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VIABLE SOLUTIONS FOR SECOND ORDER NONCONVEX
FUNCTIONAL DIFFERENTIAL INCLUSIONS

VASILE LUPULESCU

Abstract. We prove the existence of viable solutions for an autonomous

second-order functional differential inclusions in the case when the multifunc-
tion that define the inclusion is upper semicontinuous compact valued and

contained in the subdifferential of a proper lower semicontinuous convex func-

tion.

1. Introduction

Functional differential inclusions, well known as differential inclusions with mem-
ory, express the fact that the velocity of the system depends not only on the state
of the system at given instant but depends upon the history of the trajectory until
this instant. The class of functional differential inclusions contains a large variety of
differential inclusions and control systems. In particular, this class covers the differ-
ential inclusions, the differential - difference inclusions and the Voltera inclusions.
For a detailed discussion on this topic we refer to [2].

Let Rm be the m-dimensional Euclidean space with norm ‖·‖ and scalar product
〈·, ·〉. Let σ be a positive number and Cσ := C([−σ, 0],Rm) the Banach space of
continuous functions from [−σ, 0] to Rm with the norm ‖x(.)‖σ := sup{‖x(t)‖; t ∈
[−σ, 0]}. For each t ∈ [0, T ], we define the operator T (t) from C([−σ, T ],Rm) to Cσ

as follows: (T (t)x)(s) := x(t + s), s ∈ [−σ, 0]. For a given nonempty subset K of
Rm we introduce the set K0 =: {ϕ ∈ Cσ;ϕ(0) ∈ K}.

The aim of this paper is to prove a viability result for the second order functional
differential inclusion

x′′ ∈ F (T (t)x, x′), (T (0)x, x′(0)) = (ϕ0, y0) ∈ K0 × Ω (1.1)

where Ω is an open set in Rm and F : Cσ × Ω → 2Rm

is an upper semicontinuous,
compact valued multifunction such that F (ψ, y) ⊂ ∂V (y) for every (ψ, y) ∈ K0×Ω
and V is a proper convex and lower semicontinuous function.

Bressan, Cellina and Colombo [4] prove the existence of local solutions to the
Cauchy problem x′ ∈ F (x), x(0) = x0, where F is upper semicontinuous, cyclically
monotone and compact valued multifunction. While Rossi [22] prove a viability
result for this problem. The first viability result for the first order functional
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differential inclusion was given by Haddad [13], [14] in the case when F is up-
per semicontinuous with convex compact values. Lupulescu [17] has been proved
the local existence of solutions for nonconvex differential inclusion x′ ∈ F (T (t)x),
T (0)x = ϕ0 ∈ Cσ, and the existence of viable solutions for this problem has been
studied by Cernea and Lupulescu [9] in the case when F is upper semicontinuous
compact values such that F (ψ) ⊂ ∂V (ψ(0)) for every ψ ∈ K0.

The first viability result for second order differential inclusions

x′′ ∈ F (x, x′), x(0) = x0, x
′(0) = y0 (1.2)

were given by Cornet and Haddad [10] in the case in which F is upper semicon-
tinuous and with convex compact values. The nonconvex case has been studied by
Lupulescu [16] and Cernea [7] in the finite dimensional case. The nonconvex case
in Hilbert spaces has been studied by Ibrahim and Alkulaibi [15]. For other results,
references and applications in this framework we refer to the papers: Casting [7],
Auslender and Mechler [3], Aghezaaf and Sajid [1], Morchadi and Sajid [20], Marco
and Murilio [18], Syam [23] and book of Motreanu and Pavel [19]. In the paper
[12], Duc Ha and Monteiro Marques proved the several existence theorems for the
nonconvex functional differential inclusions governed by the sweeping process.

2. Preliminaries and statement of the main result

For x ∈ Rm and r > 0 let B(x, r) := {y ∈ Rm; ‖y − x‖ < r} be the open
ball centered at x with radius r, Ω and let B(x, r) be its closure. For ϕ ∈ Cσ let
Bσ(ϕ, r) := {ψ ∈ Cσ; ‖ψ − ϕ‖σ < r} and Bσ(ϕ, r) := {ψ ∈ Cσ; ‖ψ − ϕ‖σ ≤ r}. For
x ∈ Rm and for a closed subset A ⊂ Rm we denote by d(x,A) the distance from x
to A given by d(x,A) := inf{‖y − x‖; y ∈ A}.

