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The limiting equation for Neumann Laplacians

on shrinking domains ∗

Yoshimi Saito

Abstract

Let {Ωε}0<ε≤1 be an indexed family of connected open sets in R
2,

that shrinks to a tree Γ as ε approaches zero. Let HΩε be the Neumann
Laplacian and fε be the restriction of an L

2(Ω1) function to Ωε. For
z ∈ C\[0,∞), set uε = (HΩε − z)

−1fε. Under the assumption that all
the edges of Γ are line segments, and some additional conditions on Ωε,
we show that the limit function u0 = limε→0 uε satisfies a second-order
ordinary differential equation on Γ with Kirchhoff boundary conditions on
each vertex of Γ.

1 Introduction

Let Ω be a connected open set in R2. Consider a family of the Neumann
Laplacians HΩε , 0 < ε ≤ 1, on the sub-domain Ωε such that {Ωε} shrinks to Γ
in the sense that

Ω = Ω1 ⊃ Ωε2 ⊃ Ωε1 (1 > ε2 > ε1 > 0), (1.1)

limε→0Ωε = Γ,

where the bar over a set means the closure of the set. We continue here the study
started in [11] regarding the following question: In what sense does the operator
HΩε converges to an operator on Γ as ε→ 0? That is, we try to find conditions
under which, given a thin domain and an operator on the domain, an operator
on an imbedded tree or network gives a good approximation of the operator on
the domain. This investigation is part of the general question on replacing the
study of a thin domain by the study of an imbedded tree or network, which has
been proposed in many branches of science such as physics and chemistry. For
references on this problem, see for example Ruedenberg-Scherr [9], Exner-Seba
[5], Kuchment [7], Schatzman [12], Rubinstein-Schatzman [10], and Kuchment-
Zeng [8]. In [12], a family of “fattened” domains Ωε of a C

2 manifold M are
considered. It is shown that the k-th eigenvalue λk(ε) of the Neumann Laplacian
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HΩε on Ωε converges asymptotically to the k-th eigenvalue λk of the Laplace-
Beltrami operator of M . In [10] the above results are extended to the case
where the manifold M is replaced by a graph G; see for example [8], and for a
simplified proof [10].
In [11], we discussed the convergence of the resolvent (HΩε − z)

−1 as ε →
0. After introducing the Hilbert spaces L2(Γ) and H

1(Γ) on the tree Γ and
defining the selfadjoint “Neumann Laplacian” operatorHΓ in L

2(Γ) as in [4], we
presented a set of general conditions under which the the resolvent (HΩε−z)

−1fε
converges as as ε → 0, where fε is the restriction of a function f ∈ L2(Ω) to
Ωε ([11], Theorem 4.5). Also in [11], we studied the case where Ω is a bounded
convex set and the tree Γ is a straight line segment (ridge).
Let Ω be a bounded convex set in R2 and suppose that Ω and Ωε are given

by

Ω = {x = (x1, x2) : −`−(x1) < x2 < `+(x1), a < x1 < b},

Ωε = {x = (x1, x2) : −ε`−(x1) < x2 < ε`+(x1), a < x1 < b}, (1.2)

Γ = {x = (x1, 0) : a ≤ x1 ≤ b},

where −∞ < a < b < ∞, 0 < ε ≤ 1 and `±(t) are positive C1 functions on
[a, b]. Then we have, for f ∈ H1(Ω) and z ∈ C\[0,∞),

lim
ε→0

γ
[
(HΩε − z)

−1fε
]
= (HΓ − z)

−1(γf), (1.3)

in a weighted Hilbert space L2a0(Γ), where HΓ is the “Neumann Laplacian” on
Γ defined in [4] (see §2), γ is the trace operator on Γ, and

L2a0(Γ) = L
2(Γ; a0(σ)dσ), (1.4)

a0(σ) = `−(σ) + `+(σ)

([11], Theorem 5.5).
In this work, we consider the case when Γ is a tree such that all the edges

are line segments (Assumption 4.2, (i)). Suppose that the family {Ωε} is given
by

Ωε = {(σ, s) : −ε`−(σ) < s < ε`+(σ), σ ∈ Γ}, (1.5)

where σ is the arc length along the edges of Γ and s is the arc length along the
curve Cσ = τ

−1(σ), τ being a map from Ω into Ω∩Γ which is Lipschitz contin-
uous almost everywhere in Ω (see §2). Then we assume that, for σ belonging to
the edge ej of Γ, the curve Cσ is perpendicular to the edge near ej except its
vertices (Assumption 4.2, (ii)). Set

uε(x) = uε(σ, s) = (HΩε − z)
−1fε, (1.6)

where f ∈ H1(Ω)∩C1(Ω). Then there exists a subsequence {uεk}
∞
k=1 such that

{uεk(σ, 0)}, the restriction of uεk on the tree Γ, converges to u0 weakly in L
2
a0
(Γ)

as k →∞, and u0 satisfies the equation

−a−10 (σ)
d

dσ
(a0(σ)u

′)− zu = f(σ, 0) (1.7)
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on each edge with the Kirchhoff boundary condition at each vertex (Theorems
4.5 and 4.8), where a0 is given by (1.4) and u

′ means the derivative of u0 with
respect to the arc length σ along the edge.
In §2, after introducing the tree Γ imbedded in the open connected set Ω, we

discuss the change of variables x = (x1, x2) → (σ, s). In §3 some estimates of
uε(σ, 0) are given. These estimates will be used to guarantee the weak conver-
gence of {uεk}

∞
k=1. §4 is devoted to showing the above convergence of {uεk}

∞
k=1

to a solution u0 of the equation (1.6) (Theorems 4.5 and 4.8). The main tools
are Lemmas 4.1 and 4.4 whose proof will be given in §6. We shall discuss the
continuity of the limiting function u0 at each vertex in §5.

2 Preliminaries

In this section we are going to introduce a domain Ω in R2, a tree Γ contained
in Ω and a family {Ωε}0<ε≤1 of sub-domains of Ω.
Let Ω be a domain (i.e., a connected open set) in R2. Let Γ ⊂ Ω be a tree,

that is, a connected graph without loops or cycles, where Γ is the closure of Γ.
Its edges ej , j ∈ J , are non-degenerate open curve such that the closure ej is
a smooth curve, where J is an index set. The endpoints ej\ej are the vertices.
Here we should note that we allow these edges to be smooth curves, not just line
segments. We shall assume that Γ has, at most, a countably infinite number of
edges, and hence the index set J is a subset of the natural numbers N. We also
assume that each vertex of Γ is of finite degree, that is, only a finite number of
edges emanate from each vertex, and that only one edge emanates from a vertex
c if c belongs to the boundary ∂Ω of Ω. For every x, y ∈ Γ there is a unique
path in Γ joining x and y. Thus, by introducing the distance between x and y
by the length of a unique path connecting x and y, Γ becomes a metric space.
Also, if Γ is endowed with the natural one-dimensional Lebesgue measure, it is
a σ-finite measure space. The tree Γ is rooted at an arbitrary fixed point a ∈ Γ.
We define t �a x (or equivalently x �a t) to mean that x lies on the path from
a to t.
Throughout this work we assume the following: (I) Assumptions on Ω and

Γ:

(1-i) Ω be a domain (i.e., a connected open set) in R2 and Γ ⊂ Ω be a connected
tree which has at most countable number of edges ej, j ∈ J , where Ω is
the closure of Ω. Each edge ej is an open curve with finite length such
that the closure ej is a C

2 curve. The endpoints ej\ej are called the
vertices. When any two edges are connected, they are connected only at
their vertices. Also they are not tangential at the vertex from which the
two edges emanate.

(1-ii) We have E(Γ) ⊂ Ω, where E(Γ) is the set of all edges of Γ.

