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NONLINEAR KIRCHHOFF-CARRIER WAVE EQUATION IN A
UNIT MEMBRANE WITH MIXED HOMOGENEOUS

BOUNDARY CONDITIONS

NGUYEN THANH LONG

Abstract. In this paper we consider the nonlinear wave equation problem

utt −B
`
‖u‖20, ‖ur‖20

´
(urr +

1

r
ur) = f(r, t, u, ur), 0 < r < 1, 0 < t < T,˛̨

lim
r→0+

√
rur(r, t)

˛̨
<∞,

ur(1, t) + hu(1, t) = 0,

u(r, 0) = eu0(r), ut(r, 0) = eu1(r).

To this problem, we associate a linear recursive scheme for which the existence

of a local and unique weak solution is proved, in weighted Sobolev using stan-
dard compactness arguments. In the latter part, we give sufficient conditions

for quadratic convergence to the solution of the original problem, for an au-
tonomous right-hand side independent on ur and a coefficient function B of

the form B = B(‖u‖20) = b0 + ‖u‖20 with b0 > 0.

1. Introduction

In this paper, we consider the initial and boundary value problem

utt −B
(
‖u‖20, ‖ur‖20

)
(urr +

1
r
ur) = f(r, t, u, ur), 0 < x < 1, 0 < t < T,∣∣ lim

r→0+

√
rur(r, t)

∣∣ < ∞,

ur(1, t) + hu(1, t) = 0,

u(r, 0) = u0(r), ut(r, 0) = u1(r),

(1.1)

where B, f , ũ0, ũ1 are given functions, ‖u‖20 =
∫ 1

0
r|u(r, t)|2dr, ‖ur‖20 =

∫ 1

0
r|ur(r, t)|2dr

and h is a given positive constant.
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Many authors [6, 7, 15, 17, 18] have studied the problem

vtt −B1(‖v‖2, ‖∇v‖2)4 v = f1(x, t, v, vt,∇v) in Ω1 × (0, T ),
∂v

∂ν
+ hv = 0 on ∂Ω1 × (0, T ),

or v = 0 on ∂Ω1 × (0, T ),

v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω1,

(1.2)

where Ω1 is a bounded domain in RN with a sufficiently regular boundary ∂Ω1,

‖v‖2 =
∫

Ω1

v2(x, t)dx, ‖∇v‖2 =
∫

Ω1

|∇v(x, t)|2dx =
∫

Ω1

N∑
i=1

∣∣∣ ∂v

∂xi
(x, t)

∣∣∣2dx,

and ν is the outward unit normal vector on boundary ∂Ω1. With N = 1 and
Ω1 = (0, L) the first equation in (1.2) has its origin in the nonlinear vibration of an
elastic string (c.f. Kirchhoff [7]), for which the associated equation is

ρhvtt −
(
P0 +

Eh

2L

∫ L

0

∣∣∣∂v

∂y
(y, t)

∣∣∣2dy
)
vxx = 0,

where v is the lateral deflection, x is the space coordinate, t is the time, ρ is the
mass density, h is the cross-section area, L is the length, E is Young’s modulus,
and P0 is the initial axial tension.

Carrier [3] also established the model

vtt =
(
P0 + P1

∫ L

0

v2(y, t)dy
)
vxx,

where P0 and P1 are constants.
In the case Ω1 is an open unit ball of RN and the functions v, f1, ṽ0, ṽ1 depend

on x through r with r2 = |x|2 =
∑N

i=1 x2
i , we put

v(x, t) = u(|x|, t), f1(x, t, v, vt,∇v) = f̃1(|x|, t),
ṽ0(x) = ũ0(|x|), ṽ1(x) = ũ1(|x|), γ = N − 1.

Then

−B1

(
‖v‖2, ‖∇v‖2

)
4v = −B

( ∫ 1

0

u2(r, t)rγdr,

∫ 1

0

|ur(r, t)|2rγdr
)(

urr +
1
r
ur

)
,

where B(ξ, η) = B1(ωNξ, ωNη) and ωN is the area of the unit sphere in RN . Hence,
we can rewrite problem (1.2) as

utt −B
( ∫ 1

0

u2(r, t)rγdr,

∫ 1

0

|ur(r, t)|2rγdr
)
(urr +

1
r
ur) = f̃1(r, t)

in (0, 1)× (0, T ),

ur(1, t) + hu(1, t) = 0 on (0, T ),

or u(1, t) = 0 on (0, T ),

u(r, 0) = ũ0(r), ut(r, 0) = ũ1(r) in (0, 1).

(1.3)

With N = 2, the first equation of (1.3) is the bi-dimensional nonlinear wave equa-
tion describing nonlinear vibrations of the unit membrane Ω1 = {(x, y) : x2 + y2 <
1}. In the vibration process, the area of the unit membrane and the tension at var-
ious points change in time. The condition on the boundary ∂Ω1 describes elastic
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constraints, where the constant h has a mechanical signification. Boundary condi-
tion (1.1)2 is satisfied automatically if u is a classical solution of problem (1.1), (for
example, with u ∈ C1(Ω× (0, T )) ∩C2(Ω× (0, T ))). This condition is also used in
connection with Sobolev spaces with weight r (see. [2, 16]).

