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I. PROBLEM IDENTIFICATION AND EXPLANATION 

In the rapidly expanding region of central Texas, the unique grouping of flash 

flood-prone physiography and vulnerability to extreme meteorological circumstances has 

catalyzed major flood events throughout the last century (Furl et al. 2015). As heavily 

urbanized areas such as the City of Austin, TX continue to expand their reach and 

influence across the region, increases in impervious surfaces can exacerbate the potential 

for extreme flooding (Furl et al. 2015). If these infrastructural changes fall within the 

city’s 100 and 500-year floodplains, they can affect the overall magnitude of an extreme 

hydrometeorological event. 

Established and enforced by the United States Federal Emergency Management 

Agency (FEMA) in the 1960s, a 100-year floodplain is a statistical probability tool that 

outlines the area of land that is predicted to flood during a “100-year storm” (City of 

Austin 2016). This storm has a 1% chance of occurring in any given year and, if and 

when such storms occur, they can generate catastrophic damage if landscape and 

meteorological circumstances are just right. Similarly, a 500-year floodplain is a 

statistical probability tool that defines segments of land that are subject to flood during a 

“500-year storm” (FEMA 2017). This storm has a 0.2% chance of occurring in any given 

year. In order to understand the potential hazards1 that are commonly associated with 

major flood events in urbanized floodplains, research must consider the distribution and 

relationships between the various land cover characteristics present. 

 

                                                 
1 A hazard is something that has the potential to cause harm but does not necessarily do so 

(Flood Risk Management 2017). 
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II. SITE AND SITUATION 

The geographic setting for my research study is the City of Austin, TX. Nestled 

between the Balcones Escarpment and the bustling I-35 corridor of Central Texas, Austin 

boasts a land coverage of over 271 square miles of rolling hills, congested roadways, and 

sprawling urban growth (City-Data.com 2017). In addition, Austin reigns as the capital 

city of the Lone Star State and the “Live Music Capital of the World” (City of Austin 

2017c). In total, the breadth of the city encompasses territory that spans across portions of 

two different counties, including Travis and Williamson Counties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Area of Interest. The city limits and block groups of Austin, 

TX.
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The City of Austin also sits at the heart of the Austin-Round Rock-San Marcos 

Metropolitan Statistical Area (MSA), which was estimated to have a population of more 

than 2 million people in 2016 (U.S. Census Bureau 2017). Given its rapid growth, diverse 

physical landscapes, and eclectic culture, Austin lies at the forefront of a movement to 

become the next great American metropolis. 

From scenic views to countless recreational activities, Austin grants natives, 

newcomers, and tourists alike the opportunity to immerse themselves in the beauty and 

culture that Central Texas has to offer. The city sits along on the Lower Colorado River 

and has five large artificial lakes located within the city limits. These lakes include Lady 

Bird Lake, Lake Austin, Lake Travis, Lake Walter E. Long, and the Soil Conservation 

Service Site 7 Reservoir (Table 1). In addition, numerous rivers and streams surround the 

Greater Austin Area (Table 2). While the east side of the city is relatively low-lying, the 

west side of the city features rolling hills and limestone-rich, clay loam soil (Texas State 

Historical Association 2017). The climate and vegetation characteristics native to this 

region are largely a product of the geographic positioning of the city in relation to the rest 

of the state and country. For the most part, Austin has a humid subtropical climate (Texas 

State Historical Association 2017). The city, however, sits along a climatic transition 

zone, so it can occasionally experience a mixture of both semi-arid and humid subtropical 

climates. Under specific hydrometerological conditions, this characteristic can often 

produce torrential rainfall and flash flooding throughout the region. As the effects of 

climate change continue to surface and intensify across the landscape, attention will need 

to be drawn to the potential environmental hazards that could negatively influence the 

city, such as droughts and flash flood events (Green et al. 2000). 
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Table 1. Water Bodies in the Study Area. Name, area, and elevation of five 

major water bodies located within the 100 and 500-year FEMA floodplains in 

Austin, TX. 

 

Table 2. Rivers and Streams in the Study Area. Name and length of 736 river 

and stream systems located within the 100 and 500-year FEMA floodplains in 

Austin, TX. 

 

 

 

 

 

 

 

 

 

Water Body Name Area (km²) Elevation (m) 

Lady Bird Lake 1.96 130.5 

Lake Austin 5.72 25.28 

Lake Travis 72.85 207.59 

Soil Conservation Service Site 7 Reservoir .194 246.29 

Walter E. Long Lake 4.93 169.2 

River or Stream Name Length (km) River or Stream Name Length (km) 

