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ABSTRACT

We present a fast solver for expanded mixed finite element method with a dis-

continuous coefficient. Our result is based on the auxiliary space preconditioning

method and the Crouzeix-Raviart Finite Element Method.

vi



I. INTRODUCTION

The vast majority of the laws of physics for space and time dependent prob-

lems are usually expressed as partial differential equations. Partial differential

equations are differential equations that contain unknown multi-variable func-

tions, that can be used to describe sound, heat, electrostatics, electrodynam-

ics, fluid mechanics, elasticity, and quantum mechanics. For certain geometries

and problems, partial differential equations cannot be solved with analytical

methods, instead an approximation of the equations can be constructed via dis-

cretization of the domain, Ω. The discretization approximates the partial dif-

ferential equation with numerical models, which can be solved with numerical

methods. One of these numerical methods is the finite element method . Ben-

efits of the finite element method include freedom in choosing discretization in

both the elements used to discretize the space and the basis functions. Common

discretizations are using triangles or rectangles. Another benefit is that the the-

ory is well developed because of the relation between the numerical formulation

and the weak form of the partial differential equation, where the weak form is

obtained from multiplying the strong form of a partial differential equation by a

dummy variable, called a weight function, then using integration by parts. The

finite element method in irreducible form is to solve for a single variable, say u,

which is approximated by the discrete variable uh where,

uh =
n∑
i=1

uiϕi

where ui represents the value of uh at node i of the element and ϕi represents

the basis function.

The mixed finite element method was developed around the 1970’s. This method,

unlike the irreducible finite element method, involves solving two variables ex-

plicitly, such as in Darcy’s Law using either the Stokes equation or Poisson equa-
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tion where, in a simple example, the goal is to find (u, p) such that

∇ · u = f in Ω

u = −K∇p in Ω

u = 0 on ∂Ω,

where ∂Ω represents the boundary of the domain, Ω. In applications to porous

media, u is the Darcy velocity, or flux, p is the pressure, and K is the conduc-

tivity tensor. The benefit of the mixed finite element method is this ability to si-

multaneously solve two variables in relation to each other. Theory for the mixed

finite element method was developed heavily by Brezzi, Raviert, Thomas, and

Crouzeix [6, 7, 8]. Their developed methods known as Brezzi-Douglas-Marini [6],

Raviart-Thomas [7], and Crouzeix-Raviart [8] use different methods of defin-

ing the basis functions on each node. In this paper we will make use the the

Crouzeix-Ravairt finite element space. This method involves explicitly declaring

continuity between elements strictly only on the midpoint of the element edge

in two dimensions, or face if in three dimensions, more explanation will be pre-

sented later in the paper. The fact that this space is a subspace of the Sobolev

space, H1 = {v ∈ L2(Ω)|∇v ∈ L2(Ω)} becomes useful for the preconditioner we

propose later.

In this paper we present a fast solver for the expanded mixed finite element

method. The expanded mixed method expands the usual mixed method by ex-

plicitly defining three unknowns, the scalar unknown, the negative of its gradi-

ent, and its flux. The resulting linear system is a saddle point problem where

the tensor coefficient does not need to be inverted and has been shown to give

better than optimal convergence for non-linear problems and optimal conver-

gence for linear problems while the standard mixed method only gives subopti-

mal error estimates for nonlinear problems [1]. As a result, it works for differ-
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ential equations with small diffusion or low permeability terms. In the case of

the lowest order Raviart-Thomas elements using certain quadrature rules (i.e.

trapezoidal and midpoint rules) results in a system that has a cell-centered finite

difference scheme.

The expanded mixed finite element method has been studied extensively by

Abogast [2], and Chen [1,4]. Chen had proposed the abstract framework of the

method along with proving optimal convergence for the non-linear problem and

showing the tensor coefficient does not need to be inverted in the expanded

method. Abogast [2] had studied methods to solve the expanded mixed finite

element method by using quadrature rules on certain integrals of the discrete

form of the expanded method in order to change the problem from finite ele-

ments to a cell-centered finite differences In this case, solving the cell-centered

problem results optimal error estimates in the interior, but they face issues of

non consistent error along the boundary.