Let V : Rm → R be a proper convex and lower semicontinuous function. The
multifunction ∂V : Rm → 2Rm

, defined by

∂V (x) := {ξ ∈ Rm;V (y)− V (x) ≥ 〈ξ, y − x〉, (∀)y ∈ Rm},
is called subdifferential (in the sense of convex analysis) of the function V .

We say that a multifunction F : K0 × Ω → 2Rm

is upper semicontinuous if for
every (ϕ, y) ∈ K0 × Ω and for every ε > 0 there exists δ > 0 such that

F (ψ, z) ⊂ F (ϕ, y) +B(0, ε), (∀)(ψ, z) ∈ Bσ(ϕ, δ)×B(y, δ).

This definition of the upper semicontinuous multifunction is less restrictive than
the usual (see [2, Definition 1.1.1] or [11, Definition 1.1]). Actually such a property is
called (ε, δ)-upper semicontinuity (see [11, Definition 1.2]) and it is only equivalent
to the upper semicontinuity for compact-valued multifunctions (see [11, Proposition
1.1]).

For a multifunction F : K0 × Ω → 2Rm

and for any (ϕ, y) ∈ K0 × Ω we consider
the functional differential inclusion

x′′ ∈ F (T (t)x, x′), T (0)x = ϕ0, x
′(0) = y0 (2.1)

under the following assumptions:
(H1) K is a locally closed subset in Rm, Ω is an open subset Rm and F : K0×Ω →

2Rm

is upper semicontinuous with compact values;
(H2) There exists a proper convex and lower semicontinuous function V : Rm →

R such that

F (ϕ, y) ⊂ ∂V (y) for every (ϕ, y) ∈ K0 × Ω;
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(H3) For every (ϕ, y) ∈ K0 × Ω and for every z ∈ F (ϕ, y) holds the following
tangential condition:

lim inf
h↓0

1
h2
d(ϕ(0) + hy +

h2

2
z,K) = 0.

Remark 2.1. A convex function V : Rm → R is continuous in the whole space
Rm [21, Corollary 10.1.1] and almost everywhere differentiable [21, Theorem 25.5].
Therefore, (H2) restricts strongly the multivaluedness of F .

Definition 2.2. By a viable solution of the functional differential inclusion (2.1) we
mean any continuous function x : [−σ, T ] → Rm, T > 0, that is absolutely continu-
ous on [0, T ] with absolutely continuous derivative on [0, T ] such that T (0)x = ϕ0

on [−σ, T ], x′(0) = y0 and

x′′(t) ∈ F (T (t)x, x′(t)), a.e. on [0, T ],

(x(t), x′(t)) ∈ K × Ω, for every t ∈ [0, T ].

Our main result is the following.

Theorem 2.3. If Assumptions (H1)-(H3) are satisfied, then K is a viable domain
for (2.1).

3. Proof of the main result

We start this section with the following technical result, which will used to prove
main result.

Lemma 3.1. Assume that the hypotheses (H1) and (H3) are satisfied. Then, for
each (ϕ, y0) ∈ K0×Ω there exist r > 0 and T > 0 such that K∩B(ϕ(0), r) is closed
and for each k ∈ N∗ there exist m(k) ∈ N∗, tpk, x

p
k, y

p
k, z

p
k and a continuous function

xk : [−σ, T ] → Rm such that for every p ∈ {0, 1, . . . ,m(k)− 1} we have:

(i) hp
k := tp+1

k − tpk <
1
k and tm(k)−1

k ≤ T < t
m(k)
k ,

(ii) xk(t) = ϕ(t), for every t ∈ [−σ, 0],
(iii) xk(t) = xp

k + (t− tpk)yp
k + 1

2 (t− tpk)2zp
k , for every t ∈ [tpk, t

p+1
k ],

(iv) zp
k ∈ F (T (tpk)xk, y

p
k) + 1

kB,
(v) (xp

k, y
p
k) ∈ Q0,

(vi) T (tpk)xk ∈ K0 ∩Bσ(ϕ, r),

where B := B(0, 1) and Q0 := (K ∩B(ϕ(0), r))×B(y0, r).

Remark 3.2. The following twp statements hold:
(i) If α ∈ K0 ∩Bσ(ϕ, r) then α(0) ∈ K ∩B(ϕ(0), r),
(ii) If K ∩B(ϕ(0), r) is closed in Rm then K0 ∩Bσ(ϕ, r) is closed in Cσ.

