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Featured Application: The storage location assignment problem (SLAP) attempts to determine
the locations of items that minimize a distribution center’s order picking times. This paper
presents a data mining-augmented postprocessing heuristic to assign highly associated items
to slots in proximity. Consequently, the proposed approach provides competitive storage layouts
for distribution centers, which ultimately improves the efficiency of order pickers.

Abstract: Most large distribution centers’ order picking processes are highly labor-intensive. In-
creasing the efficiency of order picking allows these facilities to move higher volumes of products.
The application of data mining in distribution centers has the capability of generating efficiency
improvements, mainly if these techniques are used to analyze the large amount of data generated
by orders received by distribution centers and determine correlations in ordering patterns. This pa-
per proposes a heuristic method to optimize the order picking distance based on frequent itemset
grouping and nonuniform product weights. The proposed heuristic uses association rule mining
(ARM) to create families of products based on the similarities between the stock keeping units (SKUs).
SKUs with higher similarities are located near the rest of the members of the family. This heuristic
is applied to a numerical case using data obtained from a real distribution center in the food retail
industry. The experiment results show that data mining-driven developed layouts can reduce the
traveling distance required to pick orders.

Keywords: distribution centers; order picking; data mining; association rule mining

1. Introduction

Distribution centers (DC) perform many essential functions, such as receiving,
putting away, cross-docking, order-picking, sorting and shipping hundreds of prod-
ucts [1]. Notwithstanding that all DC functions are essential, order picking, particularly
manual-based order picking, is the most resource-intensive and represents one of the
highest DC costs [2].

In manual order picking, order pickers receive work assignments, which specify the
stock keeping units (SKUs) and other relevant attributes describing the order, such as
the number of units per SKU, the physical storage address of each of the SKU (slot) and
the weight of the SKUs. Order pickers travel around the DC to collect SKUs from their
slots. Minimizing the order picker’s travel distance is a crucial decision problem that has
received considerable attention from researchers and practitioners [2–4], which includes
optimizing picking routes, zoning, storage location assignment and order batching.

The physical location of the SKU is a factor affecting the order picking routes. The SKU
assignment to picking slots—a decision problem well known as SLAP—attempts to deter-
mine the best location of the SKU to optimize the order picking travel distance. The detailed
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literature reviews in [2–4] discuss several types of storage assignment policies, including
random storage, closest open location storage, dedicated storage, full turnover storage,
class-based storage and family grouping. From these policies, only family grouping consid-
ers the relationship between the SKUs. Family groupings are defined in [2] as a set of items,
referred to in this paper as “itemsets”, frequently found in the same order. Items belonging
to the same itemset have storage locations close to each other. Itemsets are created using
frequency-based methods [5,6], quantity-based methods [7–9] and datamining-based meth-
ods [10–12]. Data mining methods have shown promising results since they discover the
correlations between the SKUs contained in large volumes of data, particularly because
high computing power capabilities are more accessible to run the necessary data mining
algorithms. Previous research has largely used data mining for computing similarities
between SKUs, for batching orders and for calculating the fitness of SKUs to slots. The focus
of this paper is on the sequencing of SKUs based on data mining-generated groupings.

This paper aims to develop a heuristic method to optimize the order picking travel
distance based on two considerations: frequent itemset grouping and nonuniform SKU
weights. The proposed heuristic uses association rule mining (ARM), a well-known data
mining algorithm. The association-based postprocessing method assigns positively associ-
ated items, found by applying ARM, to slots in proximity. Furthermore, our heuristic also
takes into consideration the weight distribution of the items to be picked up.

(A) Frequent itemset grouping: The literature shows heuristic methods for SLAP,
which typically assign SKUs with higher turnover rates to slots near the input/output
(I/O) points [4]. Other approaches are based on family groupings. In this paper, we propose
using a frequent itemset grouping. A frequent itemset is defined as a nonempty set of
SKUs that meet a minimum threshold. The threshold sets a level of accepted correlation
between SKUs that will belong to a family, and this is determined by how often the SKUs
are ordered together. To the best our knowledge, no other papers found in the literature
have taken this approach.

