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Convergence of the boundary control for the wave

equation in domains with holes of critical size ∗

A. K. Nandakumaran

Abstract

In this paper, we consider the homogenization of the exact control-
lability problem for the wave equation in periodically perforated domain
with holes of critical size. We show that the boundary control converges
to the boundary control of the homogenized system under the assumption
that the perforations are uniformly away from the boundary.

1 Introduction

In this article, we consider the following exact boundary controllability problem
for the wave equation in the perforated domain ΩεT :

y′′ε −∆yε = 0 in ΩεT
yε = vε on ΣεT

yε(0) = y0
ε , y

′
ε = y1

ε in Ωε,

(1.1)

where ΩεT = Ωε × (0, T ), ΣεT = Σε × (0, T ), Σε = ∂Ωε and Ωε is a perforated
domain obtained from Ω by removing small holes periodically distributed (with
period ε > 0, a small parameter) of size aε which is of critical size. We make this
precise later. The controllability problem consists in finding a control vε so that
the corresponding solution yε satisfies yε(T ) = y′ε(T ) = 0. The controllability
problem (i.e., the existence of a control vε and the corresponding solution yε)
and homogenization (limit analysis as ε → 0) for wave equation have been
extensively studied by various authors [1, 2, 3, 5, 6, 8].

Our aim in this article is to study the convergence of the outer boundary
control vε|ΓT when the holes are of critical size which seems to be open in the
literature quoted above. The (strong) convergence of this control when the size
is smaller than the critical one has been studied in [2]. Of course even this
article does not yield the convergence of the controls on the boundary of the
holes, but our expectation is that it should converge to an internal control in
some sense. In the next section, we make the problem precise and state our
result, while it will be proved in Section 3.
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2 Preliminaries and Main Result

Notation Let Ω ⊂ RN be a bounded smooth domain with boundary Γ. Let
Y = (−1, 1)N and S ⊂⊂ Y be an open set containing the origin. Let ε > 0 be
a small parameter and 0 < aε ≤ ε. Perforate the domain Ω by making holes
of size aε from ε-periodic cells. Yε = εY and Sε = aεS. The remaining part is
Yε = εY \ aεS. Let Y k = Y + k, k ∈ ZN and Sk = S + k. Let α > 0 be any
positive real number and define

Dα = {x ∈ Ω : d(x, ∂Ω) ≥ α}.

Our assumption is that, we make perforations uniformly away from the bound-
ary, i.e., let Iε = {k ∈ ZN : Y kε ⊂ Ω \Dα} and define

Ωε = Ω \ (∪k∈IεSkε ).

The boundary of Ωε is Σε = ∂Ωε = Γ
⋃

(∪k∈Iε∂Skε ). Let T > 0 and ΩT =
Ω× (0, T ) and define ΩεT ,ΣεT ,ΓT etc. analogously. The critical size aε is given
by

aε =

{
C0ε

N/(N−2) if N ≥ 3
exp(−C0/ε

2) if = 2,
(2.2)

where C0 is a constant.
We now introduce the construction of the controls vε given in [2, 3] using

the Hilbert Uniqueness Method (HUM) introduced by J. L. Lions [5, 6].
Let m(x) = x − x0, x0 ∈ RN fixed and T0 = 2‖m‖L∞(Ω). Let T > T0 and

consider a real function ψ ∈ C1[0, T ] such that ψ′ ≤ 0 for all t ∈ [0, T ], ψ(t) = 1
for all t ∈ [0, T0+T

2 ] and ψ(T ) = 0. Let {φ0
ε, φ

1
ε} ∈ H1

0 (Ωε) × L2(Ωε) and solve
the system

φ′′ε −∆φε = 0 in ΩεT
φε = 0 on ΣεT

φε(0) = φ0
ε, φ

′
ε(0) = φ1

ε in Ωε

(2.3)

Then yε is obtained by solving

y′′ε −∆yε = in ΩεT

yε = ψ(t)(m.νε)
∂φε
∂νε

on ΣεT

yε(T ) = y′ε(T ) = 0.

