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ABSTRACT 

Physical therapy is a form of rehabilitative treatment that includes specially 

designed and prescribed exercises to help patients recover from diseases that disturb their 

movements of daily life or enhance their physical abilities. In physical therapy, tracking 

the movements of different body parts and classifying the movements during the 

exercises has great importance. The goal of this thesis is to create an interactive system 

able to recognize physical therapy exercises from patients’ movements and count the 

repetitions of them in real-time. 

To achieve this objective, we used a combination of a Long Short-Term Memory 

(LSTM) model and Dynamic Time Warping (DTW) algorithm for the classification and 

counting the repetitions of exercises using 3D skeleton tracking data captured by 

Microsoft Kinect. First, we developed methods for preprocessing and normalization of a 

multi-dimensional skeleton sequence. Second, we explored ways of increasing the 

precision of offline human movement classification methods; finally, we created a real-

time system for exercise recording and classification. In addition, we proposed a 3D 

DTW algorithm for 3D skeleton sequence pattern matching and counting the repetition of 

movements, and we designed and implemented an interactive application that tracks the 

actions of an individual, transfers information for processing, and displays the results. 
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I. INTRODUCTION 

In a world where computers have a huge role in our lives, we always look for a 

way to make computers more intelligent and smarter. If computers had our five senses, 

they would be more aware of their environment and as a result they would improve our 

quality of lives even more. Since vision is one of our most important senses, the idea of 

making computers understand the visual clues is crucial to have more intelligent 

computers. 

Computer vision wants to discover techniques to help computers 'see' and 

understand digital image content, such as photographs and videos. It is one of the hottest 

areas of computer science and artificial intelligence research due to its critical challenges 

and the range of its applications including virtual reality, surveillance systems, advanced 

user interfaces, and motion analysis. 

Computer vision applications, acting as an additional pair of eyes, has had 

revolutionary impacts on healthcare sector by improving the speed and accuracy of 

medical diagnoses and treatments. One of the newly emerging computer vision 

application particularly human movement classification application is in physical therapy 

field. Physical therapy helps patients with injuries, disabilities, or other health conditions 

to improve their ability to move, reduce or manage pain, restore function, and prevent 

disability with prescribed exercises, hands-on care, and patient education.  

Usually, patients need to visit physiotherapists regularly to repeat certain 

exercises under supervision of the therapist. Monitoring and evaluating the patients’ 

performance is crucial for developing the treatment plan and to make sure that the 

exercises are practiced correctly and accurately as they are prescribed, since practicing 



 

2 

wrong exercises could trigger more pain and injury. Therefore, physical therapy 

treatment highly depends on the physician’s interpretations and needs regular in-person 

visits that can be inconvenient and expensive for many patients. In this case, an 

automated system that can evaluate the patients’ performance in real time can bring 

mobility for patients as they can practice the exercises at their preferred places, and they 

can constantly monitor their performance. In addition, using new and powerful hardware 

like Kinect sensors to capture the performances can remarkably reduce the costs of the 

treatment.  

To achieve this automated system, we need to tackle two problems. First, the 

system should be able to identify the movement type, and second, it should determine 

how accurate the practiced exercise is compared to the prescribed exercise in real-time. 

 

Statement of the Problem 

In this research, we are concentrating on identifying the movement type in real-

time. The purpose of this research is to detect and interpret human movements 

automatically in real-time from the information acquired from the Kinect sensor. 

In real-time classification, the main problem is that we only have information 

from a few previous movements at a given time, and if we do not process or store them, 

we lose them. Therefore, the model needs to identify the exercise based on the few past 

bits of information and without any knowledge of the next contents. Also, it is quite a 

difficult task to identify the exercise in real time since certain movements are common 

between different exercises, and by knowing just few movements, we may not be able to 

pick only one label, because those movements might have multiple labels. 
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The other challenge is how data should be stored and processed. The data for 

human movement classification could be so large that makes the data transferring and 

processing procedure slow. Also, the data might need a lot of memory to store. Therefore, 

to handle this challenge, we might need to transfer and process the data portion by 

portion. An additional challenge is the procedure of recording, transferring the data and 

action recognition all should happen in reasonable timing. The speed of motion detection 

is even more important in high-risk situations, such as crime scenes where we need to act 

immediately. (e.g., when a gun is pointed at someone). Deep convolutional [1] and Long-

Short Term Memory (LSTM) [2] neural networks have shown outstanding performance 

for classifying sequence data such as human movements.  

However, the major problem with many of the existing methods is that they do 

not apply to real-time classifications [3][4][5][6]. In other words, these algorithms work 

efficiently when data is segmented, but in real-time movement, the data is unsegmented 

since the beginning and end of the action is unknown. There are a few kinds of research 

for real-time action recognition. However, they still lack accuracy and efficiency. 

