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COUPLED SYSTEMS OF FRACTIONAL DIFFERENTIAL
INCLUSIONS WITH COUPLED BOUNDARY CONDITIONS

BASHIR AHMAD, SOTIRIS K. NTOUYAS, AHMED ALSAEDI

ABSTRACT. We investigate the existence of solutions for a boundary-value
problem of coupled fractional differential inclusions supplemented with coupled
boundary conditions. By applying standard fixed point theorems for multi-
valued maps, we derive some existence results for the given problem when the
multi-valued maps involved have convex and non-convex values. Several re-
sults follow from the ones obtained in this article by specializing the parameters
involved in the problem at hand.

1. INTRODUCTION

Fractional differential equations arise naturally in the mathematical modeling of
several real-world phenomena and have recently gained great importance in view of
their varied applications in scientific and engineering problems. Fractional deriva-
tives help to take care of the hereditary properties of processes under investigation
and give rise to more realistic models than the ones based on integer-order deriva-
tives. For further details and explanations see, for instance, [2], [24] [31].

Fractional-order boundary value problems (BVPs) have been extensively studied
by many researchers. For the recent development of the topic, we refer the reader to
a series of articles [4 17, 2], 28] 37, B9] [40], 42] and the references cited therein. In
particular, coupled systems of fractional-order differential equations have attracted
special attention in view of their occurrence in the mathematical modeling of phys-
ical phenomena like chaos synchronization [I8| 20} 41], anomalous diffusion [35],
ecological effects [23], disease models [T, 16} [30], etc. For some recent theoretical
results on coupled systems of fractional-order differential equations, for example,
see [3, [ [0, 7, [8] (34, [361, [38].

Differential inclusions are found to be of great utility in studying dynamical sys-
tems and stochastic processes. Examples include sweeping processes [I], 29, [32],
granular systems [33], nonlinear dynamics of wheeled vehicles [9], control problems
[26], etc. The details of pressing issues in stochastic processes, control, differen-
tial games, optimization and their application in finance, manufacturing, queueing
networks, and climate control can be found in the text [25]. For application of
fractional differential inclusions in synchronization processes, see [14].
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In this article, motivated by [8], we consider a new boundary value problem of
coupled Caputo (Liouville-Caputo) type fractional differential inclusions:

‘De(t) € F(t,x(t),y(t)), te0,T], 1<a<2,
“DPy(t) € G(t, z(t),y(t), t€[0,T],1<pB<2,
subject to the coupled boundary conditions:
2(0) = viy(T), a'(0) = vay/(T),
y(0) = pz(T), y'(0) = pa(T),

where ¢D®,¢ D? denote the Caputo fractional derivatives of order o and 3 respec-
tively, F,G : [0,T] x R x R — P(R) are given multivalued maps, P(R) is the family
of all nonempty subsets of R, and v;, u;,7 = 1,2 are real constants with v;u; # 1,
1=1,2.

The objective of the present work is to establish existence criteria for solutions
of the problem — for convex and nonconvex valued multivalued maps F
and G by applying the standard fixed-point theorems for multivalued maps. The
rest of the paper is organized as follows. We present background material about
multivalued analysis and fractional calculus in Section 2, while the main results
are derived in Section 3. We emphasize that the tools of the fixed point theory
employed in our analysis are standard, however their application to systems of
fractional differential inclusions is new.

(1.1)

(1.2)

2. PRELIMINARIES

Let us begin this section with some basic concepts of multivalued maps [I5] 22].

Let (X,] - ||) be a normed space and define P (X) = {Y € P(X) : Y is closed},
Pep,e(X) ={Y € P(X) : Y is compact and convex}.

A multi-valued map G : X — P(X) is

(a) convex (closed) valued if G(z) is convex (closed) for all z € X;

(b) upper semi-continuous (u.s.c.) on X if the set G(z¢) is a nonempty closed
subset of X for each xg € X, and there exists an open neighborhood ANy of
xo such that G(Np) C N for each open set N of X containing G(zo);

(c) lower semi-continuous (l.s.c.) if the set {y € X : G(y) N B # 0} is open for
any open set B in E.

(d) completely continuous if G(B) is relatively compact for every B € Pp(X) =
{¥Y € P(X): ) is bounded}.

Remark 2.1. If the multi-valued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph, i.e., z,, — x4,
Yn = Ysy Yn € G(ay,) imply y. € G(x); the set Gr(G) = {(x,y) € X xY,y € G(x)}
defines the graph of G.

A multivalued map G : [a,b] — P (R) is said to be measurable if the function
t— d(y,G(t)) = inf{|ly — 2| : z € G(t)} is measurable for every y € R.

A multivalued map G : [a,b] x R? — P(R) is said to be Carathéodory if (i)
t — G(t,z,y) is measurable for all z,y € R and (ii) (z,y) — F(t,z,y) is upper
semicontinuous for almost all ¢ € [a, b].

Further a Carathéodory function G is called L!-Carathéodory if (i) for each p > 0,
there exists ¢, € L'([a,b],RT) such that ||G(¢, z,y)|| = sup{|v| : v € G(t,z,y)} <
wp(t) for all z,y € R with ||z||, ||ly|| < p and for a.e. t € [a,b].
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Next, we recall some basic definitions of fractional calculus.