In order to overcome the issues faced by Abogast’s [2] method of solving the

expanded mixed finite element method we present a fast solver based on Xu’s

[3] auxiliary space preconditioning method. The goal of a preconditioner is to

condition a given problem into a form that is more suitable for numerical solv-

ing methods. In this method we precondition the original problem by mapping

to an auxiliary space. The auxiliary space does not need to be a subspace of the

original solution space, but needs to be in a sense, ”simpler”. In the case that

the auxiliary space is a subspace of the original space, we simply use the L2 pro-

jection.

This paper is structured as follows. In Chapter 2 we present the expanded

mixed finite element method and convergence. Then we follow with the consid-

eration of using the quadrature rules presented by Abogast [2]. In Chapter 3 we

show that the expanded mixed finite element method system of equations in op-

erator form can be reduced into the Schur complement operator which is just
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the usual Lapacian. Following that we lay out the theoretical framework of the

preconditioner and show our interpolation operator fit the framework. Lastly, in

Chapter 4 we will discuss future works following this paper.

List of Notations

In this section we present a list of mathematical notations the reader may not

be familiar with but will need to know in order to follow this paper. One of the

first things we need to discuss is the general notation for Sobolev spaces, W k,p.

Named after the Russian mathematician, Sergei Sobolev, a Sobolev space is a

vector space of functions with sufficiently many derivatives for the domain and

equipped with a norm to measure both the size and regularity of the function.

In the multidimensional case

W k,p = {v ∈ Lp(Ω) | Dαv ∈ Lp(Ω) ∀|α| ≤ k},

where Dα denotes all the partial derivatives of the function. In this paper we

will mainly focus on the special case when p = 2, W k,2.

In the case of W 0,2 = L2 the notation to address is the L2-norm,

‖v‖L2(Ω) =

(∫
Ω

v2ds

)1/2

.

Another norm we need to define that is closely related to the L2-norm is the

W 1,2 = H1 norm,

‖v‖H1(Ω) =
(
‖v‖L2(Ω) + ‖∇v‖L2(Ω)

)1/2

where ∇ represents the gradient of the function v.
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II. GOVERNING EQUATIONS

In this section we present the governing equations with mixed boundary condi-

tions presented by Abogast in [2] and present the stability and error estimates

they derived. We consider the mixed finite element approximations of second or-

der elliptic problems with Dirichlet, Neumann, and Robin boundary conditions.

In this form the problem is to find (u, p) such that

∇ · u = f, in Ω

u = −K∇p, in Ω

where p = gD on ΓD, u · n = gN on ΓN and u · n − gR1 p = gR2 on ΓR and

Ω is a bounded domain in Rd (d=2 or 3) with boundary ∂Ω = Γ
D ∪ Γ

N ∪ Γ
R

(ΓD∩ΓN = ΓD∩ΓR = ΓN∩ΓR = ∅); K(x) is a symmetric, positive definite second

order tensor with components in L∞(Ω); n is the outward unit normal vector on

∂Ω; and gR1 (x)≥0. In application to flow in porous media, p is pressure, u is the

Darcy velocity, and K is the conductivity tensor. Now to expanded the usual

mixed method we let ũ = -∇p in Ω, thus u = Kũ in Ω.

Let V 0 and V N be the sub-spaces of

V H = H(div; Ω) = {v ∈ L2(Ω)|∇ · v ∈ L2(Ω)}

consisting of the functions with normal trace on ΓN equal to zero and gN re-

spectively; let Ṽ = (L2(Ω))d; let W = L2(Ω); and let

Λ = H1/2(Ω) = {v ∈ L2(∂Ω)| there exists a ṽ such that v = tr(ṽ).

Let (·, ·)S denote the L2(S)-inner-product of the duality pairing, where we omit
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S if S = Ω. We now have the following weak variation of the expanded system:

where the problem is to find u ∈ V N , ũ ∈ Ṽ , p ∈ W and λ ∈ Λ such that

(∇ · u,w) = (f,w), w ∈ W,

(ũ,v) = (p,∇ · v)− (gD,v · v)ΓD − (λ,v · v)ΓD , v ∈ V 0

(u, ṽ) = (Kũ, ṽ) ṽ ∈ Ṽ

(u · v, µ)ΓR = (gR2 + gR1 λ, µ)ΓR µ ∈ Λ

Now since ΓR and ΓN both affect the flux or flow, let ΓF denote the interior of

Γ
N ∪ Γ

R
and define

gF1 =


0, on ΓN .

gR1 , on ΓR.

gF2 =


gN , on ΓN .

gR1 , on ΓR.