(1-iii) For v ∈ V (Γ) ∩ ∂Ω, only one edge emanates from v, where V (Γ) is the
set of all vertices of Γ, and ∂Ω is the boundary of Ω.
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(II) Assumptions on τ . There exists a map τ from Ω into Ω∩ Γ which satisfies
the following:

(2-i) The subset τ−1(V (Γ)) is a (2-dimensional) null set. For each ej ∈ E(Γ),
set Ωj = τ−1(ej). Then Ωj is an open set and τ is locally Lipschitz
continuous on Ωj , that is, for each x ∈ Ωj there exists a neighborhood
V (x) ⊂ Ωj of x and a positive constant γ(x) such that for all y ∈ V (x)

dΓ(τ(x), τ(y)) ≤ γ(x)|x − y|, (2.1)

where dΓ denotes the metric on Γ and | · | the Euclidean metric (for defi-
niteness) on R2.

(2-ii) Let C(t) = τ−1(t) for t ∈ E(Γ). Then C(t) is a rectifiable curve. Further,
C(t) ∩ Γ = {t} and C(t)\{t} has two components, C±(t) say. Also we
assume that C(t) is not tangential to Γ at t. Let C+(t) and C−(t) be
parameterized by arc length s which is measured from t with 0 ≤ s ≤ `+(t)
on C+(t) and −`−(t) ≤ s ≤ 0 on C−(t). Let τ(x) = (τ1(x), τ2(x)) ∈ Γ for
x ∈ Ω. Then, for t ∈ E(Γ), there exists a null set e(t) ⊂ C(t) with respect
to ds, the measure induced by the arc length parameter s on C(t), such
that τ1 and τ2 are differentiable at x ∈ C(t)\e(t).

(2-iii) Let |∇τ(x)| = [|∇τ1(x)|2 + |∇τ2(x)|2]1/2. For t ∈ E(Γ) fixed, define
|∇τ(s)| on C(t) by |∇τ(s)| = |∇τ(x)| with x ∈ C(t) and dC(t)(t, x) =
s, where dC(t)(t, x) is the distance between t and x along C(t). Then
|∇τ(s)|, |∇τ(s)|−1 ∈ L1(C(t), ds).

(2-iv) For any vertex v ∈ Ω the functions `± are bounded below from 0 around
v, i.e., for a vertex v ∈ Ω, there exists a neighborhood U(v) ⊂ Γ of v such
that

inft∈U(v)\{v} `−(t) > 0, (2.2)

inft∈U(v)\{v} `+(t) > 0 .

Some examples of the triples (Ω,Γ, τ) are given in [2, 3, 4, 11] including horn-
shaped domains, room and passages domains and fractal domains.
For j ∈ J let the edge ej have the vertices aj and bj such that bj �a aj ,

where the tree Γ is rooted at a. Then we parameterize ej by σj(t) = dist(aj , t),
where dist(aj , t) is the arc length from aj to t ∈ ej along ej . From now on we
may drop the subscript j in σj if there is no danger of misunderstanding. If
x = (x1, x2) ∈ Ωj = τ−1(ej) ⊂ Ω is such that τ(x) = t(σ) and dist(t(σ), x) = s,
where dist(t(σ), x) is the distance between x and t(σ) along the curve Ct(σ),
then a co-ordinate system on Ωj is defined by

x = x(σ, s), τ(x) = t(σ), s ∈ (−`−(σ), `+(σ)), (2.3)

where `±(σ) = `±(t(σ)). A family {Ωε}0<ε≤1 of sub-domains of Ω is defined as
follows:
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Definition For j ∈ J and 0 < ε ≤ 1 let

Ω
(ε)
j = {x = x(σ, s) / σ ∈ ej , −ε`−(σ) < s < ε`+(σ)} (2.4)

and

Ωε =
[
∪j∈J Ω

(ε)
j

]◦
, (2.5)

where A◦ is the interior of A. By definition we have Ω = Ω1.

Definition For each 0 < ε ≤ 1 let HΩε be the Neumann Laplacian on Ωε.
It is known ((2.4) in [4]) that

∂(x1, x2)

∂(σ, s)
=

1

|∇τ(σ, s)|
. (2.6)

Let I ∈ ej . Then we have, for f ∈ L1(τ−1(I)),

∫
τ−1(I)

f(x)dx =

∫
I

dσ

∫ ε`+(σ)
−ε`−(σ)

f(σ, s)|∇τ(σ, s)|−1 ds. (2.7)

Note that we have again simplified the notation by writing (σ, s) for x(σ, s). Of
particular importance is the case when f = F ◦ τ in (2.7) with F ∈ L1(I):

∫
τ−1(I)

F ◦ τ(x) dx =

∫
I

F (σ) dσ

∫ ε`+(σ)
−ε`−(σ)

|∇τ(σ, s)|−1 ds (2.8)

=:

∫
I

F (σ)αε(σ) dσ,

where

αε(σ) :=

∫ ε`+(σ)
−ε`−(σ)

1

|∇τ(σ, s)|
ds. (2.9)

If I = ej in (2.7) and (2.8), then τ
−1(I) should be replaced by Ω

(ε)
j .

3 Evaluation of uε = (HΩε − z)
−1f on Γ

We shall start with an additional assumption on the tree Γ and the family
{Ωε}0<ε≤1. Then we shall show some evaluation for the restriction of

uε = uε(f, z)) = (HΩε − z)
−1fε (3.1)

on Γ, where z ∈ C\[0,∞) and fε is the restriction of f ∈ L2(Ω) on Ωε.
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Assumption 3.1. (i) For each j ∈ J `±(σ) are positive C1 function on ej and
are continuously extended on ej . Also `±(σ) satisfy

supej (`−(σ) + `+(σ)) ≡ Lj <∞, (3.2)

supej (|`
′
−(σ)|+ |`

′
+(σ)|) ≡ Rj <∞,

where `′±(σ) =
d
dσ
`±(σ).

(ii) For j ∈ J there exists εj ∈ (0, 1] such that |∇τ(σ, s)| is continuous on

Ω
(εj)
j ,

0 < mj ≡ inf
x(σ,s)∈Ω

(εj )

j

|∇τ(σ, s)| ≤ sup
x(σ,s)∈Ω

(εj )

j

|∇τ(σ, s)| ≡Mj <∞,(3.3)

sup
x(σ,s)∈Ω

(εj )

j

∣∣∂x(σ,s)
∂s

∣∣ ≡ Kj <∞.
Now we introduce a positive function on each ej which will play an important

role.

Definition 3.2. For each j ∈ J , set

a
(j)
0 (σ) =

`−(σ) + `+(σ)

|∇τ(σ, 0)|
(σ ∈ ej). (3.4)

Note that a
(j)
0 is a bounded positive function on ej . From now on we may

drop the superscript j in a
(j)
0 if there is no risk of misunderstanding, i.e. a0(σ) =

a
(j)
0 (σ). Also note that

a0(σ) = lim
ε→0

ε−1αε(σ) (σ ∈ ej), (3.5)

where αε is given by (2.9).
For a subset Ω′ of Ω, ‖f‖Ω′ denotes the L2 norm of f on Ω′. Also we set

‖ψ‖2ej ,ao =
∫
ej
|ψ(σ)|2a0(σ) dσ, (3.6)

‖ψ‖2ej =
∫
ej
|ψ(σ)|2 dσ,

Lemma 3.3. We have

‖u(·, 0)‖2ej,a0 ≤ 2
(Mj
mj

){
εL2jK

2
j ‖∇u‖

2

Ω
(ε)
j

+ ε−1‖u‖2
Ω
(ε)
j

}
, (3.7)

and

‖u‖2
Ω
(ε)
j

≤ 2ε
(Mj
mj

){
εL2jK

2
j ‖∇u‖

2

Ω
(ε)
j

+ ‖u(·, 0)‖2ej ,a0
}

(3.8)

for u ∈ H1(Ω(ε)j ) ∩ C
1(Ω

(ε)
j ), where ‖ ‖A, A ⊂ R

2, is the norm of L2(A).
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Proof. (I) Let I be a closed subset of ej . Since I ⊂ ej ⊂ Ω
(ε)
j , uε(σ, 0) and

u′ε(σ, 0) are bounded on I. Then we have

‖u(·, 0)‖2I,a0 =

∫
I

ε−1|∇τ(σ, 0)|−1
∫ ε`+(σ)
−ε`−(σ)

|u(σ, 0)|2 ds dσ

≤ 2ε−1m−1j

∫
I

∫ ε`+(σ)
−ε`−(σ)

|u(σ, 0)− u(σ, s)|2 ds dσ

+2ε−1m−1j

∫
I

∫ ε`+(σ)
−ε`−(σ)

|u(σ, s)|2 ds dσ (3.9)

≡ 2ε−1m−1j (I1 + I2).

