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ON THE SECOND EIGENVALUE OF A HARDY-SOBOLEV
OPERATOR

K. SREENADH

ABSTRACT. In this note, we study the variational characterization and some
properties of the second smallest eigenvalue of the Hardy-Sobolev operator
L, :=—-Ap— ‘L with respect to an indefinite weight V().

z|P

1. INTRODUCTION

Let Q be a domain in RY containing 0. We recall the classical Hardy-Sobolev
inequality which states that, for 1 <p < N,
Juf?

/ \VulPdz > (M)p W de,  wu e 2 (9). (1.1)
Q p

o |zl
Let Dy”(2) be the closure of CS°(Q) with respect to the norm ||ul|; , = VullLe @)
The Hardy-Sobolev operator L, on Dy () is defined as

N — p\P
Lyu:=—-Apu— L|u|p’2u, O<p< (J) ,
|z|P D
where Apu = div(|Vu[P~?Vu), is the p-Laplacian.
We are interested in the variational characterization and some properties of the
second smallest eigenvalue of the problem

Lyu=AV(z)[uP?u in Q

1.2
u=0 on 0f. (1.2)

On the weight on V(z), we assume the following;:
(H1) V € LL (Q), V* = Vi + Vo # 0 with V; € LV/P(Q) and V3 is such that

loc
limg .y, zeq o — y[PVa(z) = 0 for all y € Q, limjy|— oo zeq [2[PVa(z) = 0,
where V*(z) = max{V (z),0}.
(H2) There exists 7 > N/p and a closed subset S of measure zero in RY such
that Q\S is connected and V' € LI _(2\S).

loc
Here we note that there is no global integrability condition assumed on V.
This work is motivated by the work in [8]. The eigenvalue problem with indefinite
weights has been studied for the case u = 0 by Szulkin-Willem [8]. However,
some important properties, of the smallest eigenvalue A1, such as simplicity and
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being isolated were shown only for p = 2. Recently the author in [6] proved the
simplicity of A; and sign changing nature of eigenfunctions corresponding to other
eigenvalues when () is bounded. Infact in [6] the author studied these properties for
L,,. Following the same arguments, one can prove these results in the present case.
However, showing that A; is isolated and characterization of the second smallest
eigenvalue, were open questions. To prove these properties, we follow the ideas in
[5] and in [3]. Here we should mention that our results are new even for the case
@ = 0. We use the following results in later sections.

Propositioin 1.1 (Boccardo-Murat [1]). Let Q be a bounded domain in RN and
let u, € WHP(Q) satisfy
*Apun = fn + gn n D/(Q)

and
(i) up — u weakly in W1P(L2)
(ii) up, — u in LP(Q)
(iii) fn, — f in W=LP

(iv) gn is a bounded sequence of Radon measures.
Then there exists a subsequence {u,} of {un} such that Vu,, — Vu a.e. in Q.

Propositioin 1.2 (Brezis-Lieb [2]). Let f, — f a.e in Q as n — oo and f, be
bounded in LP(R2), for some p > 1. Then

T {1 fully = [ = Fllo} = 171

Let X be a Banach space and let M = {u € X | g(u) = 0} with g € C'. Also
let f: X — R be a C! functional and let f be the restriction of f to M. Then we
have the following form of the Mountain pass Theorem [7].

Propositioin 1.3. Let u,v € M with u # v and suppose that
¢:= inf max f(w) > max{f(u), f(v)}

hel weh(t)

where
Fi={heC(-1,+1],M)h(-1)=u and h(l)=v}#0D

Also suppose that f satisfies Pailse-Smale (PS) condition on M. Then c is a critical
value of f.

We define the norm
If/[l+ = inf{|| £/ (w) — tg'(u)]| x- : t € R}.

The variational characterization of the smallest eigenvalue is given by

Jo IVulPdz — [ [ul” g

|]?