An equivalent formulation is to find u ∈ V, ũ ∈ Ṽ , p ∈ W, λ ∈ Λ such that

(∇ · u,w) = (f,w), w ∈ W

(ũ,v) = (p,∇ · v)− (gD,v · n)ΓD − (λ,v · n)ΓF , v ∈ V,

(u, ṽ) = (Kũ, ṽ), ṽ ∈ Ṽ ,

(u · n, µ)ΓF = (gF2 + gF1 λ, µ)ΓF , µ ∈ Λ.
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The Discrete Formulation

Let (Th)h≥0 be a quasi-uniform family of finite element partitions of Ω such that

no elements crosses the boundaries of ΓD, ΓN , or ΓR, and where h is the max-

imal element diameter. Let Vh × Wh be any of the usual mixed finite element

approximating subspaces of H(Ω; div)×W, such as Brezzi-Douglas-Marini or

Raviart-Thomas. Let Λh ⊂ L2(∂Ω) be the corresponding hybrid space of La-

grange multipliers for the pressure restricted to ∂Ω. Define V 0
h = Vh ∩ V 0,

V N
h = {v ∈ Vh : (v · n− gN , µ)ΓN = 0}

for all µ ∈ Λh, and ΛF
h = Λh|ΓF .

Let Ṽh be a finite element subspace of Ṽ satisfying V N
h ⊆ Ṽh. In the mixed finite

element approximation, we seek uh ∈ Vh, ũ ∈ Ṽh, ph ∈ Wh, and λh ∈ ΛF
h such

that

(∇ · uh,w) = (f,w), w ∈ Wh

(ũh,v) = (ph,∇ · v)− (gD,v · n)ΓD − (λh,v · n)ΓF , v ∈ Vh,

(uh, ṽ) = (Kũh, ṽ), ṽ ∈ Ṽh,

(uh · n, µ)ΓF = (gF2 + gF1 λh, µ)ΓF , µ ∈ ΛF
h .

Convergence of the Expanded Mixed Method

For a domain S let, ‖ · ‖j,q,S denote the norm of W s,j(S), the Sobolev space of j-

differentiable functions in Lq(S), and let Hj(S) = W j,2(S), ‖ · ‖j,S is its norm and

‖ · ‖−j,S denote the norm of its dual space H−j(S) = (Hj(S))
′
. We may omit S if

S = Ω. The error will be measured in the norms of L2 and H−j. Let C denote a
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generic positive constant that is independent of the discretization parameter h.

We make the following five hypotheses:

(H1) Problem (1.1) is 2-regular; i.e. given f , gD, and g2
f , there exists a unique

solution p ∈ H2(Ω) such that

‖p‖2 ≤ C(‖f‖0 + ‖gD‖3/2,ΓD + ‖gF2 ‖1/2,ΓF ),

where C depends only on Ω, K, and gF1 ;

(H2) ∇ · Vh = Wh;

(H3) Vh · n|∂Ω ⊂ Λh;

(H4) V N
h ⊂ Vh

(H5) K is uniformly positive definite in Ω and gR1 ≥ 0.

We need four projection operators and their approximation properties. Let Ph

denote L2-projection of W onto Wh: for ϕ ∈ W, Phϕ ∈ Wh is defined by

(Phϕ− ϕ,w) = 0, w ∈ Wh.

For ϕ ∈ W,

‖Phϕ− ϕ‖−s ≤ C‖ϕ‖jhh+j, 0 ≤ s ≤ l, 0 ≤ j ≤ l,

where l is associated with the degree of the polynomials in Wh. Similarly , let

Π̃ denote the L2-projection of Ṽ onto Ṽh and Qh denote L2(∂Ω)-projection onto

Λh. For q ∈ Hj(Ω) and ψ ∈ Hj(∂Ω),

‖q− Π̃q‖−s ≤ C‖q‖jhj+s, 0 ≤ s ≤ k, 0 ≤ j ≤ k,

and

‖Qhψ − ψ‖−s,∂Ω ≤ C‖ψ‖j,∂Ωh
j+s, 0 ≤ s ≤ m, 0 ≤ j ≤ m,
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where k and m are associated with the degree of the polynomials in Vh and Λh,

respectively, and where in (2.8) we can restrict to ΓF .