(B) Nonuniform SKU weights: DCs handle items with significant differences in
weights, which impacts the order picking travel distance [13]. As order pickers collect the
SKUs from the prescribed slots, they build a work order forming a stack of SKUs with
varying shapes and weights. The variation in SKU weights creates a particular disruption
in the order picking travel sequence because there is a preference in building stacks with
the heaviest SKUs at the base and mounting less heavier items on top of the base. Such a
strategy increases the integrity of SKUs in the work order and influences the location of the
items by inducing a preferred pick-up sequence. The proposed approach is similar to the
simulation-based zoning strategy approach in [9]. Our focus is to introduce weight classes
into the ARM-based heuristic.

A case study is provided in this paper to illustrate the application of the proposed
heuristic. The case is motivated by a company in the food and grocery retail industry.
The experimental work uses data obtained from an actual DC and compares the ARM-
based method results with a more traditional approach, such as the Class-Based Location
(CBL) approach.

The remainder of this paper has the following structure. Section 2 provides a review
of the current literature. Section 3 presents a seven-step framework by detailing the dataset
definition and data collection through layout generation. The case study in Section 4
illustrates the proposed framework. Section 5 provides conclusions and future work
opportunities to extend this research.

2. Literature Review

Table 1 shows a summary of the methods for creating family groupings that predomi-
nate in the literature of DC operation management. These methods include frequency-based
methods, quantity-based methods and data mining-based methods. Frequency-based meth-
ods [5,6] determine groupings by the number of orders containing two items at the same
time. Quantity-based methods [7–9] determine the groupings by the quantity of items in
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an order. Data mining methods used algorithms, such as ARM, to estimate the correlation
between items based on levels of support, lift and confidence [10–12]. Most of the methods
summarized in this table evaluate the relationship between a pair of items (itemset size = 2);
thus, every possible combination of two items is evaluated.

Table 1. Methods for the creating of family groupings.

Method Metric Remarks

Frazelle and Sharp [5] The proportion of orders which contains
a pair of items in the same order.

• Frequency-based method.
• Itemset size = 2.
• Evaluate every possible combination of two

items.
• Require large data to get statistically significant

results.

Liu [7]

Similarity between pairs of items based
on order-item-quantity rule.
Similarity between any pair of customers
based on the
customer-order-item-quantity rule.

• Quantity-based method.
• Itemset size = 2.
• Uses a mathematical program to determine

optimal grouping of items and customers.
• Conducts a WITNESS simulation study to test

the layout solutions.

Liu [8], Diaz [9] Similarity between pairs of items based
on order-item-quantity rule.

• Quantity-based method.
• Itemset size = 2.
• Formulate a Quadratic Generalized Assignment

Model to determine optimal location of SKUs in
storage slots.

• Use heuristics to find solutions to the storage
assignment model since mathematical program is
NP-hard. The heuristics has three phases:
clustering, ranking and interchanging phases.

• Conduct a simulation study to evaluate storage
location solutions. Conduct additional
simulation studies to evaluate the order’s weight
constraints; see Diaz [12].

Chuang et al. [6]

Similarity coefficient proportional to the
probability that a pair of items will be
ordered together and the probability that
these two items will be ordered.

• Frequency-based method.
• Itemset size = 2.
• Formulate and solves the problem as a two-stage

Clustering Assignment Model.
• Present a small case study using a dataset from

industry.

Chiang et al. [10],
Chiang et al. [11]

Support.
Lift.

• Data Mining-based method.
• Itemset size = 2.
• Evaluate support and lift between a pair of items

(the similarity metric integrates support and lift
with turnover rate and distance).

• Formulate and solves the problem as a
Generalized Assignment Model.

• Present a real case study using a dataset from
industry.
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Table 1. Cont.

Method Metric Remarks

Kim et al. [12],
Li et al. (This paper)

Support.
Lift.
Itemsize.

• Data Mining-based method.
• Itemset size = 2 or more.
• Consider the relationship between any number of

items (itemset). Confidence is a fixed parameter.
• Conduct a simulation study to evaluate order

picking time as function of storage location
solutions and order picking routes.

• Present a real case study using a dataset from
industry.

