information contributed to the scale, was uncorrelated to any other item in the scale. As 

with the similar graph given for the KDIFF/KCAP scale, these relationships were 

investigated in the attempt to better understand the patterns of correct responses to the 

items in this scale. The semantic map given in Figure 15, though incapable of explaining 

causation, is merely offered as an observation of item relationships and as possibly 

indicative of directions for future cognitive research related to the analyses which follow. 

This subsection of the results has offered an explanation of the properties of the 

KSTRAT items and scale. It began with a summary of the psychometric properties of the 

items, offering comparisons of the item difficulty and discriminations parameters, and 

focusing on the information given by the items and the total scale. The item and total 

information obtained by this scale indicated that the scale performed acceptably in 

reducing the uncertainty with which persons’ locations on the knowledge continuum 

could be estimated, for persons of a wide range of ability levels. However, the scale, 

which was comparably easier than the KDIFF/KSTRAT scale, functioned especially well 

for persons of slightly less than average ability on the continuum. It served as a poor 

measure of knowledge for persons of extremely high or low ability. The interpretation of 

this IRT statistic is analogous to reliability (internal consistency) central to CTT. The 

purpose of this part of the investigation was to respond to third research question of this 

study as it asks concerning the reliability of the KT-MELL measures. 

 This subsection also gave a thorough item analysis. It began with detailed 

descriptions of the items, followed by the observations of several inter-item correlations 

and of teacher factors that were associated with differences in numbers of correct 
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responses. The findings concerning item information, inter-item correlations and 

significant teacher factors were presented in synthesized form in Figure 15, which may 

serve as a semantic map of the KSTRAT scale.  

This concludes the analysis of the items that compose the KDIFF/KCAP scales. 

The final section of this chapter addresses evidences of the validity of the KT-MELL 

measures that were found. 

Evidence of Construct Validity. 

The final section of this chapter presents evidences that were found of the 

construct validity of the measurements of the KT-MELL instrument. The instrument 

central to this study was designed to measure teachers’ knowledge for teaching 

mathematics to Latino English Language Learners (KT-MELL). Content validation of 

the instrument was addressed during the processes of instrument development, as 

reported in the methodology chapter (Chapter 3) of this study. To summarize the details 

of those processes here, the content validity of the KT-MELL instrument was established 

through three steps. First, in its conceptual design and item development, the conceptual 

framework (Figure 3), test-framework (Table 3) and items were developed in close 

alignment with theory that drew from related bodies of research and from more than 30 

hours of classroom observations. Secondly, the entire instrument underwent review by a 

panel of four, widely-respected scholars of the mathematics education of ELLs and of the 

education of bilingual students. Finally, the entire instrument was submitted to a panel of 

practicing middle-school mathematics teachers who commented positively on the extent 

to which the items in the instrument captured the essential elements of KT-MELL. These 

three steps of validation provided the basis upon which the instrument was assumed to 

have an acceptable degree of content validity. 
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Three aspects of the construct validity of the KT-MELL measures are addressed 

this section: convergent and discriminant validity, and the nomological validity of each of 

the two separate scales. The first part of the section presents evidences of convergent and 

discriminant validity.  

Convergent and Discriminant Validity. As was discussed in Chapter 3 

concerning the methods used in this study, limited evidence of convergent and 

discriminant validity was available at the time of completion of this study, since KT-

MELL was a novel construct for which no other measures existed. Hence, results 

presented below serve mainly to assess the construct (convergent and discriminant) 

validity of the separate scales that composed the KT-MELL instrument. Using a modified 

multitrait-multimethod (MTMM) matrix (Cambell & Fiske, 1959), wherein the 

KDIFF/KCAP and KSTRAT scales occupy the places of the different traits, the 

measurements of which were both obtained using the same (singular) method, the 

Pearson’s r correlations of items within and across scales was considered (see Table 14 

below). 

Table 14 indicates that items within scales were more highly correlated 

(convergent) than were items across scales (divergent). Within the KDIFF/KCAP scale, 

six pairs of items were positively correlated at (at most) the .05 level. Furthermore, only 

six of the (insignificant) correlations were negative. Within the KSTRAT scale, eight 

pairs of items were positively correlated at (at most) the .05 level and only three of the 

(insignificant) correlations were negative. 



 

 

Table 14 

Modified MTMM Table Including Separate Scales as Traits 

  KDIFF/KCAP Scale  KSTRAT Scale 

  Items Q1 Q6 Q9 Q13 Q15 Q16 Q20 Q22 Q25 Q31 Q32  Q5 Q7 Q8 Q10 Q11 Q18 Q19 Q24 Q26 Q29 

K
D

IF
F/

K
ST

R
A

T 
Sc

al
e 

Q1 1                      
Q6 .196 1                     
Q9 .341* .150 1                    
Q13 .139 .059 .050 1                   
Q15 .033 .108 .234 .019 1                  
Q16 .469** .278 .314* -.100 .234 1                 
Q20 .282 -.030 .282 .564** .076 .152 1                
Q22 .171 -.021 .029 .100 .078 .200 .108 1               
Q25 .075 .166 .283 .106 .183 .000 .092 -.141 1              
Q31 .023 .075 -.054 .156 .106 .108 .094 .054 .038 1             
Q32 .050 .091 .043 .085 .315* .426** -.088 .213 .030 .220 1            

                        

K
ST

R
A

T 
Sc

al
e 

Q5 .056 -.039 -.033 .033 .346* -.033 -.146 .230 .093 -.009 .091  1          
Q7 -.238 .257 -.033 .033 .166 -.033 .004 .033 .093 .178 .091  .319* 1         
Q8 -.027 -.059 -.050 -.213 .117 -.050 -.222 .050 .018 -.014 .027  .312* .312* 1        
Q10 -.159 -.075 .044 .137 .171 -.219 .052 .351* -.047 -.131 -.136  .288 .137 .093 1       
Q11 -.026 .106 -.121 .048 -.085 -.266 .060 .121 .017 -.013 -.083  .052 .052 .079 .313* 1      
Q18 -.238 -.039 -.230 .033 -.013 -.230 -.146 -.164 .093 -.196 -.056  .319* .092 .140 .137 .052 1     
Q19 -.178 .194 -.073 -.200 .226 -.073 -.063 -.145 .154 -.049 .015  .131 .382* .200 .087 .009 .131 1    
Q24 -.136 -.045 .141 -.018 .183 .000 .199 .141 .300 -.096 .136  .093 -.070 .265 .062 .017 .093 .333* 1   
Q26 -.085 -.150 .200 .250 -.078 -.143 .108 -.029 .141 -.108 .213  .033 .033 -.100 .219 .121 .230 .073 .283 1  
Q29 -.005 .057 -.021 .053 -.225 -.278 .030 .021 .257 -.075 -.187  .039 .186 -.053 .075 .329* .039 .132 .151 .150 1 

 *. Correlation is significant at the 0.05 level (2-tailed). 
 **. Correlation is significant at the 0.01 level (2-tailed). 
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In comparison to the larger number of positive inter-item correlations within the 

KDIFF/KCAP and KSTRAT scales (shaded), only two pairs of items were positively 

correlated across scales. Furthermore, more than half of the insignificant inter-item 

correlations across scales were negative. 

The relative frequency of significant positive inter-item correlations within the 

separate scales may be taken as limited evidence of the convergent validity of these 

scales, whereas the relative infrequency of significant positive inter-item correlations 

across scales may be taken as limited evidence of the discriminant validity of the two 

scales. A further evidence of discriminant validity is found in the Pearson product-

moment correlation of the total scale scores between scales, r = – .005. That the scale 

scores between the KDIFF/KCAP and KSTRAT scales were so uncorrelated gives some 

indication that they were not measuring the same constructs. 

Nomological Validity. As was discussed in Chapter 3 concerning the 

methodology, a second aspect of construct validity that was addressed in this study 

concerned the extent to which the KT-MELL measures were related to a nomological 

network of theoretically related constructs (Cronbach & Meehl, 1955). KT-MELL is 

conceptually related to pedagogical content knowledge, PCK, (Shulman, 1986) and to 

mathematical knowledge for teaching, MKT (Hill, Schilling, & Ball, 2004). (See Figure 3 

of Chapter 3 for a conceptual model.) The theoretical underpinnings of both of these 

constructs imply that, while teachers gain knowledge through formal educational 

experience, the experience of teaching students plays an integral part in the formation of 

their knowledge.
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Hence, for this study, it was hypothesized that the formation of KT-MELL in the 

minds of teachers should take a similar path as for other forms of PCK. That is, formal 

training and education should play a formative role and actual mathematics teaching 

experience should play a perhaps more important role. Although this research cannot 

assess the extent to which these types of experiences play the roles of forming, growing 

or of transforming KT-MELL in the minds of teachers, statistical associations between 

these types of experiences and the measurement of KT-MELL may be informative as 

construct validity (nomological) evidences related to the instrument under study.  

This analysis of such associations employed two methods. As an investigative 

step, one-way analyses of variance (ANOVA) were computed to test the null hypothesis 

of equivalence of scale means between all groups of teachers that could be defined 

according to teacher factors that were assessed. (Appendix N gives a complete table 

containing the F-statistic and associated p-values for the comparisons of means on both 

scales against all possible teacher factors.) To obtain a more descriptive sense of how 

teacher factors were related to scale scores, linear regression (teacher factors regressed on 

teachers’ scale scores) was used. To determine which factors seemed to be most related 

to the scale score a series of linear regression models were estimated. To begin, all of the 

possible factors were included in the model. Following this, factors that did not add to the 

total variance explained by the model or that were statistically insignificant, were 

eliminated until an optimal model was obtained. 

The results of these analyses are presented in two sections according to the two 

scales of KT-MELL that were identified: KDIFF/KCAP and KSTRAT. Each section 

begins with descriptive statistics concerning the scale scores and is followed by 

presentation of the full and reduced regression models. 
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Nomological Validity of the KDIFF/KCAP Scale. As a context for the analysis 

of KDIFF/KCAP scale scores and associated teacher factors, the distribution of scale 

scores is first presented.  

Distribution of KDIFF/KCAP Scale Scores. Descriptive statistics concerning the 

KDIFF/KCAP scale scores are given in Table 15 below.  The mean (as well as minimum 

and maximum) scores represent the percentage of items that received correct responses 

out of the eleven items that composed this scale. 

Table 15 
 
Descriptive Statistics for KDIFF/KCAP Scale Scores 

 

 

 

 

As Table 15 demonstrates, on average teachers correctly responded to fewer than 

50% of the items in this scale. This figure is related to the difficulty of the items as seen 

in the ICCs for these items (Figure 10). Several of the items in this scale had difficulties 

indicating that they would only receive correct responses from respondents of higher 

ability. Based upon the variance, as well as the measures of skewness and kurtosis, the 

scale scores may be said to have been approximately normally distributed. This 

observation is confirmed by Figure 16 below. 

N Min Max Mean Std. 
Deviation 

Variance Skewness Kurtosis 

       Std. 
Error 

 Std. 
Error 

42 .09 .91 .4589 .2027 .041 .381 .365 -.683 .717 
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Figure 16. Distribution and Normal Q-Q Plot of KDIFF/KCAPP Scale Scores. 