Each of the mixed spaces we consider has a projection Π: (H1(Ω))d → Vh with

the three properties

(∇ · Πq, w) = (∇ · q, w), w ∈ Wh

‖Πq− q‖0 ≤ C‖q‖jhj, 1 ≤ j ≤ k,

(Πq · n, µ)e = (q · n, µ)e, µ ∈ Γh

where e is any element edge or face. The divergence and normal fluxes are well

approximated by (2.6) and (2.8).

We now present the proof that the solution exists and is both unique and stable

from Abogast [2].

Proposition Assume (H1)-(H5). If (uh, ũh, ph, λh) is a solution to the finite

element approximation, then

‖∇ · uh‖0 ≤ ‖f‖0,

‖uh‖0 + ‖ũh‖0 + ‖uh · n‖0,ΓF + ‖ph‖0 +

∥∥∥∥√gF2 λh

∥∥∥∥
0,ΓF

+ ‖λh‖−1/2,ΓF

≤ C(‖f‖0 + ‖gD‖1/2,ΓD + ‖gF2 ‖1/2,ΓF ),

where C depends on Ω, ‖K‖1,∞, and ‖gF1 ‖0,∞,ΓF .

Corollary Assume (H1)-(H5). There exists a unique solution to the finite ele-

ment approximation

The next theorem expresses the error in approximating the weak form of the

original problem by the finite element approximation.

Proposition Assume (H1)-(H5). There exists a constant C, independent of h
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and dependent on Ω, p, u, ‖K‖0,∞, and ‖gF1 ‖0,∞,ΓF such that

‖u− uh‖0 + ‖ũ− ũh‖0 + ‖
√
gF1 (λ− λh‖0,ΓF

≤ C(‖u− Πu‖0 + ‖ũ− Π̃ũh‖0 + ‖λ−Qhλ‖0,ΓF )

≤ Chj, 0 ≤ j ≤ min(k,m),

‖∇ · (u− uh)‖−s = ‖∇ · (u− Πuh)‖−s

≤ Chj+s, for 0 ≤ s ≤ l, 0 ≤ j ≤ l,

‖(u− uh) · n‖0,ΓF ≤ C(‖
√
gF1 (λ− λh)‖0,ΓF + ‖(u− Πu) · n‖0,ΓF )

≤ Chj, for 0 ≤ j ≤ min(k,m)

Moreover, if 0 ≤ s ≤ min(k, l,m)− 1, Ω is (s+2) regular, and C depends also on

‖K‖s+1,∞ and ‖gF1 ‖s+1,∞,ΓF , then for any 0 ≤ j ≤ min(k, l,m),

‖Php− ph‖−s + ‖Qhλ− λh‖−s−1/2,ΓF

≤ C(‖ũ− ũh‖0 + ‖u− uh‖0 + ‖∇ · (u− uh)‖0 + ‖(u− uh) · n‖0,ΓF

+‖
√
gF1 (λ− λh)‖0,ΓF + ‖Qhλ− λh‖0,ΓF )hs+1 ≤ Chj+s+1,

‖p− ph‖−s ≤ Chj+s

‖λ− λh‖−s−1/2,ΓF ≤ Chj+s+1/2,
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‖u− uh‖−s + ‖ũ− ũh‖−s

≤ C([‖ũ− ũh‖0]hs

+ [‖Php− ph‖0 + ‖Qhλ− λh‖0,ΓF ]hs−1

+ ‖Php− ph‖−s+1 + ‖Qhλ− λh‖−s+1/2,ΓF ≤ Chj+s

Cell-Centered Finite Difference Method

In this section we derive a finite difference stencil for the pressure in the case

of the lowest-order Raviart-Thomas spaces on rectangles. Recall that on that

element E ∈ Th,

Vh(E) = {(α1x1 + β1, α2x2 + β2, α3x3 + β3)T : αi, βi ∈ R}

Wh(E) = {α : α ∈ R}

and on an edge or face e,

Λh(e) = {α;α ∈ R},

where the last component of Vh should be deleted if d = 2. We use the standard

nodal basis, where for Vh and Λh the nodes are at the midpoints of the edges or

faces of the elements and for Wh the nodes are at the midpoints of the elements

(cell centers). We choose Ṽh = Vh in the finite element approximation.