(2.4)

In the above equation νε denotes the exterior unit normal to the boundary. The
system (2.4) has a unique solution given by the transposition method and

yε ∈ C0([0, T ];L2(Ωε))
⋂
C1([0, T ];H−1(Ωε)).

Define Λε : H1
0 (Ωε)× L2(Ωε)→ H−1(Ωε)× L2(Ωε) by

Λε{φ0
ε, φ

1
ε} = {y′ε(0),−yε(0)}.
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It is proved in [2, 3] that Λε is an isomorphism. Thus for a given {y0
ε , y

1
ε} ∈

L2(Ωε) × H−1(Ωε), define {φ0
ε, φ

1
ε} = Λ−1

ε {y1
ε ,−y0

ε}. Then the solution yε of
(2.4) associated to φε given by (2.3) satisfies yε(0) = y0

ε , y
′
ε(0) = y1

ε . Thus the
controllability problem is solved. Regarding the convergence of (2.3) and (2.4),
the following result can be found in [2, 3]. Throughout the paper, g̃ denotes the
extension of g by zero in the holes.

Theorem 2.1 Assume the notations as in Section 2.1 and Let T > T0. Let
{y0
ε , y

1
ε} = {y0, y1}χΩε with {y0, y1} ∈ L2(Ω) × L2(Ω), where χΩε is the

characteristic function of Ωε . Let yε be the solution of (2.4). Then as ε → 0,
one has

ỹε ⇀ y in L∞(0, T ;L2(Ω)) weak ?,

where y is the solution of

y′′ −∆y + µy = 2µψφ in ΩT

y = ψ(t)(m.ν)
∂φ

∂ν
in ΓT

y(0) = y0, y′(0) = y1 in Ω,

(2.5)

and φ is the solution of

φ′′ −∆φ+ µφ = 0 in ΩT
φ = 0 on ΓT

φ(0) = φ0, φ′(0) = φ1,

(2.6)

and such that

{φ̃0
ε, φ̃

1
ε}⇀ {φ0, φ1} in H1

0 (Ω)× L2(Ω) weakly,

φ̃ε ⇀ φ in L∞(0, T ;H1
0 (Ω)) weak ? .

(2.7)

Moreover y(T ) = y′(T ) = 0.

The non-negative constant µ is called the strange term in Cioranescu and
Murat [4] in the study of elliptic equation in perforated domains. We recall this
result in the following lemma. Similar type of test functions are also studied in
[7] for other systems.

Lemma 2.2 Let Ωε be as in Section 2. Then there exists a sequence wε ∈
H1(Ω) and a non negative constant µ ∈ R+ such that

i. 0 ≤ wε ≤ 1, wε = 0 on Sε for every ε > 0

ii. wε ⇀ 1, weakly in H1(Ω) as ε→ 0

iii. 〈−∆wε, ζuε〉H−1,H1
0
→ µ

∫
ζu,
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for every ζ ∈ D(Ω), every sequence uε such that uε = 0 on Sε and uε ⇀ u weakly
in H1(Ω) as ε→ 0. Further if aε is sub critical (holes are much smaller), i.e.,

aε =

{
Coε

α with α > N
N−2 if N ≥ 3

exp(−C0/ε
α) with α > 2 if N = 2,

(2.8)

then one can take µ = 0 and the convergence in (ii) is strong in H1(Ω).

As mentioned earlier the solution yε is obtained via transposition method.
i.e., yε satisfies: ∫ ∫

ΩεT

yεfε =
∫ T

0

∫
∂Ωε

ψ(t)(m.νε)
∂φε
∂νε

∂θε
∂νε

,

for all fε = f.χΩε ∈ L1(0, T ;L2(Ωε)), where θε is the unique solution of

θ′′ε −∆θε = fε in ΩεT
θε = 0 on ΣεT
θε(0) = 0 = θ′ε(0).