Besides, they are designed for specific tasks and data type [7][8][9][10]. 

Data collection is done with the Microsoft Kinect motion sensor. 16 people were 

asked to practice 13 different physiotherapy exercises in front of the Kinect with a 

specific order of exercises and random orders. Their actions were recorded and saved in 

depth images, RGB images, and skeleton sequences format.  

In the paper [1], Johansson experiments suggested that humans could recognize 

activity with only seeing the light spots attached to the person's major joints. Based on 

this experiment, other researchers have explored the computer vision field and suggested 
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that by extracting joints and body parts, we can recognize activities. Also, with the help 

of color-depth cameras such as Microsoft Kinect, it is easier and cheaper to get depth data 

and 3D skeletons of the human body [11]. Therefore, in this research, we use skeleton 

sequences data, which consist of 3D coordination of 25 main body joints for 

classification. 

 

Contributions 

This thesis: 

• Presents an application that records data from the Kinect sensor, processes it, and 

shows a report of movements classifications and their repetitions in real time. 

• Demonstrates a method for normalizing and preprocessing the multi-dimensional 

feature vector. 

• Develops a Long Short-Term Memory model for online classification using 3D 

skeleton sequence data with high accuracy. 

• Introduces a 3D Dynamic Time Warping algorithm for pattern matching and 

count the repetitions of the movements. 

• Evaluates the real-time accuracy of the system and compares it to the offline 

classification. 

The organization of the rest of the thesis is as follows: In chapter II, we will 

provide background information about Neural Networks, Recurrent Neural Networks, 

Long Short-Term Memory, and Dynamic Time Warping algorithm. In chapter III, we 

briefly summarize the related work. In chapter IV, we will elaborate on details of our 

methodology. In chapter V, we will present the results and analyze them. Finally, chapter 
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VI will conclude this thesis and discuss possible future work based on the results. 
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II. REVIEW OF THE LITERATURE 

Action recognition and classification have attracted a lot of research interests due 

to their rapid growth in number of applications in the past decade. Although studies have 

done satisfying job in covering action recognition with broad data types such as 

accelerometer data, images, videos, and 3d skeleton configurations, they mostly focused 

on pre-segmented sequences which means their methods work well when the start and the 

end of the movement is pre-defined [12][13][14][15][16]. However, in many real-life 

applications we need to recognize the action before completion of the action. There are 

few approaches that can classify actions within unsegmented data [3][4][5][6]. In this 

section, we review recent related work, particularly, real-time skeleton-based action 

detection and recognition. 

Using 3D skeleton data in action recognition has become popular when Shotton et 

al. [18] introduced a real-time approach to extract 3D positions of the body joints from 

depth images. Later, how the position, motion, and orientation of joints could be an 

indicator of a movement was proven in many studies [17]. 

In the past few years, many traditional machine learning approaches such as 

support vector machines (SVM), artificial neural networks (ANN), decision trees (DT) 

and K-nearest neighbor classifiers (KNN) have been widely used for action recognition 

with 3D skeleton data [19]. Paraskevopoulos et.al (2019) experimented with SVM, KNN, 

naïve Bayes, KNN and random forest for real-time arm movement recognition using 3D 

skeleton joint data extracted from Microsoft Kinect sensor. To use mentioned algorithms, 

they calculated a set of statistical features on the dataset. Although the mentioned 

approaches proved to be successful regard to the action recognition problem, they are not 
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the best approaches as deep learning approaches such as recurrent neural network (RNN) 

and Long Short-Term Memory (LSTM) have shown their strength in classification of a 

sequence data such as movements data [6]. 

The paper [7], Carrara et.al (2019) introduced a LSTM model for real-time 

movement classification using a sequence of 3D skeleton configurations, which consist of 

3D coordinates of 31 tracked joints. The proposed unidirectional LSTM model’s 

architecture is based on the recurrent neural network that is already proven to work 

efficiently for short dependencies sequences. It can effectively encode the skeleton 

frames within the hidden network states. The LSTM model can detect the beginning of 

the movement immediately, without termination of the action. In this paper, they focused 

on multi-label detection of user-specified actions in unsegmented sequences as well as 

continuous streams. They utilize a bidirectional LSTM model to estimate class 

probabilities by considering the future frames as well as the past ones. 

In article [11], Li et.al (2016) proposed a classification-regression recurrent neural 

network model to detect the actions on the fly from the untrimmed stream data. This 

model can find the start and endpoints of actions automatically and accurately. 

Specifically, by using LSTM as a recurrent layer, they could achieve high computational 

efficiency. It can automate the feature-learning and handle the long sequence 

dependencies. Furthermore, based on the regression curve, the model can predict the 

action prior to its occurrence. 

Liu et.al (2018) applied LSTM on 3D skeleton sequences for human action 

recognition due to the LSTM strength to solve dependencies and dynamics in sequential 

data. To improve LSTM's attention performance, they used Global Context-Aware 
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Attention LSTM (GCA-LSTM) that can choose the joints that are more informative and 

focus on them [6]. 

