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LOCAL WELL-POSEDNESS FOR A HIGHER ORDER
NONLINEAR SCHRODINGER EQUATION IN SOBOLEV
SPACES OF NEGATIVE INDICES

XAVIER CARVAJAL

ABSTRACT. We prove that the initial value problem associated with
Oru + iaagu + ﬂagu +ivjulfu=0, zt€eR,
is locally well-posed in H® for s > —1/4.

1. INTRODUCTION

In this work, we study a particular case of the initial value problem (IVP)
Opu + iad?u + BO2u+ F(u) =0, x,t € R,
u(z,0) = up(x).

Here u is a complex valued function, F(u) = iy|u|*u+§|u|?0,u+eu?d, 1, v, 9, ¢ € C
and «a, 3 € R are constants.

Hasegawa and Kodama [10, 14] proposed (1.1) as a model for propagation of
pulse in optical fiber. We will study the IVP (1.1) in Sobolev space H?(R) under
the condition § = ¢ = 0, 8 # 0 (see case (iv) in Theorem 1.1 below). When
7,0, € € R, it was shown in [16] that the flow associated to the IVP (1.1) leaves the
following quantity

(1.1)

Il(v):/R|v|2(x,t)d:r, (1.2)

conserved in time. Also, when 6 — v = € # 0 we have the following quantity
conserved:

Ig(v):cl/ |8mv|2(x,t)dx+02/ |v|4(m,t)dx+03/v(m,t)awv(x,t)dx, (1.3)
R R R

where ¢; = 30¢, ca = —€e(e +0)/2 and ¢3 = i(a(e + §) — 307). These quantities
were used in [16] to establish global well-posedness for (1.1) in H*(R), s > 1. Note
that the quantity i [ v(x,t)0v(x, t)dx in (1.3) is real since

(’“)t(i/Rv(a?,t)(’“)wv(a?,t)dx) = 2¢ Im(/[v(w,t)@xv(x,t)]de).

R
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We say that the IVP (1.1) is locally well-posed in X (Banach space) if the solution
uniquely exists in certain time interval [—T,T] (unique existence), the solution
describes a continuous curve in X in the interval [—T,T] whenever initial data
belongs to X (persistence), and the solution varies continuously depending upon
the initial data (continuous dependence) i.e. continuity of application ug — u(t)
from X to C([-T,T); X). We say that the IVP (1.1) is globally well-posed in X if
the same properties hold for all time 7" > 0. If some hypothesis in the definition of
local well-posed fails, we say that the IVP is ill-posed.

Particular cases of (1.1) are the following:

e Cubic nonlinear Schrodinger equation (NLS), (aa = F1,8=0,7y= -1, = e =0).

iUy & Uge + [ulPu =0, z,t€R. (1.4)

The best known local result for the IVP associated to (1.4) is in H*(R), s > 0,
obtained by Tsutsumi [26].
e Nonlinear Schrodinger equation with derivative (e = —1, 8 =0, v =0, d = 2¢).

ity + g + iN(|u)?u), =0, z,t€R. (1.5)

The best known local result for the IVP associated to (1.5) is in H*(R), s > 1/2,
obtained by Takaoka [24].
e Complex modified Korteweg-de Vries (mKdV) equation (o = 0, 8 =1, v = 0,
d=1,¢=0).

Up + Upzr + |u|2uz =0, z,teR. (1.6)
If w is real, (1.6) is the usual mKdV equation and Kenig et al. [11] proved the IVP
associated to it is locally well-posed in H*(R), s > 1/4.
e When o # 0 is real and 8 = 0, we obtain a particular case of the well-known
mixed nonlinear Schrédinger equation

uy = iotigy + M|ul?)eu+ g(u), z,tER, (1.7)

where g satisfies some appropriate conditions. Ozawa and Tsutsumi in [19] proved
that for any p > 0, there is a positive constant T'(p) depending only on p and g,
such that the IVP (1.7) is locally well-posed in H/2(R), whenever the initial data
satisfies

l[uollr/z < p.

There are other dispersive models similar to (1.1). The interested readers can
see the following works and the references therein [1, 7, 20, 21, 23].

Laurey [17, 16] proved that the IVP associated to (1.1) is locally well-posed in
H?(R), s > 3/4. Staffilani [22] improved this result by proving the IVP associated
to (1.1) is locally well-posed in H*(R), s > 1/4.

