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A NONLINEAR WAVE EQUATION WITH A NONLINEAR
INTEGRAL EQUATION INVOLVING THE BOUNDARY VALUE

THANH LONG NGUYEN, TIEN DUNG BUI

ABSTRACT. We consider the initial-boundary value problem for the nonlinear
wave equation

utt — Uge + flu,ur) =0, z€Q=(0,1), 0<t<T,
uz (0,t) = P(t), wu(l,t)=0,
u(z,0) = uo(z), ui(z,0)=ui(z),

where ug, u1, f are given functions, the unknown function u(z,t) and the un-
known boundary value P(t) satisfy the nonlinear integral equation

t
P(t) = g(¢) + H(u(0, 1)) — /0 K(t — 5, u(0, 5))ds,

where g, K, H are given functions. We prove the existence and uniqueness
of weak solutions to this problem, and discuss the stability of the solution
with respect to the functions g, H and K. For the proof, we use the Galerkin
method.

1. INTRODUCTION

In this paper we consider the problem of finding a pair of functions (u, P) that
satisfy

Ut — Uge + fu,u) =0, 2€Q=(0,1), 0<t <T, (1.1
u.(0,t) = P(t) (1.2

u(l,t) =0, (1.3

u(z,0) = up(x), w(x,0) = ui(z), (14

where ug, u1, f are given functions satisfying conditions to be specified later and

the unknown function u(z,t) and the unknown boundary value P(t) satisfy the
nonlinear integral equation

P(t)zg(t)—i—H(u(O,t))—/O K(t — 5,u(0, 5))ds, (1.5)

where g, H, K are given functions. Ang and Dinh [2] established the existence
of a unique global solution for the initial and boundary value problem (1.1))-(1.4)
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with wg, w1, P given functions and f(u,u) = |ug|®sign(us), (0 < a < 1). As
a generalization of the results in [2], Long and Dinh [7], [0, [I0] have considered

problem (|1.1)), (1.3]), (1.4)) associated with the following nonhomogeneous boundary
condition at x = 0,

u,(0,t) = g(t) + H(u(0,t)) — /0 K(t —s,u(0,s))ds. (1.6)

We have considered it with K = 0, H(s) = hs, where h > 0 [9]; K = 0 [7],
H(s) = hs, K(t,u) = k(t)u, where h > 0, k € H'(0,T), for all T > 0 [10]. In
the case of H(s) = hs, K(t,u) = hw(sinwt)u, where h > 0, w > 0 are given
constants, the problem — is formed from the problem — wherein,
the unknown function u(x,t) and the unknown boundary value P(t) satisfy the
following Cauchy problem

P"(t) + w?P(t) = huy(0,t), 0<t<T, (1.7)
P(0) =P, P'(0)= D, (1.8)
where w > 0, h > 0, Py, P, are given constants [I0]. An and Trieu [I], studied

a special case of problem (L.I)-(1.4), (L.7), with ug = u; = Py = 0 and
with f(u,u;) linear, i.e., f(u,u;) = Ku + Au; where K, X\ are given constants. In
the later case the problem —, , and is a mathematical model
describing the shock of a rigid body and a linear visoelastic bar resting on a rigid
base [I]. Our problem is thus a nonlinear analogue of the problem considered in
[]. In the case where f(u,u;) = |u¢|*sign(u;) the problem (L.I)-(L.4), (1.7), and
describes the shock between a solid body and a linear viscoelastic bar with
nonlinear elastic constraints at the side, and constraints associated with a viscous
frictional resistance. From , we represent P(t) in terms of Py, Py, w, h,
u(0,t) and then by integrating by parts, we have

P(t) = g(t) + hu(0,t) — / E(t — s)u(0, s)ds, (1.9)
0
where
(1) = (P — hug(0)) cosewt -+ (Pr — hu (0)) 2, (1.10)
k(t) = hw(sinwt). (1.11)

By eliminating an unknown function P(t), we replace the boundary condition (|1.2)
by

ws(0,) = g(¢) + hu(0,4) —/O k(t — s)u(0, s)ds. (1.12)

Then, we reduce problem -, , (11.8) to —, - or to

In this paper, we consider two main parts. In Part 1, we prove a theorem of global
existence and uniqueness of a weak solution of problem —. The proof is
based on a Galerkin method associated to a priori estimates, weak-convergence and
compactness techniques. We remark that the linearization method in [6, 111 [13]
cannot be used for the problems in [2, [ 5] [7, [0, 10]. In Part 2 we prove that the
solution (u, P) of this problem is stable with respect to the functions g, H and K.
The results obtained here generalize the ones in [1I 2] 4] 7, [9] [10].
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2. THE EXISTENCE AND UNIQUENESS THEOREM

We first set notations Q = (0,1), Qr = Q x (0,T), T > 0, LP = LP(Q), H' =
HY(Q), H? = H?(Q), where H', H? are the usual Sobolev spaces on (2.

The norm in L? is denoted by || - ||. We also denote by (-,-) the scalar product
in L? or pair of dual scalar product of continuous linear functional with an element
of a function space. We denote by || - ||x the norm of a Banach space X and by X’
the dual space of X. We denote by LP(0,T; X), 1 < p < co for the Banach space
of the real functions u : (0,7") — X measurable, such that

T 1/p
lullsorio = ([ Tu@®lFd) " for 1 <p<oc,
0
and
[l o< 0,7;x) = esssup |lu(t)||x for p = oo.
0<t<
We put

Ou Ov L Ou ov

—, )= — —dx.

Ox’ Ox o Oz Oz

Here V is a closed subspace of H'and on V, ||v| g and |[v]v = v/a(v,v) are two

equivalent norms.