In the case of equation (1.3)1 not involving the term 1
r ur (γ = 0), we have

utt −B
( ∫ 1

0

u2(r, t)dr,

∫ 1

0

|ur(r, t)|2dr
)
urr = f(r, t, u, ur, ut). (1.4)

When f = 0, and B = B
( ∫ 1

0
|ur(r, t)|2dr

)
is a function depending only on∫ 1

0
|ur(r, t)|2dr, the Cauchy or mixed problem for (1.3)) has been studied by many

authors; see Ebihara, Medeiros and Miranda [5], Pohozaev [22] and the references
therein. A survey of the results about the mathematical aspects of Kirchhoff model
can be found in Medeiros, Limaco and Menezes [20], [21]. Medeiros [19] studied
problem (1.1) on a bounded open set Ω of R3 with f = f(u) = −bu2 where b > 0
is a given constant. Hosoya and Yamada [6] considered problem (1.3)3,4-(1.3) with
f = f(u) = −δ|u|αu where δ > 0 and α ≥ 0 are given constants. In [9] the authors
studied the existence and uniqueness of the solution of the equation

utt + λ42u−B(‖∇u‖2)4u + ε|ut|α−1ut = F (x, t),

where λ > 0, ε > 0 and 0 < α < 1 are given constants.
In the case of the term 1

r ur appearing in equation (1.1)1 we have to eliminate the
coefficient 1

r by using Sobolev spaces with appropriate weight (see [11]). On the
other hand, problem (1.1) with general nonlinear right-hand side f(r, t, u, ur, ut)
given as a continuous function of five variables has not been studied completely
yet.

In the present paper, we study problem (1.1) with some forms of the right-hand
side f . In the first part, we study problem (1.1) with the right-hand side f(r, t, u, ur)
where f ∈ C0([0, 1]× R+ × R2) satisfies the condition

∂f

∂r
,
∂f

∂u
,

∂f

∂ur
in C0

(
[0, 1]× R+ × R2

)
.

It is not necessary that f ∈ C1
(
[0, 1]×R+×R2

)
. First, we shall associate with equa-

tion (1.1)1 a linear recurrent sequence which is bounded in a suitable function space.
The existence of a local solution is proved by a standard compactness argument.
Note that the linearization method in this paper and in papers ([2, 4, 14, 17, 18, 23]
cannot be used in papers [5, 9, 12, 13, 15, 16, 19]. In the second part, we consider
problem (1.1) corresponding to f = f(r, u) and B(η) = b0 + η with given constant
b0 > 0. We associate with equation (1.1)1 a recurrent sequence um (nonlinear)
defined by

∂2um

∂t2
−

(
b0 +

∫ 1

0

∣∣∂um

∂r
(r, t)

∣∣2rdr
)(∂2um

∂r2
+

1
r

∂um

∂r

)
= f(r, um−1) + (um − um−1)

∂f

∂u
(r, um−1) in (0, 1)× (0, T ),

with um satisfying (1.1)2−3. The first term u0 is chosen as u0 = ũ0. If f ∈
C2

(
[0, 1]×R

)
, we prove that the sequence um converges quadratically. The results

obtained here relatively are in part generalizations of those in [2, 4, 14, 17, 18, 23].
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2. Preliminary results, notation, function spaces

Put Ω = (0, 1). We omit the definitions of the usual function spaces Lp(Ω),
Hm(Ω), Wm,p(Ω). For any function v ∈ C0(Ω) we define ‖v‖0 as

‖v‖0 =
( ∫ 1

0

rv2(r)dr
)1/2

and define the space V0 as the completion of the space C0(Ω) with respect to the
norm ‖ · ‖0. Similarly, for any function v ∈ C1(Ω) we define ‖v‖1 as

‖v‖1 =
( ∫ 1

0

r[v2(r) + |v′(r)|2]dr
)1/2

and define the space V1 as completion of the space C1(Ω) with respect to the norm
‖ · ‖1. Note that the norms ‖ · ‖0 and ‖ · ‖1 can be defined, respectively, from the
inner products

〈u, v〉 =
∫ 1

0

ru(r)v(r)dr,

〈u, v〉+ 〈u′, v′〉 =
∫ 1

0

r[u(r)v(r) + u′(r)v′(r)]dr.

Identifying V0 with its dual V ′0 we obtain the dense and continuous embedding
V1 ↪→ V0 ≡ V ′0 ↪→ V ′1 . The inner product notation will be re-utilized to denote the
duality pairing between V1 and V ′1 . We then have the following lemmas, the proofs
of which can be found in [2]:

Lemma 2.1. There exist constants K1 > 0 and K2 > 0 such that, for all v ∈ C1(Ω)
and r ∈ Ω,

(i) ‖v′‖20 + v2(1) ≥ ‖v‖20,
(ii) |v(1)| ≤ K1‖v‖1,
(iii)

√
r|v(r)| ≤ K2‖v‖1.

Lemma 2.2. The embedding V1 ↪→ V0 is compact.

Remark 2.3. In Lemma 2.1, the constants K1 and K2 can be given explicitly as
K1 =

√
1 +

√
2 and K2 =

√
1 +

√
5. We also note that limr→0+

√
rv(r) = 0 for all

v ∈ V1 (see [1, Lemma 5.40]). On the other hand, from H1(ε, 1) ↪→ C0([ε, 1]), 0 <
ε < 1 and

√
ε‖v‖H1(ε,1) ≤ ‖v‖1 for all v ∈ V1, it follows that v|[ε,1] ∈ C0([ε, 1]).

From both relations we deduce that
√

rv ∈ C0(Ω) for all v ∈ V1.

Now, we define the bilinear form

a(u, v) = hu(1)v(1) +
∫ 1

0

ru′(r)v′(r)dr, for u, v ∈ V1, (2.1)

where h is a positive constant. Then for some uniquely defined bounded linear
operator A : V1 → V ′1 we have a(u, v) = 〈Au, v〉 for all u, v ∈ V1. We then have the
following lemma.

Lemma 2.4. The symmetric bilinear form a(·, ·) defined by (2.1) is continuous on
V1 × V1 and coercive on V1, i.e.,

(i) |a(u, v)| ≤ C1‖u‖1‖v‖1
(ii) a(v, v) ≥ C0‖v‖21
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for all u, v ∈ V1, where C0 = 1
2min{1, h} and C1 = 1 + hK2

1 .

The proof of Lemma 2.4 is straightforward and we omit it.

Lemma 2.5. There exists an orthonormal Hilbert basis {w̃j} of the space V0 con-
sisting of eigenfunctions w̃j corresponding to eigenvalues λj such that

(i) 0 < λ1 ≤ λj ↑ +∞ as j → +∞,
(ii) a(w̃j , v) = λj〈w̃j , v〉 for all v ∈ V1 and j ∈ N.