Indeed, the first statement is obvious. For the second statement, we assume that
K ∩B(ϕ(0), r) is closed in Rm and we consider a sequence (αn)n in K0 ∩Bσ(ϕ, r)
that is convergent(in the norm ‖ · ‖σ) to α ∈ Cσ. Then follows that α ∈ Bσ(ϕ, r),
αn(0) → α(0) and αn(0) ∈ K ∩B(ϕ(0), r); therefore, since K ∩B(ϕ(0), r) is closed,
we obtain that α(0) ∈ K and thus α ∈ K0 ∩Bσ(ϕ, r).

Proof of Lemma 2.3. Let (ϕ, y0) be arbitrary and fixed in K0×Ω. Since K is locally
closed in Rm, there exists r > 0 such that K ∩B(ϕ(0), r) is closed. Moreover, since
Ω is open set in Rm, we can choose r such that B(y0, r) ⊂ Ω. By [2, Proposition
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1.1.3], F is locally bounded; therefore, we cam assume that there exists M > 0
such that

sup{‖v‖; v ∈ F (ψ), ψ ∈ K0 ∩Bσ(ϕ, r)} ≤M. (3.1)

Since ϕ is continuous on [−σ, 0] we can choose η > 0 small enough such that

‖ϕ(t)− ϕ(s)‖ < r

4
, for all t, s ∈ [−σ, 0] with |t− s| < η. (3.2)

Let

T := min
{
η,

r

4(M + 1)
,

r

8(‖y0‖+ 1)
,
1
2

√
r

M + 1
}
. (3.3)

Further on, for a fixed k ∈ N∗, we put xk(t) = ϕ(t) for every t ∈ [−σ, 0] and for
p = 0 we take t0k = 0, x0

k = ϕ(0), y0
k = y0 and we choose an arbitrary element

z0
k ∈ F (ϕ, y0) + 1

kB. Also, we can define t1k, x
1
k, y

1
k, z

1
k and xk on [0, t1k] in the same

way that in the next general case.
Suppose that, for a fixed q ∈ N∗, we have constructed tpk, x

p
k, y

p
k, z

p
k and xk on

[0, tpk] such that the conditions (i)− (vi) are satisfied for each p ∈ {1, 2, . . . , q − 1}.
To define the next step hq

k, we denote by Hq
k the set of all h ∈ (0, 1

k ) for which
the following conditions are satisfied

(a) h ∈ (0, T − tqk);
(b) there exists uq

k ∈ F (T (tqk)xk, y
q
k) such that d(uq

k + hyq
k + h2

2 u
q
k,K) ≤ h2

4k .

For a fixed u ∈ F (T (tqk)xk, y
q
k), since (T (tqk)xk)(0) = x(tqk) = xq

k ∈ K, using
tangential condition (H3) applied in (T (tqk)xk, y

q
k) ∈ K0 × Ω we obtain that Hq

k is
nonempty and that. Since Hq

k ∩ [dq
k

2 , d
q
k] is also nonempty, let us we chose hq

k ∈
Hq

k ∩ [dq
k

2 , d
q
k]. We define tq+1

k := tqk +hq
k and so we have tqk < tq+1

k and
∑q

i=0 t
i
k < T .

Since hq
k ∈ Hq

k , it follows that the first condition in (i) is satisfies for p = q.
Moreover, there exists uq

k ∈ F (T (tqk)xk, y
q
k) such that

d(xq
k + hq

ky
q
k +

(hq
k)2

2
uq

k,K) ≤
(hq

k)2

4k

and so there exists vq
k ∈ Rm with ‖vq

k‖ ≤
1
k such that

xq+1
k := xq

k + hq
ky

q
k +

(hq
k)2

2
zq
k ∈ K (3.4)

where

zq
k := uq

k + vq
k ∈ F (T (tqk)xk, y

q
k) +

1
k
B,

Also, we remark that by (3.1) we have

‖zq
k‖ ≤M + 1 (3.5)

Hence, if we put

xk(t) = xq
k + (t− tqk)yq

k +
1
2
(t− tqk)2zq

k, for every t ∈ [tqk, t
q+1
k ], (3.6)

it follows that the conditions (iii) and (iv) are also satisfied for p = q. Let

yq+1
k := yq

k + hq
kz

p
k. (3.7)
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By induction on p (which is left to the reader) one verifies that xq+1
k and yq+1

k

defined above can be expressed as follows

xq+1
k = ϕ(0) + (

q∑
j=0

hj
k)y0 +

1
2

q∑
j=0

(hj
k)2zi

k +
q−1∑
i=0

q∑
j=i+1

hi
kh

j
kz

i
k (3.8)

and

yq+1
k = y0 +

q−1∑
j=0

hj
kz

j
k. (3.9)

Moreover, by (3.8) and (3.9), from (3.6) we obtain

xk(t) = ϕ(0) + (t− tpk)(y0 +
q−1∑
j=0

hj
kz

j
k) +

1
2
(t− tpk)2zp

k + wq, t ∈ [0, tq+1
k ] (3.10)

where

wq = (
q−1∑
j=0

hj
k)y0 +

1
2

q−1∑
j=0

(hj
k)2zi

k +
q−2∑
i=0

q−1∑
j=i+1

hi
kh

j
kz

i
k.