When «, 8 are functions of ¢, we proved in [2, 3] local well-posedness in H*(R),
s > 1/4. Also we studied in [2, 5] the unique continuation property for the solution
of (1.1). Regarding the ill-posedness of the IVP (1.1), we proved in [4] the following
theorem.

Theorem 1.1. The mapping data-solution ug — u(t) for the IVP (1.1) is not C*
at origin in the following cases:

(i) 6=0,a#0,=€=0,v#0 for s <0.
(ii)) =0, a#0,0#0 ore#0 for s <1/2.
(iii) B#0,5#£0 ore+#0 fors<1/4.
(iv) B#£0,0=€=0,v#0 fors< —1/4.
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In this work, we consider the case (iv) and prove the following result.
Theorem 1.2. Let 8 # 0 real and v # 0 complex, then the following IVP
Oy + iad?u + BO2u + iylul*u =0, =,tER,

u(z,0) = ug, (1.8)
is locally well-posed in H*(R), s > —1/4.
The following trilinear estimate will be fundamental in the proof of Theorem 1.2.
Theorem 1.3. Let —1/4 < s<0,b>7/12, 0 < s/3, then we have

|uvw || xs.0r < Clul Xab, (1.9)

|v]

|w]

Xs.b Xs.b
where

[l

xeo = )T = ¢(©)) tlliziz, (€ =1+1¢l, #(€) = ag® + 5€°.
Theorem 1.4. The trilinear estimate (1.9) fails if s < —1/4 and b € R.

Remarks. ¢ When v € R, as (1.1) preserves L? norm, Theorem 1.2 permits to
obtain global existence in L2.

e From Lemma 2.3 we note that b = 7/12+ is the best possible for s = —1/4+, in
the trilinear estimate (1.9).

e The trilinear estimate is valid for all s > 0, as it can be seen by combining

(&) < (€ — (& — &1))%(&2)%(&1)® and the estimate (1.9) for s = 0.
e We will use the notation ||ul|fspy := [Jullx<.
e When oo = 0,5 = 1, we have the usual bilinear estimate due to Kenig et al. [12],

[(wv)zll{—3/a+,— 1724} < Cllull{—3/a4.1/243 V]l {=3/24.1/247.

Also we have the 1/4 trilinear estimate due to Tao [25],

[(wvw)z|l(17a,-1/243 < Cllullgryansery 1ol a2y lwllfaya1/2+3-

2. PROOFS OF MAIN RESULT

Proof of Theorem 1.4. As in [12] consider the set
Bi={(¢ ) N<ESN+ N2 r—g(6) <1},
where ¢(&) = a€? + B¢3. We have |B| ~ N=/2. Let us consider © = xp, it is not
difficult to see that ||v| (s < N*|B|'/2. Moreover
1
F([*0) == x5+ X8 * X-B X XA,

where A is a rectangle contained in B such that |A| ~ N~1/2,

Therefore
— s ! — s 1 — s—
oDl 5,0y = I1€)* (T — ¢(£))" F(1vl*0) ez 2 N ~N V4 = No=5/4,

As a consequence, for large N the trilinear estimate fails if 3(s — 1/4) < s — 5/4,
fe. if s < —1/4. O
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Proof of Theorem 1.3. In Lemma 2.1 below, we gather some elementary es-
timates needed in the proof of Theorem 1.3, we need the following results from
elementary calculus.

Lemma 2.1. (1) If b>1/2, ay,a2 € R then

dx 1
~ . 2.1
/R (. —a1)?(x — a2)?® (a1 —ag)? (2.1)
(2) If 0 < cy,e0 <1, c1+c2 > 1, a1 # ag, then
dx 1
< . 2.2
/]R |z — ai] ]2 — az|®2 ™ |ay — agl(crte2—1) (22)

(3) Let a € R, ¢1 < ca, then

|z [ 1
< . 2.3
fazyer = fal %)
(4) Let a,n € R, b>1/2, then
dx 1
@< (2.4)
/R (a(@® = 2)® ~ Jar]