Teacher Factors Associated with KDIFF/KCAP Scale Score. Based upon the 

satisfaction of the assumption of the normality of the distribution of the response 

variables (scale scores), as seen in Figure 16 and with a view to identifying the teachers 

factors associated with differences in scores, teacher factors were regressed linearly on 

the KDIFF/KCAP scale scores. The tables that follow exhibit both the full and the 

reduced linear regression models for the KDIFF/KCAP scale.  

The linear regression model given in Table 16 indicates that several variables 

thought to be associated with KT-MELL were in fact statistically associated with greater 

KDIFF/KCAP scale scores. With their associated percent increases, these were: number 

of years teaching mathematics (11.6%), having taught mathematics classes containing 

40% or more ELLs (10.7%), and breadth of educational licensure--indicated by having 

multiple educational certifications—(9.6%). Furthermore, teachers who had offered a 

response to the open survey question (In your experience, is there anything else that 

effective teachers of Latino ELLs need to know?), tended to score approximately 14% 

higher on this scale than others. It is reasonable to conjecture that teachers who gave 

responses to this question did so because of strong convictions founded in experiences of 

teaching mathematics to ELLs. If this conjecture holds, then the association of this 
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variable with higher KDIFF/KCAP scores, in so far it implies a greater measure of 

experience teaching ELLs, may also constitute construct (nomological) validity. Another 

finding, seemingly unrelated to construct validity, was that gender was statistically 

associated with differences in scale scores; controlling for other factors in the model, men 

tended to perform 24.3% better than women. 

Several variables that seemed to potentially be related to KT-MELL were found 

to be either unrelated or statistically associated with lower scale scores. For example, the 

experience of having participated in professional development related to teaching ELLs 

did not predict differences in scale scores. Other insignificant variables included the 

teachers’ proficiency in other languages (Spanish or other) and the duration of time (more 

than one day) taken to complete the survey. Furthermore, two variables potentially 

related to greater knowledge in this domain, were in fact statistically associated with 

lower scale scores. These were whether or not the teacher held a degree in mathematics 

(9.1% reduction) and whether or not the teacher was certified to teach English as a 

second language (5.9% reduction). This finding, taken along with findings of the above 

variables that were statistically associated greater scale scores, seemed to imply that 

knowledge in the KDIFF/KCAP domain could be more related to actual teaching 

experience rather than to experiences of formal education. The full model is presented 

below. 
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Table 16 

Full Linear Regression Model for the KDIFF/KCAP Scale 

Coefficients 

 Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 95.0% Confidence 
Interval for B 

B Std. Error Beta Lower 
Bound 

Upper 
Bound 

        
(Constant) .025 .104  .240 .812 -.188 .238 
have you taught math 
for more than 5 years? 

.116 .066 .272 1.740 .092 -.020 .252 

taught more than 3 
different courses? 

.028 .090 .057 .312 .758 -.156 .211 

taught a class with more 
than 40% ELLs? 

.107 .060 .257 1.789 .084 -.015 .230 

have a degree in math? -.120 .069 -.278 -1.750 .091 -.261 .020 
certified to teach ESL? -.174 .088 -.281 -1.966 .059 -.354 .007 
possess other 
certifications? 

.096 .054 .234 1.758 .089 -.016 .207 

had ELL professional 
development? 

-.007 .057 -.018 -.124 .902 -.124 .110 

how well do you know 
Spanish? (low or high) 

-.026 .054 -.062 -.484 .632 -.135 .084 

do you speak a 
language other than 
Eng/Span? 

-.001 .076 -.002 -.016 .987 -.157 .155 

anything else effective 
teachers of Latino ELLs 
need to know? 

.139 .076 .284 1.829 .078 -.016 .294 

more than one day to 
complete survey? 

.038 .075 .081 .514 .611 -.114 .191 

are you female or male .243 .068 .533 3.566 .001 .104 .382 
        
 

This model had acceptable measures of goodness of fit; the R and R-squared 

statistics were 0.762 and 0.581, respectively. The R-squared statistic indicated that more 
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than 58% of the variation in scale scores was explained by the variation in the variables 

included in the model. Since a number of the variables in this model were insignificant or 

added little to the variance explained, the reduced model in Table 17 was found to 

synthesize the most important variables without much loss of variance explained. 

Table 17 

Reduced Linear Regression Model for the KDIFF/KCAP Scale 

Coefficients 

 Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 95.0% Confidence 
Interval for B 

B Std. Error Beta Lower 
Bound 

Upper 
Bound 

        
(Constant) .025 .087  .292 .772 -.152 .203 
have you taught math 
for more than 5 years? 

.106 .051 .249 2.072 .046 .002 .210 

taught a class with more 
than 40% ELLs? 

.094 .050 .225 1.873 .070 -.008 .196 

have a degree in math? -.117 .053 -.269 -2.195 .035 -.225 -.009 
certified to teach ESL? -.164 .075 -.265 -2.197 .035 -.316 -.012 
possess other 
certifications? 

.093 .048 .227 1.942 .060 -.004 .189 

anything else effective 
teachers of Latino ELLs 
need to know? 

.153 .058 .314 2.635 .013 .035 .272 

are you female or male .249 .057 .547 4.336 .000 .132 .366 
        
 
 This model, which had R and R-squared statistics 0.756 and 0.571, respectively, 

indicates an improvement in the statistical significance of all variables. Variables that 

persisted in their association with higher scale scores were mathematics teaching 

experience (10.6% increase), teaching larger groups of ELLs (9.4% increase), breadth of 

educational licensure (9.3% increase), offering a response to the open-ended item (15.3% 
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increase), and gender (24.9% increase). Possessing a degree in mathematics and being 

certified to teach ESL were still negatively correlated with scale scores (11.7% and 

16.4% reduction in scale score, respectively). 

Based upon the hypothesis that knowledge in the KDIFF/KCAP domain, as a 

subset of PCK, should be, at least in part, the result of actual teaching experience, a 

comparison of scale scores of the 42 practicing teachers with those of the 146 pre-service 

teachers that composed the second pilot-study was performed using ANOVA. The 

boxplot and ANOVA table, given in Table 18 below, indicate that practicing middle 

school teachers scored an average of 4.5 percentage points higher (eta-squared) than did 

pre-service mathematics teachers. This difference was significant at the .01 level. 

Table 18 

Comparison of Practicing Teachers’ and Pre-Service Teachers’ KDIFF/KCAP Scale 
Scores 
 

KDIFF/KCAP Scale Score 

 

 SS df MS F Sig. 
Between 
Groups .204 1 .204 8.94 .003 

Within 
Groups 4.24 186 .023 

  

Total 4.45 187 
   

Effect size 
η2 = 0.045843 
ω2 = 0.040465 
 

   

   

 

Summary of KDIFF/KCAP Nomological Validity Evidence. The analysis given in 

this section compared a number of teacher factors potentially related to knowledge in the 

KDIFF/KCAP domain with scale scores in the attempt to ascertain whether evidences of 
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construct (nomological) validity existed. This analysis uncovered convincing evidence 

that knowledge in the KDIFF/KCAP domain seems to be related to actual mathematics 

classroom teaching experience. Specific teacher factors that were associated with 

increases in scale scores were years of mathematics teaching experience, experience 

teaching greater percentages (40% or more) of ELLs, and breadth of teaching experience. 

Additionally, teachers that responded to the open-ended item that requested their input 

concerning knowledge for teaching mathematics to ELLs also scored higher, on average. 

Two factors that seemed to potentially be related to KT-MELL—possession of a 

mathematics degree and certification to teach English as a second language—were in fact 

unassociated. Since both of these credentials—a mathematics degree and the certification 

to teach ESL—are generally the results of formal study rather than of teaching 

experience, this result was taken to imply that knowledge in the KDIFF/KCAP domain 

may be a product of actual teaching experience more than of education or training. In so 

far as experience is thought to be related to KT-MELL, this interpretation would 

constitute another evidence of construct (nomological) validity. A final compelling 

evidence of construct (nomological) validity that was found concerned the comparative 

performance of actual middle school mathematics teachers and pre-service teachers. 

Actual teachers tended to score higher than did pre-service teachers, which agreed with 

other findings concerning the association of classroom teaching experience with higher 

levels of KDIFF/KCAP knowledge. 

Nomological Validity of the KSTRAT Scale. The analysis now turns to 

consideration of evidences of nomological validity related to the KSTRAT scale. The 

distribution of scale scores is first presented.  
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Distribution of KSTRAT Scale Scores. Descriptive statistics concerning the 

KSTRAT scale scores are given in Table 19 below.  The mean (as well as minimum and 

maximum) scores represent the percentage of items that received correct responses out of 

the ten items that composed this scale. 

Table 19 
 
Descriptive Statistics for KSTRAT Scale Scores 
 

 

 

 

As Table 19 demonstrates, on average teachers correctly responded to 

approximately 70% of the items in this scale. This figure may be explained by the 

difficulty (i.e., easiness) of the items as seen in the ICCs (Figure 13). Several of the items 

in this scale had difficulties indicating that they could receive correct responses from 

respondents of less than average ability. Although the variance of KSTRAT scale scores 

was small, the measures of skewness and kurtosis indicate that data were skewed slightly 

left. However, the normal Q-Q plot gives evidence that this effect was not extreme and 

that data were still approximately normally distributed. Figure 17 below gives both the 

distribution of scale scores and the normal Q-Q plot. 

N Min Max Mean Std. 
Deviation 

Variance Skewness Kurtosis 

       Std. 
Error 

 Std. 
Error 

42 .00 1.00 .6952 .1899 .036 -1.184 .365 2.890 .717 
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Figure 17. Distribution and Normal Q-Q Plot of KSTRAT Scale Scores. 

Teacher Factors Associated with the KSTRAT Scale Scores. Based upon the 

results found in Figure 17 above, approximate normality of the distribution of KSTRAT 

scale scores was assumed with a view toward regressing teacher factors on the scale 

scores. The tables that follow exhibit both the full and the reduced linear regression 

models for the KSTRAT scale.  

The linear regression model given in Table 20 below indicates that two variables 

thought to be potentially associated with KT-MELL were in fact statistically associated 

with greater KSTRAT scale scores. With their associated percent increases, these were: 

having 5 or more years of mathematics teaching experience (13.6%) and breadth of 

educational licensure (12.2%). A variable that could have been related to greater 

KSTRAT scores but that actually behaved counter intuitively was whether or not teachers 

had experienced professional development related to ELL issues. Such experience was 

actually associated with a 12.9% reduction in KSTRAT scale score. One interpretation of 

this finding, and that seems to agree with a similar result concerning knowledge in the 

KDIFF/KCAP scale, is that knowledge in the KSTRAT domain is more a product of 
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classroom teaching experience than of formal training. All other factors were not 

significantly associated with differences in scale scores.  

Table 20 

Full Linear Regression Model for the KSTRAT Scale 

Coefficients 

 Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 95.0% Confidence 
Interval for B 

B Std. Error Beta Lower 
Bound 

Upper 
Bound 

        
(Constant) .666 .124  5.384 .000 .413 .919 
have you taught math 
for more than 5 years? 

.136 .079 .341 1.717 .097 -.026 .297 

taught more than 3 
different courses? 

.038 .107 .083 .356 .725 -.180 .256 

taught a class with more 
than 40% ELLs? 