It easy to see that, using
∑q−1

j=0 h
j
k < T , we obtain

‖wq‖ ≤ T‖y0‖+
M + 1

2
T 2 <

r

8
+
r

8
=
r

4
. (3.11)

Now, we check (v) and (vi) for p = q. To check condition (v), we observe that by
(3.3), (3.5) and (3.8) we have

‖xq+1
k − ϕ(0)‖

≤
( q−1∑

j=0

hj
k

)
‖y0‖+

1
2

q−1∑
j=0

(
hj

k

)2(M + 1) +
q−2∑
i=0

q−1∑
j=i+1

hi
kh

j
k(M + 1)

≤ T‖y0‖+
M + 1

2
T 2 <

r

8
+
r

8
=
r

4

(3.12)

and by (3.5) and (3.9) we have

‖yq+1
k − y0‖ ≤ T (M + 1) <

r

4
. (3.13)

Therefore, by (3.4) (3.12) and (3.13) we have

(xq+1
k , yq+1

k ) ∈ (K ∩B(ϕ(0), r/4))×B(y0, r/4) ⊂ Q0 (3.14)

and so the condition (v) is checked for p = q. Also, we observe that by (3.3), (3.5),
(3.10) and (3.11) we have

‖xk(t)− ϕ(0)‖ ≤ T [‖y0‖+ T (M + 1)] +
M + 1

2
T 2 + ‖wq‖

≤ r

8
+
r

8
+

2r
8

=
r

4
,

(3.15)

which means that xk(t) ∈ B(ϕ(0), r/4) for every t ∈ [0, tq+1
k ].

Furthermore, if −σ ≤ s ≤ −tqk, then, by the fact that 0 < tq+1
k < T , tq+1

k + s ∈
[−σ, 0] and by (3.2), we have

‖(T (tq+1
k )xk)(s)− ϕ(s)‖ = ‖xk(tq+1

k + s)− ϕ(s)‖ = ‖ϕ(tq+1
k + s)− ϕ(s)‖ < r/4.
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If −tq+1
k ≤ s ≤ 0, then tq+1

k + s ∈ [0, tq+1
k ]. Hence, there exists tpk < tq+1

k such that
tq+1
k + s ∈ [tpk, t

p+1
k ] and so, because |s| < tq+1

k < T , by (3.2), (3.3) and (3.15) we
have

‖(T (tq+1
k )xk)(s)− ϕ(s)‖ = ‖xk(tq+1

k + s)− ϕ(s)‖

≤ ‖xk(tq+1
k + s)− ϕ(0)‖+ ‖ϕ(s)− ϕ(0)‖

<
r

4
+
r

4
=
r

2
.

Hence we have that T (tq+1
k )xk ∈ Bσ(ϕ, r) and since (T (tq+1

k )xk)(0) = xk(tq+1
k ) =

xq+1
k ∈ K we deduce that T (tq+1

k )xk ∈ K0 ∩ Bσ(ϕ, r) and so the condition (vi) is
checked for p = q.

Thus the conditions (i)− (vi) are satisfied for every p ∈ {1, 2 . . . , q} and so the
inductive procedure can be continued further.

In the following, we show that this iterative process if finite, i.e., there exists
m(k) ∈ N∗ such that the second condition in (i) is satisfied.

For this, we assume by contradiction that tpk < T for every p ∈ N. Then the
bounded increasing sequence (tpk)p converges to t∗k ≤ T .

Now, we show that (xp
k)p and (yp

k)p is a Cauchy sequence. Indeed, for q < p, by
(3.5), (3.8) and (3.9), we have

‖xp
k − xq

k‖ ≤ ‖y0‖(tpk − tqk) +
1
2
(M + 1)(tpk − tqk)2,

‖yp
k − yq

k‖ ≤ (M + 1)(tpk − tqk).