V={veH :v(1)=0}, a(uv)=/

Lemma 2.1. The imbedding V — C°(QQ) is compact and
[ollcoey < llvllv (2.1)
forallveV.

The proof is straightforward and we omit it. We make the following assumptions:
(A) up € H' and u; € L?

(G) g€ HY(0,T) for all T > 0

(H) H € C*(R), H(0) = 0 and there exists a constant hg > 0 such that

H(y) = /Oy H(s)ds > —hg

(K1) K and %—It( are in CY(Ry x R;R)
(K2) There exist the nonnegative functions k1 € L*(0,T), ko € L'(0,7), k3 €
L?(0,T), and k4 € L'(0,T), such that
(1) [K(t,w)| < ki (t)|ul + ka(t),
(i) |25 (¢, u)| < ks(t)|u| + ka(t).
The function f : R? — R satisfies f(0,0) = 0 and the following conditions:
(F1)
(f(u,v) = f(u,v))(v —v) >0 for all u,v,v € R
(F2) There is a constant « in (0,1] and a function By : Ry — Ry continuous
and satisfying
|f(u,v) — f(u,0)| < Bi(|u])|v —v]* for all u,v,v € R

(F3) There is a constant 8 in (0,1] and a function By : Ry — Ry continuous
and satisfying

|f (u,v) — f(@,0)| < Ba(|v])|u —al®  for all u,u,v € R
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We will use the notation u' = u; = Ou/t, u” = uy = 0?u/0t?. Then we have
the following theorem.

Theorem 2.2. Let (A),(G),(H),(K1),(K2), (F1), (F3) hold. Then, for every T >
0, there exists a weak solution (u, P) to problem (L.1)-(1.5) such that
u€ L®(0,T;V), wu € L>®0,T;L?%), wu(0,-)e€ HY0,T), (2.2)
PeHY0,T). (2.3)
Furthermore, if =1 in (F3) and the functions H, K, [ satisfying, in addition
(H1) H € C%*(R), H'(s) > —1 for all s € R
(K3) For all M positive and all T positive, there exists pyrr, qu.r in L?(0,T),
pymr(t) >0, gurr(t) > 0 such that
(i) |K(t,u) — K(t,0)] <pmrt)|u—uv| for all u,v in R, |ul, |v] < M,
(11) %(ta u) - %(tvv)‘ < QM,T(t)|u - ’U| fOT all u,v n R} |u|, |'U‘ <M.
(F4) By(|v]) € LA2(Qr) for all v € L*(Q) for all T > 0.
Then the solution is unique
Remark 2.3. This result is stronger than that in [9]. Indeed, corresponding to
the same problem ([1.1)-(1.5) with K(¢,u) =0 and H(s) = hs, h > 0 the following
assumptions made in [J] are not needed here: 0 < a < 1, By (|u|) € L¥ =) (Qr)
for all w € L*°(0,T;V) and all T > 0; By, Bs are nondecreasing functions.

Proof of Theorem[2.3. Tt is done in several steps.
Step 1. The Galerkin approrimation. Consider the orthonormal basis on V' con-
sisting of eigenvectors of the Laplacian, —9? /922,

wj (@) = 1/2/(1+ A2) cos(\j), M:@jq)%, j=1,2,....
Put

U (t) = Z cmj (t)wy,

where ¢,,;(t) satisfy the system of nonlinear differential equations

(um (8),w;) + alum (), w;) + P (£)w; (0) + (f (um (1), uy, (1)), w5) =0, (2.4)

t
Por(t) = gt) + H(um(0,4)) — / K(t — 5, um (0, 5))ds, (2.5)
0
with
m
U (0) = ugm = Zamjwj — ug strongly in H',
j=1
i (2.6)
U, (0) = Uy, = Z Bmjw; — w1 strongly in L?,
j=1
This system of equations is rewritten in form

(8 4 Moy (£) = M(Pma)wj(m (i (8), 1 (1)), 05)),

Pou(t) = g(t) + H(tn(0,1)) - / Kt — 5, um(0,8))ds,
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This system is equivalent to the system of integrodifferential equations
Cmj(t)

— Goj(t) — W/ N (t = 7)(H (1 (0, 7))w5 (0) + (f (ttm (7)1, (7)), 0) )

0 [ =i [TKG = s, 1<5<m
||w]|| 0
(2.7)
where N;(t) = sin(\;t)/A; and

Gmj(t) = amiN(t) + BmiN; ”w E / N;( 7)dT. (2.8)
J
We then have the following lemma.

Lemma 2 4 Let (A), (G), (H), (K1), (K2), (F1),(F3) hold. For fized T > 0, the

system ((1.10) - ) has solution ¢, = (Cm1, Cm2s -« - 5 Cmm) 0N an interval [0, T,,] C
[0,T).

Proof. Omitting the index m, system (2.7)), (2.8)) is rewritten in the form

c="Uc,
where ¢ = (c1,¢2,...,¢m), Uc= (Uc)1,(Uc)a, ..., (Uc)m),

(Ue), (¢ / N, (t — 7)(Ve);(r)dr, (2.9)
(Ve); (t) = fujle(t),c (1)) +/0 faj(t = 5,¢(s))ds, (2.10)
G,(t) = ozij]’»(t) + B N;(t) — rﬁzj(ﬁl /0 N;(t —7)g(T)dr, (2.11)

the functions fi; : R*™ — R fo; : [0,T,,] x R™ — R satisfy
fsted) = 1 Zczwz O+ (7Y e, Y dawwp)], (212
foi(t,c) = ” it (t,Zciwi(O)), 1<j<m. (2.13)

For every T, > 0, M > 0 we put
S={ce CH[0,T:R™) : |leli < M}, el = llello + [l [lo,

m
lello = sup |e(®)]1, le®) = leit)]-
0<t<Thm, Py

Clearly S is a closed convex and bounded subset of Y = C'([0, T},,]; R™). Using the
Schauder fixed point theorem we shall show that the operator U : S — Y defined
by — has a fixed point. This fixed point is the solution of .