Al = inf
' 0ZucW, () fQ [ulPV (z)da

and the corresponding eigenfunction is denoted by ¢, which is unique under the
condition [, [¢[PV (z)dx =1 (see [6]). We will prove the following property.

Theorem 1.4. The eigenvalue A1 is isolated in the spectrum of L,,.
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We will establish the following variational characterisation of the second smallest
eigenvalue:

Py — [ 1
)\2 = inf sup fQ |VU| e fQ = e
veT ueny Jo luPV (z)dx
where I' = {y € C([-1,1] : M) |7(—=1) = —¢1,7(1) = ¢1} and M is defined as in

the next section. We show also the following property of As.

Theorem 1.5. If V, <V, then A\a(V,) > Aa(Vp).

2. PROOFS OF RESULTS

In this section we show that \; is siolated and give a variational characterization
for second smallest eigenvalue of L,,.

Lemma 2.1. The mapping u — fQ V¥ |ulPdx is weakly continuous.

The proof of this lemma follows from (1.1) and (H1). We refer the reader to [8]
for more details.
Now, we consider the set

M = {u e DLP(Q) ‘ /Q PV (z) = 1}.

Since M is not a manifold in Dy (Q), we define X = {u € Dy?(Q) | ||lullx < oo},

where
ul? ::/ |Vu|pda:+/ PV~ da.
Q Q

Then M is a C'-manifold as a subset of the space X. On this space, we define the

functional
B Jo [VulP dz — [o, bl dz

J =
w(w) Jo lulPV da
Let J,, denote the restriction of J, to M. and let ||u||’£p(v) = Jo lulPV (z)dx.

Lemma 2.2. The functional ju satisfies the Palais-Smale condition at any positive
level.

Proof. Let {u,} be a sequence in M such that J,(u,) — A > 0 and

). 6) = Tp(r) [ P,V = o(1), (2.1)

Using Hardy-Sobolev inequality and u, € M, it follows that wu, is bounded in X
which gives the existence of a subsequence {u,} of {u,} and u such that u,, — u
weakly in Dy?(€). Since A > 0 we may assume that J,(u,) > 0. Using Lemma
2.1 and (2.1), we get

(J/;(un) - JIL(U),un —u) + Ju(un)/ Uun\’FZun — |u|p72u] (up, —w)V—dz = o(1).
Q
By Fatou’s Lemma,

0= / lim [|un P 2w, — [ulP2u] [u, —u]V ™
Q’nHOO

n—oo

< hminf/ [|un|p72un - |u|p72u] [un —u]V ™ dz.
Q
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Also, u, satisfies

—Apuy, — |t |7 200y, — Ju(un)|un|p72unV(x) =o(1) in D (Qn),

||”

where 2, is a bounded domain such that @ = UX_,Q,,. By Proposition 1.1,
noting that ﬁ|un|p_2un + Ju(un)|un|P~?u,V~ is a bounded sequence of Radon
measures, there exists a subsequence {ul'} of {u,} an u such that Vu!* — Vu a.e.,
in Q,,. By the process of diagonalization we can choose a subsequence {u,} such
that Vu,, — Vu a.e. in ). By Proposition 1.2, we have

||un —ullf, = llunllf , — IIUIIP +o(1) (2.2)
|| | ‘ HLP(I = H I | || ” | | ”LP (1) + 0( ) (23)
We also have, by Fatau’s lemma,

/ V™ (Junl? + |ul? = |unP 2upu — |ulP~2uu, )de

(p— )/p
/ V™ (unl? + [uf?) — / V) / V)
(p—1)/ 1/
(L) v rtul)
Q Q
( -1)/ (p—1)/
e (e
Q
Ay ([

Now using (2.2) and (2.3),

o(1) =(Ju(un) = Ju(w), (un = w)) + Jpu(un) /Q[Iunl”‘Qun = |ul"ul (un — )V~ da

> Vun—Vup—/ wy, — ulP +o(1
/| P = [l =l + o)