Using the second inequality of (3.3), wee see that

∣∣∂u
∂s

∣∣ ≤ Kj |∇u|, (3.10)

which is combined with (2.7) to give

I1 ≤

∫
I

∫ ε`+(σ)
−ε`−(σ)

∣∣ ∫ s
0

∣∣∂u
∂s
(σ, η)

∣∣ dη∣∣2 ds dσ

≤

∫
I

∫ ε`+(σ)
−ε`−(σ)

( ∫ ε`+(σ)
−ε`−(σ)

∣∣∂u
∂s
(σ, η)

∣∣ dη)2 ds dσ

≤ Ljε

∫
I

( ∫ ε`+(σ)
−ε`−(σ)

∣∣∂u
∂s
(σ, s)

∣∣ ds)2 dσ (3.11)

≤ (Ljε)
2

∫
I

∫ ε`+(σ)
−ε`−(σ)

∣∣∂u
∂s
(σ, s)

∣∣2 ds dσ

≤ (Ljε)
2K2jMj

∫
I

∫ ε`+(σ)
−ε`−(σ)

|∇u(σ, s)|2
ds dσ

|∇τ(σ, s)|

≤ (Ljε)
2K2jMj‖∇u‖

2

Ω
(ε)
j

,

where we have used the fact that τ−1(I) ⊂ Ω(ε)j . As for I2 we have

I2 ≤Mj

∫
I

∫ ε`+(σ)
−ε`−(σ)

|u(σ, s)|2
ds dσ

|∇τ(σ, s)|
≤Mj‖u‖

2

Ω
(ε)
j

. (3.12)

Thus we have from (3.11) and (3.12)

‖u(·, 0)‖2I,a0 ≤ 2
(Mj
mj

){
L2jK

2
j ε‖∇u‖

2

Ω
(ε)
j

+ ε−1‖u‖2
Ω
(ε)
j

}
. (3.13)

Since I ⊂ ej is arbitrary, (3.7) follows from (3.13).
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(II) As in (I), we have

‖u‖2
Ω
(ε)
j

≤ 2

∫
ej

∫ ε`+(σ)
−ε`−(σ)

|u(σ, s)− u(σ, 0)|2|∇τ(σ, s)|−1 ds dσ

+2

∫
ej

∫ ε`+(σ)
−ε`−(σ)

|u(σ, 0)|2|∇τ(σ, s)|−1 ds dσ (3.14)

≡ 2(J1 + J2).

Then we can proceed as in evaluation Ij to obtain

J1 ≤
(Mj
mj

)
L2jK

2
j ε
2‖∇u‖2

Ω
(ε)
j

, (3.15)

J2 ≤
(Mj
mj

)
ε‖u(·, 0)‖2ej,a0 , (3.16)

which completes the proof. ♦

Proposition 3.4. Suppose that Assumptions 2.1 and 3.1 hold. Let f ∈ H1(Ω).
Set

uε = uε(fε, z) = (HΩε − z)
−1fε, (3.17)

where z ∈ C\[0,∞) and fε is the restriction of f on Ω
(ε)
j . Suppose that

lim sup
ε→0

∑
k∈J

(Mk
mk

){
εL2kK

2
k‖∇f‖

2
Ωεk
+ ‖f(·, 0)‖2ek,a0

}
<∞, (3.18)

where f(σ, 0) on each edge ej is given by the trace of f on ej, Then, for suffi-
ciently small ε ∈ (0, 1] and j ∈ J ,

‖uε(·, 0)‖
2
ej ,a0

≤ 4
(Mj
mj

)
|z|−1

[
L2jK

2
j ‖f‖

2
Ωε (3.19)

+|z|−1
∑
k∈J

(Mk
mk

){
εL2kK

2
k‖∇f‖

2
Ωε
k
+ ‖f(·, 0)‖2ek,a0

}]
.

Remark 3.5 It has been known (see,e.g., Gilbarg-Trudinger [6], Theorem
8.10) that the condition f ∈ H1(Ω) implies uε ∈ H3(Ω)loc, since uε ∈ H1(Ω).
Then, by the Sobolev imbedding theorem (see, e.g. Adams [1], Theorem 5.4),
we have uε ∈ C1(Ω).

Proof of Proposition 3.4. (I) It is easy to see that

‖uε‖2
Ω
(ε)
j

≤ ‖uε‖2Ωε ≤ |z|
−2‖f‖2Ωε , (3.20)

‖∇uε‖2
Ω
(ε)
j

≤ ‖∇uε‖2Ωε ≤ |z|‖u‖
2
Ωε
+ ‖f‖Ωε‖uε‖Ωε ≤ 2|z|

−1‖f‖2Ωε.
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(II) It follows from (3.20) and (3.7) with u replaced by uε that

‖uε(·, 0)‖
2
ej ,a0

≤ 2
(Mj
mj

){
2εL2jK

2
j |z|

−1‖f‖2
Ω
(ε)
j

+ ε−1|z|−2‖f‖2
Ω
(ε)
j

}
. (3.21)

The inequality (3.19) is obtained from (3.21) and (3.8) with u replaced by f . ♦

4 The limiting equation

Let uε = (HΩε−z)
−1f be as in (3.17). Since ‖uε(·, 0)‖ej ,a0 is uniformly bounded

for ε ∈ (0, 1] by Proposition 3.4 if f ∈ H1(Ω) satisfies (3.18), uε converges weakly
along some subsequence {εm}∞m=1 with the limiting function u0. In this section
we shall prove that u0 is a solution of a second-order ordinary differential equa-
tion on Γ with the Kirchhoff boundary condition on each vertex (Theorems 4.5
and 4.8). The equation is independent from choice of the subsequence {εm}∞m=1.
First we shall state two lemmas (Lemmas 4.1 and 4.4) which will play crucial
roles in this section. These lemmas will be shown in §6. In order to prove
Lemma 4.4, we need another important assumption (Assumption 4.2). Let Γ0
be a measurable subset of the tree Γ and let a be a positive measurable function
defined on Γ0∩∪j∈Jej . Then the Hilbert space L2(Γ0, a) is a weighted L2 space
with inner product

(F, G)Γ0,a =
∑
j∈J

∫
Γ0∩ej

F (σ)G(σ) a(σ)dσ (4.1)

and norm ‖F‖Γ0 = [(F, F )Γ0,a]
1/2. We denote L2(Γ0, 1) by L

2(Γ0).

