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ON THE SECOND EIGENVALUE OF A HARDY-SOBOLEV
OPERATOR

K. SREENADH

Abstract. In this note, we study the variational characterization and some

properties of the second smallest eigenvalue of the Hardy-Sobolev operator

Lµ := −∆p − µ
|x|p with respect to an indefinite weight V (x).

1. Introduction

Let Ω be a domain in RN containing 0. We recall the classical Hardy-Sobolev
inequality which states that, for 1 < p < N ,∫

Ω

|∇u|pdx ≥
(N − p

p

)p
∫

Ω

|u|p

|x|p
dx, ∀u ∈ C∞c (Ω). (1.1)

Let D1,p
0 (Ω) be the closure of C∞c (Ω) with respect to the norm ‖u‖1,p = ‖∇u‖Lp(Ω).

The Hardy-Sobolev operator Lµ on D1,p
0 (Ω) is defined as

Lµu := −∆pu−
µ

|x|p
|u|p−2u, 0 < µ <

(N − p

p

)p

,

where ∆pu = div(|∇u|p−2∇u), is the p-Laplacian.
We are interested in the variational characterization and some properties of the

second smallest eigenvalue of the problem

Lµu = λV (x)|u|p−2u in Ω
u = 0 on ∂Ω.

(1.2)

On the weight on V (x), we assume the following:
(H1) V ∈ L1

loc(Ω), V + = V1 + V2 6≡ 0 with V1 ∈ LN/p(Ω) and V2 is such that
limx→y, x∈Ω |x − y|pV2(x) = 0 for all y ∈ Ω, lim|x|→∞,x∈Ω |x|pV2(x) = 0,
where V +(x) = max{V (x), 0}.

(H2) There exists r > N/p and a closed subset S of measure zero in RN such
that Ω\S is connected and V ∈ Lr

loc(Ω\S).
Here we note that there is no global integrability condition assumed on V −.

This work is motivated by the work in [8]. The eigenvalue problem with indefinite
weights has been studied for the case µ = 0 by Szulkin-Willem [8]. However,
some important properties, of the smallest eigenvalue λ1, such as simplicity and
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being isolated were shown only for p = 2. Recently the author in [6] proved the
simplicity of λ1 and sign changing nature of eigenfunctions corresponding to other
eigenvalues when Ω is bounded. Infact in [6] the author studied these properties for
Lµ. Following the same arguments, one can prove these results in the present case.
However, showing that λ1 is isolated and characterization of the second smallest
eigenvalue, were open questions. To prove these properties, we follow the ideas in
[5] and in [3]. Here we should mention that our results are new even for the case
µ = 0. We use the following results in later sections.

Propositioin 1.1 (Boccardo-Murat [1]). Let Ω be a bounded domain in RN and
let un ∈W 1,p(Ω) satisfy

−∆pun = fn + gn in D′(Ω)

and

(i) un → u weakly in W 1,p(Ω)
(ii) un → u in Lp(Ω)
(iii) fn → f in W−1,p

′

(iv) gn is a bounded sequence of Radon measures.

Then there exists a subsequence {un} of {un} such that ∇un → ∇u a.e. in Ω.

Propositioin 1.2 (Brezis-Lieb [2]). Let fn → f a.e in Ω as n → ∞ and fn be
bounded in Lp(Ω), for some p > 1. Then

lim
n→∞

{‖fn‖p − ‖fn − f‖p} = ‖f‖p.

Let X be a Banach space and let M = {u ∈ X g(u) = 0} with g ∈ C1. Also
let f : X → R be a C1 functional and let f̃ be the restriction of f to M . Then we
have the following form of the Mountain pass Theorem [7].

Propositioin 1.3. Let u, v ∈M with u 6≡ v and suppose that

c := inf
h∈Γ

max
w∈h(t)

f(w) > max{f(u), f(v)}

where
Γ := {h ∈ C([−1,+1],M) h(−1) = u and h(1) = v} 6= ∅

Also suppose that f̃ satisfies Pailse-Smale (PS) condition on M . Then c is a critical
value of f̃ .