Now, let f(§,7) = (§)° (1 — &)"4, g(&,7) = ()°(r = €)', h(&,7) = (&)°,
(1=, n=(&7), 2= (&,7), y = (€, 72). We have

fawllery =1 [ £+ = )@ K .2, )dedylo

<K (2, p)lluerz 1z llle IRl

where
K(n,z,y) = (E+& — &) ()&

r(& ) = 0(60))%(m2 — (&) (T + 11 — T2 = S(E + & — &))°
and 7(€,7) = (£)7(1 — ¢(€))~, p = —s. Using (2.1) we obtain

1 / Gp(€:&1,8) ddés

(& 7)% Jre (T — ¢(§ + &1 — &2) — d(&2) + ¢(61))%

_ 1 / Gp(€,&1,82) d&1dés
(&, 7)% Jrz (T — 0(&) +9(€,61.62))*

1(¢.7) = K|}, ~

where

Gp(€,&1,8) = (E+ & — &)*P(6)* (&),
9(&,61,82) = (&1 — §2)(§ + &) (2a + 38(€ — &1))-

Assuming y = 7 — ¢(§), to get Theorem 1.3 it is sufficient to prove the following
lemma.

(2.5)

Lemma 2.2. Let 0 < p<1/4,b>7/12, V' < —p/3. Then

1 / Go(&, —&1, —E2)dE1dE
2 y)=2" Jro (y+9(§,61,62))%

where C(p,b,b') is a constant independent of & and y.

I(&y) = < C(p,b,b') < o0,

To prove Lemma 2.2 we need to prove the following lemmas.
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Lemma 2.3. Let p < 1/4. Then

_ G, (0, =61, —&)d6dsy | Cp,b) <oco ifp+1/3<b
10.0) _/R2 (9(0,&1,&2))2 B {OO if p+1/3>0,

where C(p,b) is a constant.

We have that if b = 7/12 and p = —s > 1/4 then I(0,0) = oo, therefore Lemma
2.3 shows that b = 7/12+ is the best possible when s = —1/4+.

Lemma 2.4. Let 0 < p <1/4, b > 7/12. Then

1 GP(& =1, —ég)dfldgz
C
(&) /]R2 (g(€,€1,82))2 < C(p;b),

where C(p,b) is a constant independent of .

1(£,0) =

For clarity in exposition, we consider the case a = 0, 3 = 1, i.e. ¢(¢) = &3 (see
the observation at the end of the proof of Lemma 2.2).
In the definition of I(&,y) if we make the change of variables & — & = &£y,
€+ & = ¢&& and y = €32, then I(€,y) becomes
H,(§,61,82)dE1dEn
169 =02 [ 7 ,
&2 =082 | o6+ P )

where p(€, z) = €(€32)2(€) 7, F(&1,6) = (2 - (& +&))6& and
Hp(€,&1,62) = (€(1 — (&1 +&2)))*(E(1 — &))*(E(1 — &2))

From here onwards we will suppose z > 0, because if z < 0 we can obtain the
same result by symmetry (see Remark after Proposition 1).

(2.6)

Proof of Lemma 2.3. By symmetry it is sufficient to prove that the integrals

G (0, —€1, —E2)dErdEs
1(0,0) / 00,66

2(0,0) / / 0 —&1,82)d61dSs
9(0,&1,—62))*
are finite. We will prove that I; (0, 0) is finite only; the same proof works for I5(0,0).
Also, by symmetry we can suppose that 0 < & < &. We have

[ St [P [

=I11+ 1.

Since 0 < & < &, we have G,(0, —&1, —&2) < (&1)*(&)?F. In 111 we have &/2 <
&1 — & < &, therefore if b > p+1/3,

00 §1/2 204
nas [Clevda [ SRS

00 1 1 1 35?/2 x2pdx
< 4 — 7
N/l (&1) (51 2+4p + 2 /1 (1+ m)%)d&
=C(p,b) < o0
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Analogously we can prove that I1 1 = co if b < p+1/3. In I » we have £ /2 <

52 S Ela S0
> S (g — &)%Pdes
< 1 5L 527 U2
ha ~/1 €) ey /&/2 (G —e)e)”

oo 51/2 x 2pdm
:/ &)l / <<£ 72)
1
SC(p,b), b>p+1/3.

The propositions will be useful for proving Lemmas 2.2 and 2.4.

Proposition 1. Let 0 < p < 1/4, b > 1/3+4 2p/3, then we have

¢, dg
J1:€2+4042W§C7

where C' is a constant independent of & and z.