W
> (1= %) s =l + (D)

i.e., u, — u in Dy (). Notice that
o(1) =(Ju(un) — Ju(u), up — u)
:/ V™ (lun P 2w, — [u|P~2u) (uy — u)dz + o(1) > 0.
Q
Therefore, [, V™ |u,[Pde — [V~ |u[Pdz and hence |jun | x — |lullx. O

Observe that j#(u) > A and JL(:I:d)l) = A1. So +¢1 and —¢; are two global

minima of ju- Now consider
['={yeC([-1,1; M)[~(-1) = —¢1,7(1) = ¢1}.
By Proposition 1.3, there exists « € X such that ./ ., (u) =0 and J,(u) = C, where
C = inf sup J,(u). (2.4)

vEluey

Lemma 2.3. (i) M is locally arc wise connected
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(ii) Any connected open subset B of M is arcwise connected
(iii) iof B’ is a component of an open set A, then OB’ N B is empty.

The proof of this lemma follows from the fact that M is a Banach Manifold. For
a proof we refer the reader to [3]. Define O = {u € M |J,(u) < r}

Lemma 2.4. Fach component of O contains a critical point of JL.

Proof. Let O1 be a component of O and let d = inf{J,(u),u € O}, where O; is
X-closure of O. Suppose this infimum is achieved by v € O;. Then by Lemma 2.3
this cannot be in 90, and hence v is in O; and is a critical point of JNM.

Now we show that d is achieved. Let u, € O; be a minimizing sequence with
jﬂ(un) <d+ % By Ekeland Variational Principle, we get v,, € O; such that

jp,(vn) < ju(un)a (25)
1
_ < = 2.
||v’ﬂ u’I’LHX = n7 ( 6)
~ ~ 1
Jyu(vy) < Ju(v) + EHU" —vl|lx, YveO;. (2.7)

From (2.5) it follows that J,(v,) is bounded. Now we claim that ||J~M/(vn)||* — 0.
We fix n and choose w € X tangent to M at v,, i.e., fQ |vn|p_2vnwV = 0. Now we
consider the path

Uy, + tw

u = — .
" on + twl Lo vy

Since J,(v,) < d + L < r for n large, we have v, € O; and by Lemma 2.3 (iii),
vy, & 0071. So uy € Oy for [t]| small. Taking v = u; in (2.7) we obtain

Jy(0n) = Ju(vn + tw)

t
N (2.8)
- %an(% ~ Dl + ]+ %(TW — 1)y (0 + tw),

where r(t) = ||v, + tw||zr(v). The last term in (2.8) involves
calculated as

% which can be

On the other hand since w is tangent to M at v,
ErP o = [ Ioal? 2oV (@) = 0
TS S:O—van vpwV (z)dx = 0.
Therefore, we have T(t)tﬁ — 0 as t — 0 and that the second term goes to 0.
Similarly, the first term also goes to zero as t — 0. Taking limit ¢t — 0 in (2.8) we
get

1
(Jp(vn),w) < ~[lw|x, forall we X tangent to M at vy,.
n

Now if w is arbitrary in X. We choose «,, so that (w — a,vy,) is tangent to M at
Up. L€, o = [o [n [P 2opwV (2)dz. So (2.8) gives,

_ 1
(o)) = Tpon) ) [ ol o] < Lo = ol
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Since [|a,v,||x < C.l|lw||x, we have
(Twndsw) =t [ ouP 20,0V (@)do] < el
Q

where t,, = (J},(vn),vn) and €, — 0. Therefore, ||J~ul(vn)||* — 0 and v, is a Palais-
Smale sequence. Hence by Lemma 2.2, {v,} has a convergent subsequence with
limit, say, v. Then d is achieved at v. ([l

Lemma 2.5. The number C defined by (2.4) is the second smallest eigenvalue of

Ly

Proof. We follow the proof in [3]. Assume by contradiction that there exists an
eigenvalue ¢ such that Ay < § < C. In other words, J,, has a critical value J with
A1 <0 < C. We will construct a path in I" on which J,, remains < §, which yields
a contradiction with the definition of C. Let u € M satisfies the equation

—Apu — L|u|p_2u =0V (2)|ulP"%u in D'(Q),

[P
and u changes sign in Q. Taking u™ and ™~ as test function we get

/ IVt [P dy — L|u+|pdx=5/(u+)pwx) do
Q Q

o |zfP

/QIVU’Ipdx—/Qﬁ(u*)Pdmza/ﬂ(u*)PV(x)dz.