Frazelle and Sharp [5] propose storing together correlated SKUs consisting of the items
ordered together to a distribution center. The authors show that this approach reduces the
order picking time when compared to the random assignment policy. The authors note
that this approach requires a large dataset of SKUs to obtain statistically significant results.
Liu [7] uses cluster analysis to create groups of correlated items based on metrics that
measure the demand relationship between two items that appear on the same order together
and the demand relationship between customers. The author formulates a mathematical
program to create the clusters, and a primal–dual solution approach was followed to solve
the clustering model. The author also uses simulations to evaluate the layout solutions.

Chuang et al. [6] define the “between-items associations” as the probability that a pair
of items are ordered together. The authors note that Liu [7] ignores the association between
the items, so they formulate a two-stage Clustering Assignment Problem Model (CAPM)
to determine the optimal SKU storage locations. A mathematical model assigns products
to groups based on a high association between the products in the first stage. In the second
stage, a mathematical model assigns the products to storage locations based on order
frequency. Their experiments show that this two-phase clustering approach reduces order
picking times when compared to the random storage.

Liu [8] proposes a Quadratic Generalized Assignment Model. This model receives as
inputs the similarity between SKU, the throughput-to-storage ratios, the distance between
pairs of storage slots and the distance from the input/output point to the storage slots.
Since this model is NP-hard, the author proposes a novel heuristic to achieve a quick
practical layout using a three-step solution approach: (1) rank items based on ordering
frequency, (2) cluster items based on their similarities and (3) interchange storage locations
to minimize order pick time. Diaz [9] extends the work by Liu [8] to account for nonuniform
density SKU. The author highlights that it is frequently overlooked to analyze retail stores’
ordering practices related to how items are ordered together. Our paper is motivated by
this premise, and it tries to close the gap by using a data mining approach to discover
groups of items that are ordered frequently.

Chiang et al. [10] introduce data mining for order picking and propose using a popular
market basket analysis tool known as ARM algorithms to form the family of correlated
products. As the author notes, most methods to determine relationships between the SKUs
are frequency-based or quantity-based. Chiang et al. [10] propose a similarity coefficient
that considers the distance and the turnover rate of the SKUs, the frequency that a pair of
SKUs occur together in an order and the complementary/substitutive relationship between
SKUs. Chiang et al. [11] propose two heuristics that use a weighted support count to
measure the intensity and the nature of the relationship between pairs of products. The first
heuristic, called the modified class-based heuristic, divides the distribution center into
classes. Each class contains products with a similar turnover rate and maximizes products’
associations with storage locations by considering one class time. The second heuristic,
called the Association Seed-Based Heuristic, maximizes associations of products stored in
the same aisle by considering one aisle at a time. Their experiments show that these two
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heuristics outperform other methods based on the class-based heuristic. Kim et al. [12] de-
veloped ARM-based sequencing-based storage location assignment heuristics for item slot
selection and sequencing order picking routes. The slot selection heuristic assigns the most
desirable slots (i.e., those closest to the input/output points) to items with high demand,
and then locates highly correlated items closer to each other. The route sequencing policies
explored by the authors are flexible. Authors show that the order picking times are reduced
significantly when slot selection and order picking sequencing are considered concurrently.

Pang and Chan [14] present a mathematical model for the storage location assignment
problem for both putaway and order picking operations. They propose a datamining-based
algorithm that uses association rules to minimize total traveling distances when both
processes are carried out. The algorithm’s performance outperforms other policies, such as
the dedicated storage policy and the closest open location policy in terms of total travel
distance, order-picking time and computing time.

Other association rule implementations in distribution centers are reported in [15,16].
Chen et al. [15] use ARM algorithms for batching formation. A two-phase heuristic recog-
nizes the associations between orders and then forms the batches with highly associated
orders. Chen et al. [16] present an extension of this model. In their extension, the authors
use 0–1 integer programming to represent the facility’s capacity constraints.

The analysis of the literature suggests papers on SLAP using ARM have usually
calculated support metrics for two-level itemsets; thus, they measure the similarity between
only two SKUs at a time. In contrast, our paper forms itemsets consisting of two or more
associations SKUs, which has not been previously considered. Another gap in the ARM-
based SLAP papers is the lack of integration of the SKU’s weights in the determination of
itemsets. As explained before, this attribute increases the integrity of orders and affects
the sequence of the order picking route, and it is, therefore, among the considerations of
this paper.