Since (tpk)p is a Cauchy sequence, the sequences (xp
k)p and (yp

k)p are also Cauchy.
Therefore, there exists x∗k = limp→∞ xp

k and y∗k = limp→∞ yp
k. Since K ∩B(ϕ(0), r)

is closed and (xp
k, y

p
k) ∈ (K ∩ B(ϕ(0), r)) × B(y0, r) for every p ∈ N, we have that

(x∗k, y∗k) ∈ (K ∩B(ϕ(0), r))×B(y0, r).
Now, if we put xk(t∗k) := x∗k then, for any sequence (sp

k)p with tpk ≤ sp
k ≤ tp+1

k

for every p ∈ N, the inequality

‖xk(sp
k)− x∗k‖ ≤ ‖xk(sp

k)− xp
k‖+ ‖xp

k − x∗k‖

≤ (sp
k − tpk)‖y0‖+

1
2
(M + 1)(sp

k − tpk)2 + ‖xp
k − x∗k‖

implies ‖xk(sp
k)− x∗k‖ → 0 as p→∞.

Therefore, there exists limt→t∗k
xk(t) = x∗k = xk(t∗k). Accordingly, xk is contin-

uous on [−σ, t∗k] and hence T (tpk)xk → T (t∗k)xk as p → ∞. Thus, since T (tpk)xk ∈
K0 ∩Bσ(ϕ, r) for every p ∈ N and K0 ∩Bσ(ϕ, r) is closed, we have that T (t∗k)xk ∈
K0 ∩Bσ(ϕ, r).

Furthermore, by (3.5) we deduce that there exists a subsequence (again denote
by) (zp

k)p such that zp
k → z∗k as p→∞.

Also, since up
k ∈ F (T (tpk)xk, y

p
k), by (3.1) we have ‖up

k‖ ≤M for every p ∈ N and
so there exists a subsequence (again denote by) (up

k)p such that up
k → u∗k as p→∞.

Therefore, since (T (tpk)xk, y
p
k, u

p
k) ∈ graph(F ), yp

k → y∗k, up
k → u∗k, T (tpk)xk →

T (t∗k)xk as p→∞ and graph(F ) is closed we have that u∗k ∈ F (T (t∗k)xk, y
∗
k).

Since (T (tpk)xk)(0) = xk(t∗k) = x∗k ∈ K, we can apply tangential condition (H3)
in (T (t∗k)xk, y

∗
k). Therefore, we can chose h ∈ (0, T − t∗k) such that

d(x∗k + hy∗k +
h2

2
u∗k,K) ≤ h2

4k
. (3.16)
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We would like to prove that h as defined above belongs to Hp
k for every p suffi-

ciently large.
Since h ∈ (0, T − t∗k) implies that h ∈ (0, T − tpk) then the condition (a) of the

definition Hp
k is checked for every p ∈ N. Since (tpk)p is increasing to t∗k, there exists

p1 ∈ N such that for every p ≥ p1 we have t∗k−t
p
k < h, and so tpk < t∗k < tpk+h < t∗k+h

for every p ≥ p1. Also, there exists p2 ≥ p1 such that p ≥ p2 implies that

‖xp
k − x∗k‖ <

h2

12k
, ‖yp

k − y∗k‖ <
h

12k
, ‖up

k − u∗k‖ <
1
6k
.

Therefore, for every p ≥ p2 we have

∆k := ‖(xp
k + hyp

k +
h2

2
up

k)− (x∗k + hy∗k +
h2

2
u∗k)‖

≤ ‖yp
k − x∗k‖+ h‖yp

k − y∗k‖+
h2

2
‖up

k − u∗k‖ ≤
h2

4k
.

(3.17)

Using the inequality

d(xp
k + hyp

k +
h2

2
up

k,K) ≤ d(x∗k + hy∗k +
h2

2
u∗k,K) + ∆k,

by (3.16) and (3.17), we obtain that h and up
k satisfy the second condition of the

definition of Hp
k , for every p ≥ p2.

Therefore, for p ≥ p2 we have that h ∈ Hp
k and hence dp

k := supHp
k ≥ h for

every p ≥ p2. But hp
k ∈ [dp

k

2 , d
p
k], and so hp

k ≥ h
2 > 0 for every p ≥ p1, which

is in contradiction with hp
k = tp+1

k − tpk → 0 as p → ∞. This contradiction can
be eliminated only of the iterative process is finite, i.e.,if there exists m(k) ∈ N∗

such that tm(k)−1
k ≤ T < t

m(k)
k and the conditions (i) − (vi) are satisfied for every

p ∈ {0, 1, . . . ,m(k)− 1}. �

Proof of Theorem 2.3. Assume that hypotheses (H1)-(H3) are satisfied. Also, since
the multifunction y → ∂V (y) is locally bounded we can choose r > 0 and M > 0
such that V is Lipschitz continuous with the constant M in B(ϕ(0, r)).