We define the norm

‖f̃ ′‖∗ = inf{‖f ′(u)− tg′(u)‖X∗ : t ∈ R}.

The variational characterization of the smallest eigenvalue is given by

λ1 = inf
0 6≡u∈W 1,p

0 (Ω)

∫
Ω
|∇u|pdx−

∫
Ω
|u|p
|x|p dx∫

Ω
|u|pV (x)dx

and the corresponding eigenfunction is denoted by φ1, which is unique under the
condition

∫
Ω
|φ|pV (x)dx = 1 (see [6]). We will prove the following property.

Theorem 1.4. The eigenvalue λ1 is isolated in the spectrum of Lµ.
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We will establish the following variational characterisation of the second smallest
eigenvalue:

λ2 = inf
γ∈Γ

sup
u∈γ

∫
Ω
|∇u|pdx−

∫
Ω
|u|p
|x|p dx∫

Ω
|u|pV (x)dx

,

where Γ = {γ ∈ C ([−1, 1] : M) γ(−1) = −φ1, γ(1) = φ1} and M is defined as in
the next section. We show also the following property of λ2.

Theorem 1.5. If Va ≤ Vb, then λ2(Va) ≥ λ2(Vb).

2. Proofs of results

In this section we show that λ1 is siolated and give a variational characterization
for second smallest eigenvalue of Lµ.

Lemma 2.1. The mapping u 7−→
∫
Ω
V +|u|pdx is weakly continuous.

The proof of this lemma follows from (1.1) and (H1). We refer the reader to [8]
for more details.
Now, we consider the set

M =
{
u ∈ D1,p

0 (Ω)
∫

Ω

|u|pV (x) = 1
}
.

Since M is not a manifold in D1,p
0 (Ω), we define X = {u ∈ D1,p

0 (Ω) ‖u‖X < ∞},
where

‖u‖p
X :=

∫
Ω

|∇u|pdx+
∫

Ω

|u|pV −dx.

Then M is a C1-manifold as a subset of the space X. On this space, we define the
functional

Jµ(u) =

∫
Ω
|∇u|p dx−

∫
Ω

µ
|x|p |u|

p dx∫
Ω
|u|pV dx

.

Let J̃µ denote the restriction of Jµ to M . and let ‖u‖p
Lp(V ) =

∫
Ω
|u|pV (x)dx.

Lemma 2.2. The functional J̃µ satisfies the Palais-Smale condition at any positive
level.

Proof. Let {un} be a sequence in M such that Jµ(un) → λ > 0 and

〈Jµ(un), φ〉 − Jµ(un)
∫

Ω

|un|p−2unφV dx = o(1). (2.1)

Using Hardy-Sobolev inequality and un ∈ M , it follows that un is bounded in X
which gives the existence of a subsequence {un} of {un} and u such that un → u

weakly in D1,p
0 (Ω). Since λ > 0 we may assume that Jµ(un) ≥ 0. Using Lemma

2.1 and (2.1), we get

〈J ′µ(un)− J ′µ(u), un − u〉+ Jµ(un)
∫

Ω

[
|un|p−2un − |u|p−2u

]
(un − u)V −dx = o(1).

By Fatou’s Lemma,

0 =
∫

Ω

lim
n→∞

[
|un|p−2un − |u|p−2u

]
[un − u]V −

≤ lim inf
n→∞

∫
Ω

[
|un|p−2un − |u|p−2u

]
[un − u]V −dx.
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Also, un satisfies

−∆pun −
µ

|x|p
|un|p−2un − Jµ(un)|un|p−2unV (x) = o(1) in D′(Ωm),

where Ωm is a bounded domain such that Ω = ∪∞m=1Ωm. By Proposition 1.1,
noting that µ

|x|p |un|p−2un + Jµ(un)|un|p−2unV
− is a bounded sequence of Radon

measures, there exists a subsequence {um
n } of {un} an u such that ∇um

n → ∇u a.e.,
in Ωm. By the process of diagonalization we can choose a subsequence {un} such
that ∇un → ∇u a.e. in Ω. By Proposition 1.2, we have