Definition 2.2. The fractional integral of order r with the lower limit zero for a
function f is defined as

S S L (O N .
If(t)_l“(r)/o (t—s)l—rd’ t>0, >0,

provided the right hand-side is point-wise defined on [0, c0), where I'(-) is the gamma
function, which is defined by I'(r) = [~ t"~te~"dt.

Definition 2.3. The Riemann-Liouville fractional derivative of order r > 0, n—1 <
r <n, n €N, is defined as

Dy () = oy ()" | (=9 sy,

where the function f(t) has absolutely continuous derivative up to order (n — 1).
Definition 2.4. The Caputo derivative of order r for a function f : [0,00) — R

can be written as

n—1

k
Dy (1) = D5y (1) = 3 /P O), >0, n-1<r<n.
k=0

In the rest of this article, we will use “D" instead of “Dg, for the sake of conve-
nience.

Remark 2.5. If f(t) € C"[0,00), then

cr _ 1 ! f(n)(s) _ gn—r p(n)
Df(t)_F(n—r)/()(t—s)“‘l—"ds_j (), t>0,n—-1<g<n.

Now we present an auxiliary lemma which plays a key role in the forthcoming
analysis; see [] for its proof.

Lemma 2.6. Let ¢,h € C([0,T],R) and v;u; # 1, i = 1,2. Then the solution of
the linear fractional differential system

D%(t) = ¢(t), t€[0,T],1<a<2,

‘DPy(t) = h(t), te€[0,T],1<pf<2,

(2.1)
JI(O) = Vly(T)? .Z‘/(O) = ng/(T),
y(0) = mz(T), y'(0) = 22’ (1),
1s equivalent to the system of integral equations
x(t)
T (e +1 v T + v
e (1 (pavo )+u2t)32+ 2 ( (11 M2)1+t)A2
1 — vopus 11— 1— vopo 11— (2.2)
t a—1
2 (t—1s)
—(A B Oy e d
e R LI M
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and
y(t)
T, (v v v T (v 1
- 1—M1/22u2( '“f(_ L;,ZIQ) +t)B2 Tz jm( Mi(—ﬁi : +”2t>A2 (2.3)
M1 f(t—s)t
+ m(l/lz‘h + By) +/0 Wh(s)ds,
where

[T(T=s)P! _(T(T -t
Ay —/0 Te) h(s)ds, B —/0 T @(s)ds, (2.4)

AQ—/O T3 —1) h(s)ds, BQ*/O Ta=1) o(s)ds. (2.5)

Definition 2.7. A function (z,y) € C?([0,T],R) x C?([0,T],R) is a solution of
the coupled system — if it satisfies the coupled boundary conditions
and there exist functions f, g € L*([0,T],R) such that f(t) € F(t,z(t),y(t)), g(t) €
G(t,z(t),y(t)) a.e. on [0,T] and

0 R ) [
v (T fl—tﬁz - t> /oT mg(s)‘“ (2.6)
1_V1,QL1 OT _85 “g(e)ds + e /OT (TF(Z); f(s)ds

and
y() = 5 _u,fm (Tuf(_y,l/;fz) +t) /0 ' (11:(;8_)61)2f(8)ds
< ) [
1?511,“ /OT .l g(s)ds
17uw1 /OT (S)dH/Ot (t}(sﬁ)f_lg(sws.

3. MAIN RESULTS

Let us introduce the space X = {z(t)|z(t) € C([0,T],R)} endowed with the
norm ||z|| = sup{|x(t)|,t € [0,T]}. Obviously (X,] -||) is a Banach space. Also the
product space (X x X, ||(z,y)|]) is a Banach space equipped with norm ||(z,y)|| =

=] + llyll-
For each (z,y) € X x X, define the sets of selections of F,G by

Sk =1f € Ll([O,T],R) s f(t) € F(t,z(t),y(t)) for ae. t €[0,T]}
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and
Se ) = {9 € L*([0,T],R) : g(t) € G(t,z(t), y(t)) for ae. t € [0,T]}.
In view of Lemma we define the operators K1,Ks : X x X — P(X x X) by
Ki(z,y) = {h1 € X x X : there exist f € Sg (44,9 € SG,(x,y) Such that
ha(z,y)(t) = Qu(t,z,y),Vt € [0, T]}
and
Ka(z,y) = {h2a € X x X : there exists f € Sp,(z4):9 € SG,(z,y) Such that
ha(z, y)(t) = Q2(t, 2,y),Vt € [0,T]},
where
Q) = (R )y [T
2 (T(ul + po)1 N t) /T (T — 5)8~2
0

+
I—vopa N\ 1—11pn

141 T (T — S)ﬁ_l
- ZV0 /o L'(B) gls)ds

V1 (T — 5)o—1 bt —s)*t
T /0 (o) f(s)ds+/0 Tl f(s)ds

and

v+ vy T —s)a—2
Qula)() = 22— (Th ) ) [P s

T +1 T(r —5)p—2
2] ( p (V1 a2 ) + Mzt) / ( s) g(s)ds
1—vopus 1—vi 0

V1 T (T — 5)571
ey A O

T _ Ja—1 t _ \B-1
M1 (T —s) / (t—s)

s)ds + ————qg(s)ds.
[ S s+ [ )
Then we define an operator K : X x X — P(X x X) by