Proof. It & <0, & <0, then |24 F| > |& +£2]|1€2]- Therefore by Lemma 2.3 and
by symmetry, it is enough to consider & > 0. We have |z + F| = [&1]|(&2 + (&1 —

2)/2)° — (€1 — 24— 2/&1]. Let = (& — 2)°/4+ /&1, c(p) = (2 + 4p) /3, then
making change of variable n = & + (&§; — 2)/2 and using (2.2) and (2.3) we have

_errap [T Ay
Jy=¢"" p/ d§1/ (83€1 (2 — 12))20

ldx
d
/ 51/ |§1|12\352—1Hc(p)

<
N/o |§1|C(p)|§1 - 2| (1+80)/3 / |22 — 1|
<2703 0 < p < 1/4.
The case p = 0 follows from the case 0 < p < 1/4, taking the limit. (]

Remark. When z < 0, we make & := —&;, & 1= —& then |z + F| = [&]|(& +
(&1 +2)/2)? — (& 4+ 2)?/4 + 2z/&1| and the proof is similar.

Proposition 2. Let |£| > 1,b>1/2,0< p < 1/4. Then

et [Cpnge [ Ao
neer e [ e

where C' is a constant independent of £ and z.

Proof. By Proposition 1 we can suppose & > 4, so (§; — 2) > & /2. Using (2.4)

and making change of variables as above, we have

grae oo g”

Ja S T —d& <
KPP Ja &l

Proof of Lemma 2.4. Case || < 1. Let

A ={(&1,8)/1&] > 2,16 > 2}, Az ={(£1,82)/1&1] < 2,16 <2},
As ={(&,8)/1&] <2,1&| > 2}, As={(&1,&)/I6] > 2,16 < 2}.
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Consider I(£,0) = Z?:l I;(&,0), where I;(£,0) is defined in the region A;. Obvi-
ously I2(€,0) < C. In Ay we have |§ — &1| > [€1]/2 and [€ 4 &| > |£2]/2, therefore
Lemma 2.3 gives I1(£,0) < C. In A3 we have [ 4+ &| > [€2]/2, and consequently

/ (E2)*PdE1dEy
2 (&1 —&)E(E —&1))?

=
2 /Asﬂ{|£1£2>§2} (€)% Jagniles—&a1<laly
=13,1(£,0) + I32(£,0).

In the first integral, for p < 1/4, b > 1/2 we have

1 d€1

< d E2(6 &N
I31(€,0) S €)% /§2>2<§2> 2 /|§1<2 (& —&))*
1

(&) e
=2 22 (.
S /g g =

To estimate I3 2(€,0) we make the change of variables o = & — &2, m1 = & and as
|€1] < 2 we obtain the same estimate as that for I3 1(¢,0).

By symmetry we can estimate I4(£,0) in the same manner as I5(¢,0).
Case [£] > 1. Let us consider I(£,0) in the form (2.6) and let By = {|&1 + &2 > 4}
and By = {|& + &| < 4}, then I(£,0) = I1 (&) + 12(§), where I;(&) is defined in B;.
In By we have

2= (6 + &) > 16 +&I/2, [1- (& +8&) <56+ &l/4, (2.8)

moreover By C {|&] > 2} U {|&] > 2} =: By U By and therefore I;(§) <
I1(8) + I1,2(¢), where I ;(§) is defined in By ; N By. In By we have |{1]/2 <
|1 — &1| < 3|¢1]/2, therefore using (2.8), we obtain that Il,l(f) < 1(0,0) < Cif
p<1/4, p+1/3 <b. In similar manner we have I; 5(§) < 1(0,0) < C.

From definition of By we have H, < (€)% (€ + £|&1])*, so using symmetry and
Propositions 1 and 2, we have I5(§) <C < oo if 0<p<1/4,b>p+1/3. O

Proof of Lemma 2.2. Let 0 < p<1/4,b>7/12, b < —p/3. Using symmetry and
Lemma 2.4 it is sufficient to prove

p(&: &1, &2)dE1dEs
P& / / @+ P& =™

By Lemma 2.4 we can suppose |£|3z > 1; since if |£[32 < 1,

(E(+F)7 < 2P~

Also by symmetry we can suppose |&2| < |&1]. Therefore

H,(6,&,&) S1+ €% + |€[5&|%.