Note that from (ii) it follows that {w̃j/
√

λj} is automatically an orthonormal set
in V1 with respect to a(·, ·) as inner product. The eigensolutions w̃j are indeed
eigensolutions for the boundary value problem

Aw̃j ≡
−1
r

d

dr

(
r
dw̃j

dr

)
= λjw̃j , in Ω,∣∣ lim

r→0+

√
r
dw̃j

dr
(r)

∣∣ < +∞,

dw̃j

dr
(1) + hw̃j(1) = 0.

The proof of the above Lemma can be found in [24, Theorem 6.2.1] with V =
V1,H = V0 and a(·, ·) as defined by (2.1).

For functions v in C2(Ω), we define

‖v‖2 =
( ∫ 1

0

r[v2(r) + |v′(r)|2 + |Av(r)|2]dr
)1/2

,

and define the space V2 as the completion of C2(Ω) with respect to the norm ‖ · ‖2.
Note that V2 is also a Hilbert space with respect to the scalar product

〈u, v〉+ 〈u′, v′〉+ 〈Au, Av〉

and that V2 can be defined also as V2 = {v ∈ V1 : Av ∈ V0}.
We then have the following two lemmas whose proof of which can be found in

[2].

Lemma 2.6. The embedding V2 ↪→ V1 is compact.

Lemma 2.7. For all v ∈ V2 we have
(i) ‖v′‖L∞(Ω) ≤ 1√

2
‖Av‖0,

(ii) ‖v′′‖0 ≤
√

3
2‖Av‖0,

(iii) ‖v‖2L∞(Ω) ≤
(
2‖v‖0 + 1√

2
‖Av‖0

)
‖v‖0.

Also the following lemma will be useful in Section 4.

Lemma 2.8. For all u ∈ V1 and v ∈ V0,

〈u2, |v|〉 =
√

2(1 + K2
1 )‖u‖21‖v‖0, (2.2)

where the constant K1 is given by Lemma 2.1.

Proof. It suffices to prove that inequality (2.2) holds for u ∈ C1(Ω) and v ∈ C0(Ω).
We have

u(r) = u(1)−
∫ 1

r

u′(s)ds.
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Hence, it follows from Lemma 2.1 that

u2(r) ≤ 2u2(1) + 2
( ∫ 1

r

u′(s)ds
)2

≤ 2K2
1‖u‖21 + 2(1− r)

∫ 1

r

|u′(s)|2ds.

This implies

〈u2, |v|〉 =
∫ 1

0

ru2(r)|v(r)|dr

≤ 2K2
1‖u‖21

∫ 1

0

r|v(r)|dr + 2
∫ 1

0

r(1− r)|v(r)|dr

∫ 1

r

|u′(s)|2ds.

(2.3)

Note that the first integral herein can be estimated as∫ 1

0

r|v(r)|dr ≤
( ∫ 1

0

rdr
)1/2( ∫ 1

0

r|v(r)|2dr
)1/2

=
1√
2
‖v‖0.

Reversing the order of integration in the last integral of (2.3), we estimate that
integral as ∫ 1

0

r(1− r)|v(r)|dr

∫ 1

0

|u′(s)|2ds

=
∫ 1

0

|u′(s)|2ds

∫ s

0

r(1− r)|v(r)|dr

≤
∫ 1

0

|u′(s)|2ds
( ∫ s

0

r(1− r)2dr
)1/2( ∫ s

0

r|v(r)|2dr
)1/2

≤ 1√
2
‖u′‖20‖v‖0 ≤

1√
2
‖u‖21‖v‖0.

From the two estimates above, we obtain (2.2) and the lemma is proved. �

For a Banach space X, we denote by ‖ · ‖X its norm, by X ′ its dual space
and by Lp(0, T ;X),1 ≤ p ≤ ∞ the Banach space of all real measurable functions
u : (0, T ) → X such that

‖u‖Lp(0,T ;X) =
( ∫ T

0

‖u(t)‖p
Xdt

)1/p

< ∞ for 1 ≤ p < ∞,

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u(t)‖X for p = ∞.

Let

u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ur(t) = ∇u(t), urr(t)

denote

u(r, t),
∂u

∂t
(r, t),

∂2u

∂t2
(r, t),

∂u

∂r
(r, t),

∂2u

∂r2
(r, t),

respectively.

3. The general case

In this section, we consider initial and boundary value problem (1.1) with general
right-hand side f = f(r, t, u, ur). We make the following assumptions:

(H1) ũ1 ∈ V1 and ũ0 ∈ V2,
(H2) B ∈ C1(R2

+) with B(ξ, η) ≥ b0 > 0 for all ξ, η ≥ 0,
(H3) f ∈ C0(Ω× R+ × R2) and ∂f/∂r, ∂f/∂u, ∂f/∂ur ∈ C0(Ω× R+ × R2).
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With B and f satisfying assumptions (H2) and (H3), respectively, we introduce
the following constants, for any M > 0 and T > 0:

K̃0 = K̃0(M,B) = sup{B(ξ, η) : 0 ≤ ξ, η ≤ M2},

K̃1 = K̃1(M,B) = sup
{(∣∣∂B

∂ξ

∣∣ +
∣∣∂B

∂η
|
)
(ξ, η) : 0 ≤ ξ, η ≤ M2

}
,

K0 = K0(M,T, f) = sup
(r,t,u,v)∈A∗

|f(r, t, u, v)|,

K1 = K1(M,T, f) = sup
(r,t,u,v)∈A∗

(∣∣∂f

∂r

∣∣ +
∣∣∂f

∂u

∣∣ +
∣∣∂f

∂v

∣∣)(r, t, u, v),

(3.1)

where
A∗ = A∗(M,T )

= {(r, t, u, v) : 0 ≤ r ≤ 1, 0 ≤ t ≤ T, |u| ≤ M

√
2 + 1/

√
2, |v| ≤ M/

√
2}.