-.012 .071 -.031 -.169 .867 -.158 .134 

have a degree in math? -.024 .082 -.059 -.295 .770 -.191 .143 
certified to teach ESL? -.022 .105 -.037 -.205 .839 -.236 .193 
possess other 
certifications? 

.122 .065 .318 1.881 .070 -.011 .254 

had ELL professional 
development? 

-.129 .068 -.340 -1.897 .068 -.268 .010 

how well do you know 
Spanish? (low or high) 

-.008 .064 -.021 -.131 .897 -.138 .122 

do you speak a 
language other than 
Eng/Span? 

-.098 .091 -.206 -1.087 .286 -.284 .087 

anything else effective 
teachers of Latino ELLs 
need to know? 

.073 .090 .161 .815 .422 -.111 .258 

more than one day to 
complete survey? 

.029 .089 .065 .322 .750 -.153 .210 

are you female or male -.025 .081 -.058 -.303 .764 -.190 .141 
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This model was limited in its measure of goodness of fit; the R and R-squared 

statistics were 0.570 and 0.325, respectively. The R-squared statistic indicated that 

slightly more than 32% of the variation in scale scores was explained by the variation in 

the variables included in the model. A model that includes only the variable that have 

statistical significance in relation to the scale score is given in Table 21 below. 

Table 21 

Reduced Linear Regression Model for the KSTRAT Scale 
 

Coefficients 

 Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 95.0% Confidence 
Interval for B 

B Std. Error Beta Lower 
Bound 

Upper 
Bound 

        
(Constant) .628 .056  11.275 .000 .516 .741 
have you taught math 
for more than 5 years? 

.142 .059 .358 2.410 .021 .023 .262 

possess other 
certifications? 

.130 .054 .339 2.398 .022 .020 .239 

had ELL professional 
development? 

-.141 .056 -.372 -2.528 .016 -.254 -.028 

        
 
 This model, which had R and R-squared statistics 0.509 and 0.259, respectively, 

indicates that years of teaching experience and breadth of educational licensure retained 

their statistically significant association with greater scale scores (14.2% and 13.0%, 

respectively) and that having had ELL professional development persisted in its 

association with (14.1%) reduced scale scores.  

As with knowledge in the KDIFF/KCAP domain, it was hypothesized that 

knowledge in the KSTRAT domain should be, at least in part, the result of actual 

teaching experience. To evaluate the association of these kinds of knowledge and 
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experience, a comparison of KSTRAT scale scores of the 42 practicing teachers with 

those of the 146 pre-service teachers that composed the second pilot-study was performed 

using ANOVA. The boxplot and ANOVA table, given in Table 22 below, indicate that 

practicing middle school teachers scored an average of 1.5 percentage points higher (eta-

squared) than did pre-service mathematics teachers. This difference was significant at the 

.1 level. 

Table 22 
 
Comparison of Practicing Teachers’ and Pre-Service Teachers’ KSTRAT Scale Scores 
 

KSTRAT Scale Score 

 

 SS df MS F Sig. 
Between 
Groups .067 1 .067 2.87 .092 

Within 
Groups 4.32 186 .023 

  

Total 4.39 187 
   

Effect size 
η2 = 0.015262 
ω2 = 0.009971 
 

   

   

 

Summary of KSTRAT Nomological Validity Evidence. This section of the results 

has collected evidence of the construct (nomological) validity of the KSTRAT scale. It 

has done so by observing that certain variables thought to be related to knowledge in the 

KSTRAT domain were in fact statistically associated with higher scale scores. These 

were years of mathematics teaching experience and breadth of educational licensure. This 

scale was not associated with measures of teaching experience specifically related to 

teaching mathematics to ELLs. Indeed, it is possible that the strategic knowledge 

assessed by this measure is general knowledge that experienced mathematics teachers 
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would possess, and that it does not apply strictly to ELLs. Another finding of this 

analysis was that professional development focused on ELLs did not seem to improve 

teachers’ knowledge in the KSTRAT domain. On the contrary, having such PD was 

negatively correlated with scale scores. This seemed to imply the superiority of actual 

teaching experience over formal training or perhaps the inferiority of current professional 

development models related to ELLs. The former interpretation could be taken as a 

further evidence of construct (nomological) validity of the KSTRAT scale. Another 

finding that lent slight support to the suggestion that KSTRAT is knowledge that depends 

on teaching experience was the finding that the sample of practicing middle school 

mathematics teacher performed approximately 1.5% percentage points better than did the 

pre-service teachers. 

Summary. This chapter has presented results that respond to the elements of the 

third research question of this study. That question concerns the reliability and validity of 

the measurements obtained using the KT-MELL instrument as well as other observable 

response patterns. Data analyzed in this chapter were collected from the administration of 

the KT-MELL survey to a sample of 42 practicing middle school mathematics teachers 

from wide geographic sectors of Texas. Although this sample of teachers was not 

obtained using the intended method of stratified random sampling, nor was the size as 

large as had been hoped, yet the sample bore resemblance to the population of Texas 

middle school mathematics teachers in several ways. 

The beginning of this chapter addressed the matter of reliability from the two 

theoretical perspectives of CTT and IRT. Investigation of the internal consistency of the 

instrument based upon Cronbach’s (1951) alpha and upon a two-parameter IRT model 

led to the conclusion that the full set of items failed to meet the assumption of 
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unidimensionality, as the theoretical factor structure of the instrument would indeed 

imply. Based upon the theoretical orientation of items, and upon evidence obtained from 

the measure of internal consistency and, in a limited way, from CFA, two scales were 

found that exhibited greater internal consistency and conceptual unity. These scales 

KDIFF/KCAP and KSTRAT, respectively, are concerned with knowledge of both 

difficulties that Latino ELLs can face in learning mathematics and also of the capacities 

for learning mathematics that the students bring with them, and of strategies for teaching 

ELLs mathematics. Based on the IRT information exhibited by each of these scales, it 

was observed that the scales served to an acceptable degree in estimating person locations 

on the continuums of knowledge represented by the scales. This IRT finding, along with 

the improved CTT measure of internal consistency, was taken as evidence that the scales 

had a reasonable degree of reliability, given the novelty of the knowledge constructs and 

the exploratory nature of the study. 

A number of important associations between item responses and between teacher 

factors and item responses were observed. Semantic mappings of response patterns were 

offered for each of the scales.  

The final section disclosed evidences of construct (convergent, discriminant, and 

nomological) validity that were found in connection to the KT-MELL measures. Positive 

correlations within scales were more numerous than across scales, which was taken as 

limited evidence both of the convergent and discriminant validity of the separate 

KDIFF/KCAP and KSTRAT scales. This section also discussed a number of important 

associations between teacher factors and scale scores that were observed. Several factors, 

such as years of experience, experience teaching classrooms with 40% or more ELLs, 

and breadth of educational licensure were seen to be associated with gains in scale scores 



173 
 

 

on one or both scales. Some other factors, typically related to formal learning about 

teaching, such as having a mathematics degree or participating in professional 

development, were seen to be negatively correlated with scale scores. All of these 

findings, together with the observation that practicing teachers performed better than did 

pre-service teachers (second pilot-study sample) on both scales, seemed to indicate that 

the knowledge measured by the KT-MELL scales was experiential knowledge. This 

finding was taken as construct (nomological) validity of the measures obtained by the 

KT-MELL instrument. 



 

174 
 

CHAPTER 5: CONCLUSIONS AND IMPLICATIONS 

Motivated by the rapidly growing numbers of Latino English Language Learners 

in mathematics classrooms in the United States and by evidence that mathematics 

teachers may not fully understand how to serve this body of mathematics learners, this 

study has attempted to define the domains of knowledge needed for teaching these 

students and to develop an instrument capable of yielding valid and reliable 

measurements of this knowledge. Both the work of identifying the domains and of 

developing items to serve as indicators of the knowledge were grounded in educational 

research concerned with the mathematics learning of ELLs and built upon research 

concerned with well-defined domains of knowledge for teaching mathematics. 

Furthermore, this work was also informed throughout the conceptualization and 

instrument development phases by observations of the mathematics classrooms of 

teachers who taught this population of students. To conclude this study and to elucidate 

the place of this research in the broader context of mathematics education research, this 

chapter will briefly review what the intended goals of the study were and what outcomes 

were obtained. Following this, a discussion of the limitations of the study precedes and 

helps to understand the implications of the research for mathematics teacher educators 

and educational policy-makers. The final section offers suggestions for further research. 
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Goals and Results of this Study 

 The central objectives of this study, motivated by the three research questions that 

guided the inquiry, were two-fold: identification of the domains of knowledge for 

teaching mathematics to ELLs (KT-MELL) and development and field-testing of survey 

items capable of obtaining valid and reliable measurements of KT-MELL. Based upon 

careful analysis of the research and practitioner literature, this study identified three 

domains of knowledge potentially needed by mathematics teachers of Latino ELLs. 

These are: knowledge of common difficulties experienced by Latino ELLs in 

mathematics classes (KDIFF), knowledge of ways in which Latino ELLs’ background 

knowledge and experiences (including bilingualism) can capacitate them to learn 

mathematics (KCAP), and knowledge of strategies for instructing Latino ELLs in 

mathematics (KSTRAT). These three domains were seen as theoretically situated within 

Hill, Ball, and Schilling’s (2008) model of mathematical knowledge for teaching, MKT 

(see Figure 3). More precisely within that model, the domains of KT-MELL were seen as 

intersecting both knowledge of content and students and knowledge of content and 

teaching. 

 Using the three proposed domains of KT-MELL as a test framework, along with 

aspects identified in the literature as well as observed in classrooms, survey items were 

developed. In addition to their strict alignment with theory and actual classroom practice, 

evidence of content validity of the items was obtained by submission of the complete set 

of items to a panel of experts in the fields of mathematics education and bilingual 

education, all of whom had studied educational issues related to Latino ELLs extensively. 

Their responses indicated strong agreement that the items would serve as indicators of the 

intended domains of knowledge, as proposed by the test framework; the consensus of the 
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experts was in agreement with the theoretical assignment of items as indicators of their 

intended constructs on more than 90% of the items. The instrument was also submitted to 

a focus group of eight practicing teachers whose comments indicated agreement that the 

items served as a measure of KT-MELL. 

After revision, expert review and pilot-testing of thirty-two items among 146 pre-

service teachers, the same thirty-two items were retained for the full study, including ten 

items intended to capture KDIFF, twelve items intended to capture KCAP, and another 

ten items intended to capture KSTRAT. The instrument was then administered via 

internet survey to a sample of 42 practicing, predominantly middle school, mathematics 

teachers from wide geographic sectors of Texas. This sample may be considered semi-

representative, as it bore resemblance to the general population of middle school 

mathematics teachers in Texas. 

Once domains and aspects of the knowledge construct in question had been 

identified—responding to the first two questions of this study, respectively—and the 

instrument developed and administered, it was possible to answer the third research 

question of this study. This question concerned the extent to which the instrument 

provided a reliable and valid measure of KT-MELL. Analysis of the reliability of the 

measure employed methods pertaining to both classical test theory (CTT) and item 

response theory (IRT).  

The test framework used to guide creation of the instrument implied that the 

construct in question, KT-MELL, was probably a multidimensional knowledge construct. 