Lemma 4.1. Suppose that Assumptions 2.1 and 3.1 are satisfied. Let j ∈ J
and let {uε}0<ε≤1 be a family of functions such that

uε ∈ H
1(Ω

(ε)
j )
⋂
C1(Ω

(ε)
j ) (0 < ε ≤ 1). (4.2)

Let F ∈ L2(ej , a0), i.e., ‖F‖ej ,a0 < ∞. Set v(x) = F (τ(x)). Then there exists
Cj = Cj(Mj ,mj , Lj,Kj), a positive constant depending only on Mj ,mj , Lj,Kj,
such that

∣∣1
ε

∫
Ω
(ε)
j

uε(x)v(x) dx −

∫
ej

uε(σ, 0)F (σ)a0(σ) dσ
∣∣ (4.3)

≤ Cj
{√

ε‖∇uε‖Ω(ε)j
‖F‖ej,a0+‖uε(·, s)‖ej ,a0

[ ∫
ej

|F (σ)|2ψε(σ)
2a0(σ) dσ

]1/2}
,

where

ψε(σ) =
1

εa0(σ)

∫ ε`+(σ)
−ε`−(σ)

(|∇τ(σ, s)|−1 − |∇τ(σ, 0)|−1) ds. (4.4)

Here we need another assumption.
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Assumption 4.2. (i) All the edges ej of the tree Γ are finite (non-degenerate)
line segments. (ii) Let j ∈ J . Let E be a closed subset of the (open) edge ej .
Then there exists a positive number εj(E) ∈ (0, 1], depending only on j and E,

such that, for any t ∈ E, the portion of the curve Ct ∩Ω
(εj(E))
j is a line segment

which is perpendicular to ej.

Remark 4.3. (i) Roughly speaking, (ii) of the above assumption claims that
the curve Ct is perpendicular to ej near ej except the vertices. (ii) Assumption
4.2, (ii) also implies

|∇τ(σ, s)| = 1 ((σ, s) ∈ τ−1(E) ∩ Ω
(εj(E))
j ),

|∇τ(σ, 0)| = 1 (σ ∈ ej), (4.5)

a0(σ) = `−(σ) + `+(σ) (σ ∈ ej).

Lemma 4.4. Suppose that Assumptions 2,1, 3.1 and 4.2 hold. Let j ∈ J and
let {uε}0<ε≤1 be a family of functions such that

uε ∈ H
1(Ω

(ε)
j )
⋂
C1(Ω

(ε)
j ) (0 < ε ≤ 1). (4.6)

Let F ∈ C2(ej) with F ′ ∈ C10 (ej), where F
′ is the derivative of F with respect

to σ. Let ε0 = εj(suppF
′). Then, by setting v(x) = F (τ(x)), the inequality

∣∣1
ε

∫
Ω
(ε)
j

∇uε · ∇v dx−

∫
ej

∂uε

∂σ
(σ, 0)F ′(σ)a0(σ) dσ

∣∣
≤
√
εC(Lj , Rj)(‖F

′‖ej ,a0 + ‖F
′′‖ej ,a0)‖∇uε‖Ω(ε)j

(4.7)

holds for ε ∈ (0, ε0), where C(Lj , Rj) is a positive constant depending only on
Lj and Rj.

Theorem 4.5. Suppose that Assumptions 2,1,3.1 and 4.2 hold. Let f ∈ H1(Ω)

which satisfies (3.17). Let fε be the restriction of f on Ω
(ε)
j for ε ∈ (0, 1]. Let

uε = (HΩε−z)
−1fε be as in (3.16). Let j ∈ J . Let {εm}∞m=1 ⊂ (0, 1] be a decreas-

ing sequence such that {εm}∞m=1 converges to 0 and the sequence {uεm(·, 0)}
∞
m=1

converges weakly in L2(ej, a0). Then the limit function u0 satisfies

∫
ej

u0(σ)
{
− (a0(σ)F ′(σ))

′ − zF (σ)a0(σ) − f(σ, 0)F (σ)a0(σ)
}
dσ = 0 (4.8)

for any F ∈ C20 (ej), i.e., u0 is a weak solution of the equation

−
1

a0
(a0u

′)′ − zu = f(·, 0) (4.9)

on ej.
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Remark 4.6. (i) The sequence {εm}∞m=1 which satisfies the conditions in the
above theorem does exist since ‖uε(·, 0)‖ej ,a0 is uniformly bounded for ε ∈ (0, 1]
by Proposition 3.4. (ii) Thus, the limit function u0 is, not only a weak solution
of (4.9), but also a strong solution with u0 ∈ C2(ej).

Proof of Theorem 4.5. (I) Let v(x) = F (τ(x)). We extend F on Γ by

setting F = 0 outside ej . Then we have v ∈ H1(Ωε) and v = 0 outside Ω
(ε)
j . Let

ε0 be as in Lemma 4.1. Note that ψε(σ) = 0 on ej for ε ∈ (0, ε0], where ψε(σ)
is given by (4.4). Therefore, replacing uε by zuε in Lemma 4.1 and using the
second inequality in (3.20), we obtain

∣∣1
ε

∫
Ω
(ε)
j

zuε(x)v(x) dx−

∫
ej

zuε(σ, 0)F (σ)a0(σ) dσ
∣∣

≤ Cj |z|
√
ε‖∇uε‖Ω(ε)j

‖F‖ej ,a0 (4.10)

≤ 2Cj
√
ε‖f‖Ωε‖F‖ej,a0

for ε ∈ (0, ε0], which implies that

1

ε

∫
Ω
(ε)
j

zuε(x)v(x) dx =

∫
ej

zuε(σ, 0)F (σ)a0(σ) dσ +O(
√
ε) (ε→ 0), (4.11)

when F ∈ C20 (ej) is fixed. Next we set uε = fε in Lemma 4.1 to obtain

1

ε

∫
Ω
(ε)
j

fε(x)v(x) dx =

∫
ej

f(σ, 0)F (σ)a0(σ) dσ +O(
√
ε) (ε→ 0), (4.12)

(II) Similarly we have from Lemma 4.4

1

ε

∫
Ω
(ε)
j

∇uε(x) · ∇v(x) dx =

∫
ej

∂uε

∂σ
(σ, 0)F ′(σ)a0(σ) dσ +O(

√
ε) (ε→ 0),

(4.13)
(III) It follows from (4.11), (4.12) and (4.13) that

1

ε

∫
Ω
(ε)
j

{
∇uε · ∇v − zuεv − fεv

}
dx

=

∫
ej

{∂uε
∂σ
(σ, 0)F ′(σ)a0(σ)− zuε(σ, 0)F (σ)a0(σ) (4.14)

−f(σ, 0)F (σ)a0(σ)
}
dσ +O(

√
ε).

Noting that the domain of integration in the left-hand side of (4.13) can be
extended to Ωε and that v ∈ H1(Ωε), by the definition of the Neumann Laplacian
HΩε

0 =
1

ε

∫
Ωε

{
∇uε · ∇v − zuεv − fεv

}
dx

=

∫
ej

{∂uε
∂σ
(σ, 0)F ′(σ)a0(σ)− zuε(σ, 0)F (σ)a0(σ) (4.15)

−f(σ, 0)F (σ)a0(σ)
}
dσ +O(

√
ε).
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Thus, by using partial integration, we have

0 =

∫
ej

uε(σ)
{
− (a0(σ)F ′(σ))

′ − zF (σ)a0(σ) − f(σ, 0)F (σ)a0(σ)
}
dσ +O(

√
ε).

(4.16)
Set ε = εm in (4.15) and let m→∞. Then we have (4.7), where we should note
that, since a0 is positive and bounded below from zero on any closed subset of,
uεm(·, 0) converges to u0 weakly in L

2(I) as well as in L2(I, a0) with any closed
subset I of ej. This completes the proof. ♦

Corollary 4.7. Let u0 be as in Theorem 4.5. Then following limits exist

lim
σ→aj+0

a0(σ)u
′
0(σ), lim

σ→bj−0
a0(σ)u

′
0(σ) .