For each M > 0 and T > 0 we put

W (M,T ) =
{

v ∈ L∞(0, T ;V2) : v̇ ∈ L∞(0, T ;V1) and v̈ ∈ L2(0, T ;V0),

with ‖v‖L∞(0,T ;V2), |v̇‖L∞(0,T ;V1), ‖v̈‖L2(0,T ;V0) ≤ M
}

,

W1(M,T ) =
{
v ∈ W (M,T ) : v̈ ∈ L∞(0, T ;V0)

}
.

We shall choose as first initial term u0 = ũ0, suppose that

um−1 ∈ W1(M,T ), (3.2)

and associate with problem (1.1) the following variational problem: Find um in
W1(M,T ) (m ≥ 1) so that

〈üm(t), v〉+ bm(t)a(um(t), v) = 〈Fm(t), v〉 ∀v ∈ V1,

um(0) = ũ0, u̇m(0) = ũ1,
(3.3)

where
bm(t) = B

(
‖um−1(t)‖20, ‖∇um−1(t)‖20

)
= B

( ∫ 1

0

u2
m−1(r, t)rdr,

∫ 1

0

∣∣∂um−1

∂r
(r, t)

∣∣2rdr
)
,

Fm(r, t) = f
(
r, t, um−1(t),∇um−1(t)

)
.

(3.4)

Then, we have the following result.

Theorem 3.1. Let assumptions (H1)–(H3) hold. Then there exist a constant M >
0 depending on ũ0, ũ1, B, h and a constant T > 0 depending on ũ0, ũ1, B, h, f
such that, for u0 = ũ0, there exists a linear recurrent sequence {um} ⊂ W1(M,T )
defined by (3.3)-(3.4).

Proof. The proof consists of several steps.
Step 1: The Galerkin approximation (introduced by Lions [10]). Consider as in
Lemma 2.5 the basis wj = w̃j/

√
λj for V1 and put

u(k)
m (t) =

k∑
j=1

c
(k)
mj(t)wj , (3.5)
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where the coefficients c
(k)
mj satisfy the system of linear differential equations

〈ü(k)
m (t), wj〉+ bm(t)a

(
u(k)

m (t), wj

)
= 〈Fm(t), wj〉, 1 ≤ j ≤ k,

u(k)
m (0) = ũ0k, u̇(k)

m (0) = ũ1k,
(3.6)

where
ũ0k → ũ0 strongly in V2,

ũ1k → ũ1 strongly in V1.
(3.7)

Suppose that um−1 satisfies (3.2). Then it is clear that system (3.6) has a unique
solution u

(k)
m on an interval 0 ≤ t ≤ T

(k)
m ≤ T . The following estimates allows us to

the take constant T
(k)
m = T for all m and k.

Step 2: A priori estimates. Put

S(k)
m (t) = X(k)

m (t) + Y (k)
m (t) +

∫ t

0

‖ü(k)
m (s)‖20ds, (3.8)

where
X(k)

m (t) = ‖u̇(k)
m (t)‖20 + bm(t)a

(
u(k)

m (t), u(k)
m (t)

)
,

Y (k)
m (t) = a

(
u̇(k)

m (t), u̇(k)
m (t)

)
+ bm(t)‖Au(k)

m (t)‖20,
(3.9)

where A is defined by (2.1). Then it follows that

S(k)
m (t) =S(k)

m (0) +
∫ t

0

b′m(s)
[
a
(
u(k)

m (s), u(k)
m (s)

)
+ ‖Au(k)

m (s)‖20
]
ds

+ 2
∫ t

0

〈Fm(s), u̇(k)
m (s)〉ds + 2

∫ t

0

a
(
Fm(s), u̇(k)

m (s)
)
ds

−
∫ t

0

bm(s)〈Au(k)
m (s), ü(k)

m (s)〉ds +
∫ t

0

〈Fm(s), ü(k)
m (s)〉ds

=S(k)
m (0) + I1 + · · ·+ I5.

We shall estimate step by step all integrals I1, . . . , I5.
Integral I1: Using assumption (H2), we obtain from (3.1)2 and (3.4)1 that

|b′m(t)| ≤ 2
∣∣∂B

∂ξ

(
‖um−1(t)‖20, ‖∇um−1(t)‖20

)
〈um−1(t), u̇m−1(t)〉

∣∣
+ 2

∣∣∂B

∂η

(
‖um−1(t)‖20, ‖∇um−1(t)‖20

)
〈∇um−1(t),∇u̇m−1(t)〉

∣∣
≤ 4M2K̃1.

Combining (3.8)-(3.9) we obtain

I1 ≤
4M2K̃1

b0

∫ t

0

S(k)
m (s)ds.

Integral I2: Since um−1 ∈ W1(M,T ), it follows from Lemma 2.7 that

|um−1(r, t)| ≤ M

√
2 + 1/

√
2, |∇um−1(r, t)| ≤ M/

√
2, a.e. on Ω× (0, T ). (3.10)

By the Cauchy-Schwarz inequality, it follows from (3.1)3 that

I2 ≤ 2
∫ t

0

‖Fm(s)‖0
∥∥u̇(k)

m (s)
∥∥

0
ds ≤ 2K0

∫ t

0

√
X

(k)
m (s)ds.
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Integral I3: Using Lemma 2.4, we have

I3 ≤ 2C1

∫ t

0

‖Fm(s)‖1
∥∥u̇(k)

m (s)
∥∥

1
ds.

On the other hand, from (3.1)3−4 and (3.10) we obtain

‖Fm(s)‖21 ≤
1
2
K

2

0 +
1
2
K

2

1

[
1 + (1 +

√
3M

]2
.

Then we deduce, from (3.9)2 that

I3 ≤
√

2C1√
C0

[
K

2

0 +
(
1 + (1 +

√
3)M

)2
K

2

1

]1/2
∫ t

0

√
Y

(k)
m (s)ds.