3. Methodology
3.1. Formulating and Solving the Storage Location Assignment Problem

Let us consider the Storage Location Assignment Problem in Liu [7]. This problem is
represented by a Quadratic Generalized Assignment Model. This model seeks to determine
the optimal storage location of SKUs, herein referred to as “items”, for inputs, such as
the similarity coefficients between items, the throughput-to-storage ratios, the distance
between pairs of storage slots and the distance from the input/output point to the storage
slots. Unlike Liu [8], this paper computes the similarity coefficients by using ARM, and
thereby the resulting mathematical programming model is as follows:

Min Z =
1
2

K

∑
i=1

P

∑
j=1

K

∑
k=1

P

∑
l=1

tiςikdjl xijxkl +
K

∑
i=1

P

∑
j=1

tiςirjxij (1)

subject to:
k

∑
i=1

xij = 1, j = 1, . . . , P (2)

P

∑
j=1

xij = 1, i = 1, . . . , K (3)

xij =

{
0 if item i is assigned to slot j i = 1, . . . , K,
1 otherwise j = 1, . . . , P

(4)

where:

K = the total number of items to be allocated.
P = the total number of existing available slots.
xij = a binary decision variable, with xij = 1 if item i is assigned to slot j, and xij = 0 otherwise.
ti = throughput-to-storage ratio for item i.
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djl = the picker’s travel distance between slots j and l.
rj = the relative distance of slot j to the input/output point.
ςi = the support of item i (obtained from association rule mining).
ςik = the support of itemset { i, k } (obtained from association rule mining).

The objective function in Equation (1) minimizes the total expected travel distance
to complete all order picking operations in a given amount of time. The first term in
Equation (1) represents the expected distance to travel from slot j to slot l provided that
item i is assigned to slot j and item k is assigned to slot l. The parameter ti represents the
rate at which an item is ordered. The parameter ςik is the probability, or support, of having
items i and k together in an order as measured by ARM. A high value of the parameter ςik
indicates that the item i is ordered together with item k with higher frequency. In contrast,
a low value indicates that item i is ordered together with item k with lower frequency.
The parameter djl is the distance traveled from slot j to pick up item i to slot l to pick up item
k. Therefore, tiςikdjl estimates the expected distance traveled from slot j to slot l. The second
term in Equation (1) represents the expected distance to travel from the input/output point
to slot j provided that item i is assigned to slot j. The parameter ςi represents the support
value of each item i as determined by the ARM algorithm. A high value of the parameter
ςi indicates that item i is ordered with a higher frequency. In contrast, a low value of the
parameter ςi suggests that item i is ordered with a lower frequency. We refer the reader to
Section 3.2. for more details on how the parameters ςi and ςik are obtained from ARM.

Equations (2)–(4) are the constraints for this mathematical model. The constraint in
(2) ensures that one item is assigned to precisely one slot. The constraint in (3) ensures that
one slot contains exactly one item. The constraint in (4) restricts the decision variable to
assume zero or one values.

The SLAP model formulated in (1)–(4) is NP-hard; thus, finding the optimal solution
for the most common applications is exceptionally challenging. Liu [8] proposed a novel
heuristic to achieve a quick practical layout. Liu’s heuristic uses three phases: ranking,
clustering and interchanging. A modified version of the heuristic is presented below,
which incorporates parameters obtained with ARM.

Diaz [9] explains that weight is a critical item attribute that must be considered to
maintain the integrity of products while building an order. Order pickers built their pallets
by placing the heaviest items at the bottom of the pallet to give a solid foundation to the
pallet; lighter items are placed on heavier items, with the lightest items placed at the top
of the pallet. Order pickers try to follow this sequence to reduce the number of damaged
products. Thus, our heuristic also divides unique SKUs by their weight distribution
(in pounds).

Heuristic 1 (H1):
Step 1—Allocate SKUs into w weight classes (in pounds). Peterson et al. [17] suggest

practical implementations of two to four classes. The weight classes in this study are
“heavy”, “medium” and “light.” The weight distributions for each class are case driven.

Step 2—Starting with the heavy weight class, sort individual support coefficients ςi
from the highest to the lowest value.