In this paper (·, ·)M and (·, ·)T mean an application of the midpoint and trape-

zoidal rule, respectively (in each coordinate direction), and for v, q ∈ Rd,

(v,q)TM =


(v1, q1)TXM + (v2, q2)MXT if d = 2

(v1, q1)TXMXM + (v2, q2)MXTXM + (v3, q3)MXMXT if d = 3

Our goal is to express approximately uh and ũh in terms of ph and λh from

in the last three equations of the finite element approximation; then the first
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equation of the finite element approximation will give us an equation for the

pressures. To do this, we use numerical quadrature rules for evaluating some of

the integrals of the finite element approximation. The approximate problem is

to solve for uh ∈ Vh, ũh ∈ Vh, ph ∈ Wh, and λh ∈ ΛF
h such that

(∇ · uh,w) = (f,w), w ∈ Wh

(ũh,v)TM = (ph,∇ · v)− (gD,v · n)ΓD − (λh,v · n)ΓF , v ∈ Vh,

(uh, ṽ)TM = (Kũh, ṽ)T, ṽ ∈ Ṽh,

(uh · n, µ)ΓF = (gF2 + gF1 λh, µ)ΓF , µ ∈ ΛF
h .

In other words, for computing an integral on the ith component of the vectors,

i = 1, 2(, 3), we apply the trapezoid rule in the ith direction and the midpoint

rule in the other directions. The choice of quadrature rules is compatible with

the nodal basis functions for Vh; it gives diagonal coefficient matrices for ũh in

the second equation and also for uh in third equation. This technique is some-

times referred to as a lumped mass approximation. It happens that for v,q ∈ Vh

we have,

(v,q)TM = (v,q)T.

Also the matrix given by (vi, vj)TM, where i and j run over a nodal basis of

Vh, is diagonal, independently of whether K is diagonal or not. This explains

why the expanded mixed method was used. The second equation expresses the

normal component of ũh at any nodal point as a difference of the pressure at the

midpoints of the two adjacent elements, or, near the boundary as a difference of

a pressure and either a Lagrange multiplier pressure or Dirichlet pressure. This

corresponds to a finite difference approximation of the equation ũ = −∇p. The

third equation expresses the normal component of uh at ay node by the normal
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components of ũh at the nodes of the adjacent elements. Note that uh does not

depend on the components of ũh on the far left and right edges. Thus we get a

relatively compact finite difference approximation of the equation u = Kũ.

Finally substituting the last three equations in the first equation, we obtain a

finite difference stencil for the pressure, and approximation of the elliptic prob-

lem −∇ · K∇p = f . We get a 9-point stencil in two dimensions and a 19-point

stencil in three dimensions. If K is a diagonal tensor, the stencil is reduced to

five, or seven points. If a uniform mesh and a constant K are used, we obtain a

standard finite difference procedure. In the strict interior

fijh
2 = 2(K11 +K22)ph,ij −K11(ph,i−1,j + ph,i+1,j)−K22(ph,i,j−1 + ph,i,j+1)

+
1

2
K12(ph,i+1,j−1 + ph,i−1,j+1 − ph,i−1,j−1 − ph,i+1,j+1).

The local truncation error is O(h2), except near the boundary. Many other

O(h2) finite difference schemes can be constructed that vary mainly in how K

is treated and the second-order derivatives are approximated. The next section

shows that our scheme has global convergence properties. Moreover, it is sym-

metric and locally conservative, and it has a compact 9-, or 19-point stencil and

connections to mixed finite elements methods. Moreover, it can be extended eas-

ily to non rectangular grids.
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III. A FAST SOLVER

In this section, we shall design a preconditioner for expanded mixed finite ele-

ment method. We first cast the equation into an operator form and show it is

equivalent to the Schur complement operator:

Theorem The expanded mixed finite element method can be written as follows:

 Ah Bh

BT
h 0


 p

û

 =

 0

f


where Ah and Bh are given as follows:

Ah =

 0 I

I −Kh

 and Bh = (−∇h·, 0)T .

and

û =

 ũ

u


The system is therefore, a symmetric system and it is spectrally equivalent to

 Ah 0

0 −∇h ·Kh∇h


 p

û

 =

 0

f


Proof. We will use the following Woodbury Matrix Identity [11]

 A U

V C

 =

 I 0

V A−1 I


 A 0

0 C − V A−1U


 I A−1U

0 I


So using the Woodbury Matrix Identity on the left hand side of the original sys-
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tem we get that