Barton Creek 13.16 Hucks Slough .734 

Bear Creek 5.46 Johnson Branch 3.07 

Bee Creek .126 Laurel Oaks Creek 6.15 

Blunn Creek 4.68 Little Bee Creek .874 

Boggy Creek 21.32 Little Walnut Creek 13.71 

Bull Creek 12.49 Marble Creek 5.66 

Carson Creek 8.29 Mayfield Creek .486 

Coldwater Creek .423 Onion Creek 37.84 

Colorado River 67.53 Rinard Creek 3.69 

Connors Creek 2.48 Shoal Creek 16.37 

Cottonmouth Creek .937 Skunk Hollow Creek 1.12 

Country Club Creek 6.29 Slaughter Creek 18.44 

Cow Fork 2.89 Tannehill Branch 7.99 

Decker Creek 5.25 Tar Branch 1.8 

Dry Creek 5.25 Turkey Creek 4.12 

East Bouldin Creek 3.48 Waller Creek 10.83 

Elm Creek 2.01 Walnut Creek 34.57 

Ferguson Branch 3.19 Wells Branch 2.7 

Furtado Creek 2.43 West Bouldin Creek 2.78 

Hancock Creek 3.32 West Bull Creek 4.83 

Harris Branch 10.54 Williamson Creek 17.51 

Hog Pen Creek .929 Null Values (693) 516.62 

Honey Creek .687 Total Length 894.63 
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Figure 2. Major Hydrological Features. Water bodies, rivers, and streams 

located within the study area of the 100 and 500-year FEMA floodplains in 

Austin, TX. 
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As the 4th-most populous city in the State of Texas and the 11th-most populous 

city in the United States, the City of Austin is amongst the fastest-growing cities in the 

nation (U.S. Census Bureau 2017). According to the United States Census Bureau, Austin 

experienced a 12% increase in population from 2010 to 2013 (U.S. Census Bureau 2017). 

In January of 2017, Forbes Magazine labeled Austin as the fastest growing city in the 

U.S., and the U.S. News and World Report named Austin the best place to live in the 

nation (Forbes 2016a and U.S. News and World Report 2017).  

With a thriving technology sector, an active, forward-thinking population base, 

and a relatively low cost of living, Austin possesses a unique gravitational pull that most 

American cities wish to have. Because of this, the city has been experiencing a consistent 

annual increase in population growth within recent years. According to the U.S. Census 

Bureau and the City of Austin, the city boasted a population of approximately 926,426 

individuals in 2016, which was a 2.9% increase from the previous year (U.S. Census 

Bureau 2017). Austin has a population density of 3,358 people per square mile, and a 

median age of 31.8 years (U.S. Census Bureau 2017). The population is comprised of 

49.60% female and 50.40% male (U.S. Census Bureau 2017). In addition, the income per 

capita is $32,672, and the median household income is $55,216 (U.S. Census Bureau 

2017). With a young, educated, and ambitious demographic base, the City of Austin will 

continue to stand out amongst the rest as it paves the way to ensure that it will become a 

promising city of the future.  
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III. LITERATURE REVIEW 

Due to the recent increase of interest in land development within urbanized 

floodplains, the breadth of existing literature on the topic is extremely narrow. However, 

the literature relevant to this study was informative, comprehensive, and supported by 

both quantitative and qualitative research methods. Of the existing literature reviewed, 

many acknowledged that floods are one of the most common types of environmental 

disasters throughout the world (Green et al. 2000, Kiedrzyńska et al. 2015, and Kwak et 

al. 2008). Not only are they caused by natural phenomena (i.e. hydrometerological events 

or climatic trends), but they can also be a result of anthropogenic factors (i.e. rapid and 

unfettered urbanization, land erosion, lack of flood mitigation efforts, etc.) (Glosińska 

2014 and Green et al. 2000). One of the most common forms of anthropogenic intrusion 

is urban growth, especially near or within floodplains (Kourgialas et al. 2011). Of 

Because of this, floods can quickly intensify and, as a result, produce large-scale losses 

across multiple realms, including local and regional infrastructure, environmental 

degradation, public and private property damage, and human lives (Kiedrzyńska et al. 

2015).  

Risk is defined as the probability of an event happening and the impact if it were 

to occur (Li et al. 2016). The risk of flooding is a major concern amongst governing 

entities throughout the world, and recent evidence has shown that human activities and 

interference within the floodplain can actually instigate an increased frequency of 

extreme flood events (Green et al. 2000, Kiedrzyńska et al. 2015, and Kwak et al. 2008). 

This problem is even more severe in developing cities where there is poor regulation over 

land use practices and ordinances within floodplains (Antonie et al. 1997 and Ndabula et 
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al. 2012). In recent decades, the research surrounding floodplain analysis and 

management has largely focused on the effects of flooding in these federally defined 

areas, especially as they relate to the environment and human life.  

Of the literature that is relevant to this study, much of it relates to describing the 

urbanized floodplain as being an attractive area of settlement that underwent rapid and 

chaotic development (Green et al. 2000 and Li et al. 2016). As a result of this ongoing 

expansion, catastrophic floods that produce serious material and human losses are 

becoming more and more common (Green et al. 2000 and Kiedrzyńska et al. 2015). This 

shift in flood risk throughout urban zones is a direct effect of the improper management 

of flood-prone areas by city officials, developers, and residents (Glosińska 2014). In 

order to predict and mitigate the possible impacts of major flood events, steps must be 

taken to identify the primary forms of land usage within the floodplain as well as the 

contiguous characteristics that define the specific area (Glosińska 2014). 