We prove that the sequence xk(·), constructed by Lemma 3.1, has a subsequence
that converges to a solution of (2.1). First, for every k ≥ 1 we define the function
θk : [0, T ] → [0, T ] by θk(t) = tpk for every t ∈ [tpk, t

p+1
k ].

Since |θk(t)− t| ≤ 1
k for every t ∈ [0, T ], then θk(t) → t uniformly on [0, T ]. By

the fact that xp
k = xk(θk(t)) for every t ∈ [tpk, t

p+1
k ] and for every k ≥ 1 and by (v)

and (vi) we have

xk(θk(t)) ∈ K ∩B(ϕ(0), r), for every t ∈ [0, T ] and for every k ≥ 1. (3.18)

and

T (θk(t))xk ∈ K0 ∩Bσ(ϕ, r), for every t ∈ [0, T ] and for every k ≥ 1. (3.19)

Also, by (iii) and (iv) we have

x′′k(t) ∈ F (T (θk(t))xk, x
′
k(θk(t))) +

1
k
B, a.e. on [0, T ] and for every k ≥ 1. (3.20)

Moreover, by (iii) and (iv) we have

x′k(t) = yp
k + (t− tpk)zp

k for every t ∈ [tpk, t
p+1
k ]

and
x′′k(t) = zp

k ∈ F (T (tpk)xk, y
p
k) +

1
k
B for every t ∈ [tpk, t

p+1
k ].
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Hence, by (3.3), (3.5), and (3.15) we obtain

‖x′′k(t)‖ = ‖zp
k‖ ≤M + 1,

‖x′k(t)‖ ≤ ‖yp
k‖+ (t−p

k)‖zp
k‖ ≤ ‖yp

k − y0‖+ ‖y0‖+ T (M + 1) ≤ ‖y0‖+ 2r,

‖xk(t)‖ ≤ ‖xk(t)− ϕ(0)‖+ ‖ϕ(0)‖ ≤ ‖ϕ(0)‖+ r .

Therefore, x′′k(·) is bounded in L2([0, T ],Rm), xk(·) x′k(·) are bounded in the space
C([0, T ],Rm). Moreover, for all t′, t′′ ∈ [0, T ], we have

‖xk(t′)− xk(t′′)‖ = ‖
∫ t′′

t′
x′k(t)dt‖ ≤

∫ t′′

t′
‖x′k(t)‖dt ≤ (‖y0‖+ 2r)|t′ − t′′|,

‖x′k(t′)− x′k(t′′)‖ = ‖
∫ t′′

t′
x′′k(t)dt‖ ≤

∫ t′′

t′
‖x′k(t)‖dt ≤ (‖ϕ(0)‖+ r)|t′ − t′′|,

i. e. the sequence xk(·), is equi-lipschitzian and the sequence x′k(·) is equi-uniformly
continuous.

Hence, by [2, Theorem 0.3.4], there exists a subsequence (again denoted by) xk(·)
and an absolutely continuous function x : [0, T ] → Rm such that

(a) xk(·) converges uniformly to x(·),
(b) x′k(·) converges uniformly to x′(·),
(c) x′′k(·) converges weakly in L2([0, T ],Rm) to x′′(·).

Moreover, since all functions xk agree with ϕ on [−σ, 0], we can obviously say that
xk → x on [−σ, T ], if we extend x in such a way that xk = ϕ on [0, T ]. By (a), (b)
and the uniformly converges of θk(·) to t on [0, T ] we deduce that xk(θk(t)) → x(t)
uniformly on [0, T ] and x′k(θk(t)) → x′(t) uniformly on [0, T ]. Also, it is clearly
that T (0)x = ϕ on [−σ, 0].

Let us denote the modulus continuity of a function ψ on interval I of R by

ω(ψ, I, ε) := sup{‖ψ(t)− ψ(s)‖; s, t ∈ I, |s− t| < ε}, ε > 0.

