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ABSTRACT 

Artificial Intelligence (AI) is the panacea for both prescriptive and predictive analytics through 

Machine Learning (ML) techniques, demands for computational performance, and snowballing 

over the decades. Pattern Recognition is increasingly demanding in AI applications that include 

neural networks-based machine learning. In this research, we are dealing face recognition domain 

of pattern recognition, popularly termed computer vision. Computer vision enables a wide range 

of applications spanning across industrial, retail, health care, smart cities in robotics/drones, self-

driving cars, augmented reality, optical character recognition, face and gesture recognition, smart 

Internet of Things, portable/wearable electronics, Law enforcement, and much more.   

Conventional methods like HAAR and HOG algorithms evolved with improved accuracy; these 

conventional methods were confined and domain-specific and achieved an accuracy of up to 80% 

in detection. HAAR and HOG-based algorithms demand expert handcrafting in the design to 

improve accuracy; they are static and non-scalable. In Deep neural networks (DNN), the 

algorithms are generic and dynamic.  DNN learning enables the model to learn from the data. 

Traditional learning models are saturated regarding the accuracy, while dynamic Learning 

improves continually over the quantum of training samples.  Today there are DNNs in domains 

that have achieved over 99% accuracy, which is beyond the ground reality.  DNN has established 

itself as a triumphant set of models for learning relevant connotative representations of data. 

Training of deep-learning models is compute-intensive, and there is an industry-wide trend 

towards hardware specialization to improve performance. This research uses a DNN-based generic, 

efficient, scalable, and platform-independent framework that can be extendable across platforms. 

The proposed framework involves computer vision techniques suitable for unsupervised Learning 

with low latency and high performance.  The proposed framework would be open-source, tested 

across diverse datasets, compatible and scalable across platforms, with low latency and a small 

footprint.  The framework would serve as a benchmark and publish the rating parameters of 

response times, latencies, and accuracy that grade and differentiates various platforms. 

Keywords:  Keywords—Artificial Intelligence (AI), Machine Learning (ML), High-Performance 

Computing (HPC), OpenCV, OpenVINO, OneAPI, Computer Vision, Convolutional Neural 

Network (CNN), Deep Neural Network (DNN), Industry 
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1. INTRODUCTION 

This research is a manifest of Deep Neural Network-based algorithms to recognize faces and 

objects in real-time. Face recognition classification is either feature-based, appearance-based, or 

template-based.  Feature-based techniques attempt to find the locations of distinctive image 

features such as the eyes, nose, and mouth and then validate whether the elements are in a probable 

geometrical pattern.  These techniques include some new strategies with fundamental approaches 

to the face recognition field[1]. 

 

Template-based approaches, such as active appearance models (AAMs)[2], can deal with the broad 

range of pose and expression variability; typically, they require explicit initialization near a natural 

face and are, therefore, unsuitable for fast face detectors. Appearance-based approaches scan over 

the image's small, overlapping rectangular patches, searching for likely face candidates, which 

refines using a cascade of more expensive but selective detection algorithms. 

1.1 Classification of Learning Methodology 

Holistic Learning is which treats the image as is as a whole to generate low-dimensional 

representation. Most commonly used in EigenFace and FisherFace detection methods. 

Specialized Learning is when developers and scientists develop localized features for generating 

a low-dimensional representation. There were non-generic but confined to a particular domain or 

application, popularly observed in LBP[3], LBPH, and Gabor methods. 
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Shallow Learning is the amalgamation of the two methods churning into a hybrid. This hybrid 

method enhanced accuracy. In this method, features are learned independently with arbitrary 

function approximators. (Shallow networks would have one hidden layer) 

Deep Learning is an improved form of shallow Learning, where all the learnings are within Neural 

Networks, and the key to deep Learning is that features are learned from the data itself. Deep 

learning approaches have reached a very high level of accuracy, and all modern methods use deep 

Learning in their pipeline. (Deep Learning would have two or more hidden layers) 

1.2 Problem Statement 

The problem addressed in this thesis is achieving efficient, scalable, and swiftly extendable face 

and object recognition for implementing a deep learning-based high-performance system. This 

benchmarking not only compares the performance of different platforms running a broad range of 

deep learning models but also supports a more profound analysis of the interactions across a broad 

spectrum of diverse model attributes (hyperparameters) and hardware configuration choices, and 

software support. 

1.3 Proposed Solution 

Create a baseline with face and object detection as a domain that would be a benchmark to execute 

across available hardware environments with the following framework characteristics: 
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Figure 1 – Proposed Framework 

 

The proposed framework consists of three layers: 

Application Layer: This layer would abstract the implementation below with a generic 

interface for model tuning 

 

Library Layer: The library layer contains the latest and optimized library and drivers, 

including firmware and other middleware. 

 

Hardware Layer: These above two layers are optimized to the underlying hardware based 

on the architecture implementations that include a number of computing units, the 

capability of computing units, cache size, hierarchy, etc. 
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1.4 Hypothesis 

Implementing in C++ with custom controlled optimization of a DNN would yield low latency, 

highly scalable, swiftly portable generic framework that can be used as a benchmark to rate 

platforms.  

1.5 Research Contribution 

The face detection baseline created with the framework described in section 1.7 would be an open-

source benchmark that can be used to qualify the system.   

1.6 Novelty 

There are several open-source and commercial frameworks, but most of them are limited to a 

particular architecture.  High-efficiency algorithms are proprietary. 

 

 

Table 1– Framework Features 
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1.7 Framework characteristics with baselines 

Derive a framework with the following baselines.  

• Efficient: To maintain the inference accuracy of up to 90%, today, for specialized cases 

(frontal face recognition), there are inference algorithms that achieve a recorded accuracy 

of over 99%[4].  However, accuracy is lower in object detection, dark face-face recognition, 

and other areas.  This thesis aims to provide multiple models to the user under the same 

framework.  The proposed framework would enable users to analyze accuracy parameters 

on the same scale, such as accuracy parameters, hyperparameters, error rate, etc. 

 

• Scalable: Computing systems today consist of a resource-rich with CPU, GPU, and 

memory, creating a distributed computing environment field[5].  This thesis proposes a 

framework that can use the available resources efficiently with a precise definition of 

architectural details[6][7]. 

 

• Platform Independent: The proposed framework will be swiftly portable across Operating 

Systems, Linux, MacOS®, and Windows®. The proposed framework would be capable of 

independent development of training and inference models[8].  With fine-grained power 

profiling and scientific motif composition for multi-chip servers[9].  The proposed 

framework would showcase state-of-the-art compiler optimizations based on heuristics[10]. 

  

The above framework is achieved through the following: 

• Decrease in inherent latencies through pipelining and parallelism at all phases 
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• Boost response times in both Learning and inferencing  

• Achieve real-time inferencing of more than one subject 

• Create C++-based, portable, scalable, low latency, high-performance libraries for subject 

detection. 

• Analyze various image classification methods applicable to the Convolutional Neural 

Networks (CNN) that demand a fixed resource budget and then scale up with resource 

availability for better accuracy. 

1.8 Typical applications by use cases: 

Industrial:  

Auto asset Inspection[11], Automation Machine Vision[12][13], Dynamic Object Detection[12],  

Visual Robotics[14], Predictive positioning[15], Surveillance[16], all industries that are Industry 

4.0 compliant[17].  

Retail:  

Inventory Management[18] (HEB, Amazon), Point of Sale, Theft Protection[19] 

Smart Cities:  

Traffic Management, Law Enforcement[20], Public Safety, Autonomous, and Self Driving 

vehicles[21] 

Health Care:  

Enhanced Swift Diagnostics, Remote Patient Monitoring[22], Bed Detection for Hospital Patient 

Monitoring System[23], Drug Discovery [24], Predictive Care[25][26] 
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Agriculture:  

Beehive Monitoring[27],  

 

Others: 

Hand Keypoint [28]and Gesture Detection 
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2. BACKGROUND 

Computer Vision enables Machine Vision, and Machine Vision has a significant role to play in the 

smart factories of tomorrow, as well, where automation in manufacturing lines would allow 

optimizing to maximize throughput with enhanced quality and profitability. Smart factories are the 

demand of the day, and it is no more a dream concept; it is a baseline for Industry 4.0. 