Therefore, it was not surprising that the measure of internal consistency, Cronbach’s 

(1951) alpha, of the full 32-item instrument indicated that less than 50% of the variation 

of item responses was accounted for by covariation among items. Since this alpha 
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assumes unidimensionality of the latent variable and multidimensionality was implied by 

the theoretical test framework, the low measure of internal consistency was taken as 

potentially indicative of multiple dimensions. This conclusion was confirmed by the 

result of IRT analysis of the 32 items. Under the assumption of unidimensionality of 

knowledge construct, a two-parameter IRT model that included all 32 items resulted in an 

unstable solution in which a large number (about half) of items had negative item 

discriminations. Such discrimination coefficients seemed to imply that higher levels of 

knowledge were negatively correlated with selecting the correct survey response. On 

more careful investigation, it seemed that different types of knowledge were at play in 

this model, which stood in direct contradiction of the unidimensionality assumption of 

this IRT model. 

 Based upon these evidences of low internal consistency under the 

unidimensionality assumption and upon the multidimensional nature of the theoretical 

test framework, the items were separated into two distinct scales using their conceptual 

orientations and their IRT discrimination coefficients. The two scales included, 

respectively, items intended to measure knowledge of both difficulties and capacities for 

learning mathematics experienced by Latino ELLs (KDIFF/KCAP) and knowledge of 

strategies for teaching these students mathematics (KSTRAT). Items which were poorly 

correlated with either scale, a total of eleven items, were omitted entirely from the 

analysis. The resulting scales agreed very well with confirmatory factor analysis (CFA) 

of the items: although CFA typically requires sample sizes of at least 200 (DeVellis, 

2003), that the assignment of items to factors given by the factor loadings using the 

sample of 42 teachers only disagreed by a single item with the conceptual and IRT 
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assignment of items to factors was taken as evidence of the suitability of the composition 

of the scales. 

 An important finding of this analysis pertains to the theoretical structure of KT-

MELL. It was observed that KDIFF and KCAP seemed to pertain to a single latent 

variable, rather than to two, as hypothesized; many items in these separate domains were 

in fact strongly correlated with one another. Hence, whereas theory seemed to indicate 

the existence of three separate domains of KT-MELL, the data analysis gave evidence 

that this theoretical model could be replaced with a bi-dimensional model, composite of 

two distinct scales. 

 Two-parameter IRT models were then computed for each of the separate scales, 

the scale concerned with both ELLs’ difficulties and capacities for learning mathematics 

and with strategies for teaching mathematics to ELLs. These models gave estimations of 

the difficulty and discrimination parameters of each of the items in the scales. For each 

scale, all of the items possessed positive discrimination coefficients, indicating that the 

probability of a correct response on all items was positively correlated with level of 

ability, as theory would suggest. (This finding was taken as further confirmation that the 

“right” underlying factor structure had been identified.) These models also gave 

evidence, in the form of IRT information, of the capacity of the scales to estimate 

respondents’ levels of knowledge. The information for the items varied widely, with 

some items providing considerably more information than others. The total information 

estimates for each of the scales (27.44 and 11.64 respectively for the KDIFF/KCAP and 

KSTRAT domains) indicated that they both served well in reducing the uncertainty of the 

estimation of respondents’ levels of knowledge, within specific ranges of ability of the 

respondents. These information estimates along with Cronbach’s alpha for each scale (α 
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= .6214 and α = .6056, respectively) indicated that the scales had an acceptable level of 

reliability, given the exploratory nature of this study. 

 Once reliability of the scales had been established, evidence of construct validity 

was sought. Convergent, discriminant and nomological validity were all addressed. 

Limited results were obtained to address convergent and discriminant validity, because of 

the exploratory nature of developing an instrument for a novel construct. Nevertheless, 

correlations within the scales were more numerous than across the scales, which gave 

some evidence that the KDIFF/KCAP and KSTRAT constructs were being measured 

separately by the separate scales.  

 Concerning nomological validity, separate models, with teacher factors regressed 

linearly on the scale score, for each of the two scales gave evidence that scores were 

associated with a number of important factors. For the scale comprising knowledge of 

difficulties experienced by Latino ELLs and of capacities for learning mathematics 

possessed by these students (KDIFF/KCAP), several measures of teachers’ experience 

were significantly associated with higher scores. These factors were years of teaching 

experience, experience teaching classes containing 40% or more ELLs, breadth of 

educational experience (indicated by multiplicity of educational licenses), and 

responsiveness to ELL issues (indicated by whether or not teachers gave a response to the 

open question concerning knowledge needed for teaching ELLs). The association of 

years of experience and experience teaching ELLs with higher scores for this scale 

seemed to indicate that this domain of KT-MELL is related to the extent of experience 

that mathematics teachers have in teaching ELLs. Assuming that teachers’ knowledge for 

teaching mathematics is, in large part, a product of their teaching experience, this finding 

may be interpreted as an indication of the (nomological) validity of the scale for 
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measuring the KDIFF/KCAP domain of KT-MELL. If multiplicity of educational 

licenses is an indication of breadth of educational experience, then the association of this 

variable with higher scale scores also seems to give evidence of the (nomological) 

validity of the measure. Furthermore, although merely having an opinion about 

knowledge needed for teaching mathematics to ELLs would not seem to be an obvious 

indicator of higher levels of knowledge, it is conceivable, and can be conjectured, that 

teachers who gave responses to the open question did so because of having extensive 

experience teaching ELLs which may have resulted in the possession of strong opinions 

about the issue. In this case, the association of responses to the open question with higher 

scale scores may also be taken as construct (nomological) validity. Finally, that a number 

of variables indicative of types of formal training experienced by teachers—having a 

degree in mathematics, having had ELL-related professional development, or being 

certified to teach English as a second language—were either unassociated with scores or 

even negatively associated with scores seemed to give further evidence that this domain 

of KT-MELL may be primarily related to teachers’ experience of teaching rather than to 

formal training. 

 Factors associated with higher scores on the scale comprising knowledge of 

strategies for teaching mathematics to Latino ELLs (KSTRAT) included years of 

teaching experience and breadth of educational licensure. As with the association of these 

factors with higher scores on the KDIFF/KCAP scale, this association may also be taken 

as evidence of the (nomological) validity of the scale as a measurement of the KSTRAT 

domain. That is, an association of greater experience with higher scale scores would be 

expected on this domain. Another factor that was negatively associated with the scale 

score on this domain was having had ELL-related professional development. There was 
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evidence that, controlling for years of experience and breadth of educational licensure, 

teachers who had had such professional development tended to score lower than those 

who had not. It appears that actual experience of teaching mathematics is associated with 

higher scores on this scale while formal training is associated with lower scores. This 

may be evidence that the KSTRAT scale serves as a valid measure of a kind of 

pedagogical content knowledge gained through actual teaching experience rather than 

formal training. 

 To further understand teachers’ responses, three-step analyses of the items 

comprising the two scales were conducted that included: comparison of the relative levels 

of information given by items, analysis of inter-item correlations, and also chi-square 

tests of independence for responses to the items from the different groups based upon the 

teacher qualities found to be significantly associated with scale scores. The results of 

these analyses indicated which items served best in reducing the uncertainty of teachers’ 

levels of knowledge. Furthermore, some indication of why teachers gave correct 

responses to items may have been gained. 

On the KDIFF/KCAP scale, correlations observed between KDIFF and KCAP 

items seem to indicate that teachers who are aware of the difficulties that ELLs may have 

with symbolic and linguistic mathematical expressions are more likely to have the 

capacity to discern when ELLs have used alternative, and valid, ways of expressing 

mathematics. That is, it seems that familiarity with the difficulties faced by Latino ELLs 

in mathematics may be related to being able to see the capacities that these students may 

have for expressing mathematics effectively using their own language, notation and 

gestures. Also on this scale, experience teaching percentages of ELLs greater than 40% 

was associated with higher percentages of correct responses on three types of items, 
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KDIFF, KCAP, and KSTRAT. This finding seemed to indicate that perceiving Latino 

ELLs’ difficulties and their capacities in mathematics, as well as making appropriate 

instructional decisions for their benefit, may be a product of the experience of working 

with ELLs. Furthermore, several KDIFF items on this scale received more correct 

responses from teachers who had responded to the open question regarding what 

mathematics teachers need to know in order to be effective in teaching Latino ELLs. This 

finding may indicate that teachers who hold strong opinions about this topic tend to be 

more conscious of difficulties faced by these students in mathematics classes than of 

capacities that the students bring to class for learning mathematics. It is possible that 

teachers are more likely to be cognizant of deficiencies in mathematics among ELLs than 

of their capacities for learning mathematics. Researchers have observed that this same 

propensity is seen in studies concerned with ELLs’ learning of mathematics (Gutiérrez, 

2008; Moschkovich, April 2007;). 

On the scale concerned with strategic mathematical knowledge, a number of 

important correlations between knowledge of difficulties and capacities with strategic 

knowledge were observed. It seemed that teachers who had knowledge of valid 

mathematical algorithms used by Latino ELLs were more likely to be aware of the 

benefit that these students can receive from working in classroom environments that lend 

themselves to communication about mathematics with the teacher and with peers. One 

reason for this result could be that teachers who employ collaborative group work and, as 

result, are aware of its benefit for ELLs, have had more opportunity to observe the 

different algorithms used by their Latino ELLs, since a portion of their classroom time 

may be given to circulating among working student groups rather than to teaching the 

whole class. Alternatively, it is possible that teachers who are cognizant of the valid 
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alternative mathematical notation and algorithms used by their Latino ELLs are more 

likely to also know that allowing these students to communicate their mathematics with 

their peers benefits both the ELLs and their peers. Another finding of the analysis of 

items in this scale was that knowledge of the ways in which variations in mathematical 

notation between Latin America and the United States can cause difficulty for Latino 

ELLs appeared to be associated with knowledge of two important strategies that may 

alleviate this difficulty: using collaborative grouping as a means of promoting 

mathematical communication and reducing the linguistic complexity of mathematics 

problems. 

Aside from assessing the reliability of the two scales, finding associations 

between teacher factors and scale scores, and analyzing item responses, further 

(nomological) validity evidence was sought by comparison of the pilot-study sample of 

pre-service teachers with the sample of practicing teachers. These analyses provided 

compelling evidence that KT-MELL, as measured by the research instrument, seems to 

be a product of actual teaching experience. On both scales separately, as well as on the 

full set of 32 items under investigation, practicing teachers responded correctly to a 

higher percentage of items than did pre-service teachers. Combined with the results of 

linear regression analyses of scale scores for the sample of practicing teachers—in which 

years of experience teaching mathematics, experience teaching higher percentages of 

ELLs, breadth of educational licensure, and offering advice for teaching ELLs were all 

associated with higher scores—, these results seem to indicate that actual classroom 

experience of teaching mathematics to ELLs is significantly associated with higher levels 

of KT-MELL. Theoretically, KT-MELL, as a sub-domain of PCK, should be, at least in 

part, knowledge that is gained through teaching practice. Hence, the finding that, within 
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the sample of practicing teachers, the level of experience predicts the percentage of 

correct responses, along with the finding that, across samples of pre-service and in-

service teachers, in-service status predicts the percentage of correct responses seems to 

indicate that the instrument used in this study may offer a valid measure of KT-MELL. 