Then we have

‖T (θk(t))xk − T (t)xk‖σ = sup
−σ≤s≤0

‖xk(θk(t) + s)− xk(t+ s)‖

≤ ω(xk, [−σ, T ],
1
k

) ≤ ω(ϕ, [−σ, 0],
1
k

) + ω(xk, [0, T ],
1
k

)

≤ ω(ϕ, [−σ, 0],
1
k

) +
(‖y0‖+ 2r)T

k
,

hence
‖T (θk(t)xk − T (t)xk‖σ ≤ δk (3.21)

for every k ≥ 1, where δk := ω(ϕ, [−σ, 0], 1
k ) + (‖y0‖+2r)T

k . Thus, by continuity of
ϕ, we have δk → 0 as k →∞, hence

‖T (θk(t)xk − T (t)xk‖∞ → 0 as k →∞,

and so, since the uniform convergence of xk(·) to x(·) on [−σ, T ] implies

T (t)xk → T (t)x uniformly on [0, T ], (3.22)

we deduce that
T (θk(t)xk → T (t)x in Cσ. (3.23)

Since T (θk(t))xk ∈ K0 ∩ Bσ(ϕ, r) for every t ∈ [0, T ] and for every k ≥ 1, thus by
(3.19), (3.23) and by Remark 3.2 we have T (t)x ∈ K0 ∩Bσ(ϕ, r).
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Since ‖x′k(t)− x′k(θk(t))‖ ≤ (M+1)T
k , by (3.20) and (3.21), we have

d(T (t)xk, x
′
k(t), x′′k(t)), graph(F )) ≤ δk +

(M + 1)T + 1
k

(3.24)

for every k ≥ 1. By (H2), (b), (c), (3.22) and [2, Theorem 1.4.1], we obtain

x′′(t) ∈ coF (T (t)x, x′(t)) ⊂ ∂V (x′(t)) a.e. on [0, T ], (3.25)

where co stands for the closed convex hull. Since the functions t → x(t) and
t→ V (x′(t)) are absolutely continuous, we obtain from [5, Lemma 3.3] and (3.25)
that

d

dt
V (x′(t)) = ‖x′′(t)‖2 a.e. on [0, T ]

hence

V (x′(t))− V (x′(0)) =
∫ T

0

‖x′′(t)‖2dt (3.26)

On the other hand, since x′′k(t) = zp
k for every t ∈ [tpk, t

p+1
k ], by (iv), there exists

wp
k ∈

1
kB such that

zp
k − wp

k ∈ F (T (tpk)xk, y
p
k) ⊂ ∂V (x′k(tpk)), ∀k ∈ N∗

and so the properties of subdifferential of a convex function imply that, for every
p < m(k)− 2, and for every k ∈ N∗ we have

V (x′k(tp+1
k ))− V (x′k(tpk)) ≥ 〈zp

k − wp
k, x

′
k(tp+1

k )− x′k(tpk)〉

= 〈zp
k,

∫ tp+1
k

tp
k

x′′k(t)dt〉 − 〈wp
k,

∫ tp+1
k

tp
k

x′′k(t)dt〉

=
∫ tp+1

k

tp
k

‖x′′k(t)‖2dt− 〈wp
k,

∫ tp+1
k

tp
k

x′′k(t)dt〉;

hence

V (x′k(tp+1
k )− V (x′k(tpk)) ≥

∫ tp+1
k

tp
k

‖x′′(t)‖2dt− 〈wp
k,

∫ tp+1
k

tp
k

x′′k(t)dt〉. (3.27)

Analogously, if t ∈ [tm(k)−1
k , T ], then by (i) we have

V (x′k(T ))− V (x′k(tm(k)−1
k ))

≥ 〈zm(k)−1
k − w

m(k)−1
k ,

∫ T

t
m(k)−1
k

x′′k(t)dt〉

=
∫ T

t
m(k)−1
k

‖x′′k(t)‖2dt− 〈wm(k)−1
k ,

∫ T

t
m(k)−1
k

x′′k(t)dt〉.

(3.28)

By adding the m(k)− 1 inequalities from (3.27) and the inequality from (3.28), we
get

V (x′k(T ))− V (x′(0)) ≥
∫ T

0

‖x′′k(t)‖2dt+ α(k), (3.29)

where

α(k) = −
m(k)−2∑

p=0

〈wp
k,

∫ tp+1
k

tp
k

x′′k(t)dt〉 − 〈wm(k)−1
k ,

∫ T

tm(k)−1
x′′k(t)dt〉.
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Since

|α(k)| ≤
m(k)−2∑

p=0

|〈wp
k,

∫ tp+1
k

tp
k

x′′k(t)dt〉|+ |〈wm(k)−1
k ,

∫ T

tm(k)−1
x′k(t)dt〉|

≤
m(k)−2∑

p=0

‖wp
k‖ · ‖

∫ tp+1
k

tp
k

x′′k(t)dt‖+ ‖wm(k)−1
k ‖ · ‖

∫ T

tm(k)−1
x′′k(t)dt‖

≤ (M + 1)(2m(k)− 1)
k

it follows that α(k) → 0 as k →∞; hence, by (3.29), passing to the limit as k →∞,
we obtain