Step 3—Assign the first slot to the item with the highest individual support ςi, the sec-
ond slot to the item with the second-highest individual support ςi, and so on, until all the
items have an assigned slot. This step generates a layout that places an item with a higher
frequency in an order closer to the input/output point.

Step 4

Step 4-1—Set u = 1 and i(u) = an item assigned to slot u, a slot the uth closest to
the input/output point.
Step 4-2—Create a set of frequent itemsets, F = {{i(u),i(v)} | v > u, ςi(u)i(v)

3ε},
where ε = the minimum support threshold and {i(u), i(v)} is chosen from a set
of all frequent itemsets extracted by ARM analysis, to be explained in the next
section. Note that i(v) is less frequent than i(u).
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Step 4-3—Let f(o) be a frequent itemset with oth highest support in F and v(o)
the slot dedicated to the less frequent item of f(o) (o = 1, 2, . . . , n(F)). Note that
v(0) > u for “o”.
Step 4-4—For each o= 1, 2, . . . , n(F), move i(v(o)) to slot u + o and move the
items at i(u + o), i(u + o + 1), . . . , i(v(o) − 1) to the next slots. This step generates
a layout that forms itemsets with SKUs with high support coefficients placed in
adjacent slots.
Step 4-5—Set u = u + n(F) + 1. If u is larger than the number of items within the
current weight class, terminate the class. Otherwise, go to Step 4-2.

Step 5—Evaluate the total order picking time of the layout generated in Step 4-1~Step 4-5.
Repeat Steps 2–5 for the next weight classes.

3.2. Using Association Rule Mining to Create Itemsets

ARM is a datamining approach used in this paper to examine the large transactional
databases available at the distribution centers to create itemsets with items frequently
found together in the order picking transactions.

Let I = {i1, i2, ..., iK} be a set of 0-1 binary variables referred to items; also let X,Y ∈
I and X ∩ Y = ∅. An association rule is expressed as an implication, which is expressed
as follows:

X⇒Y (5)

The set X is called the antecedent and Y is called the consequent. Within the context
of our application, if X = {SKU1, SKU2} and Y = {SKU3}, the association rule states that a
transaction with items {SKU1, SKU2} implies that {SKU3} is also present in the transaction.

The Apriori algorithm, introduced in [18], is a datamining technique designed to
extract, in an efficient manner, frequent itemsets and useful association rules from large
transactional datasets, such as those available in distribution center applications. The ex-
traction of itemsets and association rules must satisfy minimum thresholds for support
and confidence, two of the item relationship measurements of association rules obtained
with the Apriori algorithm:

• Support, ςθ : A number between 0 and 1. Support is the probability of measures the
importance of a rule. For |θ| = 1, ςi is the proportion of order picking transactions
that contain item i. For |θ| = 2, ςik is the proportion of order picking transactions that
contain items i and k, concurrently. For |θ| = 3, ςikm is the proportion of order picking
transactions that contain items i,k and m, concurrently, and so forth. The minimum
support threshold is expressed as ε.

• Confidence, conf(X⇒Y): A number between 0 and 1. Confidence of a rule X⇒Y is
calculated as support(X∩Y)/support(X). Confidence is the likelihood that the order
contains itemset (i.e., Y), given itemset (i.e., X) is already picked up in the same order.

• Lift: the strength of the rules. It is calculated as P(X∪Y)/[P(X)P(Y)] for an association
rule X⇒Y. If lift > 1, X and Y are positively correlated with each other, and vice versa.

Apriori discards sets that do not meet minimum support or minimum confidence
conditions at the same time. It is essential to specify a threshold value to determine at
which level an itemset is deemed to be nonfrequent. R statistical software is used for the
implementation of the Apriori algorithm. The pseudo-code for Apriori is presented in
Algorithm 1. The Apriori algorithm result is an itemset Ls, which consists of those itemsets
of size less than or equal to s that meet the minimum support threshold, ε.
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Algorithm 1 Apriori algorithm

Cs: a candidate itemset of size S
Ls: frequent itemset of size S
T: database of transactions/trips