(a) First we show that U maps S into itself. Note that (Ve); € C°([0,T,]; R) for
all ¢ € C'([0,T,,];R™), hence it follows from (2.9)), and the equality

(Ue)j(t / Nj(t —1)(Ve);(r)dr (2.14)
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that U : Y — Y. Let ¢ € S, we deduce from (2.8)), (2.13) that
1
|(Ue)(®)r < |G(H)|L + Tle”VCHO, (2.15)

(Ue) (D)1 < |G () + T [[Vello- (2.16)

On the other hand, it follows from (H), (K1), (K2),(F2),(F3), (2.10), (2.12), (2.13)
that

||VC||0 < Z[Nl(flij) +TN2(f2j,M, T)] = B(M, T) for all c € 5, (217)
j=1

where
Ni(fij, M) = sup{|f1;(y, 2)| : [[yllgm < M, |z[[rm < M},
NQ(f?ijvT) = Sup{‘f?j(t7y)| :0 <t< T, ”y”Rm < M}

Hence, from (2.15)-(2.18]) we obtain
1
WOely < [1Glhr + (1+ =) TmBM, T),

(2.18)

where
IGllir = [|Gllor + [|G'llor = sup |G(t)[1 + sup |G'(t)1.
0<t<T 0<t<T

Choosing M and T, > 0 such that

M >2|Glir and (1+ /\i)Tmﬂ(M, T) < M/2.
1

Hence, ||Uc||; < M for all ¢ € S, that is, the operator U maps S the set into itself.
(b) Now we show that the operator U is continuous on S. Let ¢,d € S, we have

(Uc);(t) = (Ud),;(1) :/0 Nj(t =7)[(Ve);(r) = (Vd);(7)ldr.

Hence .
|Uc—Ud|lo < A—lenvc — Vdlo. (2.19)

Similarly, we obtain from the equality

(Ue);(t) — (Ud);(t) = /O Ni(t = 7)((Ve);(r) — (Vd);())dr,
which implies
[(Ue) = (Ud)'|lo < Twl[Ve = Vdllo. (2.20)

By estimates (2.19), (2.20]), we only have to prove that the operator V : Y —
C°([0,T;,); R™) is continuous on S. We have

(Ve);(t) = (Vd);(t) = fr;(c(t),c'(t)) = frz(d(t), d'(t))
+ /0 (fo;(t — s,¢(s)) — fa;(t — s,d(s)))ds.

From the assumptions (H),(F2) and (F3), it follows that there exists a constant
Ky > 0 such that

(2.21)

sup Z [ f1(e(t), € (1) — f1(d(t), d ()] < Kar(lle—dllo+ lle—dllg + I’ — d'l[§),
0<t<Tn 53

(2.22)
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for all ¢,d € S. Then we have the following lemma.

Lemma 2.5. Let fo; : [0,T,,] x R™ — R be continuous, and let
/ fo;(t — s,¢(8))ds, c € C°([0, T,,]; R™). (2.23)
Then, the operator W; : C°([0, T,,; R™) — C°([0,T,,); R) is continuous on S.

The proof of this lemma follows easily from fo; being uniformly continuous on
[0, ] x [-M, M]™. We omit the proof.

From (2.21)), (2.22), (2.23)), we deduce that

||chVd||07 sup Z|Vc ) — (Vd);(7)]

<r<Tm 1
< KM(llC—d||o+ lle—dll§ + I = d'lIg) (2.24)
su Wi;c) t)|, Ve, deS.
o<t<%“m Z I Wid)(®)

Thus, Lemma and inequality (2.24) show that V : S — C°([0,T,,];R™) is
continuous. L
(¢) Now, we shall show that the set US is a compact subset of Y. Let ¢ € S,¢,t' €

[0, ). From (2.9), we rewrite
(Ue);(t) — (Ue); (t')

= Gy(t) ~ G(t) + / Nyt - 7)(Ve);(r)dr — / Ny(t' — 7)(Ve);(r)dr

/ t / (2.25)
=G;(t) - G;({t') + /O (N;(t = 7) = N; (" = 7))(Ve);(r)dr

- [ N =

From the inequality |N;(t) — N;(s)| < [t — s| for all t,s € [0,T},] and ([2.17), we
obtain

(Ue)(t) = (Ue)(t)]x = Z (Ue);(t) — (Ue); ()]

1
<IGE) =G + (T + It - t’|HVc||O (2.26)

ol
< IG(t) = G)la + B T)(T + )l = ]

Similarly, from (2.14]) and (2.17)), we also obtain

(Ue)'(t) = (Ue) () < |G'(t) = G' () + BM, T) AT + 1)[t — '] (2.27)
Since US C S, from estimates (2.26)), (2.27)) we deduce that the family of functions
US ={Uc,c € S}, are bounded and equicontinuous with respect to the norm || - ||;
of the space Y. Applying Arzela-Ascoli’s theorem to the space Y, we deduce that

US is compact in Y. By the Schauder fixed-point theorem, U has a fixed point
¢ € S, which satisfies (2.7)). The proof of Lemma is complete. a
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Using Lemmaf|2.4] for T’ > 0, fixed, system (2.4) - (2.6) has solution (wy, (t), P, (t))
on an interval [0, T,,]. The following estimates allow one to take T,,, =T for all m.
Step 2. A priori estimates. Substituting into , then multiplying the j**
equation of by ¢;,;(t) and summing up with respect to j, integrating by parts
with respect to the time variable from 0 to ¢, by (G) and (F1), we have