Integral I4: Using the inequality |ab| ≤ 3
4a2 + 1

3b2 ∀a, b ∈ R, we get from (3.1)1
and (3.8)-(3.9) that

I4 ≤ K̃0

∫ t

0

‖Au(k)
m (s)‖0

∥∥ü(k)
m (s)

∥∥
0
ds

≤ 3
4
K̃2

0

∫ t

0

‖Au(k)
m (s)‖20ds +

1
3

∫ t

0

∥∥ü(k)
m (s)‖20ds

≤ 3K̃2
0

4b0

∫ t

0

S(k)
m (s)ds +

1
3
S(k)

m (t).

Integral I5: We use again inequality |ab| ≤ 3
4a2 + 1

3b2 ∀a, b ∈ R, we get from (3.1)3
and (3.8) that

I5 ≤
∫ t

0

‖Fm(s)‖0
∥∥ü(k)

m (s)‖0ds ≤ 3
4
TK

2

0 +
1
3
S(k)

m (t).

Combining the above estimates for I1, . . . , I5, we get

S(k)
m (t) ≤ 3S(k)

m (0) + C1(M,T ) + C2(M)
∫ t

0

S(k)
m (s)ds, (3.11)

where

C1(M,T ) =
45
4

TK
2

0 +
9

2C0
TC2

1

[
K

2

0 +
(
1 + (1 +

√
3)M

)2
K

2

1

]
,

C2(M) = 1 +
3

4b0

(
3K̃2

0 + 16M2K̃1

)
.

(3.12)

Now, we need an estimate on the term S
(k)
m (0). We have

S(k)
m (0) = X(k)

m (0) + Y (k)
m (0)

= ‖ũ1k‖20 + a(ũ1k, ũ1k) + B
(
‖∇ũ0‖20

)(
a(ũ0k, ũ0k

)
+ ‖Aũ0k‖20

)
.

By means of the convergence (3.7), we can deduce the existence of a constant M > 0
independent of k and m such that

S(k)
m (0) ≤ M2/6. (3.13)
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Note that, from the assumption (H3), we have limT→0+

√
TKi(M,T, f) = 0, i =

0, 1. Then, from (3.12) we can always choose the constant T > 0 such that(
M2/2 + C1(M,T )

)
exp

[
TC2(M)

]
≤ M2,(

1 +
1√

b0C0

)√
8M2TK̃1 +

√
2TK1 exp

[ 1√
2
TK1 +

(
4 +

2C1

b0C0

)
M2TK̃1

]
< 1.

(3.14)
It follows from (3.11) and (3.13)-(3.14) that

S(k)
m (t) ≤ M2 exp[−TC2(M)] + C2(M)

∫ t

0

S(k)
m (s)ds

for 0 ≤ t ≤ T
(k)
m ≤ T . By using Gronwall’s lemma we deduce from here that

S(k)
m (t) ≤ M2 exp[−TC2(M)] exp[C2(M)t] ≤ M2

for all t ∈ [0, T
(k)
m ]. So we can take constant T

(k)
m = T for all k and m. Therefore, we

have u
(k)
m ∈ W1(M,T ) for all m and k. We can extract from {u(k)

m } a subsequence
{u(ki)

m } such that

u(ki)
m → um in L∞(0, T ;V2) weak?,

u̇(ki)
m → u̇m in L∞(0, T ;V1) weak?,

ü(ki)
m → üm in L2(0, T ;V0) weak,

where um ∈ W (M,T ). Passing to the limit in (3.6), we have um satisfying (3.3) in
L2(0, T ), weak. On the other hand, it follows from (3.2)-(3.3)1 and um ∈ W (M,T )
that üm = −bm(t)Aum + Fm ∈ L∞(0, T ;V0), hence um ∈ W1(M,T ) and the proof
of Theorem 3.1 is complete. �

Theorem 3.2. Let assumptions (H1)-(H3) hold. Then:
(i) There exist constants M > 0 and T > 0 satisfying (3.13)-(3.14) such that

problem (1.1) has a unique weak solution um ∈ W1(M,T ).
(ii) On the other hand, the linear recurrent sequence um defined by (3.2)-(3.4)

converges to the solution u of problem (1.1) strongly in the space

W1(T ) =
{
v ∈ L∞(0, T ;V1) : v̇ ∈ L∞(0, T ;V0)

}
.

Furthermore, we have the estimate

‖um − u‖L∞(0,T ;V1) + ‖u̇m − u̇‖L∞(0,T ;V0) ≤ Ckm
T ∀m ≥ 1,

where

kT =
(
1 +

1√
b0C0

)√
8M2TK̃1 +

√
2TK̃1

× exp
[ 1√

2
TK1 +

(
4 +

2C1

b0C0

)
M2TK̃1

]
< 1,

and C is a constant depending only on T, u0, u1 and kT .

Proof. Existence of the solution. First, we note that W1(T ) is a Banach space with
respect to the norm (see [10]):

‖v‖W1(T ) = ‖v‖L∞(0,T ;V1) + ‖v̇‖L∞(0,T ;V0).
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We shall prove that {um} is a Cauchy sequence in W1(T ). For this, set vm =
um+1 − um. Then vm satisfies the variational problem

〈v̈m(t), w〉+ bm+1(t)a
(
vm(t), w

)
+

(
bm+1(t)− bm(t)

)
〈Aum(t), w〉

= 〈Fm+1(t)− Fm(t), w〉 ∀ ∈ w ∈ V1,

vm(0) = v̇m(0) = 0.

Taking w = v̇m herein, after integrating in t, we get

Xm(t) =
∫ t

0

b′m+1(s)a
(
vm(s), vm(s)

)
ds

− 2
∫ t

0

(
bm+1(s)− bm(s)

)
〈Aum(s), v̇m(s)〉ds

+ 2
∫ t

0

〈Fm+1(s)− Fm(s), v̇m(s)〉ds,

where
Xm(t) = ‖v̇m(t)‖20 + bm+1(t)a

(
vm(t), vm(t)

)
.