Apriori(T, ε)
L1 ← {large 1-itemsets appear in more than ε transactions}
s← 2
while (Ls − 1 6' ∅)
Cs ← generate itemsets from Ls − 1
for (transactions t ∈ T)
Ct ← subset(Cs,t) generate candidate transactions size s
for (candidates c ∈ Ct) determines
frequency of c-candidates
count[c]← count[c] + 1

Lk ← {c: c ∈ Cs ∧ count[c] ≥ ε} Pruning
s← s + 1
return ∪s Ls union of sets of frequent items
s = 1,2,. . . S

When relatively small values of support (i.e., the sample space includes itemsets that
are not frequent) are involved, the computational expense can become extreme due to
the plethora of frequent itemsets. In contrast, we have only few frequent itemsets if the
minimum support threshold is too high. This paper used a calibration experiment to find
support values that are small enough to detect enough rules to make a difference in the
total performance of the order-picking tasks. Nonetheless, the support values should not
be too small. Otherwise, the computational algorithm time may increase significantly.

4. Numerical Study
4.1. System Description

The ARM-based SLAP methodology was applied to a distribution center in the United
States’ food retail industry. This distribution center services more than 500 unique stores.
The distribution center has a configuration of 24 aisles. There are storage racks in with 135
slots in each side of the aisle. The distance between positions is 40 inches. The distribu-
tion center’s order-picking process is as follows. Order picking is performed by human
operators (i.e., order pickers). The workforce comprises 113 order pickers. The order
pickers drive powered vehicles to move around the distribution center. Each order picker
processes one order at a time. The traveling routes follow the sequence shown in Figure 1.
The operator arrives at the first SKU location to retrieve the required cases from the shelves
and then loads the items into the vehicle. The operator then follows the rest of the route
and repeats the picking process until all the SKUs contained in the order are retrieved.
The order picking time is correlated to the number of items. A completed order is palletized
and sent to the docks, loaded into a truck and transported to the retail store.
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Figure 1. The distribution center under study follows an S-shape route.

The DC receives approximately 200 orders per day, and it performs between 50 and 100
shipments per day. The DC fills up these orders in the morning and replenishes the items
at night. The data were cleaned up and transformed. The resulting dataset contains 7881
unique SKUs. The dataset also contains 388 unique orders. Each order contains between
4 and 350 different SKUs. There is a total of 63,000 records, resulting in a 624 × 7881
transaction-to-item matrix.

We set up an experiment to calibrate the association rule mining algorithm. This exper-
iment runs 16 unique combinations of support and confidence, with support changing from
0.10 to 0.25, in increments of 0.05, and confidence changing from 0.5 to 0.8, in increments
of 0.10. These combinations generate association rules ranging between 64 and 11,965.
The trend indicates that as support and confidence increase, the number of association
rules increases; computational time shows a similar increasing trend. The combination that
shows the best performance for the dataset considered in this paper is for support = 0.2
and confidence = 0.8. Setting the algorithm parameters of support and confidence at these
values results in fewer itemsets with highly correlated items within each itemset.

Our numerical analysis is based on experimental results obtained with the R package
named “arules” [19] to extract the association rules. It was run in a MacBook Pro micro-
computer with an Intel 43 2.5 GHz Core i7 processor and 16 GB 1600 MHz DDR3 memory.
The procedure to generate the layouts was also coded in R.

4.2. Comparison between the Association Rule Mining-Based and the Class-Based Methods

We further designed and analyzed a statistical experiment to compare the ARM algo-
rithm to the traditional class-based layout (CBL) method. In these experiments, the class-
based method was applied separately to each of the weight categories (heavy, medium,
light) to make a direct comparison to the ARM-based method.

Two partitions were obtained from the dataset to test for repeatability of the proposed
algorithms. SKUs were selected at random to form the partitions. The first partition
(referred to as Scenario 1) included 39 orders with a total number of 8141 SKUs. The number
of unique SKUs in this test scenario was 2638. The second partition (referred to as Scenario 2)
included 39 orders with 8122 SKUs with 2721 unique SKUs.