S (t) < —2H (i (0, 1)) + 2H (ugm (0)) + Sm (0) + 29(0)ugm (0)

— 2g(t)um(0,1) +2/0 '(8)um (0, s)ds — 2 /0 (f (um(s),0), up, (s))ds
+2/0 um(O,s)ds/O K(s —7,um(0,7))dr,

(2.28)
where
S (t) = up (O + um B]I5 - (2.29)
Then, using (2.6), (2:29), (H), and Lemma [2.1] we have
= 2H (1 (0,1)) + 2H (10 (0)) + S (0) +2|g(0)uom (0)]
< 2ho + 2H (10m (0)) + S (0) + 2|g(0)tigm (0)] (2.30)
1
< 101, for all m and all ¢,
where (' is a constant depending only on ug, u1, hg, H, and g.
Again using Lemma and the inequality 2ab < 4a2 + ibz, we obtain
t
= 20(0un(0.0) 42 | g/(5)un(0,5)ds]
0 (2.31)

<A4g*(t —|—4/ lg’ (s |d$—|— S /S

Using Lemma [2.1] from (F3) it follows that
t t
| -2 / (F(um (), 0), upy (s))ds| < 2B5(0) / Sim(s) T 2ds
0 0
t
< (1+ B)B2(0) / Sm(s)ds + (1 — 8)Ba(0)t.
0
Note that the last integral in (2.28)), after integrating by parts, gives
t s
1:2/ u;n(O,s)ds/ K(s = 7,um(0,7))dr
0 0
t
= 20, (0, 1) / K(t— 7, (0,7))dr
0

S

‘ OK
- 2/0 Um (0, 5)ds [ K(0,un(0,s)) Jr/ E(S — 7, U (0,7))d7].

0
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Hence

7 < zm/o (kv (t = T)V/S(7) + kst — 7))dr
+2 /0 V'S (8)ds [k1(0)\/Sp(s) + k2(0)
+ /s(kg(s — T)V S (7) + ka(s — T))d’l']
—2\/ /klt—T\/ dT+2\/ /k‘g
+2k1(0)/ Sm(8)ds + 2k2(0 / VS (s)ds
2/0 \/S’m(s)ds/o kg(S—T)\/Sm(T)dT+2/ VS, ds/ a(
= Il + IQ + 2k1(0)/ Sm(S)dS + I4 + I5 + IG~
’ (2.32)
By the inequality 2ab < 4a® + %bZ and the Cauchy- Schwarz inequality we esti-

mate without difficulty the following integrals in the right-hand side of the above
expression as follows

1= 2VEn0) [ e = 1)V s < Gt 14 [ k%mdr/tsmmm
12—2ﬁ/ ko(T i +4 /k2 dT :
= 2000) [ VS0 < 430) + 11 [ (o)
Iy = 2/; \/Mds/os ka(s — 7)\/Sm(r)dr < 2\/%(/01t kg(T)dT)l/z /Ot S (s)ds
162/; \/st/osk4(7)d7§ i/OtSm(s)ds+4t(/0tk4(7)d7)2.

It follows from the estimates for Iy, I, I4, I5, I that
t 2 ) t 2 1
1] §4(/ kQ(T)dT) +4k2(0)+4t</ k4(7)d7> + 5Sm(ze)
0 0
1 t t
+Z[l+t+16/ k%(r)dr+8k1(0)+8\/i(/ k2(r)dr / S
0 0

(2.33)
It follows from (2.28)-(2.30)), (2.31)-(2.32)), and (2.33)) that
t
S(t) < D1(t) + Da(t) / S, (r)dr, (2.34)
0
where
Dy (t) = Cy + 16k3(0) + 4(1 — B3)Bo(0)t + 16¢2(t)
t (2.35)

k4(7’)d7’)2,

+16/0t |g’(s)|2ds+16(/0tk2(7)d7)2+16t(/0
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t t 1/2
Dg(t):2+4(1+ﬁ)B2(0)+8k1(0)+t—|—/ k%(f)d7+8ﬁ(/ kg(f)dT)
0 0
< 2+ 4(1 + B)B(0) + 8k1(0) + T + || k1 |2 8VT||k =cP
<2+ 4(1+ B)B2(0) + 8k1(0) + T' + [|k1[[72(0,1) + ksl z20,m) = C7.
Since H'(0,T) — C°([0,T]), from the assumptions (G), (K2), we deduce that
IDy(t)| < Y, ae. in 0,7, (2.36)

where C), is a constant depending only on 7. By Gronwall’s lemma, from (2:3)-
(2.36]) we obtain that

Sm(t) < O exp(tC?) < Cr V€ [0,T), VT > 0. (2.37)

Now we need an estimate on the integral fot lul, (0, 5)|?ds. Put

Kp(t) = Z Sing?j b (2.38)

j=1

) = 3 05O c0s1) 4 s 0]

vy [T ). 0, e

Then u,,(0,t) can be rewritten as

o (0,8) = (1) — 2 /0 Kon(t — 7) P (7)dr. (2.39)

We shall require the following lemma which proof can be found in [2].

Lemma 2.6. There exist a constant Cy > 0 and a positive continuous function
D(t) independent of m such that

/0 () Pdr < Cs + D(t) / |t (), (7)) |2 € 0, T],¥T > 0.

Lemma 2.7. There exist two positive constants 0513) and 0;4) depending only on
T such that

t s t s
/ ds| / K, (s — ) Pu(r)dr]? < C 4 D / ds / ! (0,7)2dr,  (2.40)
0 0 0 0

for allt € [0,T) and all T > 0.