Using Proposition 1 we can suppose |&1] >4 (17! < [&]71).
Case I€]]&1] < 1. We have H, < (€)% and therefore J < C < oo, by Proposition

Case 1€]1€1] > 1.
i) If |&]° < 2, [&] < 213, we have H,(€,&1,&) S 1+ [€]57 + |2]20/3(€]52|¢ |
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Therefore using (2.4), in this region we have

grtofappers T, i EEHO|z2/0 [ |tod,
d <
F 7 e 1917 [ e e e f 6P
(S
N<£3z>—2b’
<C.

i) If [&]2 > 2, |&] > 23, we can proceed as follows. By Lemma 2.4 we can
suppose |z + F| < |F|/2, so |F| < 2z, |(2 — (&1 + &2))&1&2| < 2z. This implies that
1—&|1— (& +&)| ST+ &+ 22/3_ Therefore

Hy, S + [€1%) + [E1*1€0]™ + 1% [€1 > + [ 161> + [€]* | "

8
R R SR )
j=1
We have,
gl
k. (2.9)

To estimate the term that contains I; = (£)* + |£]57, we use (2.9) and Proposition
1.

For terms [;, j = 2,...,5, we use (2.9) and Propositions 1 and 2 if |¢] > 1. If
|€] < 1, we integrate in the region & > 1/|£| as above.

In lg = |£]*2*/3, we have

RIS g
(@) 3 (6% / =¢

s &8 7 ([gP2) (1 mAe)/8 T
We estimate I; = |£]622%/3 as in I using (2.9). Finally in lg = |£|6P2%/3|£,]%°, we
have

jg[00 24012 [ el (gP=) b7
@ EPER Jos & S @
O

Remark. In the case a # 0 under little modifications, the proofs of Propositions
1 and 2 and the proofs of Lemmas 2.2, 2.3 and 2.4 are similar to the case a = 0.
For example in order to prove Lemma 2.3 with a # 0 we proceed as follows

In (2.5) we have g(£,&1,&) = (&1 — £2)&2(2a — 38£1)). In order to obtain sym-
metry in & and &, we consider the change of variable 2a — 36¢; := 38£;. In this
way we have

1(0,0) < C <O‘) / (€1 + &) {€1)*(€2) P dadEs

b 2 <»3 (270( — (& + f2)> 5152>2p

Now using symmetry, the rest of the proof is the same as that of Lemma 2.3, if we
replace the lower limit 1 in the integrals in (2.7) by 4a/30.

(2.10)
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PROOF OF THEOREM 1.2

Consider a cut-off function ¢ € C*, such that 0 <y <1,

1 <1
t) = -
Vi) {o if [t] > 2,

and let r(t) :=¢(t/T). To prove Theorem 1.2 we need the following result.
Proposition 3. Let —1/2 <V <0<b<V +1,T €0,1]. Then
[P (U (H)uoll sy = Clluollme, (2.11)

t
IIﬂJT(t)/ Ut =t)E(,)dt sy < CT " F(u)]l s, (2.12)
0

where F(u) = ivy|ul?u.

The proof of (2.11) is obvious, and the proof of (2.12) is practically done in [8].

Let us consider (1.8) in its equivalent integral form:

u(t) = U(t)uo — /O U VP ) (Ve (2.13)

Note that, if for all ¢ € R, u(t) satisfies:

t
u(t) = v (U (Oun — r(0) | UGt~ )P )Y, )t
0
then u(t) satisfies (2.13) in [T, T]. Let a > 0 and
X, ={veX*? vlls,0y < a}.
For v € X, fixed, let us define

B(v) = ¥ (DU (o — v (t) / Ut — ) F(o)(t', )it

Let e=1—-b+V>0,0—1<V < s/3 (this implies 7/12 < b < 11/12) using
Proposition 3 and Theorem 1.3 we obtain
[@(v)lls.6 < Clluollus + CTF(0)][s.pr < Clluol

where a = 2C||ug||gs and T¢ < 1/(2Ca?).
We can prove that ® is a contraction in an analogous manner. The proof of
Theorem 1.2 follows by using a standard argument, see for example [11, 12].

i + CTa® < a,

Acknowledgment. The author wants to thank the anonymous referee for his/her
valuable suggestions, also to M. Panthee and J. Salazar for their help in improving
the presentation of this article.
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