In paper [20], Amin Ullah et.al used deep bidirectional LSTM with CNN features 

for action recognition in video sequences. First, they extract features from every sixth 

frames to reduce the redundancy and complexity. In the next step, they used bidirectional 

LSTM to learn the dependency and sequential information among frames. The proposed 

method is capable of learning sequences and frame to frame change in features due to 

small change in visual data of videos. 
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III. BACKGROUND 

Sequence or time series forecasting refers to the process of predicting the future 

by using current and previous data. It has been one of the hardest problems in data 

science and this domain includes a wide range of problems. Typical examples of 

sequence prediction applications are tracking daily, hourly, or weekly weather 

temperature, tracking changes in stock market prices, and medical devices to visualize 

vitals in real time. The major challenges in sequence forecasting are understanding the 

patterns in the sequence and using this pattern to analyze the future sequences. Figure 1 

shows a body movements pattern while jumping from one point to another point. 

Obviously, if we only look at the body movement at one instance (initiation, start, middle 

or landing), it is not possible to recognize the activity, since a movement is a sequence of 

different movements at different time. So, we need to detect the entire movement pattern 

in a sequence to be able to predict it in the future. 

  

Figure 1: body movements patterns in jumping action [21] 
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Long Short-Term Memory networks (LSTMs) have been proven to efficiently 

solve sequence problems. LSTMs are a special kind of Recurrent Neural Networks 

(RNNs) and RNNs are a class of Neural Networks (NNs) that are powerful for modeling 

sequence data [22]. To understand LSTMs, we must understand NNs and RNNs first. 

Therefore, in the following paragraphs we explain how NNs and RNNs work and then we 

explain LSTMs. 

 

Neural Network 

Traditional neural networks, also known as feed-forward neural networks, are a 

subset of machine learning algorithms and at the heart of deep learning algorithms that 

endeavor to recognize relationships in a set of data. Their name and structure are inspired 

by the human brain, simulating the way biological neurons signal to each other to process 

data. NNs are used in variety of applications such as pattern recognition and data 

classification. 

A neural network is made up of layers of neurons. The neurons are the core 

processing units of the network. First, there is an input layer which receives the input 

data. Second, there are hidden layers which performs most of the computation required 

by the network. Finally, there is an output layer which predicts the final outputs [23]. 
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Figure 2: image classification using neural networks [24] 

 

In conventional feed-forward neural networks, all test cases are independent. For 

example, the trained feedforward NN can recognize a cat or a dog in an image. In this 

training process, the classification process of the second image is independent from the 

classification process of the first image. Therefore, the output of cat does not relate to the 

output of dog. When the previous understanding of data is necessary neural networks do 

not work well since these networks do not have memory to relate the previous events to 

predict the next one. Therefore, NNs cannot process sequential data like the data from 

language translation, music recognition and movement classification.  

 

Recurrent Neural Network  

 A recurrent neural network is designed to make up the shortcoming of the 

traditional neural networks. It has shown great success in problems such as speech 

recognition, translation, and more time-series problems. 

A RNN looks like Figure 3. In RNNs, output of each process passes to the next 

processes. So, output at time h(t) depends on the new input, the outputs of all the previous 

computations, and all information learned from previous processes which are stored in 
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the “memory”. 

 

Figure 3: a RNN architecture [25] 

 

 However, RNNs can solve sequence problems to a great extent but not entirely. 

Hochreiter (1991) [German] and Bengio, et al (1994) [26] proved that when the sequence 

is long enough, RNNs have a difficult time carrying the information from earlier time 

steps to later ones and may leave out important information from the beginning steps. For 

instance, consider the case when an RNN needs the input X0 to predict the output of ht. If 

the distance of [0, t] is too long, the RNN may lose some information from early steps. 

The long-term dependency problem in RNNs is solved in the Long Short-Term Memory 

network.  

 

Long Short-Term Memory 

In 1997, Hochreiter & Schmidhuber proposed the idea of the LSTM, which can 

learn long term dependencies in a sequence. Special structure inside LSTM cells, makes 

it able to selectively keep or forget information. LSTMs can learn which information is 

important and which is not [27]. Figure 4 shows the architecture of an LSTM. 

A memory cell is the core component of the LSTM. It consists of a cell state 

vector and gating units. The cell state vector reflects the LSTM memory and modifies 

information by forgetting old memory (through the forget gate) and inserting new 
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memory (through the input gate). A forget gate decides how much the unit should recall 

from the past. An input gate decides how much new information should be added to the 

cell state. Finally, an output gate decides which part of the current cell is the output [25]. 