‖un − u‖p
1,p = ‖un‖p

1,p − ‖u‖
p
1,p + o(1) (2.2)

‖un − u

|x|
‖p

Lp(1) = ‖un

|x|
‖p

Lp(1) − ‖
u

|x|
‖p

Lp(1) + o(1). (2.3)

We also have, by Fatau’s lemma,∫
Ω

V −(|un|p + |u|p − |un|p−2unu− |u|p−2uun)dx

≥
∫

Ω

V − (|un|p + |u|p)−
( ∫

Ω

V −|un|p
)(p−1)/p( ∫

Ω

V −|u|p
)1/p

−
( ∫

Ω

V −|u|p
)(p−1)/p( ∫

Ω

V −|un|p
)1/p

=
[( ∫

Ω

V −|un|p
)(p−1)/p

−
( ∫

Ω

V −|u|p
)(p−1)/p]

×
[( ∫

Ω

V −|un|p
)1/p

−
( ∫

Ω

V −|u|p
) 1

p
]
≥ 0 .

Now using (2.2) and (2.3),

o(1) =〈Jµ(un)− Jµ(u), (un − u)〉+ Jµ(un)
∫

Ω

[|un|p−2un − |u|p−2u](un − u)V −dx

≥
∫

Ω

|∇un −∇u|p −
∫

Ω

µ

|x|p
|un − u|p + o(1)

≥
(
1− µ

λN

)
‖un − u‖1,p + o(1).

i.e., un → u in D1,p
0 (Ω). Notice that

o(1) =〈Jµ(un)− Jµ(u), un − u〉

=
∫

Ω

V −
(
|un|p−2un − |u|p−2u

)
(un − u)dx+ o(1) ≥ 0 .

Therefore,
∫
Ω
V −|un|pdx→

∫
Ω
V −|u|pdx and hence ‖un‖X → ‖u‖X . �

Observe that J̃µ(u) ≥ λ1 and J̃µ(±φ1) = λ1. So +φ1 and −φ1 are two global
minima of J̃µ. Now consider

Γ = {γ ∈ C([−1, 1];M) γ(−1) = −φ1, γ(1) = φ1}.

By Proposition 1.3, there exists u ∈ X such that J̃ ′µ(u) = 0 and Jµ(u) = C, where

C = inf
γ∈Γ

sup
u∈γ

J̃µ(u). (2.4)

Lemma 2.3. (i) M is locally arc wise connected
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(ii) Any connected open subset B of M is arcwise connected
(iii) if B′ is a component of an open set A, then ∂B′ ∩B is empty.

The proof of this lemma follows from the fact that M is a Banach Manifold. For
a proof we refer the reader to [3]. Define O = {u ∈M J̃µ(u) < r}

Lemma 2.4. Each component of O contains a critical point of J̃µ.

Proof. Let O1 be a component of O and let d = inf{J̃µ(u), u ∈ O1}, where O1 is
X-closure of O. Suppose this infimum is achieved by v ∈ O1. Then by Lemma 2.3
this cannot be in ∂O1 and hence v is in O1 and is a critical point of J̃µ.

Now we show that d is achieved. Let un ∈ O1 be a minimizing sequence with
J̃µ(un) ≤ d+ 1

n2 . By Ekeland Variational Principle, we get vn ∈ O1 such that

J̃µ(vn) ≤ J̃µ(un), (2.5)

‖vn − un‖X ≤ 1
n
, (2.6)

J̃µ(vn) ≤ J̃µ(v) +
1
n
‖vn − v‖X , ∀v ∈ O1 . (2.7)

From (2.5) it follows that J̃µ(vn) is bounded. Now we claim that ‖J̃µ
′
(vn)‖∗ → 0.

We fix n and choose w ∈ X tangent to M at vn, i.e.,
∫
Ω
|vn|p−2vnwV = 0. Now we

consider the path

ut =
vn + tw

‖vn + tw‖Lp(V )
.