 

Today Deep Learning has achieved over 98% accuracy in vision detection, while some commercial 

companies have reached up to 99.88% accuracy and within a standard error of 0.0004 on 

Unrestricted, Labeled Outside Data Results[29]. All the algorithms have proven performance and 

have exceeded human capability and perceptions. The next level of challenges is: 

2.1 Challenge 1 

Training a subject domain is critical, complicated, and challenging. It would take a few days to 

weeks of computation based on target domains and the available resources.  

2.2 Challenge 2 

The efficacy of the training depends on both hardware and software, a perfect match of hardware 

utilization of available hardware resources for the software stack; most of the software stack is 

one-off and confined to a particular target hardware system. 

• An application that needs large-resolution like medical centers (CT-scans, MRI) and Space 

Research, where the images are very massive, poses a challenge. 
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• A typical whole-slide image is approximately 200000 x 100000 pixels on the highest 

resolution level with a three-byte RGB pixel format. This means 55.88GB of uncompressed 

pixels of data from a single level[30][31]. We cannot lower the resolution nor resize it into 

patches, as it results in a loss of data and induces false positives. (Memory, Computing, 

and Storage are all challenged) Patch Size Vs. Accuracy has been a tradeoff. 

2.3 Challenge 3 

There are several image classification models, and the challenge is the selection of methodology 

with which we achieve smaller models with higher accuracy is the demand of the day.  GPU-based 

systems fail when the data rates are higher and rely on CPU-based high-performance systems. 

2.4 Challenge 4 

Although DNN characteristics accomplish higher accuracy compared to HOG, DNN comes at a 

massive overhead in energy consumption (~300x-13500x)[3]. The order of magnitude in this gap 

is the manifest of the fact that DNN architecture is programmable/flexible/non-static. DNN 

involves more computation, substantially inducing latency in the system. This research is to learn 

the DNN pipeline and design an optimal framework and achieve the following goals. 
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Figure 2 - Traditional Vs. Deep Learning Methods 

2.5 DNN in computer vision classification and detection 

Deep Neural Network (DNN) based computer vision method outperforms traditional methods. The 

learning curve in Deep Learning does not saturate, unlike conventional techniques, and it keeps 

progressing with more data. Traditional methods like HAAR and HOG[32] are domain-specific, 

while DNN learns irrespective of areas and yields high-performance results.  HAAR and HOG 

might have to be tuned differently for pedestrian detection to direct face detection. HAAR and 

HOG require a lot of trial and error iterations, and in HAAR and HOG methods, there are more 

false positives.  

 

Figure 3 – Training based on triplet loss 
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Figure 4 – Triplet loss relationship w.r.t anchor distance  

 

This research proposes the triplet-based network model, which ensures faster convergence and 

strives to learn valuable observations by relative Euclidean-distance measurements.  A comparable 

model defined by Wang et al. (2014),  and Elad Hoffer & Nir Ailon (Dec 2018)[33] confines for 

learning a ranking for image information retrieval. The procedure is to pick three photos, of which 

two are from the same source and one different. The triplet loss is high between the two images of 

the same source, while the distance/triplet loss is minimal across images from different sources.   

 

However, after training, we see the coefficients of the image from the same sources get clustered 

together.   This research demonstrates using diverse datasets that the model learns a better 

representation than that of the Siamese network. The proposed framework involves computer 

vision techniques suitable for unsupervised Learning with low latency and high performance.    

 

If the embedding is represented by:  

 𝑓(𝑥) ∈ 𝑅𝑑 (1) 

 

Where an image x into a d-dimensional Euclidean space.  The constraint on embedding on a d-

dimensional hypersphere is given by 



 

 

12 

 ‖𝑓(𝑥)‖2 = 1 (2) 

 

The described formula in Equations (1) and (2) 

Here an image xa
i (anchor) of a specific person is closer to all other images xp

i (positive) of the 

same person than it is to any image xn
i (negative) of any other person.  Thus the expectation is 

 

 

‖𝑓(𝑥𝑖
𝑎) − 𝑓(𝑥𝑖

𝑝)‖
2

2
 +  𝛼 <  ‖𝑓(𝑥𝑖

𝑎) − 𝑓(𝑥𝑖
𝑛)‖2

2, 

 ∀ (𝑓(𝑥𝑖
𝑎), 𝑓(𝑥𝑖

𝑝)) ∈ 𝑇 

(3) 

 

 

Where  is a margin that is enforced between positive and negative pairs.  is the set of all possible 

triplets in the training set and has cardinality N. 

 

The loss minimized is given by L 

 ∑ [‖𝑓(𝑥𝑖
𝑎) − 𝑓(𝑥𝑖

𝑝)‖
2

2
+  ‖𝑓(𝑥𝑖

𝑎) − 𝑓(𝑥𝑖
𝑛)‖2

2 + 𝛼]  

𝑁

𝑖

 (4) 

 



 

 

13 

Triplet loss-based deep learning transcends 95% accuracy (more notable compared to human 

beings). HOG features are static, while DNN is dynamic. It would need handcrafting to improve 

the performance further in traditional methods (loses flexibility and becomes domain-specific).  

Hence DNN is dynamic, and progressive Learning is mighty powerful. Although DNN 

characteristics accomplish higher accuracy compared to HOG, DNN comes at a massive overhead 

in energy consumption (~300x-13500x)[34]. The order of magnitude in this gap is the manifest of 

the fact that DNN architecture is programmable/flexible/non-static. DNN involves more 

computation, substantially inducing latency in the system. 

 

The literature surveyed[34] reveals the hardware specification and measured performance of 

couple designs for feature extraction, as shown in Table 2 For CNN, Eyeriss programmed to run 

two CNN models (five convolutional layers of AlexNet and thirteen convolutional layers of VGG- 

16) to confirm the hardware performance contrasts of operating different CNN features. 

 

Eyeriss delivers almost the same computation throughput (i.e., GOPS) (Giga Operations Per 

Second) as the HOG design when executing AlexNet features; HOG performs 35x more input PPS 

(pixels per second); the rift is even more significant between HOG and VGG-16 features. This gap 

is due to the variations in computational complexity (i.e., operations per pixel) between different 

functions, as shown in Table 3. However, the HOG design also utilizes around 10x lesser power 

than Eyeriss. Hence, the HOG hardware consumes 311x and 13,486x less energy per pixel than 

Eyeriss operating AlexNet and VGG-16 features, respectively. Regarding energy per operation, 

the HOG hardware is 10× less than Eyeriss. 
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Table 2  - Relative Hardware specification and performance parameters 

Implemented Feature HOG CNN (AlexNet) CNN(VGG-16) 

Technology 65nm 65nm 

Gate Counts (kgates) 893 1176 

Memory (kB) 159 181.5 

Multiplier Bitwidth 5×11 – 22×22 16×16 

Throughput (Mpixels/s) 62.5 1.8 0.04 

Throughput (GOPS) 46 46.2 21.4 

Power (mW) 29.3 278 236 

DRAM access (B/pixel) 1 74.7 2128.6 

Energy Efficiency (nJ/pixel) 0.5 155.5 6742.9 

Energy Efficiency (GOPS/W) 1570 166.2 90.7 

 

Table 3 -  Computational Complexity 

Feature GOP/MPixel Ratio 

Hand-crafted HOG 0.7 1.0x 

Learned 

CNN (AlexNet) 25.8 36.9x 

CNN (VGG-16) 610.3 871.9x 
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Figure 5  - Two Distinct Eras of Compute usage in Training AI Systems  

Figure 6  - AlexNet to AlphaGo Zero: A 300,000x increase in Compute (Log Scale) 

The demand for computing over time is exponentially increasing; refer to Figure 5  and Figure 6 
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3. LITERATURE REVIEW 

Over a couple of decades, there are various types of research conducted on face recognition 

and inferred with multiple algorithms, including Principal Component Analysis(PCA)[35], LDA, 

Histogram of Oriented Gradients (HOG)[6], Local Binary Pattern Histogram (LBPH), algorithm 

Sparse Coding algorithm. One of the most famous face detection algorithms is the Viola-Jones 

algorithm[7], and it is the basis of many other face detection techniques. This algorithm uses Haar-

like[8] rectangle features to detect a face. They have used an image size of 320x240 pixels and got 

comparatively inferior performance concerning the software-based system executed on CPUs. 