On the other hand, from (3.1)2,4 and (3.2) we obtain

|b′m+1(t)| ≤ 4M2K̃1,

|bm+1(t)− bm(t)| ≤ 2K̃1M‖vm−1(t)‖0 + 2K̃1M‖∇vm−1(t)‖0
≤ 4K̃1M‖vm−1(t)‖1,

‖Fm+1(t)− Fm(t)‖0 ≤
√

2K1‖vm−1(t)‖1.

It follows that

‖v̇m(t)‖20 + b0C0‖vm(t)‖21

≤ 4M2K̃1C1

∫ t

0

‖vm(s)‖21ds + 8MK̃1

∫ t

0

‖vm−1(s)‖1‖Avm(s)‖0‖v̇m(s)‖0ds

+ 2
√

2K1‖vm−1(s)‖1‖v̇m(s)‖0ds

≤ 4M2K̃1C1

∫ t

0

‖vm(s)‖21ds

+
(
16M2K̃1 + 2

√
2K1

) ∫ t

0

‖vm−1(s)‖1‖v̇m(s)‖0ds

≤
(
8M2K̃1 +

√
2K1

)
‖vm−1‖2W1(T )

+ 2
[ 1√

2
K1 +

(
4 +

2C1

b0C0

)
M2K̃1

] ∫ t

0

(
‖v̇m(s)‖20 + b0C0‖vm(s)‖21

)
ds.

Using Gronwall’s lemma we deduce that

‖v̇m(t)‖20 + b0C0‖vm(t)‖21

≤
(
8M2K̃1 +

√
2K1

)
‖vm−1‖2W1(T ) exp

{
2T

[ 1√
2
K1 +

(
4 +

2C1

b0C0

)
M2K̃1

]}
,

for 0 ≤ t ≤ T . Hence

‖vm‖W1(T ) ≤ kT ‖vm−1‖W1(T ) ∀m ≥ 1,
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where

kT =
(
1 +

1√
b0C0

)√
8M2TK̃1 +

√
2TK1 exp

[ 1√
2
TK1 +

(
4 +

2C1

b0C0

)
M2TK̃1

]
< 1.

Hence

‖um+p − um‖W1(T ) ≤ ‖u1 − u0‖W1(T )
km

T

1− kT

for all m and p. It follows that {um} is a Cauchy sequence in W1(T ). Therefore,
there exists u ∈ W1(T ) such that

um → u strongly in W1(T ). (3.15)

We also note that u ∈ W1(M,T ). Then from the sequence {um} we can deduce a
subsequence {umj

} such that

umj → u in L∞(0, T ;V2) weak?,

u̇mj → u̇ in L∞(0, T ;V1) weak?,

ümj
→ ü in L2(0, T ;V0) weak,

with u ∈ W (M,T ). Noticing (3.1)1−2 we have∣∣∣ ∫ T

0

〈bm(t)Aum(t)−B
(
‖u(t)‖20, ‖∇u(t)‖20

)
Au(t), w(t)〉dt

∣∣∣
≤ C1K̃0‖um − u‖L∞(0,T ;V1)‖w‖L1(0,T ;V1)

+ 4C1MK̃1‖um−1 − u‖L∞(0,T ;V1)‖u‖L∞(0,T ;V1)‖w‖L1(0,T ;V1)

(3.16)

for all w ∈ L1(0, T ;V1). It follows from (3.15)-(3.16) that

bm(t)Aum → B
(
‖u(t)‖20, ‖∇u(t)‖20

)
Au in L∞(0, T ;V ′1) weak?. (3.17)

Similarly

‖Fm − f(r, t, u, ur)‖L∞(0,T ;V0) ≤
√

2K1‖um−1 − u‖L∞(0,T ;V1). (3.18)

Hence, from (3.15) and (3.18), we obtain

Fm → f(r, t, u, ur) strongly in L∞(0, T ;V0). (3.19)

Then, taking limits in (3.3) with m = mj → +∞, there exists u ∈ W (M,T )
satisfying

〈ü(t), w〉+ B
(
‖u(t)‖20, ‖∇u(t)‖20

)
a
(
u(t), w

)
= 〈f(r, t, u, ur), w〉 w ∈ V1,

u(0) = ũ0, u̇(0) = ũ1.
(3.20)

On the other hand, from (3.17) and (3.19)-(3.20) we have

ü = −B
(
‖u‖20, ‖∇u‖20

)
Au + f(r, t, u, ur) ∈ L∞(0, T ;V0).

Hence, u ∈ W1(M,T ) and the proof of existence complete.
Uniqueness of the solution. Let u1, u2, be weak solutions of problem (1.1)1−3 such
that u1 and u2 are in W1(M,T ). Then w = u1−u2 satisfies the variational problem

〈ẅ(t), v〉+ b̃1(t)a
(
w(t), v

)
+

(
b̃1(t)− b̃2(t)

)
〈Au2(t), v〉 = 〈f̃1(t)− f̃2(t), v〉 ∀v ∈ V1,

w(0) = ẇ(0) = 0,

where

b̃i(t) = B
(
‖ui(t)‖20, ‖∇ui(t)‖20

)
, f̃i(t) = f(r, t, ui,∇ui), i = 1, 2 .
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Taking v = ẇ and integrating by parts, we obtain

‖ẇ(t)‖20 + b̃1(t)a
(
w(t), w(t)

)
=

∫ t

0

b̃′1(s)a
(
w(s), w(s)

)
ds

− 2
∫ t

0

(
b̃1(s)− b̃2(s)

)
〈Au2(s), ẇ(s)〉ds

+ 2
∫ t

0

〈f̃1(s)− f̃2(s), ẇ(s)〉ds.

Put
X(t) = ‖ẇ(t)‖20 + b0C0‖w(t)‖21.