Since J̃µ(vn) ≤ d + 1
n < r for n large, we have vn ∈ O1 and by Lemma 2.3 (iii),

vn /∈ ∂O1. So ut ∈ O1 for |t| small. Taking v = ut in (2.7) we obtain

J̃µ(vn)− J̃µ(vn + tw)
t

≤ 1
nt
‖vn(

1
r(t)

− 1)‖X +
1
n
‖w‖+

1
t

( 1
r(t)p

− 1
)
J̃µ(vn + tw),

(2.8)

where r(t) = ‖vn + tw‖Lp(V ). The last term in (2.8) involves r(t)p−1
t which can be

calculated as
d

dt
r(s)p

∣∣
s=0

= lim
t→0

r(t)p − 1
t

.

On the other hand since w is tangent to M at vn,

d

dt
r(s)p

∣∣
s=0

= p

∫
Ω

|vn|p−2vnwV (x)dx = 0.

Therefore, we have r(t)p−1
t → 0 as t → 0 and that the second term goes to 0.

Similarly, the first term also goes to zero as t→ 0. Taking limit t→ 0 in (2.8) we
get

〈J ′µ(vn), w〉 ≤ 1
n
‖w‖X , for all w ∈ X tangent to M at vn.

Now if w is arbitrary in X. We choose αn so that (w − αnvn) is tangent to M at
vn. i.e., αn =

∫
Ω
|vn|p−2vnwV (x)dx. So (2.8) gives,

|〈J ′µ(vn), w〉 − 〈J ′µ(vn), vn〉
∫

Ω

|vn|p−2vnw| ≤
1
n
‖w − αnvn‖X
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Since ‖αnvn‖X ≤ C.‖w‖X , we have

|〈J ′µ(vn), w〉 − tn

∫
Ω

|vn|p−2vnwV (x)dx| ≤ εn‖w‖X

where tn = 〈J ′µ(vn), vn〉 and εn → 0. Therefore, ‖J̃µ
′
(vn)‖∗ → 0 and vn is a Palais-

Smale sequence. Hence by Lemma 2.2, {vn} has a convergent subsequence with
limit, say, v. Then d is achieved at v. �

Lemma 2.5. The number C defined by (2.4) is the second smallest eigenvalue of
Lµ

Proof. We follow the proof in [3]. Assume by contradiction that there exists an
eigenvalue δ such that λ1 < δ < C. In other words, J̃µ has a critical value δ with
λ1 < δ < C. We will construct a path in Γ on which J̃µ remains ≤ δ, which yields
a contradiction with the definition of C. Let u ∈ M satisfies the equation

−∆pu−
µ

|x|p
|u|p−2u = δV (x)|u|p−2u in D′(Ω),

and u changes sign in Ω. Taking u+ and u− as test function we get∫
Ω

|∇u+|p dx−
∫

Ω

µ

|x|p
|u+|p dx = δ

∫
Ω

(u+)pV (x) dx∫
Ω

|∇u−|p dx−
∫

Ω

µ

|x|p
(u−)p dx = δ

∫
Ω

(u−)pV (x) dx .

Consequently

J̃µ(u) = J̃µ(
u+

‖u+‖Lp(V )
) = J̃µ(

−u−

‖u−‖Lp(V )
) = J̃µ(

u−

‖u−‖Lp(V )
) = δ.

We will consider the following three paths in M , which go respectively from u to
u+

‖u+‖Lp(V )
, from u+

‖u+‖Lp(V )
to u−

‖u−‖Lp(V )
and −u−

‖u−‖Lp(V )
to u:

u1(t) =
tu+ (1− t)u+

‖tu+ (1− t)u+‖Lp(V )
,

u2(t) =
tu+ + (1− t)u−

‖tu+ (1− t)u−‖Lp(V )
,

u3(t) =
−tu− + (1− t)u

‖ − tu− + (1− t)u‖Lp(V )
.

Also we have
J̃µ(u1(t)) = J̃µ(u2(t)) = J̃µ(u3(t)) = δ.