 

Figure 4: a LSTM architecture with 3 modules: input, output, and forget gate [25] 

 

Dynamic Time Warping  

Dynamic Time Warping (DTW) is a well-known algorithm for measuring the 

similarity between two time series, which may vary in time or have different lengths. The 

DTW measures the similarity by providing non-linear alignments which minimizes the 

effects of shifting and distortion in time between two sequences and computing a distance 

function between them [28]. It is a robust technique that has been widely used in 

handwriting and online signature matching [30] [31], movements recognition [32] [33], 

database mining [29], computer vision and computer animation [34], music and signal 

processing [34] [35] [36].  

In an ideal situation where time series sequences are perfectly sync up and they 

move at the same speed and time, finding Euclidean distance is useful. The Euclidean 
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metric calculates the shortest path between two points on both sequences that occur at the 

same time. However, in most cases, sequences are out of sync. For example, in running 

from one point to another point, people run at different speed, but they all have similar 

pattern of running. In these cases, the DTW method can be helpful to find the similarity 

of the two time-series [16]. 

Take X = (x1, x2, ...xn), n ∈ N and Y = (y1, y2, ...ym), m∈ N as examples two time 

series. The DTW algorithm starts by building the distance matrix C ∈ RN×M representing 

all pairwise distances between X and Y. Since the Dynamic Programming algorithm lies 

in the core of the DTW it is common to call this distance function the “cost function” 

[37]. Although the DTW provides non-linear and flexible alignments, it must satisfy the 

following criteria: 

- The starting and ending point of one sequence should match to the starting 

point and the ending points in the other sequence. 

- To preserve the time-ordering of the points, we should consider n1 ≤ n2 ≤ ... ≤ 

nk and m1 ≤ m2 ≤ ... ≤ mK conditions. 
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The DTW works as follows:  

 

Figure 5: the DTW algorithm [47] 

 

The matrix value at index C [n, m] represents the distance between sequence X and 

sequence Y.  

 To improve the DTW performance for pattern matching, the constrained DTW 

has been introduced to limit the length of jumps (shifts in time) while aligning sequences 

and provides a smoother match [38]. We will discuss this condition in detail in the 

chapter IV and how we used it in our problem. 
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IV. DESIGN AND METHODOLOGY 

Overview 

In this research, we introduce a real-time LSTM model to recognize physical 

therapy movements in a stream using Kinect RGB-D video data. Finally, we introduce 

3D Dynamic Time Warping algorithm to count the repetition of movements in a stream. 

For this study, 12 physical therapy exercises with standard set of instructions were 

selected. Some exercises use same joints in a different way and some exercises use 

completely different joints. Numbers 1 through 12 are assigned to each exercise. 

                      

      

            

Adductor stretch. Hamstring strengthening 

in standing.   

Hip abductor strengthening 

in standing. 

 

Elbow flexion. Elbow flexion and extension 

 skimming body. 

 

Hip flexor strengthening in 

standing. 
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Figure 6: exercises instructions [39] 

 

System Design 

 

The diagram below displays the application cycle from the time when it receives a 

frame to the moment when it shows the results. Once the application starts, it keeps 

receiving a new frame from the Kinect sensor with 30 frame per seconds speed (Stage 1). 

Since movement recognition is a time series problem, we need to have a sequence of 

frames to be able to predict the movement. Therefore, we wait for the application to 

Side-stepping. Squatting. Stand and shift weight 

forwards and backwards. 

 

Stand and look behind. Stand on one leg and 

move the other leg. 

 

Standing up and sitting 

down 
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receive 120 frames and save their skeleton joints 3D coordinates (Stage 2) before 

proceeding to the next steps. At Stage 3, we save the data in two forms for the movement 

recognition purpose with the LSTM and counting the repetitions of movements purpose 

with the DTW. The data that is used for the LSTM should have a sequence behavior. To 

do so, when we receive a new frame, we remove the first frame in the list and add the 

newest frame to the end of the list and this process happens for every new frame. 

However, one new frame cannot fully represent a change in a movement, so we make a 

prediction with the LSTM every 50 frames. Therefore, for every two runs of the LSTM, 

there is an overlap of 70 frames between each of the two separate batches of data, with 50 

unique frames per batch, for a total of 120 frames.  

The data that is used for the DTW should not have the overlap that we create in 

data for the LSTM. So, we used another list that save the frames information in a list as 

they arrive. After the normalization and predicting a label with the LSTM for them, we 

compare the skeleton sequences with the standard movements. This process happens after 

receiving 200 new frames. After counting the repetitions of the movements, we clear the 

list and wait for a new batch of 200 frames. 

Finally, the results which includes the label and number of repetitions are 

displayed on the screen. Also, raw skeleton sequence and the frame labels, the duration of 

each exercise, and the repetitions of each exercise are saved in text files. 
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The picture below is a screenshot of the application when a user is performing 

Elbow Flexion. 