Consequently
~ ~ ut ~ —Uu- ~ u -
J u) = ']t _— ) = -_ ) = e
v l(”u—*—”LP(V)) H(HU_HLP(V)) u-llze vy

We will consider the following three paths in M, which go respectively from u to

=0.

U U+ u —U .
Tty oM o © o, 20 ey og, to w
tu—+ (1 —t)ut
un(t) = Sl LA
ltu + (1 — t)u™||Le(v)
tut + (1 — t)u~
us(t) = k) L
ltu + (1 —t)u= | Le(v)
—tu” 4+ (1 —1%t)u

=t + A= tulleey

Also we have

Ju(ur(t)) = Ju(ua(t)) = Ju(us(t)) = 6.
By joining the paths wui(t) and wus(t) we get a new path which connects u and
m and stays at levels < §. Call this path as u4(t). Now we define O = {v €

M ‘ Ju(v) < 8}. Clearly ¢1,—¢1 € O. Since i

vanishes on a set of positive measure it is not a critical point of J,. So MT(V)

is a regular value of JL, and consequently there exists a C! path 7 : [—€,¢] — M
with 7(0) and %(ju(n(t))‘t:o # 0. choose a point v € O on this path

— does not change sign and
[u=llze(v)

[ T N—
lu= e vy

(this is possible because jul(n(t))|t=0 # 0) we can thus move from m to

v through this path which lies at levels < §. Taking the component of O which
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contains v and applying Lemma 2.3 together with Lemma 2.4, we can connect v
to +¢1 (or to —¢1) with a path in M at levels < 4. Let us assume that this is

+¢1 which is reached in this way. Now call this path connecting m and ¢

as us(t), and consider the symmetric path —us(t), which goes from — to

u
- > lu=llze vy
—¢1. We evaluate the functional J,, along —us(t). Since J,, is even,

Ju(—us(t)) = Ju(us (1)) < 6.

Finally with u3(t) we can connect — with u by a path which stays at level

flu= H Lp(v
0 . Putting every thing together we get a path connecting —¢; and ¢, staying at
levels < §. This concludes the proof. O

Note that Theorem 1.4 is an immediate consequence of Lemma 2.5. So we have
the following characterization of A2, the second smallest eigenvalue of L,,,

= inf sup/ |Vu|Pdz — [ul” —dz.
V€T uey a lzlP

Now let py be the sequence of eigenvalues obtained in [6] which are characterized

as
r = inf sup/ VulP — / p
p = fuf_sup [Vl |,,\ ul?,

where F = {A C M| the genus of A > k}.
Corollary 2.6. With the notation above, s = Aa.

Proof. Let  be a curve in I'. By joining this with its symmetric path —v(t) we can
get a set of genus > 2 where J,, does not increase its values. Therefore, Ay > uo.
But by Theorem 1.4, there is no eigenvalue between A\; and \o. Hence Ao = pp. 0O

Lemma 2.7. Let u € X be a solution of (1.2) and let O be a component of {x €
Q ‘ u(z) > 0}. Then u|o e DLP(0)

Proof. Let u,, € Co(Q) N DEP(R2) such that u, — u in DyP(Q). Then u — u't in
Dé’p(Q). Let v, = min(u,,u) and let ¢ : R — R be a C'! function such that