By joining the paths u1(t) and u2(t) we get a new path which connects u and
u−

‖u−‖Lp(V )
and stays at levels ≤ δ. Call this path as u4(t). Now we define O = {v ∈

M J̃µ(v) < δ}. Clearly φ1,−φ1 ∈ O. Since u−

‖u−‖Lp(V )
does not change sign and

vanishes on a set of positive measure it is not a critical point of J̃µ. So u−

‖u−‖Lp(V )

is a regular value of J̃µ, and consequently there exists a C1 path η : [−ε, ε] → M

with η(0) = u−

‖u−‖Lp(V )
and d

dt (J̃µ(η(t))
∣∣
t=0

6= 0. choose a point v ∈ O on this path

(this is possible because J̃µ
′
(η(t))

∣∣
t=0

6= 0) we can thus move from u−

‖u−‖Lp(V )
to

v through this path which lies at levels < δ. Taking the component of O which
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contains v and applying Lemma 2.3 together with Lemma 2.4, we can connect v
to +φ1 (or to −φ1) with a path in M at levels < δ. Let us assume that this is
+φ1 which is reached in this way. Now call this path connecting u−

‖u−‖Lp(V )
and φ1

as u5(t), and consider the symmetric path −u5(t), which goes from − u−

‖u−‖Lp(V )
to

−φ1. We evaluate the functional J̃µ along −u5(t). Since J̃µ is even,

J̃µ(−u5(t)) = J̃µ(u5(t)) ≤ δ.

Finally with u3(t) we can connect − u−

‖u−‖Lp(V )
with u by a path which stays at level

δ . Putting every thing together we get a path connecting −φ1 and φ1 staying at
levels ≤ δ. This concludes the proof. �

Note that Theorem 1.4 is an immediate consequence of Lemma 2.5. So we have
the following characterization of λ2, the second smallest eigenvalue of Lµ,

λ2 = inf
γ∈Γ

sup
u∈γ

∫
Ω

|∇u|pdx−
∫

Ω

|u|p

|x|p
dx.

Now let µk be the sequence of eigenvalues obtained in [6] which are characterized
as

µk = inf
A∈F

sup
u∈A

∫
Ω

|∇u|p −
∫

Ω

µ

|x|p
|u|p ,

where F = {A ⊂M the genus of A ≥ k}.

Corollary 2.6. With the notation above, µ2 = λ2.

Proof. Let γ be a curve in Γ. By joining this with its symmetric path −γ(t) we can
get a set of genus ≥ 2 where Jµ does not increase its values. Therefore, λ2 ≥ µ2.
But by Theorem 1.4, there is no eigenvalue between λ1 and λ2. Hence λ2 = µ2. �

Lemma 2.7. Let u ∈ X be a solution of (1.2) and let O be a component of {x ∈
Ω u(x) > 0}. Then u

∣∣
O ∈ D1,p

0 (O)

Proof. Let un ∈ Cc(Ω) ∩D1,p
0 (Ω) such that un → u in D1,p

0 (Ω). Then u+
n → u+ in

D1,p
0 (Ω). Let vn = min(un, u) and let φ : R → R be a C1 function such that

φ(t) =

{
0 for t ≤ 1/2
1 for t ≥ 1

and |φ′| ≤ 1. Let ψr(x) = φ
(
d(x, S)/r

)
where d(x, S) = dist(x, S). Then

ψr(x)

{
0 for d(x, S) ≤ r/2
1 for d(x, S) ≥ r

and |∇ψr(x)| ≤ C/r for some constant C. Now we define wn,r(x) = ψrvn(x)
∣∣
O.