Ky (x y)(ﬂ)
K(xz,y)(t) = ’ ,
w00 = (e
where K1 and Ko are respectively defined by (3.1)) and (3.2]).
For the sake of computational convenience, we set

v vo| 4+ 1 T
My = ] (| 1 (| |2 )+|V ‘)
1 = vaps| 11— v I'(a)

v |pa s
(= vt )T
_ | ((\M1|+|M2|)|V1\ +1) T n 1] TP
|1 —vopa|\ |1 —v1pu L) N —wm|DB+1)
|12 (|M1|(\V1|+\V2|) +1) r | | s
1 —wvopa| N [1—v1pu Fla)  [1—vm|T(a+1)

M,

Ms; =

(3.1

(3.2

)

)

(3.4)

(3.5)
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_ el lmal(ellpe] +1) 78
My = o] ) ==
|1 — vops| |1 — 1] (3.6)
( |1 | ) T°
11— v r+1)
3.1. The Carathéodory case. To prove our first result dealing with the convex
values of F' and G, we need the following known results.

Lemma 3.1 ([I5, Proposition 1.2)). If G : X — Py(Y) is u.s.c., then Gr(G) is a
closed subset of X XY ; i.e., for every sequence {x,}neny C X and {yntnen C Y, if
T = Tu, Yn — Y« when n — 00 and y,, € G(x,,), then y. € G(x.). Conversely, if G
is completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 3.2 ([27]). Let X be a separable Banach space. Let G : [0,T] x R? —
Pep.c(R) be an L' — Carathéodory multivalued map and let x be a linear continuous
mapping from L1([0,T],R) to C([0,T],R). Then the operator

X©°5¢.z: C([0,T],R) — PCP,C(C([Ov T|,R)), x> (xo SQ,I)(m) = X(Sg’x)
is a closed graph operator in C([0,T],R) x C([0,T],R).
Lemma 3.3 (Nonlinear alternative for Kakutani maps [19]). Let & be a closed
convex subset of a Banach space £, and U be an open subset of &1 with 0 € U.

Suppose that F : U — Pep(E1) is an upper semicontinuous compact map. Then
either

(i) F has a fived point in U, or
(ii) there is a w € OU and X € (0,1) with u € AF(u).
For the next Theorem we use the following assumptions:

(H1) the maps F,G : [0,T] x R? — P(R) are L' —Carathéodory and have convex
values;

(H2) there exist continuous nondecreasing functions 1, v, ¢1,d2 : [0,00) —
(0,00) and functions py,p2 € C([0,T],R") such that

|F (@t 2, y)llp = sup{|f]: f € F(t,z,y)} < pr@)[¥1(llz]]) + o1 (l[ylD)],
and

IG(t, 2, y)[l» == sup{lgl : g € G(t, 2, 9)} < pa()[a2(llz]]) + E2(llyI])],
for each (t,z,y) € [0,T] x R?;
(H3) there exists a positive number N such that
N
(My + M3)[|pr[[($1(N) + ¢1(N)) + (Ma + Ma)||pa[|($2(N) + ¢2(N))
where M; (i = 1,2,3,4) are given by (3.3))-(3.6).
Theorem 3.4. Under assumptions (H1)—(H3), the coupled system (1.1)-(1.2) has
at least one solution on [0,T].

Proof. Consider the operators K1,K2 : X x X — P(X x X) defined by (3.1) and
(3-2). From (Hy), it follows that the sets Sp ;) and Sg (s, are nonempty for
each (z,y) € X x X. Then, for f € Sg (4.4), 9 € Sq, (2, for (z,y) € X x X, we
have

> 1,

o)) = 12 (”ﬁ%ffﬂf D) / (ﬁ(;s_)(; F(s)ds
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Vo (T(u1+uz)m H) /OT Mg(s)ds

* 1—wvous 1= rp-1)
141 T (T - 8)’6_1
= Vi /o L'(3) gle)ds

20 T (T — s)>1 ¢ (t—s)o !
/0 T f(s)ds—l—/o ———f(s)ds

1-— 14¥21 O{)

and

vy + v T —s)e2
ha(@,9)() = 7 fﬂjgurz (TTE ;;;12) “)/0 (jI?(a)l) f(s)ds

ve  (Tpa(vips +1) /T (T —s)P2
+ t ————q(s)ds
1—V2/L2( 1—V1M1 K2 ) 0 F(B— 1) g( )

vipn [T (T —s)P!
Sl A

w5 (i 5)p!
) Ia) o+ [ (g s

where hy € Kq1(z,y), he € Kao(z,y) and so (h1, he) € K(z,y).

Now we verify that the operator K satisfies the assumptions of the nonlinear
alternative of Leray-Schauder type. It will be done in several steps. In the first
step, we show that K(x,y) is convex valued. Let (h;, h;) € (K1, K2),i = 1,2. Then
there exist f; € Sp (), 9i € S¢,(z,y), ¢ = 1,2 such that, for each ¢ € [0, T], we have

(0= e (AT [T
ha(t) = 1—V2u2< 11— + Qt)/o T(o—1) fi(s)d
Tt gy [FE-972
1 — Va2 ( 1—vin + t) /0 r(B—1) gi(s)ds
T —sﬁ 1 4 V1t (T — s)*1 |
_ a—1
+/O %fi(s)ds
and
7o) — M2 Ty (1 + v2) T M
hz(t)_ ]_—y2/j,2( 1_V1M1 +t>/o P( ) fz( )
V2 Ty (vipe +1) T(T — 5)P~2
1-— Vo [h2 ( 1— V1 i + /LQt) /0 ng(s)ds
[Tt [T @t
1=vipm /0 ING) gils)ds + 1~ Vit /o ['(a) fils)ds
t o B—1
+/() (tr(s;)gi(s)ds.