Proof. The proof is obvious. With σ, σ0 ∈ ej we have

a0(σ)u
′
0(σ) = −

∫ σ
σ0

(
zuε(η, 0)− f(η, 0)

)
dη + a0(σ0)u

′
0(σ0) (4.17)

♦ Noting that Γ consists of at most countably
infinite edges, we may assume that there exists a sequence {εm}∞m=1 such that
there exists u0 ∈ L2(Γ, a0)loc such that

εm → 0 (m→∞), (4.18)

uεm(·, 0)→ u0 in L2(ej) (j ∈ J),

Theorem 4.8. Suppose that Assumptions 2,1, 3.1 and 4.2 hold. Let uεm =
(HΩε − z)

−1fεm be as in (4.18), where f is as in Theorem 4.5. Let c be a vertex
of Γ and set

J(c) = {j ∈ J : aj = c or bj = c}, (4.19)

where aj and bj are the endpoints of ej with bj �a aj. Then it follows that

∑
j∈J(c)

η(j)a0(c)u
′
0(c) = 0, (4.20)

i.e., The Kirchhoff boundary condition is satisfied at each vertex of Γ, where

η(j) =

{
1 if c = bj ,
−1 if c = aj ,

(4.21)

and

a0(c)u
′
0(c) =

{
limσ→bj ,σ∈ej a0(σ)u

′
0(σ) if η(j) = 1,

limσ→aj ,σ∈ej a0(σ)u
′
0(σ) if η(j) = −1.

(4.22)
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Proof. (I) Let F be a function defined on Γ such that

suppF ⊂ (∪j∈J(c)ej) ∪ {c},

F = 1 in a neighborhood of c, (4.23)

F is C2 on each ej with j ∈ J(c).

Let Fj be the restriction of F on εj. Then Fj ∈ C2(Γj) and F ′j ∈ C
1
0 (ej). Set

vj(x) = Fj(τ(x)). Then, using Lemmas 4.1 and 4.4, and proceeding as in the
proof of Theorem 4.5, we have

1

ε

∫
Ω
(ε)
j

{
∇uε · ∇vj − zuεvj − fεvj

}
dx

=

∫
ej

{∂uε
∂σ
(σ, 0)Fj(σ)a0(σ) − zuε(σ, 0)Fj(σ)a0(σ) (4.24)

−f(σ, 0)Fj(σ)a0(σ)
}
dσ +O(

√
ε).

By summing up both sides of (4.24) with respect to j ∈ J(c), which is a finite
set since Γ is of finite degree, we obtain, as in (4.14),

0 =
∑
j∈J(c)

∫
ej

{∂uε
∂σ
(σ, 0)F ′(σ)a0(σ) − zuε(σ, 0)F (σ)a0(σ) (4.25)

= −f(σ, 0)F (σ)a0(σ)
}
dσ +O(

√
ε),

where, and in the sequel, we shall use F (σ) in place of Fj . Here, by partial
integration,

∫
ej

∂uε

∂σ
(σ, 0)F ′(σ)a0(σ) dσ = −

∫
ej

uε(σ, 0)(a0(σ)F ′(σ))
′ dσ, (4.26)

where we should note that F ′ has a compact support in ej . Combine (4.25) and
(4.26) and let ε→ 0 along εm to give

0 =
∑
j∈J(c)

∫
ej

{
− u0(σ, 0)(F ′(σ)a0(σ))

′ − zu0(σ, 0)F (σ)a0(σ) (4.27)

−f(σ, 0)F (σ)a0(σ)
}
dσ +O(

√
ε).

(II) Suppose that c = aj . Then, repeating partial integration, and noting
that F = 1 near c, we obtain

−

∫
ej

u0(σ, 0)(F ′(σ)a0(σ))
′ dσ

=

∫
ej

u′0(σ, 0)F
′(σ)a0(σ) dσ

= lim
σ→aj

∫ bj
σ

u′0(σ)F
′(σ)a0(σ) dσ (4.28)
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= −

∫
ej

(a0(σ)u
′
0(σ, 0))

′F ′(σ) dσ − a0(c)u
′
0(c)

= −

∫
ej

(a0(σ)u
′
0(σ, 0))

′F ′(σ) dσ + η(j)a0(c)u
′
0(c)

Similarly, we have, for c = bj ,

−

∫
ej

u0(σ, 0)(F ′(σ)a0(σ))
′ dσ (4.29)

= −

∫
ej

(a0(σ)u
′
0(σ, 0))

′F ′(σ) dσ + η(j)a0(c)u
′
0(c),

where we should note that u0 ∈ C2(ej) ((ii) of Remark 4.6).

(III) It follows from (4.26), (4.27) and (2.28) that

0 =
∑
j∈J(c)

∫
ej

{
− (a0(σ)u

′
0(σ, 0))

′ − zu0(σ, 0)a0(σ, 0) (4.30)

−f(σ, 0)a0(σ, 0)
}
F (σ) dσ +

∑
j∈J(c)

η(j)a0(c)u
′
0(c)

Since u0 is now a strong solution of the equation (4.9), the first term of the left-
hand side of (4.30) is zero, and hence the Kirchhoff boundary condition (4.20)
follows from (4.30). ♦

5 Continuity of the limit function

Let u0 be a limit function on Γ given by (4.17). Since u0 is a solution of the
differential equation on each ej , j ∈ J , u0 is smooth on each ej (Remark 4.6,
(ii)). In this section, we shall show, under some additional conditions, that {uε}
converges to u0 in stronger senses, and that u0 is continuous at the vertices of
Γ.
The proof of the following proposition will be given in §6.

Proposition 5.1. Suppose that Assumptions 2,1, 3.1 and 4.2 hold. Let uε =
(HΩε − z)−1fε, where z ∈ C\[0,∞), f ∈ H1(Ω), and fε is the restriction
of f on Ωε. Let f satisfy (3.18) Then there exists a positive constants Cj =
Cj(Kj ,K

′
j, Lj ,Mj,mj , z), depending only on Kj, Lj ,Mj,mj and z, such that

‖u′ε(·, 0)‖
2
ej ,a0

(5.1)

≤ Cj
[
ε‖uε‖

2
2,Ωε +

∑
k∈J

(Mk
mk

)(
εL2kK

2
k‖∇f‖

2

Ω
(k)
ε
+ ‖f(·, 0)‖2ek,a0

)]
,

where ‖ · ‖2,Ωε is the norm of the second-order Sobolev space H
2(Ωε) on Ωε.
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Theorem 5.2. Suppose that Assumptions 2,1, 3.1 and 4.2 hold. Suppose that

lim sup
ε→0

√
ε‖uε‖2,Ωε <∞. (5.2)

Let f ∈ H1(Ω) which satisfies (3.18), and let uε = (HΩε − z)
−1fε, where z ∈

C\[0,∞], and fε is the restriction of f on Ω
(ε)
j . Let {εm}

∞
m=1 such that εm → 0

as m → ∞ and uεm(·, 0) converges weakly in each L
2(ej , a0). Then the limit

function u0 is continuous at any vertex c of Γ such that c ∈ Ω.

Example 5.3. Let

Ω = {x = (x1, x2) : −`−(x1) < x2 < `+(x1), a < x1 < b},

Ωε = {x = (x1, x2) : −ε`−(x1) < x2 < ε`+(x1), a < x1 < b}, (5.3)

Γ = {x = (x1, 0) : a ≤ x1 ≤ b},

where −∞ < a < b < ∞, 0 < ε ≤ 1 and `±(t) are positive C1 functions on
[a, b]. and the map τ is given by

τ(x1, x2) = (x1, 0) ((x1, x2) ∈ Ω). (5.4)

Suppose that Ω is a bounded convex set. Note that each Ωε is a convex set, too.
Then it has been known ([11]) that

‖uε‖2,Ωε ≤ C(z)‖fε‖Ωε ≤ C(z)‖f‖Ω, (5.5)

where C(z) is a positive constant depending only on z. Thus the condition (5.2)
is satisfied in this case.