Then

X(t) =
1√

b0C0

[
4
(
1 +

C1√
b0C0

)
M2K̃1 +

√
2K1

] ∫ t

0

X(s)ds

for all t ∈ [0, T ] follows. Using Gronwall’s lemma we deduce X(t) = 0, i.e., u1 = u2

and the proof of Theorem 3.2 is complete. �

Remark 3.3. In the case of B ≡ 1 and f = f(t, u, ut) with f ∈ C1(R+ × R2) and
f(t, 0, 0) = 0 for all t ≥ 0, and with the homogeneous Dirichlet boundary condition
instead of (1.1)2, some results have been obtained in [4]. In the case of f being in
C1(Ω × R+ × R2) and B ≡ 1 we have previously obtained some results in [2]. We
emphasize here that in the above, however, we do not need to assume that f is in
C1(Ω× R+ × R2).

4. A special case

In this section, we consider initial boundary value problem (1.1) with an au-
tonomous right-hand side independent of ur and an affine coefficient function B.
Under these assumptions, we obtain stronger conclusion on the approach results in
a quadratic convergence of the approximation (Theorem 4.2).

We make the following assumptions:
(H4) B(η) = b0 + η with b0 > 0 a given constant.
(H5) f ∈ C2(Ω× R).
With f satisfying assumption (H5), for any M > 0 we put

K0 = K0(M,f) = sup
(r,u)∈A∗

|f(r, u)|,

K1 = K1(M,f) = sup
(r,u)∈A∗

(∣∣∣∂f

∂r

∣∣∣ +
∣∣∣∂f

∂u

∣∣∣)(r, u),

K2 = K2(M,f) = sup
(r,u)∈A∗

(∣∣∣ ∂2f

∂r∂u

∣∣∣ +
∣∣∣∂2f

∂u2

∣∣∣)(r, u),

where

A∗ = A∗(M) =
{
(r, u) : 0 ≤ r ≤ 1, |u| ≤ M

√
2 + 1/

√
2
}
.

We shall choose as a (constant in time) starting point u0 the initial data ũ0. Assume
um−1 ∈ W1(M,T ) and consider the variational problem (3.3), where

bm(t) = b0 + ‖∇um(t)‖20,

Fm(r, t) = fm(r, t, um) = f(r, um−1) + (um − um−1)
∂f

∂u
(r, um−1),

(4.1)
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with

fm(r, t, u) = f(r, um−1) + (u− um−1)
∂f

∂u
(r, um−1).

Then we have the following theorem.

Theorem 4.1. Let (H1), (H4), and (H5) hold. Then there exist constants M > 0
and T > 0 and the recurrent sequence {um} ∈ W1(M,T ) defined by (3.3) and (4.1).

Proof. The idea is the same as in the proof of Theorem 3.1. As there we define u
(k)
m

by (3.5)-(3.7), where the functions bm and Fm appearing in (3.5) are replaced by

b(k)
m (t) = b0 + ‖∇u(k)

m (t)‖20,

F (k)
m (r, t) = fm

(
r, t, u(k)

m

)
= f(r, um−1) +

(
u(k)

m − um−1

)∂f

∂u
(r, um−1),

respectively. With S
(k)
m , X

(k)
m , Y

(k)
m defined by (3.8)-(3.9), where the function bm

appearing in X
(k)
m and Y

(k)
m are replaced by b

(k)
m , it follows that

S(k)
m (t) =S(k)

m (0) +
∫ t

0

b(k)
m

′
(s)

[
a
(
u(k)

m (s), u(k)
m (s)

)
+ ‖Au(k)

m (s)‖20
]
ds

+ 2
∫ t

0

〈
F (k)

m (s), u̇(k)
m (s)

〉
ds + 2

∫ t

0

a
(
F (k)

m (s), u̇(k)
m (s)

)
ds

−
∫ t

0

b(k)
m (s)

〈
Au(k)

m (s), ü(k)
m (s)

〉
ds +

∫ t

0

〈
F (k)

m (s), ü(k)
m (s)

〉
ds.

We can estimate S
(k)
m in a manner similar to (3.11) as

S(k)
m (t) ≤ 3S(k)

m (0) + D̃0(M,T ) + D1(M)
∫ t

0

S(k)
m (s)ds + D2

∫ t

0

(
S(k)

m (s)
)2

ds,

where

D̃0 =D̃0(M,T ) =
21
2

(K0 + MK1)2

+ 6C1T
(
K0 + (1 + M +

√
1 + 3M2)K1 + K0 + MK2

√
3 + 3M2/2

)2

,

D1 =D1(M)

=
9
4

+ 3(1 + C1)/C0 + 21K
2

1/2b0C0 +
6C1

b0C0

(
4K

2

1 + (3 + 3M2/2)K
2

2),

D2 =
3
b2
0

(√
b0 +

3
4C0

)
.

From convergence (3.7) we can deduce the existence of a constant M > 0 indepen-
dent of k and m such that S

(k)
m (0) ≤ M2/6. Next, we can always choose a constant

T > 0, so that

D̃0(M,T ) ≤ M2/2 and
(
1 +

D1

M2D2

)
exp(TD1) ≤ 1 +

4D1

3M2D2
. (4.2)

Then

S(k)
m (t) ≤ 3

4
M2 + D1(M)

∫ t

0

S(k)
m (s)ds + D2

∫ t

0

(
S(k)

m (s)
)2

ds. (4.3)
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On the other hand, the function

S(t) =
D1 exp(D1t)

4D1
3M2 −D2[exp(D1t)− 1]

, 0 ≤ t ≤ T, (4.4)

is the maximal solution of the Volterra integral equation with non-decreasing kernel
[8]

S(t) =
3
4
M2 + D1(M)

∫ t

0

S(s)ds + D2

∫ t

0

S2(s)ds, 0 ≤ t ≤ T.