Since ψrvn ∈ C(Ω), we have wn,r ∈ C(O) and vanishes on the boundary ∂O.
Indeed for x ∈ ∂O∩S then ψr(x) = 0 and so wn,r(x) = 0. If x ∈ ∂O∩Ω and x /∈ S
then u(x) = 0(since u is continuous except at 0) and so vn(x) = 0 . If x ∈ ∂Ω
then un(x) = 0 and hence vn(x) = 0. So in all the cases wn,r(x) = 0 for x ∈ ∂O.
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Therefore, wn,r ∈ D1,p
0 (O).∫

Ω

|∇(wn,r)−∇(ψru)|p =
∫
O
|(∇ψr)vn + ψr∇vn − (∇ψr)u− ψr∇u|p dx

≤ ‖∇ψrvn −∇ψru‖p
Lp(O) + ‖ψr∇vn − ψr∇u‖p

Lp(O)

which goes to 0 as n→∞. i.e., wn,r → ψru
∣∣
O in D1,p

0 (O). Now∫
O
|∇ψru+ ψr∇u− u|p ≤

∫
O
|ψr∇u−∇u|p +

∫
O∩{r/2<|x|<r}

|∇ψr|pu

→ 0 as r → 0 by (1.1). Therefore, u
∣∣
O ∈ D1,p

0 (O). �

Proof of Theorem 1.5. We denote J̃µ corresponding to Vb with J̃µ,b. Let ua be a
solution to

−∆pu−
µ

|x|p
|u|p−2u = λ2Va(x)|u|p−2u in D′(Ω).

Assuming that the claim below is true, we have

J̃µ,b

(
v+

‖v+‖Lp(Vb)

)
< λ2(Va), J̃µ,b

(
v−

‖v−‖Lp(Vb)

)
< λ2(Va), J̃µ,b (v) < λ2(Va).

Define Ob = {u ∈ X,
∫
Ω
|u|pVb = 1, J̃µ,b (v) < λ2(Va).} Now we proceed as in

Lemma 2.5, to define the paths vi(t), i = 1, ..., 5 on which J̃µ,b < λ2(Va). We join
these paths in a way described in Lemma 2.5 to obtain a path γ(t) in Γb (the
family of paths corresponds to Vb) such that J̃µ,b(γ(t)) < λ2(Va). This completes
the proof.
Claim: There exists v ∈ X, which changes sign and∫

Ω
|∇v+|p dx−

∫
Ω

µ
|x|p |v

+|p dx∫
Ω
(v+)pVb dx

< λ2(Va),∫
Ω
|∇v−|p dx− µ

|x|p |v
−|p dx∫

Ω
(v−)pVb dx

< λ2(Va).

(2.9)

Proof of Claim: Since ua is an eigenfunction corresponding to λ2 > λ1, it has to
change sign in Ω (see [6]). Let O1 and O2 be positive and negative nodal domains
of ua respectively such that∫

O1

Va (u+
a )p dx <

∫
O1

Vb (u+
a )p dx and

∫
O2

Va (u−a )p dx ≤
∫

O2

Vb (u−a )p dx.

By Lemma 2.7, ua

∣∣
O1
∈ D1,p

0 (O1) and also in Lp(O1, V
−). We have

λ1(O1, Vb) ≤

∫
O1
|∇ua|p − µ

|x|p |ua|p∫
O1
|ua|pVb

< λ2(Va).

Therefore, λ1(O1, Vb) < λ2(Va). Simillarily λ1(O2, Vb) ≤ λ2(Va). Now we modify
O1 and O2 to get Õ1 and Õ2 with empty intersection and λ1(Õ1, Vb) < λ2(Va)
and λ1(Õ2, Vb) < λ2. For η > 0, let O1(η) = {x ∈ O1 dist(x,Oc

1) > η}. Then
λ1(O1(η), Vb) ≥ λ1(O1, Vb) and λ1(O1(η), Vb) → λ1(O1, Vb) as η → 0. Therefore,
there exists η0 > 0 such that λ1(O1(η), Vb) < λ2(Va) for 0 < η < η0. Let x ∈ ∂O2∩Ω
and 0 < η < min{η0,dist(x0,Ωc)}. Now define Õ2 = O2 ∪ B(x0, η/2). Then
Õ2 ∩ O1(η) = ∅, λ1(Õ2, Vb) < λ1(O2, Vb) < λ2(Va). Now we consider the function
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v = v1 − v2, where vi are the extensions by zero outside Õi of the eigenfunctions
associated to λ1(Õi, Vb). Then v satisfies (2.9). �
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