Proof of Theorem 5.2. Let

J(c) = {j ∈ J : aj = c or bj = c}, (5.6)

For each j ∈ J(c) let cj ∈ ej and let ej
′ be all points on ej between c and cj ∈ ej

(including c and cj). Set Γ(c)
′ = ∪j∈J(c)ej

′. Since a0 is bounded below from 0, it
follows from (3.19) and (5.2) that there exists ε0 ∈ (0, 1] such that the sequences
{‖uε(·, 0)‖ej}0<ε<ε0 and {‖u

′
ε(·, 0)‖ej}0<ε<ε0 are uniformly bounded, where the

norm ‖ ‖ej is given in (3.6). Therefore there exist a sequence {εm}, εm → 0
(m→∞), and c′j ∈ ej

′, (j ∈ J(c)), such that limm→∞ uεm(c
′
j , 0) exists for each

j ∈ J(c). Then we see from

uεm(σ, 0) =
∫ σ
c′j
u′ε(η, 0) dη + uεm(c

′
j , 0) (σ ∈ Γ

′
j), (5.7)

uεm(σ, 0) − uεm(σ
′, 0) =

∫ σ
σ′
u′ε(η, 0) dη (σ, σ′ ∈ Γ′j) ,

(3.19) and (5.1) that {uεm} is uniformly bounded and equicontinuous on Γ(c)
′.

Therefore there exists a subsequence of {εm}, which will be denoted again by
{εm}, such that {uεm} converges to u0 uniformly on Γ(c)

′, and hence u0 is
continuous on Γ(c)′. This completes the proof. ♦
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Example 5.4 (Rooms and passages domain). Let {hk}, {δ2k}, k = 1, 2, · · ·,
be infinite sequences of positive numbers such that

∞∑
k=1

hk = b ≤ ∞, 0 < const. ≤
hk+1

hk
≤ 1, 0 < δ2k ≤ h2k+1, (5.8)

and let Hk :=
∑k
j=1 hj, k = 1, 2, · · ·. Then Ω ⊂ R

2 is defined as the union of
the rooms Rk and passages Pk+1 given by

Rk = (Hk − hk, Hk)× (−
hk
2 ,
hk
2 ), (5.9)

Pk+1 = [Hk, Hk + hk+1]× (−
δk+1
2 ,

δk+1
2 ),

for k = 1, 3, 5, . . .. In §6.1 of [2], this was analyzed as an example of a generalized
ridged domain with generalized ridge Γ = [0, b] (b <∞) or Γ = [0,∞) (b =∞).
In order to make Γ a tree, each point on Γ which connects a room and the
adjacent passage can be called a vertex (V0, V1, V2, . . . in Fig. 1)

Figure 1: A domain of Rooms and passages

A mapping τ is defined as follows: (i) in a passage P : τ(x1, x2) = x1; (ii) in
the first half of the room R succeeding the passage P :

τ(x1, x2) = max(x1, |x2| −
δ

2
), 0 ≤ x1 ≤

h

2
, (5.10)

where P is of width δ and 0 ≤ x1 ≤ h in R after translation. Hence τ is Lipschitz
and |∇τ | = 1 almost everywhere in Ω. It is easy to see that a0(x1) in this case is a
bounded continuous function on Γ, and hence the Kirchhoff boundary condition
will be imposed only at x1 = 0, b (b <∞) or x1 = 0 (b =∞). Since a0 is positive
on Γ, the limit function u0 is continuous on Γ, and the differential equation for
u0 can be explicitly written using hk and δ2k.
Finally we are going to show, under some additional conditions. that uε(·, 0)

converges as ε→ 0 without taking a subsequence. We are now in a position to
introduce another weighted L2 spaces on the tree Γ.

Definition 5.5. Suppose that a tree Γ satisfies (I) of Assumption 2.1. Let
a(σ) and b(σ) be positive functions defined on ∪j∈Jej such that a(σ) and b(σ)
are bounded from 0 near each vertex v ∈ Ω. Then let H1(Γ, a, b) be a subspace
of L2(Γ, a) such that F ∈ H1(Γ, a, b) satisfies the following conditions.
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Figure 2: Ct for a domain of rooms and passages

(a) F is continuous on Γ ∩ Ω.

(b) F is absolutely continuous on each ej ∩ Ω.

(c) F satisfies

‖F‖2Γ,a,b,1 =
∑
j→J

∫
ej

|F ′(σ)|2 b(σ)dσ + ‖F‖2Γ,a <∞, (5.11)

where F ′ denotes the derivative of F with respect to σ.

Note that it is assumed that Γ ∩ ∂Ω consists only of the vertices of the tree
Γ. The next lemma guarantees that H1(Γ, a, b) is a Hilbert space with inner
product

(F, G)Γ,a,b,1 =
∑
j∈J

∫
ej

F ′(σ)G′(σ) b(σ)dσ + (F,G)Γ,a. (5.12)

and norm
‖F‖Γ,a,b,1 = [(F, F )Γ,a,b,1]

1/2 (5.13)

Lemma 5.6. Suppose that H1(Γ, a, b) be as in Definition 5.5. Then H1(Γ, a, b)
is a Hilbert space with its norm and inner product given by (5.12) and (5.13).

The proof of this lemma will be given in §6. Set H1(Γ, a0) = H1(Γ, a0, a0).
Then, under Assumption 3.1, it follows from Lemma 5.6 that H1(Γ, a0) is a
Hilbert space.
LetHΓ,0 be the selfadjoint operator in L

2(Γ, a0) associated with the sesquilin-
ear form

`0[F,G] =

∫
Γ

F ′(σ)G′(σ) a0(σ)dσ (F,G ∈ H1(Γ, a0)) (5.14)
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Theorem 5.7. Suppose that Assumptions 2,1, 3.1, 4.2 hold. Suppose that

lim sup
ε→0

√
ε‖uε‖2,Ωε <∞. (5.15)

Suppose that the tree Γ has a finite number of edges. Let f ∈ H1(Ω), and let

uε = (HΩε − z)
−1fε, where z ∈ C\[0,∞], and fε is the restriction of f on Ω

(ε)
j .

Then we have uε(·, 0) ∈ H1(Γ, a0) and

uε(·, 0)→ (HΓ,0 − z)
−1f(·, 0) (ε→ 0) (5.16)

weakly in H1(Γ, a0).

Proof. (I) Let N be the number of the edges of Γ. Then it follows from
Propositions 3.4 and 5.1 that

N∑
j=1

(
‖uε(·, 0)‖

2
ej ,a0 + ‖u

′
ε(·, 0)‖

2
ej ,a0

)

≤ 4|z|−1
[( N∑
j=1

MjK
2
jL
2
j

mj

)
‖f‖2Ωε (5.17)

+|z|−1
{ N∑
j=1

(Mj
mj

)( N∑
k=1

(Mk
mk

)(
εL2kK

2
k‖∇f‖

2

Ω
(k)
ε
+ ‖f(·, 0)‖2ek,a0

)}]

+
( N∑
j=1

Cj
)[
ε‖uε‖

2
2,Ωε +

N∑
k=1

(Mk
mk

)(
εL2kK

2
k‖∇f‖

2

Ω
(k)
ε
+ ‖f(·, 0)‖2ek,a0

)]
,

which, together with the fact that uε ∈ C1(Ω), implies that uε(·, 0) ∈ H1(Γ, a0)
for each 0 < ε ≤ 1. Also, by replacing ‖∇f‖

Ω
(k)
ε
by ‖∇f‖Ω in (5.15), we see

that ‖uε(·, 0)‖Γ,a0,1 is uniformly bounded for ε ∈ (0, 1].
(II) Let {εn}∞n=1 ⊂ (0, 1] be a sequence such that εn → 0 as n→∞ and uεn

converges weakly in H1(Γ, a0). Let u0 ∈ H1(Γ, a0) be the limit function. Since
uεn is a bounded sequence in L