0 fort<1/2
t) = -
9 (t) {1 fort>1

and |¢/| < 1. Let ¢, (z) = ¢(d(x, S)/r) where d(z,S) = dist(z, S). Then

0 ford(x,S)<r/2
vr(@) {1 for d(x,S) >r

and |V, (z)| < C/r for some constant C. Now we define w,, ,(z) = @/}Tvn(x)}o.
Since ¥,v, € C(Q), we have w,, € C(O) and vanishes on the boundary 9O.
Indeed for x € 9O NS then ¢, (x) = 0 and so wy, - (z) =0. If z € 00NQ and = ¢ S
then u(x) = O(since w is continuous except at 0) and so v,(z) =0 . If x € 9N
then u,(x) = 0 and hence v,(x) = 0. So in all the cases wy, () = 0 for x € 90.
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1
Therefore, w,, ,, € Dy*(O).

/ IV (wnr) — V(ihyn) P = / |(V40)0m + 9 Vom — (Ve )u — b VP d
Q (@)
< ||V, — Vwru“ip(o) + [|19r Vo, — ¢rquiz}(o)

which goes to 0 as n — oo. i.e., Wy, — wT“’o in D(l)’p(O). Now

/ |Vibru + . Vu — ulP < / [t Vu — VulP + / | Vb, |Pu
o o o

n{r/2<|z|<r}

— 0 as 7 — 0 by (1.1). Therefore, u|,, € Dy?(0). O

Proof of Theorem 1.5. We denote jp corresponding to V;, with j,hb. Let ug be a
solution to

—Apu — ﬁm\pﬂu = XV (@) [uP~2u in D'(Q).
T

Assuming that the claim below is true, we have

I _
T (”) < 2a(Va), Joup (_”) <XV, dup () < Ao (V).
H'U+||LP(Vb) v ||LP(V1,)

Define Oy = {u € X, [, [ul’V, = 1, Jup (v) < Aao(Va).} Now we proceed as in
Lemma 2.5, to define the paths v;(t),i = 1,...,5 on which J,;, < Aa(V,). We join
these paths in a way described in Lemma 2.5 to obtain a path ~(¢) in T’y (the
family of paths corresponds to Vj) such that .J, ,(v(t)) < A2(V,). This completes
the proof.

Claim: There exists v € X, which changes sign and

Jo IVt |Pde — [ #h}ﬂp dx

A a)s
Jo(vt)PV; da <He(Va) 29)
Jo |VvT [P dz — o™ P da .
< /\Q(VG).

Jo(T )PV da

Proof of Claim: Since u, is an eigenfunction corresponding to Ay > A1, it has to
change sign in Q (see [6]). Let O and Oy be positive and negative nodal domains
of u, respectively such that

/ Vo (uf)Pdr < / Vi (uf)Pdx  and / Vo (uy )P dx < / Vi (uy )P de.
01 O1 02 02

€ D{*(0,) and also in LP(Oy, V™). We have

fol Vg [P — ﬁmalp
fol [ualPVe

Therefore, A\1(01,V}) < Aa(V,). Simillarily A1(O2,V3) < Aa(V,). Now we modify
O; and Oy to get O: and O, with empty intersection and Al(él,%) < A(Va)
and A (Oa,Vy) < Ag. For > 0, let Oy(n) = {x € Oy | dist(x,0%) > n}. Then
A(01(n), Vi) = A1(01, V) and A1 (O1(n),V,) — A1(01,V,) as n — 0. Therefore,
there exists 19 > 0 such that A1 (O1(n), Vi) < A2(V,) for 0 < n < n9. Let z € 002N
and 0 < 7 < min{ng, dist(z, 2°)}. Now define Oy = Oy U B(zg,7n/2). Then
Os N O1(n) = 0, Al(ég,%) < A1(02,V3) < A2(V,). Now we consider the function

By Lemma 2.7, ua‘ol

A (01, V) < X2 (Va).
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v = v1 — v2, where v; are the extensions by zero outside O, of the eigenfunctions
associated to A1(O;, Vp). Then v satisfies (2.9). O
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