Proof. Integrating by parts, we have

/S K! (s — 7)Pp(7)dT = K ()P (0) + / Ky (s —71)P) (1)dr,
0 0
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then

/ ds\/ K! (s — 7)Py(7)dr|?
< 2P2(0 /K2 d5+2/ ds/ K2(r / \P! (7)|?dr (2.41)
<2/ K2 (s)ds[P2(0) /ds/ P}, (7)[*dr].

From , we have
P (0) = g(0) + H (uom (0)), (2.42)

TOK

Pl (1) =4 (1) +H (um(0,7))u,(0,7) — K(0, u,(0,7)) — ; E(T—s,um(O,s))dS.

(2.43)
Using the 1nequahty (a —|— b+c+d)? <4(a®+ 0%+ +d?), for all a,b,¢,d € R, we

deduce from ,and (G),(H),(K2) that

| 1P
<4/ lg’ (7 |dT+4 o |H'(s |2/ lul (0, 7)*dr
<VCr
+4/ |K(0,um(0,7))|2d7+4/ d7|/ —(T—t&%(o,s))cis|2
0 0 o Ot
§4/ g (T)|?dr +4 max |H'(s 2/ ul, (0,7)|%dr
0I()I |s\gm|()|o|( )]

s (2.44)
+ 8k2(0) /0 |t (0, 7)|2d7 4 8k2(0)s

+8/SdT/T k%(s)ds/Tufn(O,s)ds+8/Os dT(/OT ky4(s)ds)?
<4/ g/ (7)2dr + 8[k2(0)Cr + K2(0)]s + 4075 / K2(r

+83(/ ky(r)dr)* +4 max |H'(s) |2/ lul, (0, 7)*dr.
0 |s|<vCr

Hence
t s t
/ ds/ |P)(7)|2dT < 4t/ |g' (7)|2dr + 4[k?(0)Cr + k3(0)]¢
0 0 0
4 t t 2
+ fC’Tt3/ k§(¢)d7+4t2(/ k4(T)dT>
3 0 0

t s
+4 max |H'(s )\2/ ds/ lul, (0, 7)[*dr.
|s|<VCr 0 0
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From this inequality, (2.41)), and (2.42)), it follows that
t s
/ ds|/ K! (s — 7) Py (1)dr|?
0 0
t t
<2 [ K25 [(00) + Huom (O)) + 10 [ 195 Pdr + 4 0)Cr + KO}
0 0
4 t t 2
+ fCTtS/ kg(T)dT +4t2</ k4(7’)d7)
3 0 0

t s

44 max |H’(s)|2/ ds/ ) (0,7) ).
|s|<vCr 0 0

(2.45)

Note that for every T' > 0, K,,, — K, strongly in L?(0,T) as m — +oc. Using the

assumptions (G), (H),(K2) and the results (2.6) and (2.45)), we obtain (2.40). The

proof of Lemma [2.7]is complete. O

Lemma 2.8. There exist two positive constants C;B) and 07(16) depending only on
T such that

t
/ i, (0,7)2dr < C Vit € [0,T],vT > 0. (2.46)
0
t
/ P (7)Pdr < C9) Vit € [0,T],9T > 0. (2.47)
0

Proof. Since (2.47)) is a consequence of (2.44]) and (2.46|), we only have to prove
(2-46). From (2.39), using Lemmas [2.6| and [2.7] we obtain

tu' s)[?ds t’szs ts SIS—T 7)dr)?
/0|m<o,>|dgz/o|fym<>|d+8/0d|/of<m< ) Pon(r)dr]
§202+2D(t)/0 1f (o (), i, (7)) | (2.48)

t s
+80¢ + 80y / ds / Jul,, (0, 7)|dr.
0 0
On the other hand, from the assumptions (F2),(F3), we obtain

1 (o (), et ()P < 20 max Bi(s)) i, (0] + 2B3(0) [um (8)[7, (2.49)

ls|<vCr
since 0 < @ <1 we have || - || < || - ||p2«. Hence, using (2.37) and (2.49) we have
7
1 (e (), e (D) < CF (2.50)
At last from this inequality and (2.48]) we obtain the inequality
t t s
/ [ (0, ) Pds < O + 8O / s / i (0, 7)|dr,
0 0 0
which implies (2.46]), by Gronwall’s lemma. Therefore, Lemma is proved. [

Step 3. Passing to limit. From (22.5), (2.29), (2.37)), (2.46), (2.47), and (2.50)), we

deduce that, there exists a subsequence of sequence {(u,, Pn)}, still denoted by
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{(tm; Pm)}, such that

Um — w in L*°(0,T;V) weaks, (2.51)

uh, — ' in L°(0,T; L?) weaks, (2.52)
Um(0,t) — u(0,t) in L*(0,T) weaks, (2.53)
ul, (0,t) — u/(0,t) in L*(0,T) weak, (2.54)
(U, ul,) — x in L>(0,T; L?) weaks, (2.55)
P, — P in H(0,T) weak, (2.56)

By the compactness lemma of Lions (see [9]), we can deduce from (2.51)-(2.54) that
there exists a subsequence still denoted by {u,,} such that

U (0,1) — u(0,t)  strongly in C°([0,T]), (2.57)
Um — u  strongly in L*(Qr) and a.e. (z.t) € Qr. (2.58)

By (H),(K) and using (2.5, (2.57) we obtain

Pp(t) — g(t) + H(u(0,t)) — /0 K(t —s,u(0,s))ds = P(t) strongly in C°(]0,T)).

(2.59)
From ([2.56)) and (2.59) we have

P=P ae. inQr. (2.60)
Passing to the limit in (2.4]) by (2.51)), (2.52)), (2.59)), and (2.60)) we have

%(u'(t), o) + a(u(t), v) + P()o(0) + (x,0) =0 Vo € V.