(2.9)

The following convergence is also true:∫ ∫
ΓT
⋃
SεT

ψ(m.νε)
∂φε
∂νε

∂θε
∂νε
→
∫ ∫

ΓT

ψ(m.ν)
∂φ

∂ν

∂θ

∂ν
+
∫ ∫

ΩT

2µϕφθ. (2.10)

Here θ is the unique solution of

θ′′ −∆θ + µθ = f

θ = 0
θ(0) = 0 = θ′(0).

(2.11)

The natural questions which would arise, at this stage are the convergence of
the controls

ψ(m.νε)
∂φε
∂ν

∣∣
ΓT

and ψ(m.νε)
∂φε
∂νε

∣∣∣
∂SεT

.

We have the following theorem which will be proved in the next section.

Theorem 2.3 Let aε be of critical size as in (2.2) and Ωε be given as in Section
2.1. Then the outer boundary controls

ψ(t)(m.ν)
∂φε
∂ν

⇀ ψ(t)(m.ν)
∂φ

∂ν
in L2(ΓT ) weak.

where φε, φ respectively are the solutions of (2.3) and (2.6).

Remark 2.4 We do not have the convergence of the internal boundary controls.
Also without the assumption that the perforations are located uniformly away
from the boundary, the problem still remains open.
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Remark 2.5 Comparing the convergence in (2.10), it is not yet clear that
whether the following convergence are true:∫∫

ΓT

ψ(m.ν)
∂φε
∂ν

∂θε
∂ν
→
∫∫

ΓT

ψ(m.ν)
∂φ

∂ν

∂θ

∂ν
(2.12)∫∫

SεT

ψ(m.νε)
∂φε
∂νε

∂θε
∂νε
→
∫∫

ΩT

2µϕφθ. (2.13)

Of course the proof of Theorem 2.3 can be applied to see that ∂θε
∂νε
|ΓT also

converges weakly to ∂θ
∂ν |ΓT , but this does not directly yield (2.12) (and hence

(2.13)). But in the sub critical case, one gets the strong convergence of ∂θε
∂νε

and
hence (2.12) and (2.13) (see [2]) with µ = 0.

3 Proof of Theorem 2.3

The proof consists of the following two steps.
Claim 1: There exists a constant C > 0 such that

‖∂ρε
∂ν
‖ ≤ C, (3.14)

where ρε is the solution of

ρ′′ε −∆ρε = fε in ΩεT

ρε = 0 on ΓT
⋃
SεT

ρε(0) = ρ0
ε, ρ′ε(0) = ρ1

ε,

(3.15)

where
fε → f in L1(0, T ;L2(Ω)) strong

ρ0
ε ⇀ ρ0 in H1

0 (Ω) weak

ρ1
ε ⇀ ρ1 in L2(Ω) weak.

(3.16)

From the homogenization results of [1], one has

ρε ⇀ ρ in L∞(0, T,H1
0 ) weak

ρ′ε ⇀ ρ′ in L∞(0, T ;L2) weak,
(3.17)

where ρ satisfies
ρ′′ −∆ρ+ µρ = f

ρ = 0

ρ(0) = ρ0, ρ′(0) = ρ1.

(3.18)

Claim 2: ∂ρε
∂ν ⇀ ∂ρ

∂ν in L2(ΓT ) weak.
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Proof Claim 1: Recall Dα = {x ∈ Ω : d(x, ∂Ω) ≤ α} and choose q ∈ C1(Ω̄)N

such that

q =

{
ν on ∂Ω
0 in Ω\Dα,

(3.19)

where ν is the unit normal to Γ. Since Dα does not contains any holes, we have
q = 0 on Sε, that is on the boundary of the holes.

Now, multiplying (3.15) by qk
∂ρε
∂xk

(where we use the repeated indices con-
vention) and integrating by parts, we get

∫
Ωε

[ρ′εqk
∂ρε
∂xk

]T0 −
∫

ΩεT

ρ′εqk
∂ρ′ε
∂xk

+
∫

ΩεT

∇ρε∇qk
∂ρε
∂xk

+
∫

ΩεT

∇ρε.qk∇
∂ρε
∂xk
−
∫

ΓεT
⋃
SεT

∂ρε
∂ν

qk
∂ρε
∂xk

=
∫

ΩεT

fεqk
∂ρε
∂xk

,

(3.20)

which can be written under the form

I1 + I2 + I3 + I4 − I = I5.