 

Figure 7: system diagram 
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Data Collection 

 The data collection involves 12 people performing sequences of physical therapy 

exercises in front of Microsoft Kinect sensor to the best of their abilities. Each subject 

performed two sequence of exercises. The first sequence which was the same for all 

subjects included five repetitions of each exercises with a specific order. The second 

sequence was a set of exercises with randomized order and random number of repetitions 

between two and five.  

 

 

 

 

 

Figure 8: application interface while a user practicing Elbow Flexion movement 
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Table 1: exercises orders and number of repetitions in predefined set 

 

Order Exercise name Repetition 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Adductor stretch 

Hamstring strengthening in standing 

Hip abductor strengthening in standing 

Elbow flexion 

Elbow flexion and extension skimming body 

Hip flexor strengthening in standing, 

Side-stepping 

Squatting 

Stand and shift weight forwards and backwards 

Stand and look behind 

Stand on one leg and move the other leg 

Standing up and sitting down 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

 

 

The data are stored in RGB and depth images, and skeleton data which includes 

3D coordination (x, y, z) of twenty-five key body joints which is the number of joints the 

Microsoft Kinect can track. Since RGB, depth and skeleton streams often do not have the 

same frame rate, time stamps are also recorded for the purpose of aligning frames from 

one stream to the corresponding frames in parallel streams. 

 
Figure 9: twenty-five joints detected in Kinect sensor and their names [40] 
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 For finding the labels, start and end of the exercises and their time stamp are 

manually recorded. Then, a script segmented the skeleton information based on time 

stamps and assigned them a label. 

 

 

 

 

Due to the missing files in the database for some people, we were not able to 

retrieve the labels for their skeleton sequence. So, for this research we used skeleton 

sequence data of 10 people which are available in the database. 

 

Data Preprocessing and Normalization 

Initially, data for each person were stored in separate .mat files. To increase the 

speed of loading and processing the data, we converted all the data in one .csv.  

To normalize the data, we followed Wei, T & Qiao, Y & Lee, B. (2014) method. 

The goal of this method is to have a skeleton in a standard orientation. To do so, we 

rotate the spin and the shoulders in a way that the base of the spin be at the origin and the 

shoulders be at an equal depth. This normalization method compensates angles of body in 

relation to the Kinect sensor. In addition, the whole skeleton is scaled based on the 

distance between base of the spin and the top of the spin. So, we can achieve scaling that 

match the standard spin length. 

Figure 10: start, name, and the end of the exercise along with their timestamps 

 

start 1 

Time 09-27-2018 13.20 38.418   Hash 23749772rgb 

Time 09-27-2018 13.20 39.809   Hash 61312212rgb 

stop 1 
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In the Wei, T & Qiao, Y & Lee, B. (2014), normalization method, they used 

average of 120 frames as representation of the skeleton to rotate and scale the body. In 

real time LSTM, we also normalize the data in groups of 120 frames. 

 Since the LSTM required 3D format input, after normalization, we did another 

data preprocessing to convert sequence data to 3D format before fitting the data to the 

model. The three dimensions of the input are: 

- Samples: the total number of sequences in the dataset.  

- Time steps: the size of the sequences. 

- Features: the number of features describing each of your timesteps. 

We converted the data to 51040 * 50 * 75 dimensions where 51040 is the number 

of samples, 50 is the number of time steps, and 75 is the number of features. In our 

research, we define a sequence from beginning of a movement to the end of a movement. 

Fifty is selected as the time-steps since the average length of 13 exercises is 50 frames 

with the fastest exercise with 19 frames and the slowest with 90 frames. So, the chance 

that entire exercise captured in 50 frames is high. Also, because Kinect sensor detects 25 

Figure 11: changing human skeleton orientation [41] 
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joints and each joint has X, Y, and Z coordination, the number of features is 25 * 3. 

 

Offline LSTM  

As the LSTM showed promising results in solving long dependency sequences, 

we built a LSTM model for physical therapy exercises classification. Our goal was to 

train a LSTM model in an offline mode first, and then use the trained network for the real 

time classification. The model is developed with the Keras and the LSTM architecture is 

defined as follows:  

 

 

In this LSTM architecture, number of hidden units, timesteps and features are 

respectively 50,50 and 75. The number of hidden units defines the number of variables 

that are calibrated for a classification to be made. The optimal number of hidden units 

could be smaller than the number of features (75 features) and more than number of 

classes (12 classes). By experimenting various range of hidden units between 12 and 75, 

we found out that 50 works the best. The more hidden units made the iteration slower for 

many hours without increasing the accuracy. Also, we used simple LSTM over 

bidirectional LSTM, as bidirectional LSTM made the training process slower and did not 

increase the accuracy. Number of outputs is 12 since we have 12 physical therapy 

exercises.