Let 0 < w < 1. Then, for each ¢ € [0, T, we have

[whl + (1 - w)hﬂ(t)
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Lo (ulT(/uUQ +1) I V2t> /0 M[wh(s) + (1 —w) fa(s)]ds

= 1 —vous 11— T(a—1)
T(p1 + p2)rr T (T — )82
1 — V22 ( 1—vi t) /0 W[ng(s) + (1 —w)ga(s)]ds
T o S 5 1
e [ (o) + (1 - (e
T
Vi
1_V1/~L1 /0 wf1(3)+(1—w)f2(s)]ds
=) (1 o) fols)lds
+/0 [(«) [wfi(s) + (1 —w)fa(s)]d

and
[why + (1 — w)hs(t)

V1 T V2 g )
Lo (Tul( + )+t)/0 u[wfl(s)Jr(l*w)fé(s)]dS

T 1w\ v T(a—1)
1 —ijuz (Tui(il,izuj Dy “2t) /OT M[wm(S) + (1 —w)ga(s)]ds
I Tffm /O a E(Z))ﬂl [wi(s) + (1 — w)ga(s)]ds
bt [ )+ (0 -t
+ [ o)+ (- ol

Since F, G are convex valued, we deduce that Sg (, ), Sq,(z,y) are convex valued.
Obviously why + (1 —w)hy € K1, why + (1 —w)hy € Ko and hence w(hy, hy) + (1 —
w)(hg, BQ) e K.

Now we show that  maps bounded sets into bounded sets in X x X. For a
positive number r, let B, = {(z,y) € X x X : ||(z,y)|| < r} be a bounded set in
X x X. Then, there exist f € Sg,(2,4),9 € Sa,(z,y) such that

ha(2,y)() = 5 7“52 m (Vﬂ;(mf/: 2, + vt /0 : (:;(;8)01;2 f(s)ds
e fitf:l " [ st
et [ et s g [T sy
+ /Ot Wf(s)ds
and
ha(@, y)(t) = 1_ﬂy22M2(Tﬁ;1<_V1UL1vQ) +t) /OT Mf(s)ds
(Tl )y [T,
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12y T —g)p-1 T — )1
+ U / (T F(ﬁ)) g(s)ds + a2 / (T —s) f(s)ds
B—1

1—vip Jo 1—vip Jo [(a)

)
+ /o T(5) g(s)ds.

Then we have

o) < el (Wl D)y
R e
i —|V1j1|u1| / )lds
i) lds+/; e
< el ('””flm_l”yﬁj Dt o) sl () + 610
T ((l"fl' EleaDll ) el () + 6a(r)
s WH) [Pl (r) + 62(1)
+ ol Il () + 61 (1)

\l—l/ AL1|F(a+1)

+ WHMH(%(T) + ¢1(r))

= Mi|lpr[[(1(r) + 61(r)) + Mal|pz|(2(r) + ¢2(r))

and

ot ()] < L (el 2] ) B ) + 00

|v2|T <|H1|(|V1||M2|+1) bl 2|>
|1 — vapsl |1—Vu1| L'(B)

1| |
+“—”ulﬂﬁ+nWﬂWﬂ)+@@»

1 _|M;1,U | T(a+1) [Pl (1(r) + 61(r))

+ g I (20) + )

= Ms|lpr[[(¥1(r) + é1(r)) + Mallpz || (b2(r) + ¢2(r)).

IIPQH(%( )+ ¢2(r))

Thus,

171 (2, y) | < Mullpall(¥1(r) + ¢1(r)) + Malp2||(¥2(r) + ¢2(7)),
[[h2 (2, y)|| < Ma||p[[(¥1(r) + ¢1(r)) + Mallp2||(¢2(r) + ¢2(7)).
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Hence we obtain

[(ha, ho)|| = llha(z, y)l| + lha(z, y)|
< (My+ Ms)|pal|(1(r) + ¢1(r) + (M2 + Ma)|[p2||(2(r) + ¢2(r))
={ (a constant).
Next, we show that K is equicontinuous. Let ¢1,t5 € [0, 7] with t; < t3. Then,
there exist f € Sp (4,4),9 € SG,(a,y) Such that

VlT(Mlyg —+ 1) i V2t) /T (T - 5)0472
11— o T(a=1)

ma(y)(t) = 7=

—— f(s)ds

T(p1 + p2) no T(T —5)p—2
171/2;@( 1*1/1#1 )/0 mg(s)ds
Vi (T - 5)o1
1 — Vi1 / ds + 11— /0 T'(a) f(s)ds
+/0 (t FZ) f(s)ds
and
__ M2 T (vy + v2) (T — 5)*2
ha(z,y)(8) = _Vm( —— +t)/0 mf(s)ds
T _
1 —V52M2 (T’ui(ilffu—f ) * ,u2t> /0 (?(;S_)i;g(s)ds
Viph (T —5)P1 [ T (T — )1
T /0 N AR /o T(a) (e
bt —s)B1
+/0 T(8) g(s)ds.