2(Γ, a0) and H
1(Γ, a0) is dense in L

2(Γ, a0),
u0 is also the weak limit of uεn in each L

2(ej , a0) (j ∈ J). Therefore from
Remark 4.6, (ii) and Theorem 4.7 we see that u0 is a solution of the equation
−a0(σ)−1(a0(σ)u′)′ − zu = f(σ, 0) with the Kirchhoff boundary condition at
each vertex of Γ. Let F ∈ H1(Γ, a0). Then, by using partial integration and the
fact that u0 satisfies the above equation with Kirchhoff boundary condition, we
have

`0[u0, F ] =

N∑
n=1

∫
ej

u′0(σ)F
′(σ) a0(σ)dσ

= −

∫
Γ

(a0(σ)u0(σ)
′)′F (σ) dσ (5.18)

= (zu0 − f(·, 0), F )Γ,a0 ,
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where `0[u0, F ] is the sesquilinear form used to define the operatorHΓ,0 ((5.15)).
Then, by the definition of HΓ,0, u0 belongs to the domain of HΓ,0 and

u0 = (HΓ,0 − z)
−1f(·, 0). (5.19)

Since the limiting function u0 is now independent of the subsequence uεn , we
can conclude that the sequence {uε(·, 0)} itself converges to (HΓ,0 − z)−1f(·, 0)
weakly in H1(Γ, a0). This completes the proof. ♦

Remark 5.8. Let (Ω,Γ, τ) be as in Example 5.3. Then not only Theorem
5.7 can be applied to this case, but also it has been shown in [11], §5 that the
sequence {uε(·, 0)} converges to (HΓ,0 − z)−1f(·, 0) strongly in L2(Γ, a0).

6 Proofs

Proof of Lemma 4.1. (I) By (2.6) and (2.7) we have

∫
Ω
(ε)
j uε(x)

v(x) dx

=

∫
ej

F (σ)

∫ ε`+(σ)
−ε`−(σ)

uε(σ, s)|∇τ(σ, s)|
−1 ds dσ

=

∫
ej

F (σ)
{∫ ε`+(σ)
−ε`−(σ)

uε(σ, 0)|∇τ(σ, 0)|
−1 ds (6.1)

+

∫ ε`+(σ)
−ε`−(σ)

(
uε(σ, s)|∇τ(σ, s)|

−1 − uε(σ, 0)|∇τ(σ, 0)|
−1
)
ds
}
dσ

≡ ε

∫
ej

uε(σ, 0)F (σ)a0(σ) dσ +G1 +G2,

where

G1 =
∫
ej
F (σ)

∫ ε`+(σ)
−ε`−(σ)

(uε(σ, s) − uε(σ, 0))|∇τ(σ, s)|−1) ds dσ, (6.2)

G2 =
∫
ej
uε(σ, 0)F (σ)

∫ ε`+(σ)
−ε`−(σ)

(|∇τ(σ, s)|−1 − |∇τ(σ, 0)|−1) ds dσ.

(6.3)

(II) Proceeding as in (3.11), we obtain

1

ε
|G1| ≤

1

ε

∫
ej

|F (σ)|

∫ ε`+(σ)
−ε`−(σ)

( ∫ ε`+(σ)
−ε`−(σ)

∣∣∂uε(σ, η)
∂s

∣∣ dη)|∇τ(σ, s)|−1 ds dσ

≤
Mj

mj

∫
ej

|F (σ)|a0(σ)

∫ ε`+(σ)
−ε`−(σ)

∣∣∂uε(σ, s)
∂s

∣∣ ds dσ (6.4)

≤
Mj

mj

∫
ej

|F (σ)|a0(σ)
([ ∫ ε`+(σ)

−ε`−(σ)

∣∣∂uε(σ, s)
∂s

∣∣2|∇τ(σ, s)|−1 ds]1/2 ×
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[ ∫ ε`+(σ)
−ε`−(σ)

|∇τ(σ, s)| ds
]1/2)

dσ

Using (3.3) and the first inequality of (3.2) we see that

[ ∫ ε`+(σ)
−ε`−(σ)

∣∣∂uε(σ, s)
∂s

∣∣2|∇τ(σ, s)|−1 ds]1/2

≤ Kj
[ ∫ ε`+(σ)
−ε`−(σ)

|∇uε(σ, s)|
2|∇τ(σ, s)|−1 ds

]1/2
,

and

[ ∫ ε`+(σ)
−ε`−(σ)

|∇τ(σ, s)| ds
]1/2
≤
√
εLjMj , (6.5)

√
a0(σ) ≤

√
Lj
mj
,

and hence we have

1

ε
|G1| ≤

(Mj
mj

)3/2
LjKj

√
ε

∫
ej

|F (σ)|
√
a0(σ)×

[ ∫ ε`+(σ)
−ε`−(σ)

|∇uε(σ, s)|
2|∇τ(σ, s)|−1 ds

]1/2
dσ (6.6)

≤
(Mj
mj

)3/2
LjKj

√
ε‖F‖ej,a0‖∇uε‖Ω(ε)j

.

(III) As for G2, we have

1

ε
|G2| ≤

∫
ej

|uε(σ, 0)||F (σ)|a0(σ)ψε(σ) dσ, (6.7)

where ψε(σ) is given by (4.3). Thus, we obtain

1

ε
|G2| ≤ ‖uε(·, 0)‖ej ,a0

[ ∫
ej

|F (σ)|2ψε(σ)
2a0(σ) dσ

]1/2
, (6.8)

which, together with (6.5), completes the proof. ♦

Proof of Lemma 4.4. (I) Let aj and bj be the vertices of ej such that bj �a
aj . Since ∇uε · ∇v is invariant under the shift and rotation of the coordinate
system, we may assume that our coordinate system has the origin at aj and the
x1-axis in the direction of ej. According to the change of coordinates system, the
constant Kj in (3.3) in Assumption 3.1 may have to be replaced another (finite)
positive constant which will be denoted again byKj, while all other constants in
Assumption 3.1 do not need to be changed. Then, since v(x) = F (τ(x)) = F (x1)
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in Ω
(ε)
j , ε ∈ (0, ε0), we have

∫
Ω
(ε)
j

∇uε · ∇v dx =

∫
Ω
(ε)
j

∂uε

∂x1
· F ′(x1) dx

=

∫
ej

F ′(σ)

∫ ε`+(σ)
−ε`−(σ)

∂uε

∂σ
(σ, s) ds dσ

=

∫
ej

F ′(σ)

∫ ε`+(σ)
−ε`−(σ)

∂uε

∂σ
(σ, 0) ds dσ (6.9)

+

∫
ej

F ′(σ)

∫ ε`+(σ)
−ε`−(σ)

(∂uε
∂σ
(σ, s)−

∂uε

∂σ
(σ, 0)

)
ds dσ

= ε

∫
ej

∂uε

∂σ
(σ, 0)F ′(σ)a0(σ) dσ +H.

Here we should note that we may assume, by (4.5), that |∇τ(σ, s)| = 1 in the
change of variable formula (2.8).
(II) By noting that

d

dσ

∫ ε`+(σ)
−ε`−(σ)

(uε(σ, s) − uε(σ, 0)) ds

=

∫ ε`+(σ)
−ε`−(σ)

(∂uε
∂σ
(σ, s)−

∂uε

∂σ
(σ, 0)

)
ds (6.10)

+ε`′+(σ)(uε(σ, ε`+(σ)) − uε(σ, 0)) + ε`
′
−(σ)(uε(σ,−ε`−(σ)) − uε(σ, 0)),

we have

H =

∫
ej

F ′(σ)
d

dσ

∫ ε`+(σ)
−ε`−(σ)

(uε(σ, s) − uε(σ, 0)) ds dσ

−ε

∫
ej

F ′(σ)`′+(σ)(uε(σ, ε`+(σ)) − uε(σ, 0)) dσ (6.11)

−ε

∫
ej

F ′(σ)`′−(σ)(uε(σ,−ε`−(σ)) − uε(σ, 0)) dσ

≡ H1 −H2 −H3.