 Ah Bh

BT
h 0

 =

 I 0

BT
hA
−1
n I


 Ah 0

0 −BT
hA
−1
h Bh


 I A−1

h Bh

0 I


where

BT
hA
−1
h Bh =

(
−∇· 0

) 0 I

I −Kh


−1 ∇

0



=

(
−∇· 0

) −Kh I

I 0


 ∇

0



=

(
∇ ·Kh 0

) ∇
0

 = ∇ ·Kh∇

Thus,  Ah Bh

BT
h 0

 ≈
 Ah 0

0 −BT
hA
−1
h Bh


and this completes the proof

Abstract Framework of the Auxiliary Space Preconditioner

In this section we will present the auxiliary space preconditioner and we will

follow Xu’s [3] framework. Assume that a linear inner product space V is given

together with a linear operator A: V → V that is symmetric positive definite

(SPD) with respect to an inner product (·, ·). Consider the following linear equa-

tion

Au = f
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The main ingredient of the auxiliary space preconditioning method is another

auxiliary linear inner product space V0 together with operator A0 : V0 → V0 that

is symmetric positive definite with respect to an inner product [·, ·] on V0. This

space may be viewed as a certain approximation for V . The space V0 needs not

be a subspace of V in general, but it should be, in a sense, simpler than V . A0

is assumed to be preconditioned by another symmetric positive definite operator

B0 : V0 → V0.

The auxiliary space V0 is linked with the original space V by an operator Π :

V0 → V . The restriction operator is given by its adjoint Πt : V → V0 defined by

[Πtv, w] = (v,Πw) v ∈ V , w ∈ V0

Another ingredient is an symmetric positive definite operator R: V → V . The

role of R is to resolve what can not be resolved by the aforementioned space V0

and the operators defined on V0.

With th ingredients described above, the proposed preconditioner is as follows.

B = R + ΠB0Π

By definition, for any u, v ∈ Vh,

(BAu, v)A = (RAu, v)A + (B0A0Π∗u,Π∗v)A0 ,

where (·, ·)A = (A·, ·), (·, ·)A0 = (A0·, ·) and Π∗ = A−1
0 ΠtA satisfying

(Π∗v, w)A0 = (v,Πw)A v ∈ V , w ∈ V0.

Denote ρA = ρ(A), the spectral radius of A. Also denote ‖ · ‖ to be the norm

induced by (·, ·).
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Thus we need to present the following theorem proved by Xu [3] that places a

bound on the condition number of the preconditioner.

Theorem Assume that there are some non-negative constants α0, α1, λ0, λ1

and β1 such that, for all v ∈ V and w ∈ V0

α0ρ
−1
A (v, v) ≤ (Rv, v) ≤ α1ρ

−1
A (v, v),

λ0[w,w]A0 ≤ [B0A0w,w]A0 ≤ λ1[w,w]A0 ,

‖Πw‖2
A ≤ β1‖w‖2

A0
.

and furthermore, assume that there exists a linear operator P: V → V0 and posi-

tive constants β0 and γ0 such that,

‖Pv‖2
A0
≤ β−1

0 ‖v‖2
A

‖v − ΠPv‖2 ≤ γ−1
0 ρ−1

A ‖v‖
2
A.

Then the preconditioner satisfies

κ(BA) ≤ (α1 + β1λ1)((α0λ0)−1 + (β0λ0)−1)

In particular, if P is a right inverse of Π, namely ΠPv = v, for v ∈ V then,

κ((Πβ0Πt)A) ≤ β1

β0

λ1

λ0

.

A Nonconforming P1 Interpolant

In this section we present a non-conforming P1 inetrpolant that will be used

in the auxiliary space preconditioner following Brenner [5]. The goal of interpo-

lation is to create a new set of points with better properties. Interpolation cre-
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ates this new set of points within the range of the known discrete set of points.

Let S(T ,Ω) be the set of interior open edges (d = 2) or open faces (d = 3). Also

denote the set of boundary edges of faces by S(T , ∂Ω) and the minimum angle

of the triangles or tetrahedra in T by θT .

The nonconforming P1 finite element space associated with the triangulation

T is V0 = {v ∈ L2(Ω) : vT = v|T ∈ P1(T ) for any τ ∈ T and v is continuous at the

center of the common side of any two neighboring triangles}, which is the Crouzeix-

Raviert finite element space. A function in V0 is completely determined by its

nodal values at the centers of the sides of the triangles.