Chakrasali and Kuthale [36] used Haar features and the AdaBoost algorithm for face detection. 

In Principle Component Neural Network (PCNN) based face recognition system, is capable 

of recognizing up to 1400 faces in an image frame and is suitable for access control and video 

surveillance. They have presented a face recognition system with a real-time image of a low- 

resolution of 32x32 pixels only. Lately, Schaffer has a face recognition system that utilizes a 

software-based Viola-Jones face detection algorithm and FPGA-based PCA algorithm for the face 

recognition part. They have reported that real-time face recognition at an accuracy of about 95% 

and can process 13026 faces per second. In this system, 20 face images from each of the 153 people 

have been considered for the recognition database. 

Zhao and Wei exhibited MLBPH based real-time face recognition system with various 

facial deflections and attitude and achieved recognition accuracy of about 48-55% for 300 angular 

positions of the face. Ahmed used LBPH architecture for face recognition at a low resolution of 

35px. Using 500 images per person in the database, they have reported a recognition efficiency of 

94% at 45px and 90% at 35px of the input image. PCA vs. low-resolution recognition system has 
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been shown in [18] where the image resolution was 17x18 pixels, but they have yet to present real-

time recognition. 

In our proposed method of face recognition, we have utilized Local Binary Pattern 

Histogram (LBPH) algorithm, Principle Component Analysis (PCA) based Eigen face algorithm, 

and Fisherface algorithm for real-time face recognition showing a reduced number of face images 

in the database with improved recognition accuracy even with various attitude deflection. We have 

used two sets of created image databases. 

Local Binary Pattern (LBPH), an effectual feature for texture classification in computer vision, is 

a simple yet very efficient operator to describe the contrast information of a pixel concerning its 

neighboring pixels. It labels the pixels of an image by thresholding the neighboring pixels and 

considers the result as a binary number. When combined with the Histograms of Oriented 

Gradients (HOG) descriptor, LBP considerably improves performance on some datasets. LBP 

combined with the HOG descriptor can represent a facial image as a simple data vector and be 

used for face recognition purposes. 

The Fisherface algorithm is another famous face recognition algorithm that originated in 1997. It 

is built upon Eigenfaces and based on the Fisher Linear Discriminant Analysis (FLDA) derived 

from Ronald Fisher’s linear discriminant analysis (LDA) technique. Although both PCA and LDA 

use linear projection for dimension reduction, the results are highly dissimilar. 

LDA maximizes the ratio of the between-class scatter matrix and within-class scatter matrix. For 

this reason, the Fisherface algorithm has a limited effect on the classification process involving 

PCA under different lighting conditions of the image. 

Comparing Deep Neural Networks (DNN) with traditional methods Deep Neural Networks 
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Workflow pipelines HOG is static; it is with a fixed descriptor.  They are hand-crafted and hence 

become confined to a domain, the result being non-generic 

 

Figure 7 - Traditional WorkFlow  

 

 

Figure 8 - ResNet (Bank of CNN) Workflow Pipeline 

 

In this research, we enhance face recognition's discriminative and generalization ability, and we 

adapted VarGFaceNet (Variable Group Convolutional Network)[37].  VarGNet resolves the 

ambivalence between small computational costs and the unbalance of computational intensity 

inside a block.   

The power of the Active Appearance Models (AAM)[2] lies in its behavior of the mean intensity 

error, as shown in Figure 9- Proportion of searches to initial displacements  as we continually train 

multiple models. 
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The search and error reduction enable active clustering. Moreover, the proportion of searches 

converges rapidly during inference with lower iterations.  The deductions are much faster than the 

other algorithms in the domain. 

 

 

Figure 9- Proportion of searches to initial displacements 

3.1 Accuracy and performance comparisons 

Accuracy and performance comparisons between OpenFace[38] as shown in Figure 10 - 

Classification of accuracy with the quantum of training and prior non-proprietary face recognition 

implementations (from OpenCV)  
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Figure 10 - Classification of accuracy with the quantum of training 

 

Figure 11  - Training Time w.r.t quantum of images 
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Performance and Accuracy are not correlated (refer to Figure 12). There is an impact of 

non-linearities and various residual connections. Substituting one matrix multiplication with 

different smaller ones hurts runtime performance due to progressed cache misses. This approach 

is the most effective, with t being a low constant between 2 and 5. It significantly reduces the 

memory requirement but still allows one to utilize most of the efficiencies gained by using highly 

optimized matrix multiplication and convolution operators provided by deep learning frameworks. 

It remains hidden if particular framework-level optimization may lead to further runtime 

improvements. 

Figure 12 - Performance Vs. Accuracy 
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4. METHODOLOGY 

DNN is the most accurate, while the training time is costly and compute-intensive.  Our 

research proposes that the training be done on an HPC pool, and the inference could be made on a 

remote setup. 

Figure 13  - Neural network-based filter and merging 

 

Based on the IEEE paper, Neural Network-Based Face Detection based on an IEEE paper 

from Henry A. Rowley, Shumeet Baluja, and Takeo Kanade operates in two stages, The Neural 

network-based filter and merging overlapping detection and arbitration, as shown in Figure 13.  

The hierarchical design stitches together pixels into an invariant face representation. As depicted 

in Figure 14  - Neural network-based filter and merging, the deep model consists of various 

complicated layers of simulated neurons that convolute and pool input, during which the receptive-

field size of simulated neurons is enlarged to integrate the low-level primary elements into different 

facial attributes, eventually feeding the data-forward to one or more fully connected layer at the 

head of the network. The output is a compressed feature vector that represents the face. Such deep 
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representation is popularly considered the state-of-the-art technique for the face recognition 

field[39]. 

 

Figure 14  - Neural network-based filter and merging 

The evolution of loss functions defines and marks the origin of deep-FR that Deepface[40] 

and DeepID [41] introduced in 2014 (refer to Figure 15 ). Following that, Euclidean-distance-

based loss ever played an essential role in the loss function, such as contractive loss, triplet loss, 

and center loss. In 2016 and 2017, L-softmax[42] and A-softmax[43] additionally promoted the 



 

 

24 

development of significant margin feature learning. In 2017, feature and weight normalization also 

started to show exceptional performance, which led to the study of variations of softmax. 

Figure 15 - Time Scale of Loss Functions Definition 

 

Python, along with SciKit learn, OpenCV, and DLib libraries, will be used to develop and 

deploy the initial prototype.  C++-based implementation would be used for production quality, low 

latency, and low footprint package.  

Figure 16  - Training and Optimization Workflow 



 

 

25 

5. EXPERIMENTAL SETUP 

5.1 Preprocessing Phases 

Image preprocessing can significantly enhance the integrity of optical inspection.  Various 

filtering techniques are adopted that further enhances or reduce particular image information.   

Image preprocessing decreases processing time, increases accuracy, and enables a feature 

extraction field[44].  

 

Figure 17 - Preprocessing Phases 

Reading Or Parsing Of Image 

The incoming files into the system could be in various formats.  The design should be 

capable of reading more than one file format and capable of decoding the image information from 

the same. 

Face Detection: There could be several images being scanned in the picture frame along with the 

background; In this phase, the region of the image which correlates to a face(s) based on the face-

boundary-detected feedback, face regions are detected fed to the cropping stage. 

 

Cropping the face: The image region where the frontal face is identified is cropped, and only this 

cropped region is used in the face recognition process.  All the new images need similar dimensions. 