As in [9], we can prove that
w(0) = ug, u'(0) = u;.

To prove the existence of solution u, we have to show that x = f(u,u). We need
the following lemma which proof can be found in [2].

Lemma 2.9. Let u be the solution of the problem
Ut —Uze + X =0, O<z<l, 0<t<T,
uzy(0,t) = P(t), wu(l,t)=0,
u(z,0) = up(x), wue(x,0)=uy(z),
ue€ L®0,T;V), ' €L>0,T;L?
u(0,-) € HY(0,T).

Then
1 / 2 1 2 ’ /
I O + 5l + ; P(s)u'(0,s)ds +

0

t
1 1
(x(s), (5))ds = 3 s 2+ ol

a.e. t € [0,T]. Furthermore, if up = u; = 0 there is equality in the above expression.
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Now, from (2.4)-(2.6)) we have

/0 (F (1 (3), 1 (5)), tl (5)) s

1 1 1 1 t
= 5l + Zlluom [} = Sl OIF = 5 lum@®)F ~ / Py (s (0, 8))ds.
0

(2.61)
By Lemma 2.9] it follows from (2.6), 2.51), (2.52), (2-54), (2.59) and (2-61), that

lim sup / F (i (5), 1 (5)), t (5)) s

m——+oo

1

1 1 1 ¢
< §IIU1II2 + 5||Uo||2v - QIIU'(lﬁ)II2 - §IIU(t)II?/ */ P(s)u'(0,5))ds
0

§/0 (x(s),u'(s))ds, a.e. te]l0,T].

Using the same arguments as in [9], we can show that x = f(u,u’) a.e. in Q7. The
existence of the solution is proved.

Step 4. Uniqueness of the solution. Assume now that 5 =1 in (F3), and that H,
K, f satisfy (H1),(K3), and (F4). Let (ui, P1), (ug, P2) be two weak solutions of
the problem —. Then u = uy — ug, P = P — P; satisfy the problem

W= +x =0, 0<z<l 0<t<T,

ug(0,t) = P(t), wu(l,t) =0,
u(z,0) = u'(x,0) =0,
X = flur,uy) — f(uz, us),
P(t) = Pi(t) — Pa(t)
= H(u1(0,1)) — H(u2(0,1))

t
—/ (K(t = 5,u1(0,)) — K(t — ,u3(0, 5)))ds,
0
u; € L0, T;V), e L>(0,T;L%), wu;(0,-)€ HY0,T),
P, c HY(0,T), i=1,2.
Using Lemma [2.9 with ug = u; = 0, we obtain

1 / 1 ¢ / ! /!
§IIU(t)H2+*HU(t)II%/+/O P(s)u (0,5)d8+/0 (x(s),u'(s))ds

0, (2.62)

a.e. t € [0,T]. Put

a(t) = [lu' ()] + %Ilu(t)ll}‘},
Hy(t) = H(u1(0,8)) — H(uz(0,t)),
Ki(t,s) = K(t — s,u1(0,5)) — K(t — s,u5(0, 5)).



EJDE-2004/103 A NONLINEAR WAVE EQUATION 15

Substituting P(t), x into (2.62) and using that f is nondecreasing with respect to
the second variable, we have

o(t)—|—2/0 Hy(s)u'(0, s)ds
=2 1f (ur(s), us(s)) = f(ua(s), us(s))] u'(s)llds (2.63)
+2/0 u (O,S)ds/o Ki(s,r)dr.

Using assumption (F3),

[1f (ur(s),us(s)) — flua(s), ua(s)ll < [|B2(lug(s)) luls)]lv -
Using integration by parts in the last integral of (2.63]), we get

t s
J = 2/ u’(O,s)ds/ Ky (s,r)dr
0 0

. ) . oR, (2.64)
= 2u(0,t)/ Ki(t,r)dr — 2/ u(0, s)ds[Ky(s,s)+ [ ——(s,7)dr].
0 0 o Os
From assumption (K3), we have
K1 (s,7)] < parr(t = )[u(0,7)] < para(t —r)/o(r),
R(s,5)| < paer(Ofu(0, 9] < pasr (0)v/(5). (2.65)
oK
5 (0 < anr(t = n)lu(0,7)| < aurr(t =) V/o (r).
where M = max;—1 2 ||| (0,7, It follows from (2.64) and (2.65)) that
t o
7] < 2¢/0(0) / parr(t — 1)@ + 27 (0) / (s) ds
0 0
t s
—|—2/ \/U(s)ds/ qym,r(s —r)\/o(r)dr
0 0
1 t t
<o)+ [ i [ atyar
Lo 0, (2.66)
1/2 [t
+ 2pM7T(0)/ a(s)dSZ\/f(/ q?M’T(T)dr) / o(s)ds
0 0 0
1t
= Bro(t) + {QpMj(O) + 7/ p?\/j)T(r)dr
B Jo
t 1/2 t
+2i( [ deriar) ] [ atsias
0 0
for all 81 > 0. Put
my = min H'(s), ms = max max|H"(s)]. (2.67)

s|<M ls|<M
From assumption (H1) we have

mq > —1. (268)
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On the other hand, using integration by parts and (2.67)) it follows that

2/0 Hy(s)u'(0, s)ds

= 2/Ot [ 01 C%H(ug(O, s) + 6u(0, s))d@} u'(0, s)ds

1
uz((),t)/ H'(uz(0, s) + 0u(0, s))do
0

- /0 W2(0, )ds /0 HY (u3(0, ) + 00, )) (1 (0, 5) + 00/ (0, ))d0

v

mau?(0,t) — mo tu2 ,8)(Ju? (0,5 ub(0, s)|)ds
(0,7) /0 (0,5)(lu1 (0, 8)| + |us(0, s)[)d

> myu?(0,1) — mo / o(5) (14 (0, 8)] + [ (0, 5))ds.