Then we have

|ha(,y)(t2) — ha(z,y)(t1)]

Tp1]| (Y1 (r) + ¢1(r))|val|pe]
|1 — voua|T ()

TP |pal(a(r) + ¢a(r))|vs]
|1 — vou|T(B)

@) + 010 s [ (= s = s [Tt =9 a

< (ta —t1) + (t2 —t1)

Tpu | () + 1 (Nlallisal . TP pall (o) + da(r)loal] .
< et T )2t
+ ||p1|(7]£1(£é :_4—1)(251( ))[Z(tz—tl)a+|tg —t?l].

Analogously, we can obtain
|ha(z,y)(t2) — ha(x, y)(t))|
< [Lollpall(a(r) + 1 (r)lpa| T7|[p2| (2 (r) + @2 (r))lve|pez|
- 1= vape|l'(a) 11— vap2|l'(B)
P2l (¥2(r) + ¢2(7))

+ NEESY [2(ty — t1)7 + |t5 — 7).

(t2 —t1)
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From the foregoing arguments, it follows that the operator K(x,y) is equicontinu-
ous, and so it is completely continuous by the Ascoli-Arzeld theorem.

In our next step, we show that the operator K(z,y) has a closed graph. Let
(T, Yn) = (@, Ys)s (B, hn) € K(2yyn) and (hp, hy) — (hy, hy), then we need to
show (hs,hs) € K(z«,y«). Observe that (h,,h,) € K(2n,y,) implies that there
exist fn € SF,(z,,yn) a0d gn € SG (2,,y,) Such that

% 1V T _g)a—2
B (T, yn) (t) = - —ﬂng ( Ti(ﬁ Vf,; 1) + I/zt) /o (?(a_)l)fn(s)ds
va  (T(p1 + p2)n T (T — 5)B—2
L v G i) /0 T me)ds
1 T (1T - 5)8—1
+ T /0 T03) gn(s)ds
Vi T (T _ S)a—l t (t _ 8)a_1
1 jyfm /0 o) fn(s)ds—i—/o an(s)ds
and
= 2 (T [
V2 Tpi(vipe +1) T (T —5)B~2
e S ey /0 TE-1 s
Vil T (T _ S)ﬂ—l
- 1/11'u1 /0 ) gn(s)ds
M1 (T —s)ot bt — 5)B-1
M /0 I () f"<5)d3+/0 T dnl)ds.

Let us consider the continuous linear operators ®1,®5 : L'([0,T], X x X) —
C([0,T], X x X) given by

@ () (1) = § _“jm (PBen D) [ pgas
(R fitf‘:l " o
e ~ /oT ol + 1 ilzilm /OT . ;(Z))a_l fs)ds
and
Ba(a)(0) = -t (Tl ) gy PO
e (e ) [y

2V (T —s)p1 2 (T —s)o?
1= /o L(B) gls)ds + 1 —vipm / J(s)ds
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¢ (t—s)f~1
+/0 7F(ﬁ) g(s)ds.

From Lemma[3.2] we know that (®1, ®2)o(SF, S¢) is a closed graph operator. Fur-
ther, we have (R, hn) € (®1, P2)0(SE (2,,50)> SG,(zn,yn)) for all n. Since (2, yn) —
(T4, 94), (hnyhn) — (B, hy), it follows that f. € SF,(xy) and g« € Sg (z,) such
that

e / ' Mf*(S)ds
+1LZM(T?Ttﬁrq+Q[fcgg$?f%@ms
T A L
| o ;(‘2;_1f*(s)ds+ / t(t_r(ﬁ_lf*(s)ds
and
fmmwﬁw=1lzw(ﬂﬁﬁ;f)+QATgﬁfﬁfﬂ@m
i (A ) [ gy oo
e [T s
1 _uylwl /OT (T F(L';))al fu(s)ds + /Ot (tr(‘zjlg*(s)ds,

that is, (hn, hn) € K(24, yu)-
Finally, we discuss a priori bounds on solutions. Let (z,y) € vK(x,y) for v €
(0,1). Then there exist f € Sg () and g € Sg,(2,y) such that

_ p2 (T (parve +1) (T —s)°2
z(t) = Y1z Voo ( 1— v + Vzt) /0 MNa-1) f(s)ds

(TM1+M2V1 t)/T<T—S)B_2
1*V2M2 1—wnm o T(B-1)

T — ) 5 1 vy iy T (T —s)o~t
s)ds + / s)ds
1= 201 A 9(s) 1—wvipr Jo ') /()

+VA “_Salﬂg@

g(s)ds

()
and
= H2 T (v1 + v2) (T — s)o2
y(t) - Vl ~ Vogin ( 1— UL + t) /0 mf(s)ds
ve  (Tpi(vipe +1) T(T—s)"2
Vl—Vg/Lg( 1— v Jr,ugt)/o r(g—1) g(s)ds

V1 (T —s)P! 1 (T —s)o?
1—vim /0 L(B) glsds + 7= vip /0 fs)ds
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¢ (t—s)f~1
—|—1//0 Wg(s)ds.