Furthermore, many studies regarding the effects of floods on urbanized 

floodplains suggest that much of the accumulated damage is socio-economic in nature 

(Aubrecht et al. 2010). This includes, but is not limited to, damage to infrastructure, 

temporary suspension of public and private services (i.e. sewage treatment, factory 

operations, garbage pick-up, etc.), loss of structural property (i.e. residential homes and 

businesses), temporary or permanent displacement of residents, and reliance on borrowed 

capital for efforts centered on clean-up and rebuilding (Green et al. 2000). The potential 

for loss is great in urbanized floodplains during a flood event, and many could experience 

an increase in hazards depending on future land development or rehabilitation in the area. 
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A not-so-surprising pattern that surfaced amongst the literature reviewed was the 

researchers’ keen acknowledgement of the looming threat of climate change on future 

flood events (Kwak et al. 2008). As urban areas continue to experience intensifying 

climatic patterns and population growth, city officials, developers, and residents will need 

to adjust their perceived risks to flood hazards accordingly (Glosińska 2014). In fact, the 

impacts of climate change may eventually require an outward expansion of the 100 and 

500-year floodplains to ensure that areas statistically predicted to flood receive the 

education, outreach, and protection concerning the potential hazards that they may face 

(Nel et al. 2014). Moreover, the imminent threat of climate change serves as a rather 

convincing catalyst for conducting a land cover classification and change detection 

analysis and, in response, addressing the landscape characteristics within flood-prone 

areas that could be most affected by a major flood event. 

As noted, while the processes of extreme hydrometeorological events in central 

Texas have been thoroughly explored and documented within recent years, a 

comprehensive land cover classification and change detection analysis of the City of 

Austin’s 100 and 500-year FEMA floodplains has not yet been done. Of the literature 

reviewed, many of the articles suggest that the rapid urban development that is taking 

place within floodplains is largely a result of poor land use planning and management. 

Still, no research has cataloged the specific land cover types across the floodplain, as well 

as how they may affect the possible risks and hazards associated with flood events. As 

such, this study fills a significant gap in the existing research. 
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IV. RESEARCH OBJECTIVES 

The general objective for this study is to create a land cover classification and change 

detection analysis of the federally declared 100 and 500-year FEMA floodplains in the 

City of Austin, TX from 2008 to 2016. This will be achieved through the following 

specific objectives: 

 Create two digitalized floodplain maps of the study area in 2008 and 2016 using 

high resolution, compressed county mosaic images and a geospatial software 

program, such as Esri ArcGIS; 

 Classify the land cover types of the two images using a supervised approach in a 

remote sensing software program, like ERDAS Imagine;     

 Calculate and compare the percent change of land cover classifications between 

2008 and 2016 within the study area using analysis techniques that are supported 

by a remote sensing software program, like ERDAS Imagine; 

 Produce multiple maps that illustrate the distribution and change of land cover 

types within the study area during the given timeframe. 

 

This study seeks to answer the following questions: What are the land cover 

characteristics of Austin’s 100 and 500-year FEMA floodplains and how has the 

landscape of the urbanized floodplain changed throughout the given timeframe? Each 

portion of the research objective seeks to facilitate an increased understanding of the 

types of surface cover that exist within the floodplain. As a result of this study, I argue 

that there will be a lack of variety amongst the land cover types throughout the city’s 
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Figure 3. Conceptual Model for the Study Area. The FEMA 100 and 

500-year floodplain boundaries within Austin, TX and forms of land 

cover found within the study area. Created by Dr. Ronald Hagelman III 

and Mackenzie Carhart, 2016. 

urbanized floodplain. In addition, I argue that the floodplain will have had undergone an 

increase in land cover change and development between the years of 2008 and 2016. 

Although research has been previously conducted on the effects of various 

hydrometeorological events in this particular region of Texas, a land cover classification 

and change detection analysis of the City of Austin’s 100 and 500-year FEMA 

floodplains have not yet been done. With growing concerns surrounding the impending 

threats of climate change on heavily populated and expanding urban environments, I 

believe that city officials, developers, residents could greatly benefit from the results of 

this study. Equipped with an increased awareness of what actually exists in the 

floodplain, I hope that they will then be prepared to make responsible decisions 

concerning future efforts in land development and flood hazard mitigation and 

management. 

 

 

 

 

 

 

 

 

 

 

 

Specific Form 

of Land Cover 

The 100 

and 500-

Year 

Floodplains City Limits of 

Austin, TX 
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Table 3. List of Observed Variables. Five forms of data used for this research study, as 

well as the sources, types, and year the data was published. 