Limitations of this Study 

 A principal outcome of this study is an instrument that measures teachers’ 

knowledge for teaching mathematics to the special population of Latino ELL students 

with reasonable reliability and validity. Nevertheless a number of limitations of both the 

methods and the instrument of this study need to be addressed so that the full 

applicability of the research may be properly understood. These limitations relate, 

broadly, to the generalizability of results, the validity and reliability of the measure, and 

the purposes of measurement. 

 The sample of practicing teachers that participated in this study was both 

relatively small (N = 42) and non-random. Although the teachers came from wide 

geographic areas of the state (see Figure 8) and the characteristics of these teachers bore 

similar qualities as those of the Texas middle grade mathematics teachers generally and 

(see Table 4), the non-randomness and smallness of the sample imply that results of the 

study apply to the sampled teachers alone and any generalization should be done with 

extreme caution. Furthermore, that the sample included almost exclusively middle grade 

mathematics teachers and only those from the state of Texas, generalization of results to 

other levels of mathematics teachers and to teachers of other regions may not be possible. 

The small sample size also implies the possibility of measurement errors. All of the 

statistical tests used in this study benefit from—and some require—larger sample sizes 

for their results to be accepted as trustworthy and generalizable. 
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 The content validity of the central instrument of this study was sought through 

strict adherence of the items to published research and to contexts observed in actual 

classroom practice. The instrument also passed through an expert panel review phase in 

which experts commented on items and assigned them to their respective knowledge 

domains, as well as through panel review by a group of practicing mathematics teachers. 

Notwithstanding these steps to ensure content validity, the classroom observations that 

informed the development of many items were all conducted in a narrow region of central 

Texas. Therefore, it is conceivable that some aspects of the three knowledge domains 

composing the test framework of the instrument may be absent. The items are neither 

exhaustive in the mathematical curricular contexts in which they are situated nor in the 

many types of classroom interactions among ELL mathematics learners. The items in the 

instrument are thus representative of some of the aspects of the knowledge domains in 

question, as required by the second of the research questions of this study. They are 

neither representative of all of the mathematics teaching situations encountered involving 

ELLs nor of all of the mathematics topics that ELLs encounter. 

 The survey instrument in this study is also limited by its reliability. Whereas both 

of the subscales identified exhibited suitable psychometric properties, the measures of 

internal consistency obtained—α = 0.6214 and α = 0.6056, respectively, for the 

KDIFF/KCAP and KSTRAT domains—may serve mainly to demonstrate the plausibility 

of developing measures of KT-MELL. Indeed this was one of the most central intended 

results of the study. However, researchers wishing to make usage of the instrument as a 

measurement tool will probably prefer to wait until greater internal consistency has been 

achieved through more extensive item-writing and testing. This instrument may serve as 

a valuable starting point for that work. 
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 An additional limitation of this study concerns the understanding of the structure 

and the growth of the knowledge that the instrument is intended to measure. This study 

provided three hypothesized domains of knowledge needed for teaching mathematics to 

Latino ELLs. It also gave evidence that two of these domains may be indistinct. 

However, the results of this study cannot identify the specific types of interactions, such 

as causal relationships, that may exist between the constructs. That understanding would 

require, at least, alternative analysis methods (such as structural equation modeling), that 

necessitate larger sample sizes. Furthermore, this study does not identify precisely how 

KT-MELL develops and grows in teachers or how this knowledge changes. Results of the 

study imply that KT-MELL may be related to both duration and breadth of experience 

teaching mathematics to Latino ELLs. Yet, the contribution of specific types of teaching 

experiences to the growth of the knowledge is not yet understood. Furthermore, the 

connection of KT-MELL with student outcomes, an important question, was not 

addressed in this study. 

Implications for Mathematics Teacher Educators and Policy-Makers 

 A key finding of this study was that knowledge for teaching mathematics to 

Latino ELLs seems to be more related to teaching experience than to formal training. 

Whereas years of teaching experience, experience teaching larger percentages of ELLs, 

and breadth of educational licensure were all associated with higher scale scores, 

measures of formal training, such as having a mathematics degree or having had ELL-

related professional development, were either not associated with scores or were 

associated with reduced scores. This finding seems to imply the superiority of actual 

teaching experience over established means of mathematics teacher education concerning 
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ELL issues. Such a result seems to have implications for mathematics teacher educators 

and for educational administrators and policy-makers. 

 These results probably should not be taken as implicative of the futility of formal 

teacher training or of professional development methods. However, reconsideration of the 

contents of trainings offered to mathematics teachers of ELLs may be in order. This study 

has offered a framework for teacher knowledge domains hypothesized to be crucial to 

effective mathematics instruction of Latino ELLs. If further research were to establish an 

association of this knowledge with positive student outcomes, then it would be 

conceivable that these domains could be informative of professional development models 

aimed at improving teachers’ knowledge for teaching mathematics to ELLs. Furthermore, 

the instrument used in this study may have value as a measure of knowledge growth 

resulting from professional development experiences. Indeed, at the time of writing a 

school district outside of Texas that was currently experiencing rapid growth of its Latino 

ELL population had contacted the researcher and expressed interest in administering the 

instrument to teachers of all levels with a view to using the results to inform professional 

development. 

The result that KT-MELL seems to be more closely related to duration and 

breadth of teaching experience may be important for educational administrators and 

policy-makers as well. If this knowledge is indeed fundamental to effective mathematics 

teaching of Latino ELLs and if the growth of this knowledge is primarily a product of 

teaching experience as implied by this study, then administrators and policy-makers may 

wish to make decisions that promote both teacher-retention and broad teaching 

experiences for teachers. In this study, years of experience, multiplicity of educational 

licenses, and experience teaching larger numbers of ELLs seemed to be associated with 
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greater knowledge. Educational decision-makers may wish to impose structures that can 

improve not only teacher-retention, but also the opportunity that all teachers have for 

teaching in classrooms containing significant populations of ELLs. For example, whereas 

most states require that pre-service mathematics teachers participate in a semester-length 

teaching internship program before they obtain teacher licensure, states may wish to 

bolster the duration of teaching experience before granting licensure. A year-length 

(possibly paid) full-time internship, in which teachers-in-training are required to teach in 

at least two distinct mathematics courses involving ELLs, could potentially improve their 

knowledge for teaching these students. Alternatively, to improve the knowledge of 

existing mathematics teachers, administrator may wish to require that teaching 

assignments vary annually. Requiring teachers to have experience teaching many 

different courses may result in the breadth of experience that elevates teachers’ KT-

MELL as implied by this study. 

Directions for Further Research 

This study provides a number of immediate avenues for mathematics education 

researchers. Firstly, it would be informative to investigate whether the measure of KT-

MELL provided by this study holds any associations with measures of student outcomes, 

such as with the scores of teachers’ students on standardized tests of mathematics 

achievement. This may indeed be the most important direction for research that builds 

upon this study to take. Although this study has shown that the knowledge measured by 

the instrument under investigation seems to be a product of mathematics teachers’ 

experience in teaching ELLs, it has not shown whether said knowledge is indeed 

fundamental to the effective teaching of Latino ELLs. One way to answer this question 
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would be to investigate the association between teachers’ KT-MELL scale scores and 

their students’ standardized mathematics test scores. 

Secondly, to accomplish this investigation would require a measure of KT-MELL 

that has greater reliability and validity than does the current measure. While the 

limitations of the current measure in terms of reliability and validity have been addressed, 

it is even more important to note that this research has provided rich evidence concerning 

the kinds of items that can be used to improve both. This research involved a body of KT-

MELL survey items, the psychometric properties of which have been fully evaluated. 

These properties can be used to improve the instrument. Indeed, “This knowledge of how 

an instrument will behave in estimating person locations permits the design of an 

instrument with specific estimation properties” (de Ayala, 2009, p. 32). An immediate 

direction for future research is to use these research findings to increase both the number 

of valuable items and the breadth of the ability continuum for which they provide good 

information.  

Thirdly, and closely related to developing a more valid and reliable measure of 

KT-MELL, this study has contributed to a theory of the structure of this knowledge. An 

essential step to advance the understanding of this structure would be confirmatory factor 

analysis. Accomplishing this calls for, at least, a replication study that would involve a 

larger number of participants. 

Fourthly, this study has demonstrated the possibility of measuring knowledge for 

teaching mathematics to a special population of students, Latino English Language 

Learners. Another implication of this work is that it may be possible to develop measures 

of knowledge for teaching mathematics to any of a large number of special populations of 

students—of language groups or of ability groups, for example. Such measures may have 
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value for informing the contents of professional development protocols for mathematics 

teachers of such student groups. Furthermore, if the measures are found to have 

predictive capacity for student outcomes, then the measures may be informative for 

teaching assignment decisions as well. Investigation of the development of instruments to 

measure knowledge for teaching mathematics to various student populations is a 

direction for future research in mathematics education. 

 Fifthly, another important direction for researchers interested in mathematics 

teachers’ knowledge is to investigate the association that the measure of the knowledge 

given by this study may have with at least two other important measures. First, it would 

be informative to investigate whether there exist any associations of this measure of KT-

MELL with other more established measurements of mathematical knowledge for 

teaching, such as those offered by the learning mathematics for teaching project (Hill & 

Ball, 2004). These measures have received a great deal of attention in the last decade and 

have also been shown to have predictive capacity for measures of student outcomes (Hill, 

Rowan, & Ball, 2005). A better understanding of the relationship of the proposed 

knowledge domains of this study—knowledge of the difficulties faced by Latino ELLs, 

of the capacities possessed by Latino ELLs, and of strategies for teaching Latino ELLs in 

mathematics classes—with other previously studied domains of pedagogical content 

knowledge would advance current understandings of the dimensions of knowledge 

needed for teaching mathematics. 

Finally, since this study has shown that the actual experience teaching 

mathematics to classrooms of ELLs seems to be related to this knowledge, an important 

direction for this research to take is in better understanding how KT-MELL develops and 

how it can be changed. If indeed this knowledge is primarily a product of teaching 
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experience, then what kinds of teaching experiences are most beneficial for mathematics 

teachers of Latino ELLs? How should these experiences be sequenced to optimize the 

acquisition of this knowledge? What are the most beneficial teaching contexts in which 

teachers should be placed for their professional development? Are any professional 

development experiences valuable for the development of KT-MELL? If so, which ones? 