From the above inequality, (2.63))-(2.64) and ([2.66]), we obtain

o (t) + m(0,1) gmg/o o(s) (11, (0, 5)| + [ub (0, 5)|)ds
(2.69)

+ /Ot 1B2(Jus(s))llor(s)ds + [ T| = n(t).
From , , and , we have
(14 m1)u?(0,t) < o(t) + miu(0,t) < n(t). (2.70)
It follows from and that

o(t) + [m1 + Ba(1 + ma)u?(0,t)
< (14 B2)n(t)

< +Bz)/ [ma(Juy (0, )] + [uz(0, 5)]) + [| B2(luy(s)])][]o(s)ds
0 (2.71)

+ (14 B2)f1o(t) + (1 + B2) [2pM,T(O) + % /0 p?\/{,T<T)dr

w2 | @) / (s,

for all 81 > 0, B2 > 0. Choose $1 > 0, B2 > 0 such that m; + G2(1 + mq) > 1/2,
(14 B2)51 < 1/2 and denote

Ry (t) = 2(1 + B2)[ma(|uf (0, 5)| + [u5(0, 5)[) + [| Ba(Juz(s)])]

1 (2.72)
+ EHPM,T”%%O,T) +2pn,7(0) + 2\/THQM,THL?(O,T)}-
Then from (2.71)) and (2.72) we have
¢
o(t) +u?(0,t) < / Ry(s)[o(s) 4+ u?(0, s)]ds; (2.73)
0

i.e. o(t) +u?(0,t) = 0 by Gronwall’s lemma. Then Theorem is proved. O
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In the special cases
H(s)=hs, h>0;
K(t,u) = k(t)u, ke H'(0,T), VT >0,k(0)=0,
the following theorem is a consequence of Theorem

Theorem 2.10. Let (A), (G) and (F1)— (F5) hold. Then, for every T > 0, problem
(1.1)- (1.4) and (L.9) has at least a weak solution (u, P) satisfying (2.2)), (2.3)).
Furthermore, if 3 = 1 in (F3) and By satisfies (F/4), then this solution is unique.

We remark that Theorem gives the same result as in [I0], but we do not
need the assumption “Bj is nondecreasing” used there.

In the special case with K(t,u) = 0, the following result is the consequence of
Theorem 221

Theorem 2.11. Let (4), (G), (H), (F1)-(F3) hold. Then, for every T > 0, the

problem (1.1)-(L.4) corresponding to P = g has at least a weak solution u satisfying
E2).

Furthermore, if 3 =1 in (F8) and the functions H, Bs satisfy the assumptions
(H1), (F4), then this solution is unique.

We remark that Theorem gives same result in [7] but without using the assump-

tion “B; is nondecreasing” used there.

3. STABILITY OF THE SOLUTIONS

In this section, we assume that 8 = 1 in (F3) and that the functions H, B

satisfying (H), (H1), (F4), respectively. By Theorem 2.2 problem (L.I)-(L.5) admits
a unique solution (u, P) depending on g, H, K:

U:U(g,H,K), PZP(g,H,K),

where g, H, K satisfy the assumptions (G), (H),(H1),(K1)-(K3), and wug, ui, f are
fixed functions satisfying (A), (F1)-(F4).
Let hg > 0 be a given constant and Hy : R; — R4 be a given function. We put

S(ho, Ho) = {H € C*(R) : H(0) =0, / H(s)ds > —hg, Vz € R,
0

H'(s) > —1, Vs € R, sup (|H(s)| + [H'(s)|) < Ho(M), VM > 0}.
[s|<M
Given t > 0, M > 0, and K € C°(R, x R;R), we put

K(t — K(t
Nh(M,K,t) = sup | ( ,’U/) ( ,U)
[ul,|v|<M, uztv u—v

Given the family {parr}, M > 0, T > 0 which consists of nonnegative functions
pur(t) = p(M,T,t), M >0, T > 0 such that pyrr € L?(0,T), for all M, T > 0.
Let k1 € L?(0,T), ko € L*(0,T), for all T > 0. We put

L(k1, k2, {par7})
={K € C°'(Ry xR) : 90K /0t € C°(R; x R),
Nu(M, K,t) + Ny(M,0K/dt,t) < par.r(t), ¥t € [0,T], VM, T > 0,
K (t,u)| + [0K/0t(t,w)| < ki (t)|u] + ka(t), Yu € R, V¢ € [0,T], VT > 0}.

Then we have the following theorem.
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Theorem 3.1. Let =1 and (A),(F1)-(F4) hold. Then, for every T > 0, the
solutions of (1.1)-(1.5)) are stable with respect to the data g, H, K ; i.e., if (9, H, K),
(9;,Hj,K;) € HY(0,T) x S(ho, Ho) x T'(k1, k2, {pa,7}), are such that

(9j:H;) — (9. H) in H'(0,T) x C*([-M, M]) (3.1)
strongly, and
(K;,0K;/0t) — (K,0K/ot) in [C°([0,T] x [-M, M]))? (3.2)
strongly, as j — +oo, for all M, T > 0. Then
(uj, uf, ui(0,t), Pj) — (u,u',u(0,t), P)

in L>=(0,T;V) x L>(0,T; L?) x C°([0,T]) x C°([0,T]) strongly, as j — +oo, for
all M, T > 0, where u; = u(g;, H;, K;), P; = P(g;,H;, K;).