 

V. METHODOLOGY AND PROCEDURES 

As stated in the research objectives, the purpose of this study is to create a land 

cover classification and change detection analysis of the 100 and 500-year FEMA 

floodplain in the City of Austin, TX. A positivist epistemology was incorporated to 

unearth the locations and characteristics of specific types of land cover across the region. 

These forms of land cover illustrates the linkages hypothesized to be critical in 

understanding how the human activities, or lack thereof, distributed throughout the 

floodplain boundaries can alter– either positively, negatively, or none at all – the identity 

of the urbanized landscape (Figure 3). The variables establish the general topographic 

characteristics and identity of areas within the urbanized floodplain of the City of Austin  

 (Table 3).  

  

 

 

 

To conduct an accurate and thorough land cover classification and change 

detection analysis of the 100 and 500-year floodplain in the City of Austin, the research 

question and objectives were approached in three major steps: data collection and 

preparation, digital extraction and mapping of the FEMA 100 and 500-year floodplains 

Observed Variables Source of Data Type of Data Year Published 

Orthographic Imagery NAIP and TNRIS Raster 2008 and 2016 

City Limits of Austin, TX TxDOT Vector - Polygon 2016 

Water Bodies USGS, EPA, and TNRIS Vector - Polygon 2009 

Rivers and Streams USGS, EPA, and TNRIS Vector - Line 2009 

Floodplain Boundaries FEMA Vector - Polygon 2017 
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from orthographic imagery and geospatial datasets, and a land cover classification and 

change detection analysis of the urbanized floodplain by using remote sensing software. 

 

 5.1 Data 

First, the necessary data was acquired from their appropriate state and federal 

agencies. Given the nature and study area of this project, much of the data was supplied 

through TNRIS, TxDOT, USGS, EPA, and FEMA (Table 3). Each orthographic image 

was produced by NAIP as a high resolution, compressed county mosaic of Travis County 

and provided for free and immediate download by TNRIS, a division of the Texas Water 

Development Board. Administered by the USDA Farm Service Agency’s Aerial 

Photography Field Office, NAIP obtains aerial imagery during the agricultural growing 

seasons throughout the U.S. The two images were photographed in 2008 and 2016 at a 1-

meter pixel resolution with either three or four bands (United States Department of 

Agriculture). The image from 2008 is CIR with four bands, including red, green, blue, 

and near infrared. The image from 2016 is NC with three bands, including red, green, and 

blue. As per NAIP’s image acquisition specifications, each image was photographed with 

no more than 10% cloud cover per quarter quad tile (United States Department of 

Agriculture).  

Lastly, TxDOT provided the city limits of Austin, TX, and FEMA supplied the 

floodplain boundaries as a flood zone shapefile (Table 3). As per the FEMA flood zone 

guidelines, zones A, AE, and AO are categorized as the 100-year floodplain and zone X 

as the 500-year floodplain (Figure 4). TNRIS, USGS, and EPA provided the location and 

boundaries of the water bodies, rivers, and streams in the form of a single geodatabase. 
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As noted in Table 3, the water bodies are polygon features and the rivers and streams are 

line features. 

In the second step of the project, Esri’s ArcGIS was utilized to define the study 

area in each of the orthographic images. First, the cells of each raster file were outlined to 

the city limits of Austin by using the “Extract by Mask” tool. Then, the 100 and 500-year 

floodplain boundaries within the FEMA flood zones layer were consolidated into a 

separate layer. Afterwards, the new floodplain layer was clipped to the city limits of 

Austin to define the extent of the study area. Then, the boundaries of the 100 and 500-

year FEMA floodplains in each raster file were clipped to the city limits of Austin by 

utilizing the “Extract by Mask” tool. Finally, the major waterbodies, rivers, and streams 

were erased from each image using the “Extract by Mask” tool and a polygon feature that 

included the water systems throughout the study area (Figures 6 and 7). In order to 

accommodate wider portions of rivers and streams throughout the study area, a 1-meter 

buffer was applied to the feature. In addition, smaller water bodies (i.e. artificial lakes, 

retention ponds, municipal fountains, etc.) were extracted from the images using the same 

methodology. These steps were taken to avoid possible spectral misclassifications 

between water and developed land in the 2008 image and water and vegetation in the 

2016 image. Upon completing these steps, both files were exported as IMAGINE images 

(.img) and imported separately into ERDAS Imagine for image classification. 
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Figure 4. FEMA Flood Zones. Specific types of federally declared flood zones that 

comprise the 100 and 500-year floodplains in Austin, TX. 
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Figure 5. CIR Imagery of the Study Area in 2008. Data used to define the 

study area, including multispectral imagery, the FEMA 100 and 500-year 

floodplain boundaries, and the city limits of Austin, TX. 
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Figure 6. NC Imagery of the Study Area in 2016. Data used to define the 

study area, including multispectral imagery, the FEMA 100 and 500-year 

floodplain boundaries, and the city limits of Austin, TX. 
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Table 4. Land Cover Types and Image Classification Criteria. Two forms of 

land cover used in this study, as well as their classification codes and thematic 

colors for image classification analysis. 