For the implementation of the ARM-based heuristic’s step 1, Scenarios 1 and 2 were
divided into three weight classes: heavy, medium and light. Tables 2 and 3 show the weight
distributions per class. For Scenario 1, Class 1-1 accounts for 30.40% of all the SKUs in the
sample dataset containing 802 SKUs with weight greater than 9 pounds; Class 1-2 includes
756 SKUs with weight between 5.28 and 9 pounds, which is 28.66% of all the sample SKUs;
Class 1-3 has 1080 SKUs with weight less than 5.28 pounds, which is 40.94% of all the SKUs
in the selected sample. For Scenario 2, Class 2-1 accounts for 29.58% of all the SKUs in
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the sample dataset containing 805 SKUs with weight greater than 8.85 pounds; Class 2-2
includes 902 SKUs with weight between 5 and 8.85 pounds, which is 33.15% of all the
sample SKUs; Class 2-3 has 1014 SKUs with weight less than 5 pounds, which is 37.27% of
all the SKUs in selected sample.

Table 2. Weight-based classes for Scenario 1.

Factors Class 1-1 (Heavy) Class 1-2 (Medium) Class 1-3 (Light)

Weight (lbs.) >9 5.28–9 <5.28

Number of SKUs 802 756 1080

Percentage 30.40% 28.66% 40.94%

Table 3. Weight-based classes for Scenario 2.

Factors Class 2-1 (Heavy) Class 2-2 (Medium) Class 2-3 (Light)

Weight (lbs.) >8.85 5–8.85 <5

Number of SKUs 805 902 1014

Percentage 29.58% 33.15% 37.27%

The application of the ARM-based heuristic found a total of 74 association rules in
Scenario 1 (i.e., 10 rules in Class 1-1, 48 rules in Class 1-2 and 18 rules in Class 1-3), and a
total of 59 association rules in Scenario 2 (i.e., 14 rules in Class 2-1, 32 rules in Class 2-2,
and 13 rules in Class 2-3). Figures 2–4 show the plots of association rules in each weight
class for Scenario 1. The numbers in these plots are the SKUs, while the circles represent
the associations between SKUs. The size of circles is proportional to the level of support of
the rules (i.e., a larger circle size represents a higher level of support). Thus, we can see
that SKU 83,626 is frequently ordered together with SKU 103,427 in Figure 2. Additionally,
the color of the circles is indicative of the lift of the rule (i.e., a darker circle color represents
a higher lift). The arrow starts from the antecedent of the rule and ends at the consequent
of the rule. It is important that the family of SKUs can be discovered from the results of
ARM analysis. For instance, SKUs 10,829, 83,626, 103,427, 241,880 and 249,707 in the upper
right corner of Figure 2 can be regarded as the members of a family, since SKU 103,427 is
frequently ordered together with the others. Moreover, such SKUs are assigned to the slots
in proximity by the heuristic method proposed in this paper. Similar trends are observed
in the plots we obtained for Scenario 2, but we omitted these figures from this paper due to
space limitations.

Figures 5 and 6 show the average order picking times for Scenarios 1 and 2, as
generated by CBL and ARM. Table 4 shows the mean order picking completion times and
standard deviation for Scenarios 1 and 2. As the results show, the mean order picking time
decreased from 3345.4 to 3006.9 s in Scenario 1, which represents a 10.1% improvement by
applying the ARM-based method over the class-based layout method. Similar trends were
observed in the second scenario. The mean order picking time decreased from 3489.0 to
3010.8 s in Scenario 2, which represents a 13.7% improvement by applying the ARM-based
method over the class-based layout method.
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Figure 2. Association rule visualization for Scenario 1 Class 1-1. Note that the numbers indicate
SKUs, size of circle indicates level of support (0.20–0.28) and color indicates level of lift (1.25–2.48).

Figure 3. Association rule visualization for Scenario 1 Class 1-2. Note that the numbers indicate
SKUs, size of circle indicates level of support (0.20–0.54) and color indicates level of lift (1.08–2.67).
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Figure 4. Association rule visualization for Scenario 1 Class 1-3. Note that the numbers indicate
SKUs, size of circle indicates level of support (0.20–0.33) and color indicates level of lift (1.36–3.00).

Figure 5. Comparison of class-based versus association rule mining (ARM)-based layouts for Scenario 1.
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Figure 6. Comparison of class-based versus ARM-based layouts for Scenario 2.

Table 4. Comparison of class-based versus ARM-based layouts.