Figure 12: the LSTM architecture 
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Furthermore, we used a layer of dropout to avoid over fitting and improve 

generalization error in the model. Also, Softmax layer is used to calculate the probability 

of each class per training point. Adam optimizer which is a gradient decent method is 

used to improve learning the dependencies in each iteration and increase the accuracy. 

Batch size is a hyperparameter that define number of samples to work through the 

network before updating internal model parameters. The epoch number is the number of 

times that entire dataset is passed forward and backward through the neural network 

exactly one time. If the entire dataset cannot be passed into the model at once, it must be 

divided into batches. A small batch size requires less memory, and it makes the training 

procedure faster. The number of epochs and batches are chosen by several experiments. 

 

Real-time Classification System 

 For real-time classification, we developed an application that connects to the 

Kinect sensor to capture and record the body movements. It uses the LSTM model to 

predict the movement and uses the 3D DTW algorithm to count the repetition of 

movements. Finally, it shows us the results on application interface. Also, it stores the 

data with the predicted label and their repetitions in text files. This desktop application is 

Figure 13: training parameters 



 

26 

developed with Windows Presentation Foundation (WPF) app with C#. 

 

Application Connection with Kinect 

The application needed to have a user-friendly interface to have a pleasant display 

of a person who stands in front of the camera and the results. More importantly, it needed 

to connect to the Kinect sensor to capture RGB images and track the body joints. These 

connections were made by using “Color Frame” and “Body Frame” reader libraries, 

provided by Microsoft [42]. As soon as a person stands in a certain distance from the 

camera, the sensor detects the body, draws body and joints on the skeleton for better 

display and gets the 3D coordination of joints. The Kinect has an eight-meter depth 

range, but its skeleton tracking range is 0.5 to 4.5 meters, and it fails to locate a skeleton 

closer than 1.5 meters due to the camera's field of view. Therefore, the cameraZ values 

will normally be between 1.5 and 4.5 meters [43]. 

 

Application Connection with LSTM 

 Since training a LSTM takes a long time, it is not possible to train a model in real 

time format. So, we need to train the model first, and then save and load the trained 

model in the application. To do so, we used Keras libraries in Python to save the model 

architecture in json file and save model’s weights in .h5 file. We also used Keras.Net 

library in C# to rebuild the model and use it for prediction [44]. Once the application is 

opened, it starts loading these files. After, few seconds the loading is complete, and we 

can use the model prediction function in the application. 
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LSTM Prediction 

 As we discussed in chapter II and chapter III, the LSTM model needs a sequence 

of data points for classification. In our case, data points are frames. So, it is not possible 

to predict a label based on just one frame or two frames. We need to wait to have long 

enough sequence to call the prediction function. To do so, we wait until the application 

receives 120 frames (about 4 seconds) before normalizing the data and predicting the 

label for the first time. We keep all the frames in a list. To keep the sequence behavior of 

the data by arriving the next frame, we remove the frame at the beginning of the list and 

add the new frame to end of the list and this procedure continues for every new frame. 

After receiving approximately 50 new frames (about one 1.6 seconds), we normalize the 

data in the list and then predict the class of exercise based on the updated list. 

We chose 120 frames as the size of the list and 1.6 seconds (50 frames) delayed 

for prediction based on the average length of the exercises (60 frames) and sensor frame 

rates (30 fps). It is likely that a movement sequence finishes in 50 new frames. So, there 

is a higher chance for the LSTM to predict a right label. Also, we found out the 

application performance is in the highest level with these numbers. Any number lower or 

higher these numbers made the program too slow to show the result or less accurate in the 

prediction as the displayed labels and the performed exercises were asynchronous. 

 

3D Dynamic Time Warping  

 Dynamic Time Warping algorithm was initially designed for comparing the 

similarity between two 2D sequences. Since our data is 3D, we used Wöllmer, Al-Hames, 

Eyben, Schuller, and Rigoll (2009) [45] study to introduce our 3D DTW algorithm that 
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works for the skeleton data. In the movement classification, we also had the challenge of 

not knowing the beginning and end of the sequence. So, we made the algorithm 

compatible for unknown start and unknown end. 

 In this algorithm, we segmented the 3D sequence with 25 * 120 * 3 dimensions 

where 25 is the number of joints, 120 is the number of frames, and 3 is the 3D 

coordination of the joints into 25 segments of 120 *3 dimensions. In this way, we reduce 

one dimension, so we can use the basic 2D DTW for computing the distance. By 

segmenting the joints sequences, every joint in the first sequence is compared with 

corresponding joint in the second sequence and this procedure repeated for all 25 joints. 

In this method, the final distance between two sequences is the average of 25 distances. 

 For handling the beginning and the end of the movement in the entire sequence, 

we consider the beginning of the sequence where the LSTM predicts a new label. 

However, we still need to figure out the end of the movement.  