Using partial integration and noting that F ′(σ) ∈ C10 (ej), we obtain

H1 = −

∫
ej

F ′′(σ)

∫ ε`+(σ)
−ε`−(σ)

(uε(σ, s) − uε(σ, 0)) ds dσ, (6.12)

and hence, by proceeding as in (3.11),

|H1| ≤

∫
ej

|F ′′(σ)|

∫ ε`+(σ)
−ε`−(σ)

∣∣ ∫ s
0

∣∣∂uε
∂s
(σ, η)

∣∣ dη∣∣ ds dσ
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≤ ε

∫
ej

|F ′′(σ)|a0(σ)

∫ ε`+(σ)
−ε`−(σ)

∣∣∂uε
∂s
(σ, s)

∣∣ ds dσ (6.13)

≤ ε3/2Lj‖F
′′‖ej ,a0‖∇uε‖Ω(ε)j

.

As for the term H2, we have

|H2| ≤ ε

∫
ej

|F ′(σ)||`′+(σ)|

∫ ε`+(σ)
−ε`−(σ)

∣∣∂uε
∂s
(σ, s)

∣∣ ds dσ

≤ ε3/2Rj

∫
ej

|F ′(σ)|
√
a0(σ)

[ ∫ ε`+(σ)
−ε`−(σ)

∣∣∂uε
∂s
(σ, s)

∣∣2 ds]1/2 dσ (6.14)
≤ ε3/2Rj‖F

′‖ej ,a0‖∇uε‖Ω(ε)j
.

Similarly,
|H3| ≤ ε

3/2Rj‖F
′‖ej ,a0‖∇uε‖Ω(ε)j

. (6.15)

The inequality (4.6) is obtained from (6.12), (6.13) and (6.14). ♦

Proof of Proposition 5.1. (I) As in the proof of Lemma 4.4, we may assume
that our coordinate system has the origin at aj and the x1-axis in the direction
of ej . Let I ⊂ ej be a closed interval and set

T ≡

∫
I

∂uε

∂σ
(σ, 0)F ′(σ)a0(σ) dσ (6.16)

for F ∈ C(I), where we should note that uε(σ, 0) ∈ C(I), too, and hence T is
well-defined. Then, we have

T =
1

ε

∫
I

F ′(σ)

∫ ε`+(σ)
−ε`−(σ)

∂uε

∂σ
(σ, 0) ds dσ

=
1

ε

∫
I

F ′(σ)

∫ ε`+(σ)
−ε`−(σ)

{∂uε
∂σ
(σ, 0)−

∂uε

∂σ
(σ, s)

}
ds dσ (6.17)

+
1

ε

∫
I

F ′(σ)

∫ ε`+(σ)
−ε`−(σ)

∂uε

∂σ
(σ, s) ds dσ

≡ T1 + T2

(6.18)

(II) We have

|T1| ≤
1

ε

∫
I

|F ′(σ)|

∫ ε`+(σ)
−ε`−(σ)

∣∣ ∫ s
0

∣∣ ∂2uε
∂σ∂s

(σ, η)
∣∣ dη∣∣ ds dσ

≤

∫
I

|F ′(σ)|a0(σ)

∫ ε`+(σ)
−ε`−(σ)

∣∣ ∂2uε
∂σ∂s

(σ, s)
∣∣ ds dσ (6.19)

≤
√
εLj

∫
I

|F ′(σ)|
√
a0(σ)

[ ∫ ε`+(σ)
−ε`−(σ)

∣∣ ∂2uε
∂σ∂s

(σ, s)
∣∣2 ds]1/2 dσ.
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Since σ = x1, we have from (3.3)

∣∣ ∂2uε
∂σ∂s

∣∣2 = ∣∣ ∂
∂s

(∂uε
∂x1

)∣∣2 ≤ K2j (∣∣∂
2uε

∂x21

∣∣2 + ∣∣ ∂2uε

∂x1∂x2

∣∣2), (6.20)

which is combined with (6.17) to give

|T1| ≤
√
εLjKj

√
Mj‖F

′‖I,a0‖uε‖2,Ωε , (6.21)

where we have used the change of variable formula (2.6) and Assumption 3.1,
(ii).
(III) As for T2, we can proceed as in (II) to obtain

|T2| ≤
1
√
ε
Kj
√
Mj‖F

′‖I,a0‖∇uε‖Ωε , (6.22)

which, together with the second inequality of (3.19), yield

|T2| ≤
1
√
ε
|z|−1/2

√
2Kj
√
Mj‖F

′‖I,a0‖f‖Ωε. (6.23)

(IV) It follows from (6.16), (6.19) and (6.21) that

∣∣ ∫
I

∂uε

∂σ
(σ, 0)F ′(σ)a0(σ) dσ

∣∣ ≤ Cj(√ε‖uε‖2,Ωε + 1√ε‖f‖Ωε
)
‖F ′‖I,a0 (6.24)

Setting F (σ) = uε(σ, 0) in (6.22) and noting that I ⊂ ej is arbitrary, we obtain

‖u′ε(·, 0)‖ej ,a0 ≤ const.
(√
ε‖uε‖2,Ωε +

1
√
ε
‖f‖Ωε

)
. (6.25)

As in the proof of Proposition 3.4, we can estimate ‖f‖Ωε by using (3.8) with u
replaced by f . Thus we have (5.1). ♦

Proof of Lemma 5.6. Since it is easy to see that H1(Γ, a, b) is a pre-Hilbert
space, we have only to prove the completeness of H1(Γ, a, b). Let {Fn}∞n=1 be
a Cauchy sequence of H1(Γ, a, b). Let Γ0 be a connected compact set of Γ such
that Γ0 ⊂ Γ∩Ω. Since Γ0 is closed and meets only a finite number of edges ([3],
Lemma 2.1), it follows that

inf
σ∈Γ0\V (Γ)

a(σ) > 0, inf
σ∈Γ0\V (Γ)

b(σ) > 0 (6.26)

and hence {Fn}∞n=1 is a Cauchy sequence with respect to the norm

|||F |||Γ0,1 =

∫
Γ0

{∣∣dF
dσ

∣∣2 + |F (σ)|2} dσ. (6.27)

Since a connected compact set Γ0 ⊂ Γ∩Ω can be chosen arbitrarily, we see that
there is a function F on Γ such that

|||F − Fn|||Γ0,1 → 0 (n→∞) (6.28)
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for any connected compact Γ0 ⊂ Γ∩Ω. We may assume by taking a subsequence
of {Fn}∞n=1 if necessary that Fn(σ) converges to F (σ) for almost all σ in Γ∩Ω.
Then, by using the inequality

|Fn(σ)− Fm(σ)| ≤
∣∣ ∫ σ
σ0

∣∣dFn(η)
dη

−
dFm(η)

dη

∣∣ dη∣∣+ |Fn(σ0)− Fm(σ0)|
≤

∫
Γ0

∣∣dFn(η)
dη

−
dFm(η)

dη

∣∣ dη + |Fn(σ0)− Fm(σ0)| → 0
as n,m → ∞ for σ ∈ Γ0, where {Fn} converges at σ = σ0, we see that {Fn}
converges uniformly on Γ0, and hence {Fn} converges to a continuous function
F on Γ ∩ Ω. This proves that F is continuous on Γ ∩ Ω. Let σ, σ′ ∈ ej . Then,
by letting n→∞ in

Fn(σ
′)− Fn(σ) =

∫
P (σ,σ′)

dFn

dη
dη,

we have

F (t′)− F (t) =

∫
P (σ,σ′)

dFn

dη
dη,

F is locally absolute continuous on each ej . By noting that Γ\Γ∩Ω = Γ∩∂Ω is
a countable set, it is easy to see that {Fn} converges to F in the norm ‖ ‖Γ,a0,1,
which completes the proof. ♦
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