Figure 7. Conceptual Model Supervised Classification Process. The flow 

of events required to execute a supervised classification in ERDAS Imagine. 

 

 

 

 

Next, the primary forms of land cover that are relevant to the objectives of this 

study were identified (Table 4). To do this, the Anderson Land Classification Scheme 

was referenced. Established in 1976 by USGS, the system is a standardized classification 

scheme that is used by local, state, regional, and federal entities in the identification of 

land use and land cover types throughout the United States with remote sensing 

techniques (Anderson 1976). For the purposes of this study, vegetation and developed 

land were the only forms of land cover included in the image classification and analysis.  

 

 

 

 

 

 

 

In remote sensing, classification is the process by which the pixels of a 

multispectral image are grouped together based on their data values (Sisodia et al. 2014). 

In order to assert greater user control over the characterization of the pixels in each 

image, this study utilized a supervised maximum likelihood classification. A supervised 

Type of Land Cover Classification Code Color for Thematic Layer 

Vegetation 1 Dark Green 

Developed Land 2 Red 

Create 

Training 

Area 

Save 

Signature 

File 

Software 

Classifies 

Image 

Evaluate 

Result 
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Table 5. AOIs Gathered by Image and Land Cover Class. Amount of AOIs 

gathered for each land cover type in the 2008 and 2016 images. 

classification requires the user to “supervise” the classification process by specifying the 

specific pixel values and spectral signatures (i.e. AOI) that are associated with each class 

(Humboldt State University). Upon creating a representative sample for each class, the 

software then uses the “training areas” to classify the entire image based on the 

parametric rules chosen by the user (Figure 7). This study incorporated a maximum 

likelihood classification algorithm, which assumes that the values assigned to each class 

are normally distributed, and assigns each pixel to the class that exhibits the highest 

statistical probability (Sisodia et al. 2014). 

 

 

 

 

 

By utilizing the polygon-drawing tool in ERDAS Imagine, several AOIs were 

created for two specific land cover types that exist across the study area (Table 5). Then, 

the individual AOIs for each type of land cover were merged into one AOI, assigned each 

form of land cover a specific color, and saved the set as a separate signature file for each 

image (Table 4). Upon creating the training sites and signature files, the images were 

ready to undergo a supervised maximum likelihood classification.  

After conducting the classifications, the distribution of classes throughout each 

output image were observed in ERDAS Imagine. Unfortunately, the pixel values for both 

the extracted hydrological features and background of the raster output were classified as 

developed land. To address this issue, the “Erase” and “Extract by Mask” tools in 

Year of Image Acquisition Image Type Type of Land Cover Number of AOIs 

2008 CIR Vegetation 445 

Developed Land 300 

2016 NC Vegetation 475 

Developed Land 350 
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Table 7. Reclassified Pixel Values by Land Cover Class. Comparison of 

old and new values for the developed and vegetation classes in each image. 

Table 6. Pixel Values and Equations by Image and Land Cover Class. 
Values of the developed and vegetation classes in each image, as well as 

equations and output files used to define the pixel values. 

ArcMap were utilized to remove the water bodies, rivers, and streams from each 

classified image. Then, the background color was removed by clipping the output layers 

to the boundaries of the study area (Figures 12 and 13).  

 

 

 

 

 

 

To ensure that the images would import into ERDAS Imagine as thematic raster 

files, the “Raster Calculator” tool was used to specify the pixel value of the land cover 

classes in each image. The values were from the attribute table of each classified image 

and assigned to their appropriate class by using the equations shown in Table 6. Upon 

defining the value for each class, a location was determined for the output file and the 

equation was performed by the “Raster Calculator” tool. 

 

 

 

 

 

Classified 2008 Image Classified 2016 Image 

Developed Class Vegetation Class Developed Class Vegetation Class 

1 445 1 415 

Raster Calculator Equations 

 “Classified_08” == 1 

 “Classified_08” == 445 

Raster Calculator Equations 

 “Classified_16” == 1 

 “Classified_16” == 415 

Raster Calculator Output Files 

 “Dev08_RasterCalc” 

 “Veg08_RasterCalc” 

Raster Calculator Output Files 

 “Dev16_RasterCalc” 

 “Veg16_RasterCalc” 

Pixel Values of Developed Class Pixel Values for Vegetation Class 

Old Values New Values Old Values New Values 

0 1 0 0 

1 2 1 2 

NoData NoData NoData NoData 
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Table 8. Assigned Pixel Values by Image and Land Cover Class. 

Final values for the developed and vegetation classes in each image. 

Then, the “Reclass” tool was utilized to reclassify the pixel values for the 

vegetation class in each image (Table 7). The values for the developed class did not 

change. The final values are displayed in Table 8. Once the tool reclassified the pixel 

values, the “Raster Calculator” tool was used to add the output file of the reclassified 

vegetation pixels to the output file of the defined developed pixels from Table 6. Once 

the equation had processed each image, the pixel values and placement of the two land 

cover classes were observed in both the output image and coordinating attribute table. 