 In the DTW algorithm when the end of the sequence is known, we consider the 

last element of the cost matrix as the minimum distance between two sequences. We use 

this idea to find the end of the sequence. In the unbound DTW, we calculate the distance 

between two sequences with the regular DTW, but instead of using the last element as the 

distance, we search through the last row of cost matrix for the minimum number. The end 

of the sequence is where the minimum number is, and that is where one repetition of the 

movement ends. The start of the second repetition is minimum number index in the 

matrix plus one. The algorithm repeats this procedure to counts the repetition of the 

movement in a long sequence until the min index reaches to the end of long sequence 

minus the half length of the short sequence. 
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 In this algorithm, we use a set of movements sequences as the standard sequences, 

and we compare every input sequence with that standard sequence for pattern matching.  
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V. RESULTS 

In this section, we evaluate our LSTM model and DTW algorithm in two formats 

of offline and online, and we compare their results. For offline evaluation, we used the 

data set that we used for training and testing the model. The online evaluation is done by 

asking an individual to practice the exercises in front of the Kinect sensor for several 

times. 

 

Offline LSTM Results 

 In the following table, evaluations parameters are shown for each class. These 

parameters are calculated based on number of frames for each class, not the whole 

movement. The overall accuracy of the LSTM model in offline mode is 0.8626%. 

However, since the length of exercises are different, one exercise can be finished in 30 

frames and another exercise in 130 frames, our data based on number of frames per 

exercise is unbalanced. In this case, it is better to consider other evaluation parameters 

such as precision and true positive rate along with accuracy. 

Table 2: number of frames per exercise in the data set 
 

Exercise  Number of frames  

1 4471 

2 3583 

3 3555 

4 2592 

5 2381 

6 4138 

7 6280 

8 4647 

9 4760 
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10 4021 

11 2855 

12 7807 

 

Evaluation parameters such as precision, accuracy, false positive, false negative 

are shown in the table below. 

Table 3: frame classification by the LSTM 

 

class True 

positive 

False 

positive 

True 

negative 

False 

negative 

precision True 

positive rate 

accuracy 

1 714 71 9930 333 0.90955 0.68194 0.96343 

2 625 137 10143 143 0.82020 0.81380 0.97465 

3 546 137 10227 138 0.79941 0.79824 0.97510 

4 566 7 10470 5 0.98778 0.99124 0.99893 

5 335 12 10688 13 0.96541 0.96264 0.99773 

6 706 117 10187 38 0.85783 0.94892 0.98597 

7 1350 358 9267 73 0.79039 0.94869 0.96098 

8 872 26 9934 216 0.97104 0.80147 0.97809 

9 750 106 9935 257 0.87616 0.74478 0.96714 

10 710 67 10110 161 0.91377 0.81515 0.97936 

11 392 6 10592 58 0.98492 0.87111 0.99420 

12 1965 473 8528 82 0.80598 0.95994 0.94976 

 

The following graphs show the accuracy, validation accuracy, training loss and 

validation loss over the 5 epochs. Based on these graphs, training set has a good 

performance and validation set has a desirable performance. 
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Figure 14: the LSTM accuracy in 5 epochs 

 

 

Figure 15: training loss and validation loss in 5 epochs 

 

In the confusion matrix below, we see the model mislabeled an exercise with 

another exercise which uses the same body joints and has the most similar body 

movements. For example, exercise number 10 in which a person stands and look behind 

is mostly confused with exercise number 9 in which the person stands and shifts weight 

forwards and backwards. In the first part of both exercises, the person stands in front of 

the camera. So, it makes these two exercises very similar.  
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Figure 16: the LSTM model confusion matrix 

 

Real-time LSTM Results 

 To evaluate the real-time classification, we asked individuals to follow a list of 

exercises and practice them in front of the camera. They used a timer to practice one 

exercise for specific amount of time and switched to the next exercise in the list when 

timer was up. We recorded the predicted labels and their timestamps and matched them 

to the exercise in the designed list that supposed to be done in that timestamps. Then, we 

compare the real label and the predicted label.  

 The order of the exercises in the list was random and everyone had a different list. 

Since the height of the camera and the distance from the camera effect the application 

performance, the height and the distance were the same for all individuals. 
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The overall accuracy of the real-time classification based on 6 sessions is 88.66% 

which is close to the accuracy that we got for the offline LSTM. The most wrong labels 

happened in transition time from one exercise to the next one. In some situation, wrong 

labels happen when two exercises are like each other as we expected based on the 

confusion matrix of offline model. 