Answers to these questions could have significant impact for the improvement of 

opportunities for teachers to be adequately prepared to serve Latino ELLs. 
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APPENDIX A 

TESOL P-12 TEACHER EDUCATION PROGRAM STANDARDS 
 
 

 
Figure A1. The Five Domains of the TESOL-NCATE P-12 Teacher Education 
Program Standards. The standards are used to evaluate and recognized programs 
that educate of teachers of English for speakers of other languages (TESOL). 
Adapted from “TESOL/NCATE Standards for the Recognition of Initial TESOL 
Programs in P-12 ESL Teacher Education,” by Teachers of English to Speakers of 
Other Langauges, Inc. – A Global Education Assocation. Copyright 2010 
byTeachers of English to Speakers of Other Languages, Inc 
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APPENDIX B 

NATIONAL CLEARINGHOUSE FOR ENGLISH LANGUAGE ACQUISITION 
(NCELA), FUNDAMENTALS FOR EVERY SUCCESSFUL TEACHER OF ELLS 

 
 

 
 

Figure A2. National Clearinghouse for English Language Acquisition 
(NCELA), Fundamentals for Every Successful Teacher of ELLs. Adapted 
from “Sixteen Fundamentals for Successful Teachers of ELLs,” by R. D. 
Leier and L. A. Fregeau, winter 2010, AccELLerate! The quarterly 
newsletter of the National Clearinghouse for English Language Acquistion, 
2(2), pp. 22—23. Copyright 2010 by the National Clearinghouse for English 
Language Acquisition & Language Instruction Educational Programs 
(NCELA). 
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Figure A2-Continued. National Clearinghouse for English Language 
Acquisition (NCELA), Fundamentals for Every Successful Teacher of ELLs. 
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APPENDIX C 

FIRST PILOT STUDY QUESTIONNAIRE WITH INVITATION LETTER 
 

Mathematics and ELL Survey 
 
 

Dear Texas State Student: 
 
You are among a small group of students that have been selected to 
help us better understand how to close the mathematics achievement 
gap between English Language Learning (ELL) students and other 
students. Your thoughtful responses to this survey will help 
mathematics educators who are seeking to improve the opportunity 
of all students to excel in mathematics. We very much hope you will 
participate!  
 
We ask that you return your completed survey to the 
instructor of the class in which you received the survey at 
the next class period. Or you may also return it to: 
 
Department of Mathematics, MCS 470 
ATTN: Aaron Wilson 
 
Thank you for your time and consideration of this important 
educational issue!
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1. At the beginning of the school year, a sixth grade math teacher divided her students 
into groups and gave them this problem. Read the problem and answer the highlighted 
questions below: 
 
 
 
 
 
 
 
 
 
 
 
(*adapted from Coggins, Kravin, Coates, & Carroll, 2007) 

 
CIRCLE the ONE correct statement: 
 

A)Both Antonio and Maria’s methods imply geometric sequences 
B)Both Antonio and Maria’s methods imply arithmetic sequences 
C)Antonio’s method is arithmetic while Maria’s is geometric 
D)Antonio’s method is geometric while María’s is arithmetic 

 
2. This activity contains two strategies that are intended to appeal to English language 
learners (ELLs) in the classroom: using the names Antonio and María makes the activity 
culturally relevant for the students, and using collaborative student groups increases 
opportunities for speech development. 
 
STATE which strategy is MORE  and which is LESS  effective, for this activity, as a 
support for English language learners? 
 

Cultural relevance _______Collaborative work _______ 
 
 
3. A math teacher of ELLs teaches his students that there are certain “special” English 
words that are used in mathematics that have “magical” properties: when such words 
are used in a literal mathematical sentence, the order of the words in the symbolic 
translation of the sentence is “magically” switched.  
 
One of such words is the word “than”. For example, “five less than an unknown 
number” means “x – 5”. The number and the unknown have “switched” places.  
 
Would this teaching strategy be effective in causing students to correctly obtain “2x + 
10” from “Ten more than twice x”? 
 
 
 
 
(***adapted from Fischer & Perez,  2008) 

Effective 
 
1 

Not Effective 
 
2 

I’m not sure 
 
3 

Antonio and María have two different ways to arrange square tables. 
Only one person can sit on each side of one of the tables. 

Antonio’s Way: Keep the tables separate 
Maria’s Way: Push all of the tables together in a long, narrow row 

 
Your group’s job: 
1. Investigate Antonio’s table arrangement plan and then Maria’s plan. 
2. With your group, make a two-column chart for each plan 
3. Show the number of tables and the number of seats for people if 

Antonio and Maria use 1, 2, 3, 4, 5, or 10 tables. 
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4. In a geometry lesson, the image below was used as an example of the property of 
being parallel. 

 
 
RATE the image in terms of cultural relevance for English language learners: 
 

5 Very relevant4   321 Not very relevant 
(* Adapted from Kersaint et al., 2009) 
 

5. Two teachers illustrate the process of evaluating an expression for different values of 
the variable using slightly different methods.  
CIRCLE the method that seems to be more supportive of English language learners? 
 

A.Mr. Worther’s method: 
 

 
 
 

B.Mrs. Vasquez’s method: 
 

Evaluate  4n + 5, for n = 2, 7, and 10: 
 

 
 
 
 
 

C.Either method; they are equally effective. 
(* Adapted from Kersaint et al., 2009) 

 
6. In a class discussion on proportional reasoning, Eduardo gave la razón inversa.  
 
Which did he give: the inverse ratio ? or the opposite reason?   (Circle ONE) 
(*adapted from Fischer & Perez,  2008) 

n 4n + 5 Simplify 
2 4(2) + 5  8 + 5 = 13 
7 4(7) + 5  28 + 5 = 33 

10 ? ? 
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7. Mr. Garza asks the whole class concerning the proportion of grape found in the 
“Grime” drink. (“Grime” is a grape-limeade.) “How do you begin to determine what 
proportion the grape is of the Grime?” he asks, while the students are viewing the image 
below: 
 

          
          
          
          
          
          
          
          
          
          

Ciarra responds: “Cuentas las grisas y divisas por los cien.” Mr. Garza responds, “Did 
somebody say something? I didn’t understand you.” But Mr. Garza speaks Spanish 
fluently. 
 

Is Mr. Garza’s requirement that Ciarra respond in English beneficial for Ciarra, 
whose first language is Spanish? 
 

 
 
 
 
8.Did Ciarra accurately answer his question? (CIRCLE ONE)YES / NO  

 
 
Your background 

•Are you a certified teacher?YES   /NO 
If YES, please check all that apply: 
 
___All subjects___Mathematics___Science   ___Other:______________ 
 

•Are you: 
 

___ Hispanic, regardless of race___ Black, not of Hispanic origin 
___ White, not of Hispanic origin ___ Asian or Pacific Islander 
___ American Indian or Alaskan Native ___ Biracial/multiracial 
___ Other 
 

•Are you:___ Female___ Male 
 

THANK YOU FOR COMPLETING THIS QUESTIONNAIRE! 
If you have any comments about the questions, please write them in the space below.

Beneficial 
 
1 

Not Beneficial 
 
2 

I’m not sure 
 
3 
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APPENDIX D 

CLASSROOM OBSERVATION PROTOCOL 
 

The form below was used to collect classroom observation data that informed the 

development of survey items for this research. 

 
Mathematics Instruction for English Language Learners 

Teaching Observation Protocol 
CAREER Project 

Texas State University 
 
I.BACKGROUND INFORMATION 

 
 
Name of teacher _____________________________    
Announced Observation?_______________________ 
(yes, no, or explain) 
 

Location of class 
___________________________________________________________________________ 
(district, school, classroom, computer lab) 
 

Grade: ___________________ 
Course name:____________________________________________ 
(Algebra I, Algebra II, Geometry) 

 
Number of students observed _____________ 
Type of Class____________________________________ 
(Regular or Pre-AP) 

 
Observer ____________________________________ 
Date of observation __________________________ 
 
Start time ___________________________________ 
End time ______________________________________ 
 
 
Observation number ________________________________ 
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Second Observer: ____________________________ 
 

 
II.DESCRIPTION OF TEACHING CONTEXT 
 

In the space below please give a brief description of the lesson observed, the classroom setting in 
which the lesson took place (regular classroom, computer lab, setting arrangements, etc.) Capture, 
if you can, the defining characteristics of this situation that you believe provide the most important 
context for understanding what you will describe in greater detail in later sections.  Use diagrams 
if they seem appropriate. 

 
III.DESCRIPTION OF EVENTS 
 
Record here events which may help in documenting the ratings. For the immediate rating, code for each 
event that you describe.  
 
 
Time Description of Events Work 

connected 
To 
mathematics? 

Some 
students 
talking in two 
languages? 
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Mathematics Language 

 
1. Mathematical Language in English 

 This code captures how fluently the teacher (and students) use mathematical language and whether 
the teacher supports students’ use of mathematical language.  
Examples:  
Fluent use of technical language  
Explicitness about mathematical terminology  
Encouraging students to use mathematical terms 

N/A 
☐ 

Low 
☐ 

Mid 
☐ 

High 
☐ 

Code here if 
English is not used 
for the duration of 
the lesson. 

Teacher does not 
demonstrate fluency in 
mathematical language. 
Teacher uses 
non‐mathematical terms 
to describe mathematical 
ideas and procedures 
AND/OR teacher talk is 
characterized by 
sloppy/incorrect use of 
mathematical terms.  
If there is little 
mathematical language 
used, score as low. 

Teacher uses 
mathematical language 
as a vehicle for 
conveying content, but 
has few or none of the 
special features listed 
under high. This is the 
default score when 
teacher is using 
mathematical language 
neither sloppily nor 
outstandingly.  
Also score as mid when 
lesson has both features 
of high but includes 
some linguistic 
sloppiness.  

Teacher uses 
mathematical language 
correctly and fluently.  
May include 
explicitness about 
terminology, reminding 
students of meaning, 
pressing students for 
accurate use of terms, 
encouraging student 
use of mathematical 
language. Density of 
mathematical language 
is high during periods of 
teacher talk.  
Dense, fluent, and 
accurate student talk 
can also count here.  

 
2. Mathematical Language in Spanish 

 This code captures how fluently the teacher uses mathematical language in Spanish to support the 
learning and understanding of mathematics in the classroom. 
Examples:  
Instructional conversation in Spanish that is fluent and promotes complex mathematical language. 
Explicitness about mathematical terminology in Spanish. 
                Encouraging students to use mathematical terms in Spanish. 

N/A 
☐ 

Low 
☐ 

Mid 
☐ 

High 
☐ 

Code here if 
Spanish is not used 
for the duration of 
the lesson. 

Teacher does not engage 
in instructional 
conversation in Spanish 
regarding mathematics.  

OR 
Teacher does engage in 
instructional 
conversation in Spanish, 
but the use of 
mathematical terms is 
incorrect or conceptually 
misleading. 

Teacher engages in 
instructional 
conversation in Spanish, 
but has few or none of 
the special features 
listed under high. This is 
the default score when 
teacher is using 
mathematical language 
in Spanish sparingly, or 
when a combination of 
correct and incorrect 
terms in Spanish is used 
during instruction.  

Teacher engages in 
instructional 
conversation in Spanish 
that is fluent and 
promotes complex 
mathematical language.  
The use of mathematical 
terms in Spanish is 
correct. Teacher 
encourages the use of 
mathematical terms in 
Spanish. 
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3. Imprecisión en el uso del español  

• Errores en el uso del lenguaje matemático. 
• Errores en el uso de lenguaje común. 
 
Definiciones  
Lenguaje matemático. Se refiere a términos usados en matemáticas, tales como ángulo, radio, 
correlación, etc. También se refiere al nombre de símbolos matemáticos, como “>” (mayor que). Si el 
maestro hace uso incorrecto de términos matemáticos o si comete errores ortográficos o 
gramaticales al definir un término matemático, registre el acontecimiento. Errores de traducción 
también deben ser registrados, ya sean del español al inglés o viceversa. 
                 Lenguaje común. Se refiere al lenguaje usado por el maestro para explicar conceptos 
matemáticos sin recurrir a términos técnicos. Incluye el uso de analogías, metáforas y narraciones. El 
maestro debe ser particularmente cauteloso en la diferenciación entre el significado de un término 
en el lenguaje común y su significado en lenguaje matemático. Registre cualquier acontecimiento en 
el que el maestro no haya sido capaz de expresarse en forma eficaz en español al explicar conceptos 
matemáticos. 