This was a critical step in the pixel reclassification process because it confirmed the 

accuracy of the raster calculations. After each image was reviewed, the two files were 

exported as unsigned, 8-bit IMAGINE images (.img) for further data manipulation in a 

remote sensing software program. 

 

 

 

 

 

Next, the images were imported into ERDAS Imagine. The “Subset” tool was 

utilized to convert each file into a thematic image. This step was important because it 

displayed the pixel values and histograms of the two previously defined land cover 

classes and confirmed that each class was present and accurately distributed throughout 

the images. Once the tool had processed each file, the pixels values and placement of the 

land cover classes were observed in the new thematic images. Using the original 

reference images in Figures 5 and 6 for clarity, the “Inquire” tool was utilized to 

Classified 2008 Image Classified 2016 Image 

Developed Vegetation NoData Developed Vegetation NoData 

1 2 NoData 1 2 NoData 
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manually verify the values of random pixels throughout each of the classes. Once the 

position and distribution of the values were reviewed for general accuracy, the study 

progressed to the final steps. 

 

5.2 Analysis 

 

Lastly, an accuracy assessment of the two classified images was conducted, as 

well as a change detection analysis of the two different forms of land cover within the 

city’s 100 and 500-year FEMA floodplains between 2008 and 2016. Given the intricate 

nature of remotely sensed data, it is imperative to consider and review the dependability 

of the results upon conducting a classification of one or more thematic images 

(Congalton 1991). Not only does an accuracy assessment evaluate the quality of a 

classified image, but it also identifies potential places of error and misinterpretation 

amongst the pixel values and classes (Foody 2002). A change detection analysis 

identifies the temporal differences in the condition of an entity or occurrence over a 

specific period of time (Singh 1989). This technique is useful in a variety of applications, 

including recognizing changes in land use, seasonal shifts in agricultural production, 

disaster impacts following a natural or technological hazard, and other environmental 

alterations (Singh 1989). Because this study involves thematic data, a Matrix Union was 

used to distinguish differences in developed and vegetation land cover between two 

images acquired in 2008 and 2016. 

The components of the accuracy assessment (i.e. sample size, desired accuracy, 

and allowable error) were calculated based on a binomial distribution. The equation 

shown in Figure 8 was used to determine the amount of reference points required for an 
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Figure 8. Equations for a Binomial Distribution. Used to determine the 

sample size needed for the accuracy assessments. The equations are largely 

based on the expected accuracy and allowable error in each image. 

expected accuracy of 85% and an allowable error of 10% in each image. This study used 

a stratified random sampling technique to generate 51 points throughout the study area in 

each image. With a stratified random sample, points are generated according to the 

division of classes, or “strata”, and their shared attributes or characteristics within the 

dataset (Gonçalves et al. 2007). In addition, a minimum number of reference points are 

specified for each class in the image. This study required at least 20 points to be 

randomly located in each land cover type. Lastly, a maximum of 1,094 pixels were 

analyzed to determine whether they met the defined conditions of this study. 

 

𝑁 =
22(p)(q)

E2
                         51 =

22(85)(15)

102
 

  

 

 

 

As shown in Table 9, the overall classification accuracy of each image is over 

90%. In the classified image from 2008, both the producer and user’s accuracies for each 

class range from 95-100%. The overall Kappa statistic is 0.9585, which suggests that the 

classification is a 96% better agreement than by chance alone. In the classified image 

from 2016, both the producer and user’s accuracies for each class range from 80-100%. 

The overall Kappa statistic is 0.8294, which proposes that the classification is an 83% 

better agreement than by chance alone. The variation of accuracies and Kappa statistics 

between the two classified images is likely due to differences in the multispectral 
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Figure 9. Equations for Total Accuracy Calculation. Used to determine the overall 

accuracy of the placement and classification of the land cover types in each classified 

image. 

Figure 10. Equations for Producer’s Accuracy Calculation. Used to determine the 

producer’s accuracy of the placement and classification of the land cover types in each 

classified image. 

Figure 11. Equations for User’s Accuracy Calculation. Used to determine the user’s 

accuracy of the placement and classification of the land cover types in each classified 

image. 

characteristics of each reference image used to develop the classification signatures 

during the supervised classification process. 