Proof. First, we note that if the data (g, H, K) satisfy
lgllzror) < Go, H € S(ho, Ho), K €T(ky, ko, {pmr}), (3.3)

then, the a priori estimates of the sequences {u,,} and {P,,} in the proof of the
Theorem [2.2] satisfy

[ura (DI + lum )} < CF VE € [0,T], VT >0, (3.4)
t
/ lul, (0, 8)|?ds < C% ¥t e[0,T], VT > 0, (3.5)
0
t
/ P! (s)[2ds < C2 Vi € [0,T], VT >0, (3.6)
0

where C7r is a constant depending only on T, ug, u1, f, Go, ho, Ho, k1, k2, {pam.7}
(independent of g, H, K). Hence, the hmlt u P) in suitable function spaces of
the sequence {(ty,, Py)} is deﬁned by -(2.6), which is a solution of (L.1)-(L.5)
satisfying the a prlorl estimates

Now, by (3.1 . Wwe can assume that there exists constant Gy > 0 such that
the data (g;, Hj, Kj) satisfy with (g, H, K) = (gj, H;, K;). Then, by the above
remark, we have that the solutions (u;, P;) of problem — corresponding to
(9,H,K) = (g5, Hj, K;) satisfy

[ ()% + [lu; ()]} < C3 vt € [0,T], VT > 0, (3.7)
t
/ (0, 5)[?ds < C} vt €[0,T], VT > 0, (3.8)
0
t
/ Pl(s)%ds < C2 Vi€ [0.T], VT >0, (3.9)
0

Putﬁj :gj—% Hj :Hj—H, [A{'j :Kj—K. Then, Uj :uj—u and Qj :Pj—P
satisfy the problem
V) = Vjee +x; =0, 0<z<1,0<t<T,
”sz((),t) :Qj(t)7 vj(lvt) =0,
vi(x,0) = vi(x,0) =0,
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where
Xj = f(ujau;) - f(u7u/)7
Q;(t) = g;(t) + H(u;(0,t)) — H(u(0, 1))

t (3.10)
- /O (K (= 5,u;(0, 8)) — K(t — s,u(0, 5))]ds,

g;(t) =g;(t) + ﬁj(uj(O,t)) — /0 I?j(t —s,u;(0,s))ds. (3.11)

Applying Lemma [2.9) with ug = u; = 0, x = x;, P = Q;, we have

nwam%wmuw%+{éngwm@»@+2l<m@x¢w»$:o
Let

Sj(6) = [l O + [l )7 + (0, ),

M =Cr, mp= min H'(s) > -1, mg = max |[H"(s)|.
|s|<M |s|<M

Then, we can prove the following inequality in a similar manner

[5OI7 + [lo (DN + mav (0,6)

< [ 1B IW(MHM/WW@HM&MW@%

t
+265j(t)+5/ S;(s )ds+ / 195 (s) )|%ds)
0
1
+§Wmﬁmm+WﬂWﬂmmﬂA%@@ 5.12)
= 2e5;(t) / 95 (s s)|%ds)

+ / [IBa(J ()1l + ma (| (0, 5)| + |u3(0, 5)))S; (s)ds
0

1 t
+ (e + ngM,T”ZL?(O,T) + 2\/THPM,T||L2(07T))/ Si(s)ds = y;(t),
0

for all e > 0 and ¢ € [0,T7].
We remark that v7(0,t) < [lv;(t)||3,, consequently

(1 +ma)v;(0,8) < o517 + [loy ()T + mrvf (0,2) < y;(t). (3.13)
Multiplying the two members of (3.13]) by a number £ > 0 and adding to (3.12]),

we have
[[05 ()1 + [[oj (D1 + [(1 +ma)B1 +ma]oF(0,¢)
< (1+B)y;(t)

< (14 B)2:S; (1) J/ [7(5)Pds)] (3.14)

t
+/ R;(e,T,s)Sj(s)ds, Ye>0, 1 >0,te][0,T].
0
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where

1
Rj(e,T,s) = (1+ /) {5 + g”pM,TH%?(O,T) +2VTIparrll 2 07) (3.15)

+ [[Ba([w (s) DIl + ma(|u/ (0, s)[ + [u5(0, 5)])] -

Choose (1 > 0 and € > 0 such that (14 mq)B8; +m1 > 1, 2¢(1 + (1) < 1/2. From
H(0,T) — C°([0,T]), and (3.14) we have

1 . b
5,0 <20+ )2 G o + 2 [ BET S (s, (310)
0
where Cépg) is a constant depending only on 7. By Gronwall’s lemma, we obtain
from (3.16) that
1 _(9)~ T
8i(t) < 20+ B1)-C1 195 0.1 exp (2 / Ry(e.T,8)S;(s)ds),  (3.17)

for all ¢ € [0, T]. On the other hand, we from (3.4)), (3.10), (3.11)), (3.15)), and (3.17)
obtain

Si(t) < CXNGi 3oy V€ [0,T], (3.18)

= , t 1/2
Q0] < [@;(0)| + max [H'(5)1/5(0) + Ipavr 0 ( / Si(s)ds) . (3.19)

We again use the embedding H'(0,T) < C°([0,T]). Then, it follows from (3.18)
and (3.19) that
11) )~
1Qjllcoqo,my < C:(r )||gj||§11(07T)~
As a final step, we prove
. —~ 112 _
jl{lfoo ||9j||H1(0,T) =0.

Indeed, from (3.11)) combined with (3.8]), we deduce the following inequality
19 10,1y < NGill o,y + VT + M2[|Hjj| or (- aran)

+ V2T (1 + T?) (|1 K || coto,1x = n,a11) + 10K /0t 0o (o, 17x (= a1, 017))-

Then the proof is complete.
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