Order Picking
Time

(in Seconds)

Scenario 1 Scenario 2

Class-Based
Layout

ARM-Based
Layout

Class-Based
Layout

ARM-Based
Layout

Average 3345.4 3006.9 3489.0 3010.8

Standard
Deviation 221.1 180.1 257.4 235.0

Coefficient of
Variation 0.066 0.060 0.074 0.078

Maximum 3722.1 3213.8 3767.1 3213.8

Mininimum 2755.1 2603.6 2623.3 2259.8

4.3. Managerial Implications to Industry

The total sales generated by supermarkets and grocery stores in the United States in
2019 amounted to USD 682.86 billion [20]. The industry works on a very tight margin,
with approximately 1.7 percent of net profit margins [21]. Efficient and coordinated sup-
ply chains of high volume goods are critical for these companies to generate profit [22].
Such supply chains generally involve sensitive logistics, suppliers, DCs, retail stores and
the end customers. Moving high volumes of goods, particularly between the DC and the
retail stores, is resource-intensive and complex.

Distribution centers become critical components of the supply chains to yield satisfac-
tory results in such a tight industry—supermarkets and grocery stores. Supermarket and
grocery store practitioners at the distribution centers have at their disposition detailed trans-
action data. These data are vast and available from a database across the entire enterprise.
The body of data is constantly increasing in number of transactions, number of items and
in the diversity of types and sources. The use of the proposed framework in a real setting
showed that datamining techniques might efficiently and effectively be used to discover
useful trends in the data to increase delivery speeds, and ultimately cut logistical costs.
Our research provides a managerial tool to DC managers that might facilitate strategic
initiatives to increase net profit margins.

5. Conclusions

This paper proposes the use of an ARM-based heuristic for solving SLAP. The pro-
posed heuristic consists of the following main steps: (1) dividing the SKUs into weight



Appl. Sci. 2021, 11, 1839 14 of 15

classes, i.e., heavy, medium and light; (2) choosing levels of support and confidence to
generate rules with the Apriori algorithm; (3) extracting frequent itemsets; and (4) gener-
ating a layout with SKU locations placing frequently ordered itemsets near to each other.
The higher the frequency with which items are ordered, the closer they are located to the
input/output point. The resulting layouts were tested to estimate the total order picking
times. The datamining approach was applied to a real case. The layouts generated by ARM
resulted in lower average order picking times than those layouts generated using class-
based layout. The ARM layout seeks faster order picking times by considering itemsets
that are ordered frequently, not just individual items.

For the operation in this study, the amounts of data are vast and are available from
a database across the entire enterprise. The body of orders data is constantly increasing
in number of transactions, number of items and in the diversity of types and sources.
Therefore, the method proposed in this study requires hardware and software capable of
storing and processing large sparse matrices of data. The authors recommend an imple-
mentation using a software environment such as R [18], Python [22] or Julia [23]. All three
environments offer at least one implementation of the Apriori algorithm. This study has
shown how this data mining algorithm can be applied efficiently and effectively in a real
setting to discover trends in data useful to increase delivery speeds, and ultimately cut
logistical costs. For instance, this paper applied the ARM technique to discover the family
of correlated SKUs that should be assigned to slots in proximity.

During the conduct of this study, the authors devised three paths for further research.
First, instances that the authors have designated as singletons. Singletons are items that are
not grouped with any others as a result of the mining processes. These instances represent
an inefficiency in the implementation of ARM, which has not been mentioned in the prior
literature. During the experimentation, it was observed that the appearance of a singleton
could force the picker to deviate far from the I/O point, thus markedly increasing the
order picking completion time. These particular items can cause disruptions in the design
of the order picking routes. The opportunity is in the development of algorithms that
minimize the effects of the singletons, seeking to improve the efficiency of the order picking
process and possibly improving the performance of ARM. A second extension of this study
concerns the implementation of ARM to cases in which the demand pattern of high-selling
items is not stable. In this method, high-selling items that sell together greatly influence the
resulting items’ locations in the warehouse. An unstable demand of such itemsets would
imply a periodically changing layout. Lastly, in designating the item locations, this study
only considers the loading process. The authors conjecture that considering the unloading
process as well as the unloading process will result in a product location that could achieve
a lower overall warehouse operating cost.
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