The table below is an example of mislabeling two similar exercises: 

Table 4: example of mislabeling two similar exercises 

Sequence 

number 

Real Label Predicted Label 

1 Stand and shift weight forwards 

and backwards 

Stand and shift weight forwards and 

backwards 

2 Stand and shift weight forwards 

and backwards 

Stand and shift weight forwards and 

backwards 

3 Stand and shift weight forwards 

and backwards 

Stand and shift weight forwards and 

backwards 

4 Stand and shift weight forwards 

and backwards 

Stand and shift weight forwards and 

backwards 

5 Stand and shift weight forwards 

and backwards 

Stand and shift weight forwards and 

backwards 

6 Stand and shift weight forwards 

and backwards 

Stand and Look Behind 

7 Stand and shift weight forwards 

and backwards 

Stand and shift weight forwards and 

backwards 

8 Stand and Look Behind Stand and Look Behind 

9 Stand and Look Behind Stand and Look Behind 

10 Stand and Look Behind Stand and Look Behind 

11 Stand and Look Behind Stand and Look Behind 

12 Stand and Look Behind Stand and shift weight forwards and 

backwards 

13 Stand and Look Behind Stand and Look Behind 

14 Stand and Look Behind Stand and Look Behind 
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The table below is an example of mislabeling in transition between two exercises: 

Table 5: example of mislabeling in transition between two exercises 

 

Sequence 

number 

Real Label Predicted Label 

1 Elbow Flexion Elbow Flexion 

2 Elbow Flexion Elbow Flexion 

3 Elbow Flexion Elbow Flexion 

4 Elbow Flexion Elbow Flexion 

5 Elbow Flexion Elbow Flexion 

6 Adductor Stretch Side-Stepping 

7 Adductor Stretch Stand and Look Behind 

8 Adductor Stretch Adductor Stretch 

9 Adductor Stretch Adductor Stretch 

10 Adductor Stretch Adductor Stretch 

11 Adductor Stretch Adductor Stretch 

 

Offline DTW Results 

 The dynamic time warping experiments were carried out using a single user as a 

baseline for the ideal movement. The experimental comparisons were made using the 

remaining data that did not contain that user.  

Table 6: the DTW results in offline mode. 

 

Exercise 

Number 

Real Repetition DTW Results Root Square Error Rate 

1 40 38 0.05 

2 40 43 0.075 

3 40 48 0.2 

4 40 55 0.37 

5 40 39 0.025 

6 40 32 0.2 

7 40 31 0.22 

8 40 33 0.175 

9 40 49 0.22 

10 40 46 0.15 

11 40 45 0.125 

12 40 35 0.125 

Average Error rate = 0.18 
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As seen in the table above, the DTW results are accurate, with an average of just 

0.18 error rate when counting repetitions. The class number in the left column 

corresponds to the same exercise number. The number of repetitions performed for each 

exercise is stated in the "Real Repetition" column. The number of repetitions for each 

exercise determined using the DTW are described in the " DTW Results" column. 

 

Real-time DTW Results 

To evaluate the real-time DTW algorithm, we asked individuals to practice 

exercises in front of the Kinect sensor for specific number of repetitions. After the LSTM 

prediction, we compare the recorded sequence with corresponding standard sequence to 

count the repetitions. 

Table 7: the DTW results in real-time mode 

 

Exercise Number Real Repetition DTW Results Root Square Error 

Rate 

1 100 104 0.04 

2 100 108 0.08 

3 100 114 0.14 

4 100 104 0.04 

5 100 81 0.19 

6 100 100 0 

7 100 82 0.18 

8 100 98 0.02 

9 100 133 0.33 

10 100 120 0.2 

11 100 81 0.19 

12 100 124 0.24 

Average Error rate = 0.137 

 

As seen in the table above, the DTW is also accurate, with an average of just 

0.137 error rate which is close the 0.18 error rate that we had in offline format. The class 

number in the left column corresponds to the same exercise number. The number of 
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repetitions performed for each exercise is stated in the "Real Repetition" column. The 

number of repetitions for each exercise determined using the DTW are described in the " 

DTW Results" column. We observed that when the LSTM predicts a wrong label, it 

causes increment in repetition for a wrong label and it mostly happens in transitions 

between two exercises or when two exercise use the same body joints and body 

movements. As we can see in the table above, the LSTM mislabels exercise 9 with 

exercise 11 as a result the repetitions for exercise 9 is slightly higher than 100 and for 

exercise 11 is less than 100.  
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VI. CONCLUSION 

In this work, we proposed a system for real-time physical therapy exercises 

classification by utilizing 3D skeleton sequences extracted from every frame of Microsoft 

Kinect sensor and processing them through the LSTM. The model was able to learn long 

term and complex sequential patterns in the features.  

The 3D DTW showed that it can be used for skeleton data and it works well for 

counting the repetitions of an exercise in a sequence. Both methods effectively work in 

terms of speed and accuracy.  

In future, we have intention to extend this research to recognize more class of 

exercises and create an interface for non-expert person to add a new class of exercise. 

Furthermore, we aim to combine this work with techniques to intelligently compares the 

practiced exercise with a standard exercise and shows the similarity of the performed 

action with standard action in a real-time.  
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