Read Image FIle Face detection Crop Resize Normalization
Frontalization 

(Optional)
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Therefore, after cropping the face from the original image, the new images are normalized to a 

standard size of m x n pixels. 

 

Resizing: Images are resized into various scales to determine the impact of the size variances.   

Every resized image carries different information; hence, the best image size needs detailed 

analysis.  

 

Normalization:The rationale of face normalization is to reduce the impact of irrelevant and 

redundant information from the image, which increases accuracy.  Several techniques, like 

geometric normalization and photometric normalization, are used for facial recognition in 

controlled environments to adapt these techniques to un-controlled ones [45]. 

 

Frontalization: Even though there are a plethora of modern approaches in face recognition using 

DNN, we observe a significant drop in accuracy for pose variations in unconstrained environments. 

“Frontalization” is the process of synthesizing frontal-facing views of faces appearing in single 

unconstrained photos[46]. Frontalization can significantly boost face recognition performance and 

help recognize faces in the wild[47]. Frontalization is optional but an instrumental step when 

analyzing images in the wild. 
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Figure 18 -  Affine Transformation in Preprocessing 

Figure 18 -  Affine Transformation in Preprocessing depicts how the Affine 

Transformation[48] normalizes faces. The detected landmarks with affine transformation make the 

eye corners and nose close to the mean locations. The affine transformation also resizes and crops 

the image to the edges of the landmarks, so the input image to the neural network is with the 

desired size.  
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5.2 Experiment-1: Face Detection 

This research is a manifest of Deep Neural Network-based algorithms to recognize faces and 

objects in real-time. Face recognition is classified as feature-based, appearance-based, or template-

based. Feature-based techniques attempt to find the locations of distinctive image features such as 

the eyes, nose, and mouth and then validate whether the elements are in a probable geometrical 

pattern. These techniques include some of the new strategies to face recognition. These techniques 

include some of the fundamental approaches to face recognition (Neural Network-Based Face 

Detection [49]) 

 

Today Deep Learning has achieved over 98% accuracy in vision detection. In comparison, some 

commercial companies have reached up to 99.88% accuracy and within a standard error of 0.0004 

on Unrestricted, Labeled Outside Data Results[50]. All the algorithms have proven performance 

and have exceeded human capability and perceptions. The next level of challenges is:  

 

Challenge-1: Training a subject domain is critical, complicated, and challenging. It would take a 

few days to weeks of computation based on target domains and the available resources.  

 

Challenge-2: Efficacy of the training depends on both hardware and software, a perfect match of 

hardware utilization of available hardware resources for the software stack; most of the software 

stack is one-off and confined to a particular target hardware system. An application that needs 

large-resolution like medical centers (CT-scans, MRI) and Space Research, where the images are 

very massive, poses a challenge. A typical whole-slide image is approximately 200000 x 100000 

pixels on the highest resolution level with a 3-byte RGB pixel format. This means 55.88GB of 
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uncompressed pixel data from a single level. We cannot lower the resolution nor resize it into 

patches, as it results in a loss of data and induces false positives. (Memory, Computing, and Storage 

are all challenged) Patch Size Vs. Accuracy has been a tradeoff.  

 

Challenge-3: There are several image classification models, and the challenge is the selection of 

methodology with which we achieve smaller models with higher accuracy, the demand of the day. 

GPU-based systems fail when the data rates are higher and rely on CPU-based high-performance 

systems.  

 

Challenge-4: Although DNN characteristics accomplish higher accuracy compared to HOG, DNN 

comes at a massive overhead in energy consumption (~300x-13500x). The order of magnitude in 

this gap is the manifest of the fact that DNN architecture is programmable/flexible/non-static. 

DNN involves more computation, substantially inducing latency in the system. This research is to 

learn the DNN pipeline and design an optimal framework and achieve the following goals.  

Framework characteristics with baselines  

Derive a framework that is Extremely Efficient: The baseline is to maintain an inference accuracy 

of over 95%. Highly Scalable: with a baseline maintaining scalability with system resources 

(multiprocessing, multithreaded system). Easily Extendable: Ensure the framework can be swiftly 

portable across platforms; Intel® and NVDIA® platforms are under consideration.  

 

Based on the IEEE paper, Neural Network-Based Face Detection based on an IEEE paper from 

Henry A. Rowley, Shumeet Baluja, and Takeo Kanade[49], it’s a two-stage operation, The Neural 

network-based filter and merging overlapping detection and arbitration.  
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The optimized neural network resulted in almost 99% accuracy in detecting faces. Actress 

Angelina Jolie was enrolled along with other celebrities. Users were told to select any picture of 

Angela Jolie from the wild (These pictures were not trained/enrolled, but we are to predict the 

celebrity name).  

 

The optimized neural network resulted in almost 99% accuracy in detecting faces.  Actress 

Angelina Jolie was enrolled along with other celebrities.  Users were told to select any picture of 

Angela Jolie from the wild (These pictures were not trained/enrolled, but we are to predict the 

celebrity name). 

 

 

Case 1:  

The subject was picked up randomly from the web, a magazine cover page.  

The model recognized the subject accurately. 

Inference time: 81 msec 

 

Case 2: 

 The subject is not facing the camera, and the face is tilted to the 

side, and the model recognizes the subject accurately. 

Inference time: 24 msec 
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Case 3:  

The next challenge was to pick the subject in disguise.  Our DNN model was 

still able to recognize the face accurately. 

Inference time: 54 msec 
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5.3 Experiment-2: Image Stitching 

Image stitching is a complex process that requires a combination of algorithms and techniques, 

and the code can be quite involved. Here is a general overview of the steps involved in image 

stitching: 

 

Image alignment: Determine the transformation required to align the input images, such as 

translation, rotation, or scaling. Standard image alignment techniques include RANSAC (Random 

Sample Consensus) and homography estimation. 

 

Image blending: Blend the aligned images to create a seamless final stitched image. Common 

blending techniques include multi-band blending and feathering. 

 

Feature detection and matching: Detect key features in the input images, such as corners, edges, 

or blobs, and match them across images to determine the relative position and orientation of each 

image. Popular feature detection algorithms include SIFT (Scale-Invariant Feature Transform) and 

SURF (Speeded Up Robust Features). 

 

The incorrect matching of images may significantly impact the results of the geometric 

transformation model. To increase recording speed and precision, RANSAC is the acronym for 

"Random Sample Consensus." This filtering algorithm was published by Fischler and Bolles in 

1981[51]. It is a non-deterministic algorithm because it does not ensure to return of acceptable 

results; the probability of success increases if more iteration is made to discard the false matches. 
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RANSAC is an iterative method used by a group of observed data, which contains outliers for 

estimating a mathematical model's parameters and finding the best-fit results. 

 

Here's a general code structure for image stitching using OpenCV: 

import numpy as np 

import cv2 

 

# Read in input images 

image1 = cv2.imread('image1.jpg') 

image2 = cv2.imread('image2.jpg') 

 

 

# Identifying key points and descriptors for the given image 

detector = cv2.xfeatures2d.SIFT_create() 

key_point_img1, descriptor_img1 = detector.detectAndCompute(image1, None) 

key_point_img2, descriptor_img2 = detector.detectAndCompute(image2, None) 

 

 

# Match features between images 

matcher = cv2.FlannBasedMatcher() 

matches = matcher.knnMatch(descriptor_img1, descriptor_img2, k=2) 

 

 

# Apply ratio test to filter matches 

good_matches = [] 
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for m, n in matches:  # ratio test as per Lowe's paper[52] 

    if m.distance < 0.7 * n.distance: 

        good_matches.append(m) 

 

 

# Homography using RANSAC estimation 

if len(good_matches) > 10: 

    src_pts = np.float32([key_point_img1[m.queryIdx].pt for m in 

good_matches]).reshape(-1, 1, 2) 

    dst_pts = np.float32([key_point_img2[m.trainIdx].pt for m in 

good_matches]).reshape(-1, 1, 2) 

    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) 

    # Apply homography to align images 

    aligned_image = cv2.warpPerspective(image1, M, (image2.shape[1], 

image2.shape[0])) 

    # Blend aligned images using multi-band blending 

    final_image = cv2.seamlessClone(aligned_image, image2, mask, (0, 0, 0), 

cv2.NORMAL_CLONE) 

 

 

# Display final stitched image 

cv2.imshow('Stitched Image', final_image) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 
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Homography in image processing refers to a mathematical transformation that maps points in one 

image to corresponding points in another. Homography is a critical concept in image stitching, 

where it is used to estimate the geometric transformation required to align multiple images. 