The interpolation operator P0 : H1(Ω, T )→ V0 is defined by

(P0ξ)(cσ) =
1

|σ|

∫
σ

{ξ}ds ∀σ ∈ S(T ,Ω) ∪ S(T , ∂Ω),

where cσ is the center of the side σ and {ξ} is the average of the traces from the

two sides of σ. For σ ⊂ ∂Ω, we take {ξ} to be ξ.

Let ΠT : H1(T )→ P1(T ) be the local interpolation operator defined by

(ΠT ξ)(cσ) =
1

|σ|

∫
σ

ξdz ∀σ ⊂ ∂Ω.

From (3.11) and (3.12) we see the difference of the two interpolants on τ ∈ T is

given by

(P0ξ − ΠT ξ)(cσ) =


1

2|σ|

∫
σ
JξKds if σ ⊂ ∂T \ ∂Ω

0 if σ ⊂ ∂T ∩ ∂Ω

where the jump JξK is measured by subtracting the interior trace from the exte-

rior trace.

Using the difference between the above estimates and standard finite element
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estimates (cf. [9,10]), we find

|P0ξ − ΠT ξ|2H1(T ) ≤ |τ |1−(2/d)
∑
σ⊂∂T

[(P0ξ − ΠT ξ)(cσ]2

≤ |τ |1−(2/d)
∑

σ⊂∂T \∂Ω

1

|σ|2

(∫
σ

JξKds
)2

≤
∑

σ⊂∂T \∂Ω

|σ|d/(1−d)

(∫
σ

JξKds
)2

‖P0ξ − ΠT ξ‖2
L2(T ) ≤ |τ |

∑
σ⊂∂T

[(P0ξ − ΠT ξ)(cσ]2

≤
∑

σ⊂∂T \∂Ω

|σ|(2−d)/(1−d)

(∫
σ

JξKds
)2

where |τ | is the d-dimensional volume of τ . Note that

|τ | ≈ |σ|d/(d−1) for σ ⊂ ∂τ.

On the other hand, we also have the following well known estimates for the local

interpolation operator (cf. [8]) :

‖ξ − ΠT ξ‖2
L2(T ) + |τ |2/d|ΠT ξ|2H1(T ) ≤ |τ |2/d|ξ|2H1(T )

Combing the estimates and summing over all τ ∈ T we find

|P0ξ|2H1(Ω,T ) ≤ |ξ|2H1(Ω,T ) +
∑

σ∈S(T ,Ω)

|σ|d/(1−d)

(∫
σ

JξKds
)2

‖ξ − P0ξ‖2
L2(T ) ≤

∑
τ∈T

|τ |2/d|ξ|2H1(T )

+
∑

σ∈S(T,Ω

|σ|(2−d)/(d−1)

(∫
σ

JξKds
)2

.
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Preconditioner

In this section we lay out the preconditioner following Xu’s framework for the

auxiliary space method. We use Crouziex-Raviart finite element space as the

auxiliary space to precondition H1(Ω) functions. We know define the following

spaces:

V = H1(Ω)

V0 = {v ∈ L2(Ω), v ∈ P1(τ),∀τ ∈ Th, v is continuous at the midpoints of the

interior edges (faces)}

Since we can see that V0 ⊂ V , we can use B0 from the above auxiliary frame-

work and use Q0 in place of Πt, since Π is the identity operator from the inclu-

sion of the spaces, and where Q0 : V → V0 is the L2(Ω) projection operator.

Thus we have the preconditioner

B = R +B0Q0,

where R : V → V is a smoother. We also define the operator, P, from Xu’s The-

orem as P = P0 : V → V0, where P0 is the above P1 non-conforming interpola-

tion operator. We can then see the estimates, for v ∈ V needed for the auxiliary

space preconditioner are shown in the theory for the P1 non-conforming interpo-

lation.
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IV. FUTURE WORK

Future work will include finishing numerical results for this preconditioner and

taking this preconditioning method one step further to P1 conforming finite ele-

ment space because it is easier to solve, and again get numerical results to com-

pare with the one proposed in this paper and the original work on by Abogast

[2]. We also wish to try solving the original by preconditioning with Abogast’s

[2] quadrature rules form that gives the cell-centered finite difference method.

Then we want to expand the problem to a non-linear case which can be applied

further to work done by engineers and physicists.
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