Along with the accuracy and Kappa statistics, error matrices are provided for each 

classified image in Table 9. The matrices show the class types determined from the 

reference and classified images, as well as the sites classified both correctly and 

incorrectly, according to reference data utilized during the supervised classification and 

accuracy assessment processes. By referring to the error matrices and a simple equation, 

one can determine the overall accuracy of the classification, as well as the producer and 

user’s accuracies for each of the class types in either image (Figures 9-11). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇𝑜𝑡𝑎𝑙 =
Number of Correct Plots

Total Number of Plots
  × 100          98.04% =

19 + 31

51
  × 100 

 

  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟,   𝑉𝑒𝑔. =
Number of Correct Plots

Total Number of Class Plots
  × 100          81.58% =

31

38
  × 100 

 

 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑈𝑠𝑒𝑟,   𝐷𝑒𝑣. =
Number of Correct Plots

Total Number of Class Plots
  × 100          100% =

16

16
  × 100 
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Table 9. Statistics by Classified Image. Data acquired upon processing the accuracy 

assessment for each image. The shaded values in each error matrix represent the 

points that were classified correctly according to the reference data. The values 

outside of the diagonal line were misclassified.  

 

 

 

 

Classified 2008 Image 

Class 1 

Producer’s Accuracy (%) 100 

User’s Accuracy (%) 95 

Class 2 

Producer’s Accuracy (%) 96.88 

User’s Accuracy (%) 100 

 

Overall Classification Accuracy (%) 98.04 

Overall Kappa Statistic 0.9585 

      Conditional Kappa Statistic – Class 1 (Developed) 0.9203 

      Conditional Kappa Statistic – Class 2 (Vegetation) 1 

 

Error Matrix 

Classed Determined From Reference Image 

 Num. of Points Developed Vegetation Totals 

Classes Determined  

From Classified  

Image 

Developed 19 1 20 

Vegetation 0 31 31 

Totals 19 32 51 

Classified 2016 Image 

Class 1 

Producer’s Accuracy (%) 100 

User’s Accuracy (%) 80 

Class 2 

Producer’s Accuracy (%) 88.57 

User’s Accuracy (%) 100 

 

Overall Classification Accuracy (%) 92.16 

Overall Kappa Statistic 0.8294 

      Conditional Kappa Statistic – Class 1 (Developed) 0.7086 

      Conditional Kappa Statistic – Class 2 (Vegetation) 1 

 

Error Matrix 

Classes Determined From Reference Image 

 Num. of Points Developed Vegetation Totals 

Classes Determined  

From Classified  

Image 

Developed 16 4 20 

Vegetation 0 31 31 

Totals 16 35 51 
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Figure 12. Classification of the Study Area in 2008. The dark green areas 

represent vegetation and the red areas represent developed land. 
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Figure 13. Classification of the Study Area in 2016. The dark green areas represent 

vegetation and the red areas represent developed land. 
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Finally, a change detection image and summary file were created by inputting 

each classified image into the “Matrix Union” function in ERDAS Imagine. The outputs 

of this step provided visual and statistical information on the thematic changes that 

occurred across the study area between 2008 and 2016 (Figure 14 and Table 10). As 

shown in Figure 14, the dark green areas represent vegetation that did not change 

between 2008 and 2016, and the red areas represent developed land that did not change 

with the same timeframe. Yellow is used to represent land that changed from developed 

to vegetation, and turquoise is used to signify land that changed from vegetation to 

developed. Table 10 displays cross-tabulation statistics useful in comparing the changes, 

or lack thereof, between the two land cover classes in the each image. 

 

5.3 Limitations 

 

 The primary limitation of this study is the difference in multispectral 

characteristics between the two images used. While the images feature the same spatial 

resolution, the image from 2008 is CIR with four bands and the image from 2016 is NC 

with three bands. The differences in multispectral properties have the potential to affect 

the drawing and placement of AOIs for each type of land cover during the supervised 

classification process. This limitation explains the slight variance in accuracy between 

each image (Table 9). In addition, the multispectral signatures of the two forms of land 

cover likely contributed to the misclassification of smaller water features remaining 

within the study area upon the extraction of most hydrological elements from the image. 

Of the remaining smaller water features (i.e. swimming pools, municipal fountains, etc.), 

their classifications are a result of the land cover that they more closely resemble in either 
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Table 10. Matrix Union Statistics by Class. Data acquired upon 

processing the Matrix Union with each classified image. The 

changes of land cover classes (i.e. pixel counts and land area) 

between 2008 and 2016 are quantified in this table. 

image. The same limitation is true for the misclassification of dry grass for developed 

land in the image from 2016. 

 

VI. RESULTS 

Based on the findings of this study, there is a lack of variety amongst the land 

cover types throughout the City of Austin’s urbanized floodplain. Excluding the water 

features extracted prior to conducting the classification and analysis, the landscape is 

comprised of either developed or vegetated land (Figures 2 and 11). In addition, the 

floodplain has undergone an increase in land cover change and development between the 

years of 2008 and 2016. As shown in Table 10, 4.71% of vegetated land from 2008 was 

classified as developed land in 2016. An unexpected finding of this study was the 

increase in vegetated land that was once previously developed. Almost 30% of developed 

land from 2008 was classified as vegetated land in 2016. This is likely due to recent 

floodplain reclamation by public and private entities on or nearby major hydrological 

features, like the Colorado River. 