Low 
☐ 

Mid 
☐ 

High 
☐ 

La enseñanza estuvo libre de 
errores en el uso del lenguaje 
matemático y el lenguaje común. 
Si hubo errores, el maestro fue 
capaz de detectarlos y 
corregirlos. 

El maestro cometió errores 
ocasionales en el uso del 
lenguaje matemático y el 
lenguaje común. 

La enseñanza se caracterizó por 
el uso incorrecto del lenguaje 
matemático y el lenguaje 
común, aún cuando su uso fue 
esporádico. 

 
 
 
Proficiency in Instructing ELLs in Mathematics 

 
4. Connections of mathematics with students’ life experiences 

Low 
☐ 

Mid 
☐ 

High 
☐ 

In no part of the lesson are any 
of the elements of High or Mid 
found; i.e., no connections of 
mathematical words to student’s 
life experiences. 

Either teacher or students make 
brief mention of connections of 
mathematical objects, concepts 
and words to students’ life 
experiences. However, these 
strands of conversation are not 
multiple, or are not exhaustively 
used to enrich instruction. 

Instruction and/or classroom 
discussion includes multiple 
connections of mathematical 
objects, concepts and words to 
other domains of students’ life 
experiences. 

 
5. Connections of mathematics with students’ existing knowledge  

Low 
☐ 

Mid 
☐ 

High 
☐ 

In no part of the lesson are any 
of the elements of High or Mid 
found; i.e., no connections of 
mathematical words to student’s 
existing knowledge are found. 

Either teacher or students make 
brief mention of connections of 
mathematical objects, concepts 
and words to students’ existing 
knowledge. However, these 
strands of conversation are not 
multiple, or are not exhaustively 
used to enrich instruction. 

Instruction and/or classroom 
discussion includes multiple 
connections of mathematical 
objects, concepts and words to 
other domains of students’ 
existing knowledge. 
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6. Connection of mathematical concepts with multiple representations 

Connect language with mathematical representations.  For example, pictures, tables, graphs, 
equations. 

Low 
☐ 

Mid 
☐ 

High 
☐ 

No, or almost no, connections 
of mathematical utterances to 
other forms of expression are 
found. 

Teacher or students make 
connections of mathematical 
words to pictorial, graphic, 
tabular, symbolic, or alternative 
verbal representations. 
However, such connections do 
not characterize the lesson, or 
there is obvious room for 
additional usage of such 
connections. 

Both teachers and students 
make explicit connections of 
mathematical concepts, symbols 
and objects to linguistic 
representations, and these 
connections are reinforced by 
repetition. That is, mathematical 
utterances find both verbal and 
other representations, such as 
graphs, tables, 
equations/expressions, 
illustrations. 

 
7. Meaning and multiple meanings of words. 

Students may need to communicate meaning by using gestures, drawings or their first language 
while they develop command of the English language and mathematics. 

Low 
☐ 

Mid 
☐ 

High 
☐ 

No opportunities for students to 
explore the meaning of the 
mathematical words and objects 
through speech and other forms 
of expression are found. 

Some, limited opportunities for 
students to explore the meaning 
of the mathematical words and 
objects through speech and 
other forms of expression are 
found. Multiple meanings of 
mathematical words are not 
expounded with depth. 

Opportunities for students to 
explore the meaning of the 
mathematical words and 
objects through speech and 
other forms of expression are 
abundant. Conversation about 
the multiple meanings of 
mathematical words 
(mathematical meanings 
and/or colloquial meanings) is 
found. 

 
8. Use of visual supports 

For example concrete objects, videos, illustrations, and gestures in classroom conversations 
Low 
☐ 

Mid 
☐ 

High 
☐ 

The teacher makes no attempt to 
convey mathematical meaning 
through visual supports, or an 
attempt is made, yet it obscures, 
rather than enhances, 
mathematical understanding. 

An attempt to teach or reinforce 
teaching through usage of visual 
supports is made. The visual 
object(s) selected, or the 
instructional usage of the 
object(s), is(are) moderately 
helpful for solidifying students’ 
comprehension.  

Teacher supplements 
instruction with powerful visual 
media that enhance (not detract 
from) comprehension of 
mathematical concepts. Visual 
media may include illustrations, 
videos, gestures, manipulative, 
or other visual objects. The 
emphasis is on the power of the 
visual object in conveying or 
reinforcing the mathematical 
meaning and students’ 
understanding. 
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9. Record of written essential ideas, concepts, representations, and words on the board 

ELLs need to see written record of the lesson without erasing so that they can refer to them 
throughout the lesson. 

Low 
☐ 

Mid 
☐ 

High 
☐ 

The teacher (and/or students) 
fail to record the important 
information of the lesson in a 
place that is visible to all 
students, or removes the 
information from view at a time 
when it is most needed. 

The teacher (and/or students) 
displays some, but not all of, the 
important information of the 
lesson, or removes some portion 
of the information from view 
before students have had 
opportunity to record it in notes 
or apply it in practice. 

The teacher (and/or students) 
makes careful and 
conscientious usage of visual 
display media (chalk/dry-erase 
board, computer projection, 
etc.) and students have access 
to pertinent information 
throughout instruction and 
practice portions of the lesson. 
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APPENDIX E 

LETTER REQUESTING PARTICIPATION OF EXPERT PANEL REVIEWERS 
 

Dear Expert, 
 

Because of your particular teaching and research experience, you are being asked to 
participate as a content expert in the validation of a survey instrument aimed at capturing a 
particular domain of teacher knowledge. This survey, which has been pilot-tested with pre-
service mathematics teachers and which has shown promising psychometric properties, is 
designed to be administered to practicing mathematics teachers. The items in the survey 
have been written from the background of extensive review of research literature and a large 
number of them are adaptations of actual classroom instances. They are intended to capture 
selected elements of the knowledge that is needed by effective teachers of Latino English 
Language Learners. Your feedback will be used to improve the quality of this instrument. 
 
The knowledge under consideration has been categorized into the following three domains:  
Difficulties: Knowledge of common difficulties faced by Latino ELLs in mathematics classes 
Capacities: Knowledge of particular cultural and linguistic factors that can capacitate Latino 
ELLs in mathematics classes 
Strategies: Knowledge of effective mathematics instructional strategies for usage with Latino 
ELLs 
 
You are being asked to read through each item of the instrument. Following each item 
is a prompt requesting your feedback P lease choose (by marking the appropriate box) 
the know ledge domain to which the item, in your judgment, most directly relates. 
Also, (optional) opportunities to provide comments regarding each item are found in the 
areas labeled “Comments”. 
 
 
 
 
 
Please save the completed form to your computer and then email it as an attachment to 
[EMAIL]@txstate.edu by [DATE]. 
 
Please contact me if you have questions or comments about this request. Also, please 
contact me in the future if I may return this favor by assisting you in your research 
endeavors. Your thoughtful attention to this task is VERY APPRECIATED!!! 
 
Sincerely, 
Aaron Wilson 

SELECT ONE:  Difficulties       Capacities           Strategies 
Comments: 

mailto:atwilson@txstate.edu
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APPENDIX F 

EXPERT REVIEWERS’ CATEGORIZATION OF ITEMS ACCORDING TO 
KNOWLEDGE DOMAINS 

Table A1 
 
Expert Reviewers’ Categorization of Items According to Knowledge Domains 
 

Item Responses    

 
Reviewer 

A 
Reviewer 

B 
Reviewer 

C 
Reviewer 

D 
 

Reviewer 
Consensus 

Theoretical 
Orientation 

1 KSTRAT KCAP KSTRAT KSTRAT 
 

KSTRAT KSTRAT 
2 KCAP KSTRAT KCAP KCAP 

 
KCAP KSTRAT 

3 KDIFF KDIFF KCAP KDIFF 
 

KDIFF KDIFF 
4 KCAP KSTRAT KSTRAT KSTRAT 

 
KSTRAT KSTRAT 

5 KCAP KCAP KCAP KCAP 
 

KCAP KCAP 
6 KCAP KCAP KCAP KCAP 

 
KCAP KCAP 

7 KCAP KCAP KCAP KCAP 
 

KCAP KCAP 
8 KCAP KDIFF KSTRAT KSTRAT 

 
KSTRAT KSTRAT 

9 KDIFF KCAP KSTRAT KDIFF 
 

KDIFF KDIFF 
10 KSTRAT KSTRAT KSTRAT KSTRAT 

 
KSTRAT KSTRAT 

11 KCAP KSTRAT KSTRAT KSTRAT 
 

KSTRAT KSTRAT 
12 KDIFF KDIFF KCAP KDIFF 

 
KDIFF KDIFF 

13 KDIFF KDIFF KSTRAT KDIFF 
 

KDIFF KDIFF 
14 KSTRAT KSTRAT KSTRAT KSTRAT 

 
KSTRAT KSTRAT 

15 KCAP KCAP KCAP KCAP 
 

KCAP KCAP 
16 KCAP KDIFF KSTRAT KCAP 

 
KCAP KCAP 

17 KCAP KCAP KSTRAT KCAP 
 

KCAP KCAP 
18 KCAP KCAP KCAP KCAP 

 
KCAP KCAP 

19 KSTRAT KSTRAT KCAP KSTRAT 
 

KSTRAT KSTRAT 
20 KCAP KCAP KCAP KCAP 

 
KCAP KCAP 

21 KDIFF KDIFF KSTRAT KSTRAT 
 

KDIFF KDIFF 
22 KCAP KCAP KSTRAT KCAP 

 
KCAP KCAP 

23 KSTRAT KSTRAT KCAP KSTRAT 
 

KSTRAT KSTRAT 
24 KDIFF KDIFF KSTRAT KDIFF 

 
KDIFF KDIFF 

25 KDIFF KDIFF KCAP KDIFF 
 

KDIFF KDIFF 
26 KCAP KCAP KCAP KCAP 

 
KCAP KCAP 

27 KDIFF KCAP KCAP KCAP 
 

KCAP KCAP 
28 KCAP KCAP KCAP KDIFF 

 
KCAP KDIFF 

29 KSTRAT KDIFF KCAP KDIFF 
 

KDIFF KSTRAT 
30 KCAP KCAP KSTRAT KCAP 

 
KCAP KCAP 

31 KDIFF KDIFF KSTRAT KDIFF 
 

KDIFF KDIFF 
32 KDIFF KDIFF KCAP KDIFF 

 
KDIFF KDIFF 

 
NOTE: Highlighted sections indicate divergence of expert consensus from theory.
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APPENDIX G 

LETTER REQUESTING SURVEY PARTICIPATION BY SCHOOL DISTRICTS 
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APPENDIX H 

FLYER FOR ELICITING TEACHER PARTICIPATION IN SURVEY 
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APPENDIX I 

INITIAL SURVEY INVITATION EMAIL SENT TO TEACHERS  

 

 

 
Dear [Teacher],  
 
I am writing to ask for your participation in a survey that I am conducting for my dissertation as 
part of a doctoral program in Mathematics Education at Texas State. I am asking middle school 
math teachers like you to answer questions about teaching math to Latino English Language 
Learning students. Your responses to this survey are very important and will help in understanding 
what teachers know about teaching this significant population of students in Texas.  
 