 

In image processing, a homography matrix is a 3x3 matrix representing the transformation between 

two images. This matrix maps the coordinates of a point in one image to the corresponding point 

in another image. The homography matrix can be computed using a set of corresponding points in 

the two images. 

 

The homography matrix can be used to perform various image processing tasks, such as image 

registration, stereo rectification, and panoramic image stitching. For example, in panoramic image 

stitching, the homography matrix is used to align multiple images with overlapping regions so that 

they can be stitched together to create a single panoramic image. 

 

Homography can be represented using projective geometry, which allows for the transformation 

of objects from one plane to another, preserving straight lines and angles. The transformation 

matrix can be obtained using different algorithms, such as direct linear transformation (DLT) or 

RANSAC (Random Sample Consensus). 

 

RANSAC (Random Sample Consensus) is a robust method used in image processing and computer 

vision to estimate the parameters of a mathematical model from a set of data points that may 

contain outliers. RANSAC aims to identify the inliers, which are the data points that best fit the 

mathematical model while discarding the outliers that do not fit the model. 
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RANSAC is commonly used in image processing to estimate homography between two images to 

align them. Homography is a transformation that maps points in one image to corresponding points 

in another image. However, due to factors such as camera movement or image distortion, there 

may be outliers in the set of corresponding points. RANSAC can be used to estimate the 

homography matrix in the presence of these outliers. 

 

The RANSAC algorithm works by randomly selecting a subset of the corresponding points and 

estimating the homography matrix using these points. The homography matrix is then used to 

transform the remaining points, and those points that fit the model within a specified tolerance are 

classified as inliers. This process is repeated for a specified number of iterations, and the 

homography matrix that produces the largest number of inliers is selected as the best estimate. 

 

RANSAC is a powerful algorithm for estimating the parameters of a mathematical model in the 

presence of outliers. It is widely used in image processing and computer vision for tasks such as 

image alignment, object recognition, and stereo matching. However, it can be computationally 

expensive and may require a large number of iterations to obtain a good estimate. 
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Figure 19 -  Left and the right image to be stitched 

 

 

Figure 20 – Stitched Output Image 
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5.1.3 Image stitching and advantages 

 

Image stitching combines multiple images with overlapping regions to create a larger panoramic 

or wide-angle image. The advantages of image stitching include the following: 

 

Increased field of view: Image stitching allows you to create a larger panoramic or wide-angle 

image, giving you a wider field of view than what is possible with a single image. This can be 

useful for landscape photography, architectural photography, and other applications where you 

want to capture a large scene. 

 

High resolution: Image stitching can also increase the resolution of the final image, as each image 

contributes to the overall resolution of the final image. This can result in a final image that is much 

higher in resolution than what is possible with a single image. 

 

Reduced distortion: Wide-angle lenses can often produce image distortion, such as barrel 

distortion or pincushion distortion. Image stitching can help reduce this distortion by stitching 

together images taken from different perspectives. 

 

Improved dynamic range: Image stitching can also help improve the dynamic range of the final 

image by combining images with different exposures. This can result in a final image with more 

detail in the highlights and shadows. 
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Artistic expression: Image stitching can also be used to create artistic images, such as wide-angle 

landscapes or cityscapes. It allows photographers to capture impossible scenes with a single image 

and can add a unique perspective to their work. 

 

Image stitching allows us to create larger, higher-resolution images with reduced distortion and 

improved dynamic range. It can be helpful in a wide range of applications, from landscape and 

architectural photography to artistic expression. 

5.4 Popular algorithms for image stitching 

There are several image stitching algorithms, each with advantages and limitations. Here are some 

of the most commonly used algorithms for image stitching: 

 

Feature-based algorithms: Feature-based algorithms detect key features in the input images, such 

as corners, edges, or blobs, and match them across images to determine the relative position and 

orientation of each image. Popular feature-based algorithms include SIFT (Scale-Invariant Feature 

Transform) and SURF (Speeded Up Robust Features). 

 

Phase correlation-based algorithms: Phase correlation-based algorithms use Fourier transform to 

detect and match phase correlations between input images. These algorithms are fast and accurate 

but require precise alignment of the input images. The most common phase correlation-based 

algorithm for image stitching is the Lucas-Kanade algorithm. 
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Optical flow-based algorithms: Optical flow-based algorithms detect motion between consecutive 

video frames and use it to align images. These algorithms can handle small misalignments and 

produce smooth image transitions but may struggle with large perspective changes. Standard 

optical flow-based algorithms include the Lucas-Kanade algorithm and the Farnebäck algorithm. 

 

Graph-cut-based algorithms: Graph-cut-based algorithms partition the input images into 

overlapping regions and use graph-cut optimization to determine the best alignment of the input 

images. These algorithms produce accurate and seamless image stitching but can be 

computationally expensive. Popular graph-cut-based algorithms include the Blended-Pyramid 

algorithm and the Multi-Band Blending algorithm. 

 

Each image stitching algorithm has its advantages and limitations, and the choice of algorithm 

depends on the application's specific requirements. Feature-based algorithms are robust and widely 

used, while phase correlation-based algorithms are fast and accurate. Optical flow-based 

algorithms can handle small misalignments and produce smooth transitions, and graph-cut-based 

algorithms produce accurate and seamless image stitching but can be computationally expensive. 

5.5 Challenges in Image Stitching 

Image stitching is a complex process that involves aligning and blending multiple images to create 

a single panoramic or wide-angle image. Here are some of the challenges that can arise during the 

image-stitching process: 
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Perspective distortion: Perspective distortion can occur when images are taken from different 

perspectives, resulting in distortions in the final stitched image. This can be particularly 

challenging when stitching images with complex geometry or architecture. 

Exposure and color variations: Exposure and color variations can occur between images due to 

lighting conditions or camera settings changes. These variations can result in visible seams or 

differences in color and brightness in the final stitched image. 

 

Parallax error: Parallax error occurs when the camera's viewpoint changes between images, 

resulting in misalignments between the images. This can result in ghosting or blurring in the final 

stitched image. 

 

Moving objects: Moving objects in the scene can be challenging when stitching images, as they 

can cause misalignments or ghosting in the final stitched image. 

 

Limited field of view: The camera's field of view may be limited, which can result in gaps or 

missing parts of the scene in the final stitched image. 

 

Computational complexity: Image stitching can be computationally complex, particularly when 

dealing with large numbers of images or high-resolution images. This can result in extended 

processing times or memory limitations. 

 

Image stitching can be challenging due to issues such as parallax error, perspective distortion, 

exposure and color variations, moving objects, limited field of view, and computational 
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complexity. Addressing these challenges requires careful planning, preparation, and optimization 

of the stitching process, as well as the use of appropriate algorithms and tools. 

5.6 Experiment-3: Object detection with Depth measurements 

Object detection is a crucial task in computer vision, and artificial intelligence (AI) plays a vital 

role in achieving accurate and efficient detection. AI-based object detection involves training a 

deep learning model on a large dataset of labeled images, allowing the model to learn the features 

that distinguish between different objects. 

 

Passive stereo is similar to that of human eyes. Human brains (subconsciously) estimate the 

depth of objects and scenes based on the difference between what our left eye sees versus what 

our right eye sees. On OAK-D cameras, it is the same in a stereo camera pair - left and right 

monocular cameras - and the VPU does the disparity matching to estimate the depth of objects 

and scenes. 