Using the arguments employed in Step 2, for each t € [0,T], we obtain
]| < Mullpa[| (1 ([l ]) + @1 (lyl) + Mallp2|| (b2 (llz]]) + ¢2(lly11)),

and
[yl < Ms|[pr[| (@1 () + é1(llyl)) + Mallp2|(@2(llz]l) + ¢2(llyl))-

In consequence, we have
[z )l = llz] + [l
< (My + Ma)[[pall(r(ll=ll) + 1 (llyll)
+ (Mo + My)|Ip2 || (2 (l|z]) + d2(]lyll)),
which implies that

Iz, y)ll
(My + M) o[ (@1 ([1]) + D1 (llyl)) + (Ma + M) [[p2]|($2([l2]) + d2(lly]))
In view of (H3), there exists N such that ||(z,y)|| # N. Let us set

U={(z,y) € X x X :||(z,y)] < N}.

<1

Note that the operator K : U — Pep co(X) X Pep.en(X) is upper semicontinuous
and completely continuous. From the choice of U, there is no (z,y) € OU such that
(z,y) € vK(z,y) for some v € (0,1). Consequently, by the nonlinear alternative of
Leray-Schauder type [19], we deduce that K has a fixed point (z,y) € U which is a
solution of the problem —. This completes the proof. O

3.2. The lower semi-continuous case. Here we discuss the case when F and
G are not necessarily convex valued by applying the nonlinear alternative of Leray
Schauder type together with a selection theorem due to Bressan and Colombo [10]
for lower semi-continuous maps with decomposable values. Before presenting our
main result in this section, we recall some definitions.
(i) Ay C [0,T]xR is L&D measurable if A; belongs to the o—algebra generated
by all sets of the form J x D, where J is Lebesgue measurable in [0, T
and D is Borel measurable in R.
(ii) A> c L'([0,T],R) is decomposable if, for all u,v € Ay and measurable
J C[0,T] = J, the function ux s + vxs—7 € Aa, where x 7 stands for the
characteristic function of 7.

Theorem 3.5. Assume that (H2), (H3) and the following condition hold:

(H4) F,G :[0,T] x R? — P(R) are nonempty compact-valued multivalued maps
such that
(a) (t,z,y) — F(t,x,y) and (t,z,y) — G(t,x,y) are LRDRD measurable,
(b) (z,y) — F(t,z,y) and (x,y) — G(t,z,y) are lower semicontinuous
for a.e. t €10,T7.

Then the system (L1)-(1.2) has at least one solution on [0, T].
Proof. 1t follows from (H2) and (H4) that the maps
Fi: X = PLY0,TLR)), == Fi(z,y) = Sy,
Fo: X = P(L([0,T],R)), y— Falz,y) =S¢, (@)
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are lower semicontinuous and have nonempty closed and decomposable values.
Then, by selection theorem due to Bressan and Colombo, there exist continuous
functions f : X — L1([0,T],R) and g : X — L*([0,7],R) such that f € Fi(x,y)
and g € Fa(x,y) for all z,y € X. Thus we have f(t,z(t),y(t)) € F(t, z(t),y(t))
and g(t, z(t),y(t)) € G(t,z(t),y(t)) for a.e. t € [0,T).

Consider the problem

“Doa(t) = f(t,a(t),y(t), te[0.T], 1<a<2,

“DPy(t) = gt x(t) y(t), t€[0,T], 1<B<2 (3.7)

subject to the coupled boundary conditions (|1.2)).

Obviously, if (z,y) € X x X is a solution of the system 1-) with the boundary
conditions , then (:r y) 1s a solution to the problem (1.1] . In order to
transform the problem (3.7| into a fixed point problem, we define the operator
K:XxX—->XxX by

c K (2, y)(t)
lC(x,y)(t) (ICQ( )(t)) s
where

fQta(t), y(t))ds

Ki(z,y)(t) = —2 (V1T(H1V2+1) Qt)/oT (T — 5)*~2

1—V2/1/2 1—V1/1,1 m
T(py + p2)v /T (T — 5)8—2
+1 gt z(t),y(t))ds
1—1/2#2( 1—1v1y ) o L(B-1) g(t, z(t),y(t))

T (T — g)8-1
i [ ettt atenas

b [ a0,
s “}(ﬁlm,x(ﬁ),yu»ds
and
Rafap)(t) = T (PRt 1 ) /OT mﬂt,x(t),y(mds
(P Dy [T e, wo
T 0 R
byt [ ),
+ /O t (tr(sﬁ))ﬁlg(t,x(t),y(t))ds.

It can easily be shown that K is continuous and completely continuous. The re-
maining part of the proof is similar to that of Theorem [3:4 So we omit it. This
completes the proof. [
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3.3. The Lipschitz case. This subsection is concerned with the case when the
multivalued maps in the system have nonconvex values. Let us first recall
some auxiliary material.

Let (X,d) be a metric space induced from the normed space (X;|| - ||) and let
Hy:P(X) x P(X) — RU{oo} be defined by

Hy(U,V) = max{sup d(u, V), sup d(U,v)},
uelU veV

where d(U,v) = inf,cy d(u, v) and d(u, V) = inf,cy d(u,v). Then (Py (X)), Hq) is
a metric space and (P (X), Hy) is a generalized metric space (see [29]).

Definition 3.6. A multivalued operator G : X — P.;(X) is called (i) y—Lipschitz if
and only if there exists v > 0 such that Hy(G(a),G (b)) < ~d(a,b) for each a,b € X;
and (ii) a contraction if and only if it is 7-Lipschitz with v < 1.