 

 

 

 

  

 Zone Number 1 - Developed 

Class Change Between Classes Percentage (%) Area (km2) 

1 Developed to Developed 71.81 7.20 

2 Developed to Vegetation 28.19          2.83 

Totals  100 10.03 

 Zone Number 2 - Vegetation 

Class Change Between Classes Percentage (%) Area (km2) 

1 Vegetation to Developed 4.71 3.14 

2 Vegetation to Vegetation 95.29 63.45 

Totals  100 66.59 
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Figure 14. Matrix Union Analysis of Land Cover. The dark green areas represent 

vegetation that did not change between 2008 and 2016, and the red areas represent 

developed land that did not change with the same timeframe. Yellow is used to 

represent land that changed from developed to vegetation, and turquoise is used to 

signify land that changed from vegetation to developed. 
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6.1 Geography of the Floodplain 

Some portions of the study area did not experience a change in land cover 

between 2008 and 2016. For example, large sections of Downtown Austin remained 

developed, which is to be expected within a rapidly urbanizing area (Figure 16). In 

addition, many roadways, commercial centers, neighborhoods, and housing complexes 

did not experience a change in land cover throughout the 8-year period. Vegetated land 

along the downtown periphery and banks of major water features remained unchanged, as 

well (Figure 15). This is likely due to the lack of concentrated, outward development 

around the urban core, as well as the increased flood hazards associated with building 

alongside a lake, river, or stream. 

As hypothesized, the 100 and 500-year floodplains experienced a change from 

vegetated to developed land between 2008 and 2016. The construction of new 

neighborhoods, housing complexes, roadways, and commercial centers accounted for 

much of the development within the study area (Figure 17). Portions of land along or near 

major hydrological bodies, like the Colorado River, changed from developed to vegetated 

land over the 8-year study period (Figure 18). This alteration is likely due to recent 

floodplain reclamation efforts by public and private entities in the City of Austin. 
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Figure 15. Unchanged Vegetated Land. In this example, the banks 

and surrounding area of the Colorado River remained vegetated (shown 

in dark green) between 2008 and 2016. 

Figure 16. Unchanged Developed Land. In this example, Downtown 

Austin remained developed (shown in red) between 2008 and 2016. 
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Figure 17. Vegetated Land That Changed to Developed Land. In 

this example, a new housing development was built (shown in 

turquoise) near the Colorado River in East Austin. 

Figure 18. Developed Land That Changed to Vegetated Land. In 

this example, land was reclaimed (shown in yellow) near the Colorado 

River between 2008 and 2016. 



 34 

6.2 Areas for Further Research 

The results of this project are applicable to future research involving the City of 

Austin. Such research may include a flood intensity risk and rate of change assessment 

for the neighborhoods and communities that exist in more vulnerable or rapidly 

developing areas within the floodplain. By addressing further research topics, city 

officials, developers, and residents could gain an even greater understanding of where 

extreme damage could occur during a major flood event in the urbanized floodplain, as 

well as who or what may experience both the immediate and longstanding effects. 

 

VII. CONCLUSION 

 

The looming threat of extreme hydrometeorological events on urban areas are an 

undeniable burden for cities and regions around the world (Kiedrzyńska et al. 2015). As 

urban environments continue to expand their reach and influence across landscapes, 

increases in impervious surfaces can exacerbate the potential for extreme flooding (Furl 

et al. 2015 and Kwak et al. 2008). Because of this, research efforts are needed to explore 

and analyze the identity and defining characteristics of the more flood-prone portions of 

developed areas. Although research exists on the effects of various hydrometeorological 

events in Austin, TX and surrounding areas, a land cover classification and change 

detection analysis of the city’s 100 and 500-year FEMA floodplains have not yet been 

done.  

Through the utilization of remote sensing techniques, geospatial imagery and 

statistics, and digital mapping, this study examined a small yet significant portion of the 

topographic elements that exist across the urbanized floodplain and concluded that land 
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cover change has occurred within the study area between 2008 and 2016. Not only has 

the City of Austin’s urbanized floodplain experienced an increase in developed land 

within the timeframe, some areas (i.e. near or alongside major water features) that were 

classified as developed land in 2008 changed to vegetated land in 2016. In addition, this 

study confirmed the lack of variety across forms of land cover within the study area. With 

the exception of the hydrological features extracted from the images prior to 

classification and analysis, the study area was comprised of developed and vegetated 

land.  

Given that anthropogenic factors often instigate and intensify flood events, this 

study provides valuable insight into the presence and distribution of inhabited and 

uninhabited land across a flood-prone landscape (Glosińska 2014 and Green et al. 2000). 

With growing concerns surrounding the impending threats of climate change on heavily 

populated and expanding urban environments, I believe that officials, developers, 

residents in the City of Austin could greatly benefit from the results of this study. 

Equipped with an improved understanding of what actually exists in the floodplain, I 

hope that they will then be prepared to make sensible decisions concerning future efforts 

in land development and flood hazard mitigation and management. 
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