A stereo pair camera's disparity is the difference (in pixels) between the same point on the left 

and right images. A great example of disparity can be seen below - a red line is drawn between 

facial landmarks (eyes, nose, mouth) to demonstrate disparity. 

 

Active stereo depth perception: The OAK Pro cameras use conventional active stereo vision. A 

dot projector projects many small dots in front of the device, which helps with disparity 

matching, especially for low-visual-interest surfaces (blank surfaces with little to no texture), 

such as a wall or ceiling. 
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The stereo-matching process is performed the same way as passive stereo perception, and the dots 

only help with the accuracy. 

 

There are several AI-based object detection techniques, including: 

 

Region-based Convolutional Neural Networks (R-CNN): This approach involves identifying 

regions of an image that could contain an object, then applying a CNN to each region to classify 

the object. 

 

You Only Look Once (YOLO): YOLO is a real-time object detection system that divides an image 

into a grid and predicts the object class and location for each cell. 

 

Single Shot Detector (SSD): SSD is another real-time object detection system that involves 

predicting the object class and location at multiple scales. 

 

AI-based object detection has many applications, including surveillance, autonomous driving, and 

medical imaging. In surveillance, AI-based object detection can help detect suspicious behavior, 

such as someone leaving a package in a public space. In autonomous driving, AI-based object 

detection can help the vehicle identify obstacles and navigate the environment safely. AI-based 

object detection can help identify tumors or other abnormalities in medical imaging. 

 

Despite the significant advances in AI-based object detection, there are still challenges, such as 

detecting objects in low light conditions, occlusion, and dealing with variations in object 



 

 

44 

appearance. However, researchers are constantly developing new techniques and approaches to 

addressing these challenges. 

 

AI-based object detection is a powerful technology with several applications. As technology 

advances, we can expect more innovative applications in robotics, augmented reality, and many 

more. 

5.7 Comparing YOLO with SSD 

You Only Look Once (YOLO), and Single Shot Detector (SSD) are popular and widely used deep 

learning-based object detection methods. Both techniques are designed to detect objects in real-

time and are optimized for speed and accuracy. Here is a comparison of YOLO and SSD for object 

detection: 

 

Architecture: YOLO and SSD use a convolutional neural network (CNN) architecture. However, 

YOLO uses a single neural network to predict the object class and location, whereas SSD uses 

multiple convolutional layers at different scales to detect objects. 

 

Speed: YOLO is faster than SSD because it only needs to make one pass through the network to 

predict the object class and location. In contrast, SSD must process multiple image scales to 

achieve high accuracy. 

 

Accuracy: SSD is generally more accurate than YOLO because it uses multiple scales to detect 

objects. This means that SSD can detect smaller objects that YOLO may miss. However, YOLO 
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can be more accurate in detecting large objects because it uses a single neural network to detect 

them. 

 

Training time: YOLO requires less training time than SSD, as it trains the model end-to-end in a 

single stage. In contrast, SSD requires multiple stages of training to detect objects at different 

scales. 

 

Object detection in dense scenes: SSD can perform better than YOLO in dense scenes with 

overlapping objects because it uses multiple scales to detect objects. YOLO can sometimes miss 

objects in such scenes. 

 

Object localization: YOLO is better at localizing objects accurately than SSD, as it predicts the 

object location directly in the image. In contrast, SSD uses anchor boxes to predict object location, 

which can sometimes result in imprecise object localization. 

 

YOLO and SSD are both efficient object detection methods with their strengths and weaknesses. 

YOLO is faster and better at localizing large objects, while SSD is generally more accurate and 

better at detecting smaller objects.  The choice between YOLO and SSD depends on the specific 

requirements of the application and the tradeoff between speed and accuracy.   

 

In our experiment we built the system to compare the performace variance between python 

implementation on both Jetson-nano and X86 platform as shown in Figure 21.  Python 

implementation are good for proto typing while it has an inherient latencies involved due to 
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interpreter.  Our analysis include comparing both YOLO and SSD for comparision of performance 

as shown in Figure 21 and Figure 23 

 

C++ implementation  would produce production quality binaries and we have observed 

improvement in performance (as show in Figure 25 and Figure 26 ) for the same. 

Figure 21  - Comparison of Python implementation between JetsonNano and X86_32GB 
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Figure 22  - Comparison of  C++ implementation between JetsonNano and X86_32GB 

 

Figure 23  - Comparison of Python implementation between JetsonNano and X86_32GB 
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Figure 24  - Comparison of C++ implementation between JetsonNano and X86_32GB 

 

Figure 25  - Comparison of Python Vs. C++ Binary implementation on SSD Resnet-18 
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Figure 26  - Comparison of Python Vs. C++ Binary implementation on YOLO 5 

 

Detection of large objects: YOLO is better at detecting more prominent objects, such as cars or 

people, because it uses a single neural network. This can be an advantage in applications where 

large objects are of interest. 

 

Object detection in images with low resolution or low contrast: YOLO can perform better than 

SSD in images with low resolution or low contrast because it uses global information from the 

entire image to detect objects. 

 

On the other hand, here are some scenarios where SSD may be preferred over YOLO because of 

the following: 
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High-precision object detection: SSD is generally more accurate than YOLO because it uses 

multiple scales to detect objects. This can be an advantage in applications where high-precision 

object detection is required. 

 

Detection of small objects: SSD can detect smaller objects better than YOLO because it uses 

multiple scales to detect objects. This can be an advantage in applications where small objects are 

of interest, such as in medical imaging or microscopy. 

 

Object detection in images with high clutter: SSD can perform better than YOLO in images with 

high clutter, such as crowded scenes, because it uses anchor boxes to predict object locations. This 

can result in more precise object detection in such scenarios. 

 

YOLO and SSD have their own strengths and weaknesses, and the choice between them depends 

on the application's specific requirements. YOLO is faster and better at detecting larger objects, 

while SSD is generally more accurate and better at detecting smaller objects. 

 

5.8 YOLO vs. SSD for human identifications 

Both You Only Look Once (YOLO) and Single Shot Detector (SSD) are capable of detecting and 

identifying humans in images and videos. However, the choice between YOLO and SSD for 

human identification depends on the application's specific requirements. 
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YOLO may be preferred for human identification in scenarios that require real-time processing 

and detection speed. Since YOLO is faster than SSD, it can process images and videos in real-time 

and is ideal for applications that require quick identification of humans, such as surveillance 

systems, security systems, or crowd monitoring. 

 

SSD, on the other hand, may be preferred for applications that require more precise detection and 

identification of humans. Since SSD is generally more accurate than YOLO, it can detect humans 

with higher precision, making it ideal for applications that require high-precision human 

identification, such as medical imaging or forensics. 

 

It is also worth noting that both YOLO and SSD can be trained on large datasets of human images 

to improve their accuracy and identification capabilities. This means that the accuracy of both 

methods can be improved by fine-tuning the models on specific human identification tasks. 

 

In summary, both YOLO and SSD can be used for human identification, and the choice between 

them depends on the application's specific requirements. YOLO may be preferred for real-time 

processing and detection speed, while SSD may be preferred for higher-precision human 

identification. 

5.9 Challenges in porting YOLO on NVIDIA Jetson Nano 

The NVIDIA Jetson Nano is a small, low-power computing platform that runs deep learning 

models like You Only Look Once (YOLO) for object detection. However, some challenges may 

arise when porting YOLO to the Jetson Nano. Here are some of the main challenges: 
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Limited processing power: The Jetson Nano is a low-power platform, which means it has limited 

processing power compared to more powerful computing platforms. YOLO is a computationally 

intensive algorithm that requires significant processing power, so it may need to be optimized for 

the Jetson Nano to run efficiently. 

 

Limited memory: The Jetson Nano has limited memory compared to more powerful computing 

platforms, which can be challenging when running deep learning models like YOLO. Large 

models like YOLO may require more memory than is available on the Jetson Nano, so that memory 

optimization techniques may be required. 