Lemma 3.7 (Covitz and Nadler [13]). Let (X,d) be a complete metric space. If
G: X — Py(X) is a contraction, then the fized point set of G is not empty.

Theorem 3.8. Assume that the following conditions hold:
(H5) F,G :[0,T] x R? = P.,(R) are such that F(-,z,y) : [0,T] — Pep(R) and
G(,z,y) : [0,T] = Pep(R) are measurable for all x,y € R;
(H6)
Hy(F(t,z,y), F(t,2,7) < ma(t)(|z — Z[ + |y — 7))
and
Hd(G(tvxvy)7 G(taivg) S mg(t)(‘.’b - j| + ‘y - g‘)
for almost all t € [0,T] and x,y,%,y € R with mi,ms € C([0,T],R") and
d(0, F(t,0,0)) < mq(t), d(0,G(¢,0,0)) < ma(t) for almost all t € [0,T].
Then the problem (L1)-(1.2) has at least one solution on [0,T] if

(Ml + M3)\|m1|\ + (MQ + M4)||m2H <1, (38)

where M; (i =1,2,3,4) are given by (3.3])-(3.6).

Proof. Observe that the sets Sp, (5, and Sg, (5,4 are nonempty for each (z,y) €
X x Y by the assumption (Hs), so F' and G have measurable selections (see [12]
Theorem II1.6]). Now we show that the operator K satisfies the hypothesis of
Lemma 371

First we show that K(z,y) € Pu(X) x Pa(X) for each (r,y) € X x X. Let
(hp, h) € K(xp,y,) such that (hy,,h,) = (h,h) in X x X. Then (h,h) € X x X
and there exist f, € Sp (2, y,) and gn € SG,(x,,y,) Such that

M2 nT (e +1) T (T — s)o2
P (2, yn) () = 1= varta ( 1= + 1/215) /o mfn(s)ds

(T p + p2) vy th)/T (T — )2
1—V2M2 1 - o T(B-1)

T (T — 5)8-1
/ gn(8)ds
1o vip Jo

V1p ( Lt—s)!
/0 fnl(s )d5+/0 Tfn(s)ds

1 — Vi

gn(s)ds
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and
P(onan)(t) = 2 (TR gy | ' s
1 —ij Lo (Tui(ilffuj D) + H2f> /O ' Mgn(s)ds
[ s
+ _uyllul /OT (T F(z))“l Fu(s)ds + [ (tr(‘sﬁ))ﬁlgn(s)d&

Since F and G have compact values, we pass onto a subsequences (denoted as
sequences) to get that f,, and g, converge to f and g in L*([0,T],R) respectively.
Thus f € Sp,(2,y) and g € Sg (2,4 for each t € [0,7] and

B (T, yn ) () = h(z,y)(t)
2 1T (v + 1) (T - 5)2
1—1/2,ug( 1—wvipg +V2t)/0 Ma—1)

(T p1 + pe)n +t)/T (T — 5)P~2
1—V2M2 1—1/1M1 0

T _ B 1 T T — a—1
| s+ 2 [ psga
1—1/1/11 0 0

I'(a)
(t—s)> !
+/0 7F(a) f(s)ds

R (T, yn ) () = Bz, y)(t)
) e
0

1l —woue 1—vin MNa-1)

vo  (Tu(vipe +1) /T (T — 5)f~2
+ pat ————g(s)ds
171/2/1,2( 171/1}1,1 Hz ) 0 F(ﬂ* 1) g( )

vipn [T (T —s)"7! p (T (T =)t
L= /0 I'(3) gn(s)ds + 1— v /0 ['(a) fs)ds

¢ (t—s)8~1
+/0 7F(ﬁ) g(s)ds.

Hence (h, h) € K, which implies that £ is closed.
Next we show that there exists v < 1 such that
Hy(K(z,y),K(Z,9) <~v(lz—Z|| + |ly — g||) forall z,z,y,5 € X.

Let (z,7),(y,9) € X x X and (hy,h1) € K(z,y). Then there exists fi € Sp
and g1 € Sg (4,4 such that, for each ¢ € [0, 7], we have

_ M nT(uve + 1) T(T — s)a~2
hi(z,y)(t) = 1 — Usjis ( 1— + Vzt) /0 mfl(s)ds

Vo <T(u1 + p2)y +t) /T (T — 5)P~2
1 —vous 1—wnm o T(B-1)

and

f(s)ds

Y)

g1(s)ds
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e | (Tf(s)a_lfl(sms

1—V1M1 L— v Jo )
(t— 3)0‘
+/O F( ) fl( )
and
1%} 12 T — s a—2
ha(z,y)(t) = 1 _MVZQMQ (T,ull(_ 1/1—;1 ) + t) /0 (11:(<1—)1)f1(s)d8
) Tui(vips +1) T(T — 5)B~2
1—1/2/12( 1— + Qt)/o TG—1) g1(8)ds
vipn [T (T —s)P7" (T (T—s)?
1 =wm /0 L'(B) gu(s)ds + 1— v /o I'(a) fils)ds
b g)B-1
+/O t I‘(ﬂ)) g1(8)ds.