Since ρε = 0 on ΓT , we have ∂ρε
∂xk

= νk
∂ρε
∂ν . By the choice of q, it follows that

I =
∫

ΓT

|∂ρε
∂ν
|2dσdt.

We estimate the other terms as follows:

I4 =
1
2

∫
ΩεT

qk
∂

∂xk
(∇ρε.∇ρε)

= −1
2

∫
ΩεT

div q.|∇ρε|2 +
1
2

∫
ΓT

∇ρε∇ρε

= −1
2

∫
ΩεT

div q.|∇ρε|2 +
1
2

∫
ΓT

|∂ρε
∂ν
|2.

I2 = −1
2

∫
ΩεT

qk
∂

∂xk
(ρ′2ε )

=
1
2

∫
ΩεT

div q.|ρ′ε|2 −
1
2

∫
ΓT
⋃
SεT

qkρ
′2
ε νk,
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The second term vanishes as ρ′ε = 0 on ΓT
⋃
SεT , so we get from (3.20):

1
2

∫
ΓT

|∂ρε
∂ν
|2 =

∫
Ωε

[ρ′ε(T )qk
∂ρε
∂xk

(T )− ρ′ε(0)qk
∂ρε
∂xk

(0)]

+
1
2

∫
ΩεT

div q.(ρ′2ε − |∇ρε|2) +
∫

ΩεT

∇ρε∇qk
∂ρε
∂xk

−
∫

ΩεT

fεqk
∂ρε
∂xk

≤C[(‖ρ′ε(T )‖2L2(Ωε)
+ ‖∇ρε(T )‖2L2(Ωε)

)

+ (‖ρ′ε(0)‖2L2(Ωε)
+ ‖∇ρε(0)‖2L2(Ωε)

)]

+ C[
∫

ΩεT

(|ρ′ε|2 + |∇ρε|2)] + C[
∫

ΩεT

|fε||∇ρε|].

(3.21)

To estimate the right-hand side of the above inequality, we multiply (3.15) by
ρ′ε and integrate from 0 to t to get

1
2

∫ t

0

∫
Ωε

∂

∂t
(ρ′2ε +∇ρε∇ρε) =

∫ t

0

∫
Ωε

fερ
′
ε,

i.e.,

Eε(t)− Eε(0) =
∫ t

0

∫
Ωε

fερ
′
ε,

where
Eε(t) =

1
2

∫
Ωε

(|ρ′ε(t)|2 + |∇ρε(t)|2) dx.

Now

|
∫ t

0

∫
Ωε

fερ
′
ε| ≤

∫ t

0

‖fε‖L2(Ωε)‖ρ
′
ε‖L2(Ωε)

≤‖ρ′ε‖L∞(0,T ;L2(Ωε))‖fε‖L1(0,T ;L2(Ωε)).

(3.22)

Therefore,

Eε(t) ≤Eε(0) + ‖ρ′ε‖L∞(0,T ;L2(Ωε))‖fε‖L1(0,T ;L2(Ωε))

≤C[|∇ρ0
ε(t)‖2L2(Ωε)

+ ‖ρ1
ε(t)‖2L2(Ωε)

+ ‖fε‖L1(0,T ;L2(Ωε))].

Obviously, we also have∫
ΩεT

|fε‖∇ρε| ≤‖∇ρε‖L∞(0,T ;L2(Ωε))‖fε‖L1(0,T ;L2(Ωε))

≤C‖fε‖L1(0,T ;L2(Ωε)).