V (x′(t))− V (y0) ≥ lim sup
k→∞

∫ T

0

‖x′′k(t)‖2dt. (3.30)

Therefore, by (3.26) and (3.30) we have∫ T

0

‖x′′(t)‖2dt ≥ lim sup
k→∞

∫ T

0

‖x′′k(t)‖2dt

and, since x′′k(·) converges weakly in L2([0, T ],Rm) to x′′(·), by the lower semi-
continuity of the norm in L2([0, T ],Rm) (e.g. [6, Proposition III 30]) we obtain
that

lim
k→∞

∫ T

0

‖x′′k(t)‖2dt =
∫ T

0

‖x′′(t)‖2dt,

i. e. x′′k(·) converges strongly in L2([0, T ],Rm) to x′′(·), hence a subsequence (again
denote by) x′′k(·) converges pointwise a.e. to x′′(·).

Since, by (3.24)

lim
k→∞

d((T (t)xk, x
′
k(t),′′k (t)), graph(F )) = 0

and since, by (H1), the graph of F is closed ([2, Proposition 1.1.2]), we have

x′′(t) ∈ F (T (t)x, x′(t)) a.e. on [0, T ].

It remains to prove that (x(t), x′(t)) ∈ K × Ω for every t ∈ [0, T ]. Indeed, since
‖xk(t)− xp

k‖ ≤
2‖y0‖+3(M+1)T

k , ‖x′k(t)− yp
k‖ ≤

(M+1)T
k we have

lim
k→∞

d((xk(t), x′k(t)), (xp
k, y

p
k)) = 0.

Since (xp
k, y

p
k) ∈ Q0 := (K ∩B(ϕ(0), r))×B(y0, r) ⊂ K ×Ω for every k ∈ N, by (a)

and (b) we have
lim

k→∞
d((x(t), x′(t)), (xk(t), x′k(t))) = 0.

On the other hand,

d((x(t), x′(t)), Q0)

≤ d((x(t), x′(t)), (xk(t), x′k(t))) + d((xk(t), x′k(t)), (xp
k, y

p
k)) + d((xp

k, y
p
k), Q0);

hence, by passing to the limit as k →∞ we obtain

d((x(t), x′(t)), Q0) = 0, for every t ∈ [0, T ].

Since Q0 is closed, we obtain that (x(t), x′(t)) ∈ Q0 ⊂ K × Ω for all t ∈ [0, T ],
which completes the proof. �
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order, Israel J. Math., 57(1987), 225-238.
[11] K. Deimling; Multivalued Differential Equations, Walter de Gruyter, Berlin, New-York, 1992.

[12] T.X.D. Ha and M.D.P. Monteiro Marques; Nonconvex second order differential inclusions

with memory, Set-Valued Analysis, 3(1995), 71-86.
[13] G. Haddad; Monotone trajectories of differential inclusions and functional differential inclu-

sions with memory, Israel J. Math., 39(1981), 83-100.
[14] G. Haddad; Monotone trajectories for functional differential inclusions, J. Diff. Eqs.,

42(1981), 1-24.

[15] A. G. Ibrahim and K. S. Alkulaibi; On existence of monotone solutions for second-order
non-convex differential inclusions in infinite dimensional spaces, Portugaliae Mathematica,

61(2)(2004), 231-143.

[16] V. Lupulescu; A viability result for nonconvex second order differential inclusions, Electronic
J. Diff. Equs., 76(2002), 1-12.

[17] V. Lupulescu; Existence of solutions for nonconvex functional differential inclusions, Elec-

tronic J. Diff. Equs., 141(2004), 1-6.
[18] L. Marco and J. A. Murillo; Viability theorems for higher-order differential inclusions, Set-

Valued Anal., 6(1998), 21-37.

[19] D. Motreanu and N. H. Pavel; Tangency, Flow Invariance for Differential Equations and
Optimization Problems, Monograph and text book in pure and Appl. Matematics, vol. 219,

Marcel Dekker, New York - Basel, 1998.

[20] R. Morchadi and S. Sajid; Non convex Second Order Differential Inclusions, Bulletin of the
Polish Academy of Sciences,. vol. 47(3)(1999), 267,281.

[21] R. T. Rockafellar; Convex Analysis, Princeton University Press, 1970.
[22] P. Rossi; Viability for upper semicontinuous differential inclusions, Diff. Integral Equations,

5(1992), 455-459.
[23] A. Syam; Contributions Aux Inclusions Differentielles, PhD Thesis, Universite Montpellier

II, 1993.

Vasile Lupulescu
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