By (H6), we have
Ha(F(t,z,y), F(t,z,5) < mi(t)(|lz(t) — 2()] + [y(t) — 5(1)]),
and
Hd(G(t’xvy)7G(taj ?j) < m2(t)(| (
So, there exists f € F(t,z(t),y(t)) and g € G(t,z(t), y(t)) such that
|f1 () = fI < ma () (| (t) — z( () = u(t))),
l91(8) — gl < ma(t)(Jx(t) — Z(t)] + |y(t) — §()])-
Define V1, V5 : [0,T] — P(R) by
Vi(t) = {f € LY([0, TLR) : |f1(t) — fI < ma()(J2(8) — ()| + |y(t) — g(t)])}
Va(t) = {g € L'([0,T),R) : |g1(t) — g < ma(t)(Jz(t) — 2(t)] + [y(t) — 5(H)])}-

Since the multivalued operators Vi(t) N F(t,z(t),y(t)) and Va(t) N G(¢, x(¢),y(t)
are measurable [I2 Proposition III.4], there exists functions f2(t), g2(t) which ar
measurable selections for Vi, V5 and fo(t) € F (¢, z(t),y(t)), g2(t) € G(t,z(t),y(t)
such that, for a.e. t € [0,T], we have

[f1(8) = f2(O)] < ma()(J2(8) — 2()] + [y(2) = 5(D)]),
191(8) = g2(8)] < myg(t)(J2(t) — 2()] + [y(t) — g(B)])-

)
)

Let

v 1o T —s a—2
ho(z,y)(t) = I —M1/22,U2 ( 711% V1M_|1— D + Z/Qt) /0 (i(a _) 0 fa(s)ds

(T p + p2)vy )/T (T —s)?
1o vopz N\ 1 — vy o T(B-1)

T _8,81
171/1,11,1/0

T t a—1
14V 251 (t B 5)
Toom /0 )ds +/O [(a) fals)ds

g2(s)ds
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and
o) = (Tl )y (O,
(R ) [T
1 ?511“1 /OT - ;(Z))ﬂ_lgz(S)ds
= /OT A 1:(2;1f2(3)ds + /Ot ( }(Sﬁ))ﬁlgz(s)ds.
Then

|ha (@, y)(t) — ha(z, y)(1)]
T —s oa—

2| T <|1/1\(|M1\|V2|+1) +\y2|)/0 (zlj(a_)l)Qfl(s)—fQ(sﬂds
T

T = vapel 11—y

valT ¢ (lpsa| + 2]l (T —s)"
Ll ( ufujm +1)/0 TG )~ 9(s)lds
|11
T / 01(s) — 2(s)lds
] )
|1 — vy / ING)) i) = el
+/0 “j);“fm fo(s)lds
2| T <|V1\(|M1HV2|+1)+‘V |)
|1 = vaps| 1= vip ’
T —_s a—2
x / (?m : T () (Je(s) = #(s)| + ly(s) — 5(s))ds
[va| T /T (1 + po)n
|1—V2,u2\( L=vim th)
T _ 5)8-2
< / Gﬂ( : Fma(s)(2(s) = 2(6)] + [y(s) — 9(s) s
1|V—1|z|//f;1¢1/ s)(|z(s) — z(s)| + |y(s) — y(s)|)ds
(t—s)* J
+/O Ty (8) () = 2()| + Iy(s) — (s)])ds

< (Myflma |l + Ma[me|))(lz — Z[| + [ly — D),
which implies

1h1 (2, y) = ha(z, y)|| < (My[fmall + Me|lma[))([lz — Z[| + [y — gl)-
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In a similar manner, one can find that
b1 (2, y) = ho (2, y)|| < (Msllmal| + Ma|ma|))(lz — 2]l + |y - gl)-
Thus
(R, ha), (ha, ho)|| < [(My + Ms)llmal| + (Mz + Ma)[ma|l](lz = z]| + lly — 7).
Analogously, interchanging the roles of (z,y) and (Z,§), we can obtain
Ha(K(x,y), K(Z,9)) < [(My + Ms)|ma | + (M2 + M4)||m2||](||fﬂ —z[ + lly =9l

Therefore I is a contraction in view of the assumption (3.8). Hence it follows by
Lemmamthat K has a fixed point (z,y), which is a solutlon of problem ([1.1] .
This completes the proof.

Special Cases. Several new existence results follow as special cases from the work
presented in this paper by fixing the parameters involved in the problem. For
instance, if we choose 1 =1 =vy and g3 = —1 = pg or v = =1 = vy and py =
1 = ps, we obtain the results for coupled fractional differential inclusions equipped
with a combination of coupled periodic and anti-periodic boundary conditions of
the form: z(0) = y(T), «'(0) = ¥'(T), y(0) = —z(T), ¥’ (0) = —a'(T) or z(0) =
—y(T), 2'(0) = —y/(T), y(0) = =(T), ¥'(0) = 2/(T). For v = 1 = —vy and
—p1 = 1 = pg, our results correspond to a coupled system of fractional differential
inclusions with the boundary conditions of the form: x(0) = y(T), 2'(0) = —y'(T),
y(0) = —z(T), ¢’ (0) = 2/(T'), while the results for a coupled system of fractional
differential inclusions supplemented with the boundary conditions: z(0) = —y(T),
2'(0) = y'(T), y(0) = (1), y'(0) = —2/(T) follow by setting —v1 = 1 = v, and
11 =1 = —puso in the results of this paper. Letting 1 = 0 = up in the results of this
paper, we obtain the ones for a coupled system of fractional differential inclusions
equipped with coupled flux type conditions.
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