This is a short survey and should take you about 20 minutes to complete. I have already received 
the approval of your administrators and they encourage your participation. Please click on the link 
below to go the survey website (or copy and paste the survey link into your Internet browser).  
 
<survey link> 
 
Your participation is voluntary (you can withdraw at any time without penalty) and your responses 
are confidential. No personally identifiable information will be associated with your responses in 
any reports of this data. Should you have any further questions or comments, please feel free to 
contact me at atwilson@txstate.edu or [phone number].  
 
As a small token of appreciation, two teachers will be randomly selected from all participating 
schools and districts to receive $50 each. Your time and consideration in completing the survey are 
valuable. I hope that you enjoy taking it! Through the help of teachers like you I think that we can 
make better decisions about teacher training and the math curriculum taught in schools.  
 
Thank you,  
Aaron Wilson  
Doctoral Student  

 
 

mailto:atwilson@txstate.edu
http://www.math.txstate.edu/
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APPENDIX J 

SECOND SURVEY INVITATION EMAIL SENT TO TEACHERS 

 
Dear [Teacher],  

I am math teacher and graduate student at Texas State University. I am asking math teachers like you 
to answer questions about teaching math to Latino English Language Learning students.  

• This is a short, 20 minute survey and it doesn't have to be completed all at once; just click 
on the link in this email to resume at any time. 

• As a small token of appreciation, two teachers will be randomly selected receive $50.  
• Your responses will contribute to helping us make better decisions about teacher training 

and the math curriculum taught in schools. 
• Your administrators approve of this survey. 

To begin, click on this link or paste it into your browser: <survey link> 
 
Your time and consideration in completing the survey are greatly appreciated. I hope that you enjoy 
taking it!  

Please contact me if you have questions or if you would like to be removed from further mailings. 
(Please DO NOT REPLY to this email. You can contact me at the email address below.) 

Thank you,  

Aaron Wilson  
Doctoral Research Assistant 
Department of Mathematics 
Texas State University - San Marcos 
atwilson@txstate.edu 
512-245-4753 

Confidentiality Notice: Your participation is voluntary (you can withdraw at any time without 
penalty) and your responses are confidential. No personally identifiable information will be 
associated with your responses in any reports of this data. 

mailto:atwilson@txstate.edu
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APPENDIX K 

Third and Final Survey Invitation Email Sent to Teachers 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dear [Teacher],  

As my final email request to you, I ask you to consider all of the ways in which you may be helping 
by taking this survey: 

• You will be participating in research funded by the National Science Foundation that is 
attempting to improve opportunities for ELLs in mathematics. 

• You will be helping a fellow math teacher to pursue a graduate degree.  
• You may help yourself to become $50 richer (or less poor, as we teachers often think of it). 

Two participating teachers will be randomly selected to receive a $50 reward. 

To take the KT-MELL survey, simply click on this link or paste it into your browser: <survey link>. 

The survey takes about 20 minutes and can be completed in parts. Your time and consideration in 
completing the survey are greatly appreciated. I hope that you enjoy taking it! This is my final 
request of participation; I will send you no further emails. Please contact me if you have questions 
about this study.  
 
Thank you and happy holidays! 

 
Sincerely, 

Aaron Wilson  
Doctoral Research Assistant 
Department of Mathematics 
Texas State University - San Marcos 
atwilson@txstate.edu 
512-245-4753 

Confidentiality Notice: Your participation is voluntary (you can withdraw at any time without 
penalty) and your responses are confidential. No personally identifiable information will be 
associated with your responses in any reports of this data. 

mailto:atwilson@txstate.edu
tel:512-245-4753
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APPENDIX L 

KDIFF/KCAP ITEM SPECIFICATIONS 

 
Table A2 
 
Item Specifications for the KDIFF/KCAP Knowledge Domain 
 
Item Measurement Specification 
Q1 KSTRAT: Measures knowledge of the usage of students’ own mathematical writings and 

speech as a strategy for teaching math to ELLs. 
Q6 KSTRAT: Measures knowledge of the usage of students’ own mathematical writings and 

speech as a strategy for teaching math to ELLs. 
Q9 KDIFF: Measures knowledge of linguistic complexity in mathematics as a source of 

difficulty for understanding problems. 
Q13 KDIFF: Measures knowledge of linguistic complexity in mathematics, and of specific 

English words (non-Spanish cognates), that can cause difficulty for ELLs. 
Q15 KCAP:  Measures knowledge of students’ first language as a resource (and not obstacle) 

to mathematical reasoning. 
Q16 KCAP: Measures knowledge of usage of Spanish language in deductive mathematical 

reasoning concerning geometric area and a scale factor. 
Q20 KCAP: Measures knowledge of students’ first language (especially of Spanish to English 

cognates) as a resource (and not obstacle) to mathematical reasoning. 
Q22 KCAP: Measures knowledge of students’ first language (especially of Spanish to English 

cognates) as a resource (and not obstacle) to mathematical reasoning. 
Q25 KDIFF: Measures knowledge of linguistic complexity in mathematics as a source of 

difficulty for understanding problems. 
Q31 KDIFF: Measures knowledge of difficulty in mathematics for ELLs found in linguistic 

complexity and in polysemy. 
Q32 KDIFF: Measures knowledge of specific ways in which translation of mathematical 

symbols into English language can cause difficulty for ELLs. 
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APPENDIX M 

KSTRAT ITEM SPECIFICATIONS 

 
Table A3 
 
Item Specifications for the KSTRAT Knowledge Domain 
 
Item Measurement Specification 
Q5 KCAP: Measure knowledge of the traditional U.S. long division algorithm as a valid 

algorithm. 
Q7 KSTRAT: Measures knowledge of the benefit for ELLs of group work as an 

instructional format that promotes classroom environments that are rich in language and 
mathematics content. 

Q8 KSTRAT: Measures knowledge of the benefit for ELLs of group work as an 
instructional format that “promotes classroom environments that are rich in language and 
mathematics content. 

Q10 KSTRAT: Measures knowledge of the benefit for ELLs of group work as an 
instructional format that “promotes classroom environments that are rich in language and 
mathematics. 

Q11 KDIFF: Measures knowledge of an alternative mathematical notation (commonly used in 
Central America) that can be a barrier to comprehending mathematics for ELLs. 

Q18 KCAP: Measures knowledge of a valid alternative representation of long division 
algorithm, typically used in central America. 

Q19 KSTRAT: Measures knowledge both of visual displays that support ELLs’ in 
mathematics and of strategies for promoting an environment that is rich in language and 
mathematics content. 

Q24 KDIFF: Measures knowledge of a specific example of polysemy (numerical versus 
demonstrative) as a difficulty for ELLs in mathematics. 

Q26 KCAP: Measures knowledge both of the traditional U.S. long division algorithm and of 
an alternative representation of the long division algorithm (typically used in central 
America) as valid. 

Q29 KSTRAT: Measures knowledge of effective means of reducing linguistic complexity 
while retaining mathematical integrity in mathematics. 
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APPENDIX N 

F-STATISTICS FOR THE ANOVA TEST OF DIFFERENCES OF MEANS:  
SCALE SCORES BY TEACHER FACTOR 

 
Table A4 
 
F-statistic and Associated p-Values for the ANOVA Test of Equivalence of Means on 
Both Scales Against all Possible Teacher Factors 
 
Teacher Factor  Domain 1: Knowledge of 

Linguistic Difficulties and 
Capacities 

 Domain 2: Strategic 
mathematical knowledge 

 
F(df) p 

 
F(df) p 

Years of teaching experience 
1 – 5 years 
6 – 10 years 
11 – 15 years 
16 – 20 years 
More than 20 years 

F(5,36) = 1.138 p = .358  F(5,36) = .913 p = .484 

      
Years of teaching experience 

5 or fewer years 
More than 5 years 

F(1, 40) = 3.683 p = .062  F(1, 40) = 1.621 p = .210 

      
Teacher grade level 

Elementary 
Middle 
High school 

F(2, 39) = .387 p = .682  F(2, 39) =1.262 p = .295 

      
Breadth of teaching experience 

Taught 3 or fewer different  
courses 

Taught more than 3 different  
course 

F(1, 40) = 3.361 p = .074  F(1, 40) = 1.160 p = .288 

      
Level of courses taught 

6th and 7th 

8th grade or above 

F(1, 40) = .472 p = .496  F(1, 40) = .079 p = .780 

      
Experience teaching ELLs 

Taught 20% or fewer ELLs 
Taught classes with more than  

20% ELLs 

F(1,40) = 1.982 p = .167  F(1, 40) = .137 p = .713 
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Table A4-Continued 
 
F-statistic and Associated p-Values for the ANOVA Test of Equivalence of Means on 
Both Scales Against all Possible Teacher Factors 
 
Experience teaching classes with ELLs 

0 – 20% ELLs 
20 – 40% ELLs 
More than 40% ELLs 

F(2, 39) = 2.639 p = .084  F(2, 39) = .515 p = .601 

      
Experience teaching classes with ELLs 

40% or fewer ELLs 
More than 40% ELLs 

F(1, 40) = 5.394 p = .025  F(1, 40) = .305 p = .584 

      
Extent of formal mathematics training 

“basic math like College 
Algebra” 
“several higher level math 
courses” 
“bachelor degree or higher in 
math” 

F(2, 39) = 1.411 p = .256  F(2, 39) = 3.066 p = .058 

      
Having a degree in mathematics 

Yes 
No 

F(1, 40) = .008 p = .928  F(1, 40) = .058 p = .812 

      
Having certification to teach English as 
a second language 

Yes 
No 

F(1, 40) = 1.812 p = .186  F(1, 40) = .192 p = .664 

      
Multiple educational licenses 

Yes (additional license 
possessed–other content area, 
principal, etc.”) 
No 

F(1, 40) = .757 p = .389  F(1, 40) = 3.387 p = .073 

      
Having professional development 
(beyond college) for teaching ELLs 

Yes 
No 

F(1, 40) = 1.943 p = .171  F(1, 40) = 2.729 p = .106 

      
Knowledge of the Spanish language 

“not at all” or “a few words” 
“know the basics” 
“make conversation” or “very  

fluent” 

F(2, 39) = .287 p = .752  F(2, 39) = .138 p = .871 

      
Knowledge of other languages 

Yes 
No 

F(1, 40) = 1.839 p = .183  F(1, 40) = .289 p = .549 

      
Response given to the question, “Is 
there anything else teachers need to 
know to teach ELLs?” 

Yes 
No 

F(1, 40) = 4.095 p = .050  F(1, 40) = 2.228 p = .143 
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Table A4-Continued 
 
F-statistic and Associated p-Values for the ANOVA Test of Equivalence of Means on 
Both Scales Against all Possible Teacher Factors 
 
Time to complete survey 

Same day 
More than 1 day 

F(1, 40) = .006 p = .939  F(1, 40) = .446 p = .508 
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