 

Compatibility issues: YOLO is designed to run on a variety of computing platforms, but there may 

be compatibility issues when porting it to the Jetson Nano. Ensuring that the software libraries and 

dependencies required by YOLO are compatible with the Jetson Nano is crucial. 

 

Power consumption: The Jetson Nano is a low-power platform, which means it has limited power 

consumption compared to more powerful computing platforms. YOLO is a computationally 

intensive algorithm that requires a significant amount of power, so it may need to be optimized for 

power consumption to run efficiently on the Jetson Nano. 

 

Model optimization: YOLO is a large and complex model requiring significant processing power 

and memory. To run efficiently on the Jetson Nano, the YOLO model may need to be optimized 

and compressed, which can be a complex process. 
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Porting YOLO to the NVIDIA Jetson Nano can be challenging due to its limited processing power, 

memory, and power consumption. However, with appropriate optimization techniques and 

compatibility checks, running YOLO efficiently on the Jetson Nano for object detection tasks is 

possible. 

5.10 Experiment-4 : Integrating Multiple POE Depth Cameras 

Integrating multiple cameras can be a complex process, and several challenges must be addressed.   

 

Setup: There are three depth based cameras as shown in the Figure 27 .  There are two front facing 

cameras and one rear facing cameras. 

 

Figure 27  - Three camera setup schematic 

 

right left 

Front facing cameras 

Rear-facing cameras 
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Here are some of the main challenges in integrating multiple cameras: 

Calibration: Calibration is one of the most critical challenges in integrating multiple cameras. This 

involves aligning the different cameras' viewpoints so that they can provide accurate and consistent 

data. It requires careful positioning of the cameras, setting up the right angles, and adjusting the 

focal length to ensure that the images captured by the different cameras match each other. 

 

Synchronization: Another major challenge is synchronizing the cameras' output. To ensure that 

the images captured by the different cameras are aligned accurately, they need to be triggered 

simultaneously. This requires the use of specialized software or hardware to ensure that the 

cameras are in sync with each other. The data streams must be synchronized to capture the data 

simultaneously. This can be challenging, as the cameras may have different frame rates or internal 

clocks. 

 

Data management: Integrating multiple cameras generates a large amount of data, which can be 

difficult to manage. The images captured by each camera need to be stored, processed, and 

analyzed, and this requires a robust data management system that can handle large amounts of data. 

Image processing: Once the data is captured, it must be processed to extract meaningful 

information. This can be a complex process, particularly if the cameras are capturing images from 

different angles or with different lighting conditions. 

 

Cost: Integrating multiple cameras can be expensive, particularly if high-quality cameras are 

required. The cost of hardware, software, and data management systems can add up quickly, 

making it challenging to justify the expense. 
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Maintenance: Maintaining multiple cameras can also be a challenge. The cameras need to be 

regularly serviced and calibrated to ensure that they are functioning correctly. This can be time-

consuming and expensive, particularly if the cameras are located in hard-to-reach places. 

Camera placement: The placement of the cameras is critical for achieving accurate and reliable 

data capture. Cameras must be placed in such a way that they capture the desired field of view and 

do not interfere with each other. 

 

Software integration: Integrating multiple cameras requires camera hardware and software 

coordination. This can be a challenge, as different cameras may have different drivers or software 

interfaces that need to be integrated. 

 

Integrating multiple cameras on the NVIDIA Jetson Nano can be further challenging due to limited 

bandwidth, synchronization, camera placement, data processing, and software integration. Careful 

planning and optimizing hardware, software, and data streams can help overcome these challenges 

and ensure accurate and reliable data capture. 

 

Observations: The three depth cameras, two in the front and one in the rear, mounted on a rack, 

produced promising results. 

a. Multiple subjects were detected concurrently as shown in Figure 30 with over 95% 

accuracy. 

b. Multiple subjects were detected on multiple cameras concurrently as shown Figure 31 in 

with over 95% accuracy. 
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c. Multiple subjects, multiple cameras with live streaming as shown in Figure 32 with over 

95% accuracy 

Figure 28  - Three camera setup front view 

Figure 29  - Camera Mounted 

Front-Left 

Camera Rear Camera 
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Figure 30  - Multiple subject detection on a single camera with over 95% accuracy 

 

Figure 31  - Concurrent detection on multiple cameras with over 95% accuracy 
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Figure 32  - Concurrent detection on multiple cameras with live streaming over 95% accuracy 

 

5.11 When to use YOLO as compared to SSD 

The choice between You Only Look Once (YOLO) and Single Shot Detector (SSD) for object 

detection depends on the application's specific requirements. Here are some scenarios where 

YOLO may be preferred over SSD: 

 

Real-time object detection: YOLO is faster than SSD, making it ideal for applications that require 

real-time object detection. Examples include surveillance systems, autonomous vehicles, and 

robotics applications where speed is critical. 
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Disparity in image depth detection refers to the apparent difference in the position of an object in 

a scene when viewed from two different perspectives or cameras. This concept is crucial in 

estimating depth information from stereo images, essential for various computer vision tasks such 

as 3D reconstruction, autonomous navigation, and obstacle detection. In the context of stereo 

vision, two cameras are used to capture the same scene from slightly different viewpoints, 

generating a pair of images known as the left and right stereo images. Since a baseline distance 

horizontally separates the cameras, objects in the scene will appear at slightly different positions 

in the two images. This positional difference, or disparity, is inversely proportional to the object's 

depth from the cameras. 

 

Depth estimation using disparity involves the following steps: 

Calibration: To ensure accurate depth estimation, it is essential to calibrate the stereo camera 

system to account for any misalignments, lens distortions, or differences in intrinsic camera 

parameters. 

 

Rectification: This process involves aligning the left and right stereo images so that corresponding 

points lie on the same horizontal scanlines, simplifying the subsequent disparity computation. 

Matching: In this step, the algorithm finds corresponding points or features in the left and right 

images. This can be done using various methods, such as block matching, semi-global matching, 

or graph-cut algorithms. 

 

Disparity computation: Once corresponding points are identified, the disparity can be calculated 

as the difference in their horizontal coordinates in the left and right images. 
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Depth estimation: Using the calculated disparity values, camera geometry, and the baseline 

distance between the cameras, the depth of each point in the scene can be estimated via 

triangulation. 

 

Estimating disparity and depth from stereo images can be challenging in cases of occlusions, 

repetitive textures, or low-textured surfaces. However, Convolutional Neural Networks (CNNs), 

have significantly improved the accuracy and robustness of disparity estimation and depth 

detection from stereo images. 

 

Disparity and Error in depth estimation The correlation of depth error with the disparity in image 

depth detection is an essential factor to consider when evaluating the performance and accuracy of 

stereo vision algorithms. Depth error refers to the difference between the estimated depth and the 

true depth of an object or point in the scene. Disparity, as previously explained, is the apparent 

difference in the position of an object in the scene when viewed from two different perspectives 

or cameras. 

 

In general, depth error and disparity are inversely correlated, as the depth error typically 

increases when the disparity decreases. The correlation can be as follows: 

a. Small disparity values correspond to objects far from the cameras. In this case, even 

minor errors in disparity estimation can lead to significant depth errors due to the 

nonlinear relationship between depth and disparity. As objects get farther from the 

cameras, the relative change in depth becomes more prominent for a given change in 

disparity. 



 

 

61 

 

b. Contrariwise, large disparity values correspond to objects closer to the cameras. In this 

case, errors in disparity estimation have a more negligible impact on depth estimation 

because the relationship between depth and disparity is less sensitive to changes in 

disparity for nearby objects. 

 

c. Additionally, the depth error can be influenced by the quality of the stereo matching 

algorithm, camera calibration, and rectification, which affect disparity estimation. Errors 

in any of these steps can lead to inaccuracies in disparity calculation and, consequently, 

depth estimation. 