From (4.2)-(4.4)

S(k)
m (t) ≤ S(t) ≤ M2, 0 ≤ t ≤ T (4.5)

follows for all k and m. Hence u
(k)
m ∈ W1(M,T ) for all k and m. Then, in a manner

similar to the proof of Theorem 3.1, we can prove that the limit um ∈ W1(M,T )
of the sequence {u(k)

m } when k → +∞ is the unique solution of variational problem
(3.3) and (4.1). The proof of Theorem 4.1 is complete. �

The following result gives a quadratic convergence of the sequence {um} to a
weak solution of problem (1.1) corresponding to f = f(r, u) and B(η) = b0 + η.

Theorem 4.2. Let assumptions (H1) and (H4)-(H5), hold. Then

(i) There exist constants M > 0 and T > 0 such that problem (1.1) corre-
sponding to f = f(r, u) and B(η) = b0 + η has a unique weak solution
u ∈ W1(M,T ).

(ii) On the other hand, the recurrent sequence {um} defined by (3.3) and (4.1)
converges quadratically to the solution u strongly in the space W1(T ) in the
sense

‖um − u‖W1(T ) ≤ C‖um−1 − u‖2W1(T ),

where C is a suitable constant. Furthermore, we have also the estimation

‖um − u‖W1(T ) ≤
β2m

µT (1− β)
for all m,

where

µT =
(
1 +

1√
b0C0

)
(1 + b0C0)

√
TK

(2)
T exp(TK

(1)
T )

and β = 4MµT < 1.

Note that the last condition is always satisfied by taking a suitable T > 0.

Proof. First, we shall prove that {um} is a Cauchy sequence in W1(T ). For this,
set vm = um+1 − um. Then vm satisfies the variational problem

〈v̈m(t), w〉+ bm+1(t)a
(
vm(t), w

)
+

(
bm+1(t)− bm(t)

)
〈Aum(t), w〉

= 〈Fm+1(t)− Fm(t), w〉, ∀w ∈ V1,

vm(0) = v̇m(0) = 0,

(4.6)
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with

Fm+1 − Fm = f(r, um)− f(r, um−1) + (um+1 − um)
∂f

∂u
(r, um)

− (um − um−1)
∂f

∂u
(r, um−1)

= vm
∂f

∂u
(r, um) +

1
2
v2

m−1

∂2f

∂u2
(r, λm),

λm = um−1 + θvm−1, (0 < θ < 1),

bm+1(t)− bm(t) = ‖∇um+1(t)‖20 − ‖∇um(t)‖20.

Taking w = v̇m in (4.6) and integrating in t, we get

‖v̇m(t)‖20 + bm+1(t)a
(
vm(t), vm(t)

)
= 2

∫ t

0

〈∇um+1(s),∇u̇m+1(s)〉a
(
vm(s), vm(s)

)
ds

− 2
∫ t

0

(
‖∇um+1(s)‖20 − ‖∇um(s)‖20

)
〈Aum(s), v̇m(s)〉ds

+ 2
∫ t

0

〈
vm

∂f

∂u
(r, um), v̇m(s)

〉
ds +

∫ t

0

〈
v2

m−1

∂2f

∂u2
(r, λm), v̇m(s)

〉
ds

= J1 + · · ·+ J4.

We can estimate herein the integrals J1, . . . , J4 step by step as

J1 ≤ 2M2

∫ t

0

a
(
vm(s), vm(s)

)
ds ≤ 2C1M

2

∫ t

0

‖vm(s)‖21ds,

J2 ≤ 4M2

∫ t

0

‖vm(s)‖1‖v̇m(s)‖0ds, (by (4.5)),

J3 ≤ 4K1

∫ t

0

‖vm(s)‖0‖v̇m(s)‖0ds ≤ 4K1

∫ t

0

‖vm(s)‖1‖v̇m(s)‖0ds,

J4 ≤ 4K2

∫ t

0

〈v2
m−1(s), |v̇m(s)|〉ds ≤ K2

√
2(1 + K2

1 )
∫ t

0

‖vm−1(s)‖21‖v̇m(s)‖0ds,

where the last inequality follows from (4.5) and Lemma 2.8. Combining the above
estimates, we obtain

‖v̇m(t)‖20 + b0C0‖vm(t)‖21

≤ 2C1M
2

∫ t

0

‖vm(s)‖21ds + 2(2M2 + K1)
∫ t

0

‖vm(s)‖1‖v̇m(s)‖0ds

+ K2

√
2(1 + K2

1 )
∫ t

0

‖vm−1(s)‖21‖v̇m(s)‖0ds.

Letting Zm(t) = ‖v̇m(s)‖20 + b0C0‖vm(s)‖21, the above inequality can be written as

Zm(t) ≤ K
(1)
T

∫ t

0

Zm(s)ds + K
(2)
T

∫ t

0

Z2
m−1(s)ds, (4.7)

where

K
(1)
T =

2C1M
2

b0C0
+

2M2 + K1√
b0C0

+
(1 + K2

1 )K2√
2b0C0

, K
(2)
T =

(1 + K2
1 )K2√

2b0C0

.
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Hence, we deduce from (4.7) that

‖vm‖W1(T ) ≤ µT ‖vm−1‖2W1(T ), (4.8)

where µT is the constant

µT =
(
1 +

1√
b0C0

)(
1 + b0C0

)√
TK

(2)
T exp(TK

(1)
T ).

From (4.8), we obtain

‖um − um+p‖W1(T ) ≤
β2m

µT (1− β)
(4.9)

for all m and p where β = 4MµT
< 1. It follows that {um} is a Cauchy sequence

in W1(T ). Then there exists u ∈ W1(T ) such that um → u strongly in W1(T ).
Thus, and by applying a similar argument as used in the proof of Theorem 3.2,
u ∈ W1(M,T ) is the unique weak solution of problem (1.1) corresponding to f =
f(r, u) and B(η) = b0 + η. Passing to the limit as p → +∞ for m fixed, we obtain
estimate (4.5) from (4.9). This completes the proof of Theorem 4.2. �
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