So, using these inequalities in (3.21), it follows that∫
ΓT

|∂ρε
∂ν
|2 ≤C[‖∇ρ0

ε‖2L2(Ωε)
+ ‖ρ1

ε‖2L2(Ωε)
+ ‖fε‖L1(0,T :L2(Ωε))]

≤constant,
(3.23)

for all the choices of ρ0
ε, ρ

′
ε and fε as in (3.16). This completes the proof of

Claim 1.
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Proof of Claim 2: From claim 1, it follows that

∂ρε
∂ν

⇀ η in L2(ΓT ) weak.

We have now to identify η. Let g ∈ D(0, T ), v ∈ C∞(Ω̄). Multiplying (3.15) by
gvωε, where ωε are the test functions given by Lemma 2.2, we get

−
∫

ΩεT

ρ′εg
′vωε +

∫
ΩεT

∇ρεg∇vωε

+
∫

ΩεT

∇ρεgv∇ωε −
∫

ΓT
⋃
SεT

∂ρε
∂ν

gvωε =
∫

ΩεT

fεgvωε

(3.24)

which can be written in the form

I1 + I2 + I3 − I = I4.

Note that since the holes are away from the boundary, we have ωε = 1 in a
neighborhood of Γ (this is from the construction of ωε). Since ωε = 0 on Sε,
from (3.17) and Lemma 2.2 we can easily get the convergence of I, I1, I2 and I4
as follows:

I →
∫

ΓT

ηgv, I1 →
∫

ΩT

ρ′g′v,

I2 →
∫

ΩT

∇ρg∇v,

I4 →
∫

ΩT

fgv.

Then, it remains to pass to the limit in I3. Of course, we can write formally,

I3 =
∫ T

0

g〈−∆ωε, ρεv〉

At this point, we cannot apply Lemma 2.2, because v 6∈ D(Ω), but we can
overcome this using the fact that ρε = 0 on the boundary ΓT . We proceed as
follows: Let δ > 0, put

Aδ = {x ∈ RN\Ω : d(x, ∂Ω) < δ}

and let Ω1 = Ω̄
⋃
Aδ be the δ neighborhood of Ω. Extend ρε to ρ̃ε by zero in

Aδ and since ρε = 0 on ΓT , we have ρ̃ε ∈ L∞(0, T ;H1
0 (Ω1)) and

ρ̃ε ⇀ ρ̃ in L∞(0, T ;H1
0 (Ω1) weak ∗ .

Moreover,

ρ̃ =

{
ρ in Ω
0 in Aδ.
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Let ṽ be any extension of v such that ṽ ∈ D(Ω1) and extend ωε by 1 outside
Ω and again denote the extension by ωε. We can apply Lemma 2.3 and since
ρ̃ṽ
∣∣
Ω

= ρv ∈ H1
0 (Ω), we get

〈−∆ωε, ρ̃εṽ〉H−1
0 (Ω1),H1

0 (Ω1) → µ

∫
Ω1

ρ̃ṽ = µ

∫
Ω

ρv.

Now,

I3 =
∫

ΩεT

∇ρεgv∇ωε =
∫

Ω1T

∇ρ̃εgṽ∇ωε

=
∫ T

0

g〈−∆ωε, ρ̃εṽ〉H−1(Ω1),H1
0 (Ω1)

→
∫

Ω1T

µgṽρ̃ =
∫

ΩT

µgvρ.

So, passing to the limit in (3.24), we get∫
ΓT

ηgv = −
∫

ΩT

ρ′g′v +
∫

ΩT

∇ρg∇v +
∫
µρgv −

∫
fgv. (3.25)

On the other hand, multiplying (3.18) by gv, we get

−
∫

ΩT

ρ′g′v +
∫

ΩT

∇ρg∇v −
∫

ΓT

∂ρ

∂ν
gv + µ

∫
ΩT

ρgv =
∫

ΩT

fgv. (3.26)

From (3.25) and (3.26), it follows that∫
ΓT

ηgv =
∫

ΓT

∂ρ

∂ν
gv, ∀ g ∈ D(0, T ), v ∈ C∞(Ω̄),

which implies that

η =
∂ρ

∂ν
.

Hence, Claim 2 is proved, which ends the proof of the Theorem 2.3.
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