 

d. Noise and other artifacts in the stereo images can also impact the accuracy of disparity 

estimation. For example, occlusions, repetitive textures, or low-textured surfaces can 

make it difficult to find corresponding points in the left and right images, resulting in 

errors in disparity estimation and depth estimation.In summary, depth error and disparity 

are generally inversely correlated in image depth detection, with depth errors typically 

increasing as disparity values decrease. This relationship can be affected by various 

factors, such as the quality of the stereo-matching algorithm, camera calibration as 

depicted in Figure 34 and Figure 35 , rectification, and noise in the stereo images. 

5.12 Hardware Specifications 

Camera Hardware Specifications: This OAK camera uses Power-over-Ethernet (PoE) for 

communication and power. It offers full 802.3af, Class 3 PoE compliance with 1000BASE-T 
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speeds (1 Gbps), and has a micro SD (uSD) card connector. A PoE injector/switch is required to 

power the device. It also features IP67 rated enclosure. 

 

Camera module specifications: 

Table 4  - OAK Camera Specifications 

Camera Specs Color camera Stereo pair 

Sensor IMX378 (PY004 AF, PY052 FF) OV9282 (PY003) 

DFOV / HFOV / VFOV 81° / 69° / 55° 82° / 72° / 50° 

Resolution 12MP (4032x3040) 1MP (1280x800) 

Focus AF: 8cm - ∞, FF: 50cm - ∞ FF: 19.6cm - ∞ 

Max Framerate 60 FPS 120 FPS 

F-number 1.8 ±5% 2.0 ±5% 

Lens size 1/2.3 inch 1/4 inch 

Effective Focal Length 4.81mm 2.35mm 

Distortion < 1% AF, < 1.5% FF < 1% 

Pixel size 1.55µm x 1.55µm 3µm x 3µm 

 

RVC2 Performance 

• Robotics Vision Core 2 (RVC2 in short) is the second generation of our RVC. OAK 

Series 2 and our initial devices are built on top of the RVC2. 

• RVC2 encapsulates two main components: 

• DepthAI features that are fine-tuned for the particular SoC 
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• A performant SoC and all it’s support circuitry (HS PCB layout, power delivery network, 

efficient heat dissipation, etc.) 

• This OAK device is built on top of the RVC2. Main features: 

• 4 TOPS of processing power (1.4 TOPS for AI - RVC2 NN Performance) 

• Run any AI model, even custom architectured/built ones - models need to be converted. 

• Encoding: H.264, H.265, MJPEG - 4K/30FPS, 1080P/60FPS 

• Computer vision: warp/dewarp, resize, crop via ImageManip node, edge detection, 

feature tracking. You can also run custom CV functions 

• Stereo depth perception with filtering, post-processing, RGB-depth alignment, and high 

configurability 

• Object tracking: 2D and 3D tracking with ObjectTracker node 

 

Streaming Hybrid Architecture Vector Engines – SHAVES: The SHAVES are vector processors 

in DepthAI/OAK. The 2x NCE (neural compute engines) were architected for a slew of 

operations, but there are some that are not implemented. So the SHAVES take over these 

operations. 

 

These SHAVES are also used for other things in the device, like handling reformatting of images, 

doing some ISP, etc. 

 

So the higher the resolution, the more SHAVES are consumed for this. 

• For 1080p, 13 SHAVES (of 16) are free for neural network stuff. 

• For 4K sensor resolution, 10 SHAVES are available for neural operations. 
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• There is an internal resource manager inside DepthAI firmware that coordinates the use 

of SHAVES, and warns if too many resources are requested by a given pipeline 

configuration. 

 

StereoDepth: Stereo vision is a technique used to create a perception of depth by using two 

cameras, placed side by side, to capture two images of a scene from slightly different angles, 

mimicking how our eyes perceive the world. A computer then processes the images to calculate 

the differences in the position of objects in the two images, which allows the system to determine 

their depth. 

The process of stereo vision involves several steps: 

1. Image capture: Two cameras are used to capture two images of a scene simultaneously. 

2. Image rectification: By transforming the images, they appear to have been captured from 

the same perspective, simplifying subsequent processing. 

3. Correspondence matching: The computer algorithm identifies corresponding points in 

the two images with the same position in 3D space. This is typically done by comparing 

the brightness and texture of each pixel in the two images. 

4. Depth estimation: Using the information from the correspondence matching, the distance 

between each corresponding point can be calculated, allowing the system to estimate the 

depth of each point in the scene. 

5. 3D reconstruction: By combining the depth information from all the points in the scene, 

a 3D model of the scene can be reconstructed. 
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Depth detection using a single camera is also possible. However, it requires additional 

information about the scene, such as the size and position of objects or the amount of light 

reflected from them. One standard method for depth detection is to use structured light, where a 

pattern of light is projected onto the scene, and the deformation of the pattern is used to calculate 

the depth of objects. Another method is time-of-flight, where the time taken for a light pulse to 

travel from the camera to the scene and back is used to calculate the distance. Stereo vision and 

depth detection are important techniques for creating a more immersive and interactive visual 

experience. They have many practical applications in robotics, automation, and computer vision. 

 

Disparity refers to the distance between two corresponding points in a stereo pair's left and right 

image. StereoDepth node calculates the disparity/depth from the stereo camera pair (2x 

MonoCamera/ColorCamera). 

 

Stereo depth FPS: 

Table 5  - Stereo depth FPS Comparision 

Stereo depth mode FPS for 1280x720 FPS for 640x400 

Standard mode 60 110 

Left-Right Check 55 105 

Subpixel Disparity 45 105 

Extended Disparity 54 105 

Subpixel + LR check 34 96 
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Extended + LR check 26 62 

On the block diagram Figure 33 , red rectangle are firmware settings that are configurable via the 

API. Gray rectangles are settings that that are not yet exposed to the API. We plan on exposing as 

much configurability as possible, but please inform us if you would like to see these settings 

configurable sooner. 

 

If you click on the image, you will be redirected to the webapp. Some blocks have notes that 

provide additional technical information. 

 

Figure 33  - Blockdiagram of Stereo depth node (ref: docs.luxonis.com) 

 

Subpixel mode improves the precision and is especially useful for long range measurements. It 

also helps for better estimating surface normals. 

Besides the integer disparity output, the Stereo engine is programmed to dump to memory the 

cost volume, that is 96 levels (disparities) per pixel, then software interpolation is done on Shave, 



 

 

67 

resulting a final disparity with 3 fractional bits, resulting in significantly more granular depth 

steps (8 additional steps between the integer-pixel depth steps), and also theoretically, longer-

distance depth viewing - as the maximum depth is no longer limited by a feature being a full 

integer pixel-step apart, but rather 1/8 of a pixel. 

 

Figure 34  - Variation of depth vs. disparity 
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Figure 35  - Variation of depth error vs. distance 
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6. CONCLUSION 

Using Deep Neural Network-Based Face Detection based on an IEEE paper from Henry A. 

Rowley, Shumeet Baluja, and Takeo Kanade[49] and implementing its effort of fast real-time 

low latency high-speed face recognition system. This research focuses on process optimization 

for quick response time (less than a second) and the software with a low footprint and 

maintaining an accuracy of up to 99%. Problems with spatial dependencies between variables 

arise in multiple domains of computer vision, such as semantic image labeling, single image 

depth prediction, and object detection. Future work will extend our architecture to these 

problems.  

 

The optimized neural network resulted in almost 99% accuracy in detecting objects, including 

faces. Actress Angelina Jolie was enrolled along with other celebrities. To take part in the game, 

users were called upon to choose any image of Angela Jolie from the Internet. 

 

Truly AI is the panacea; in this research, the model learned from the incoming data is dynamic 

and accurate. Furthermore, pre-processing is vital in the inference response time and accuracy. 

VarGFaceNet is competent in gaining a better tradeoff between performance and efficiency. The 

hyperparameters are specific to face recognition that helps retain critical information while 

reducing parameters. Furthermore, to improve the interpretation VarGFaceNet applies a parity of 

angular distillation loss as an objective function and presents a recursive knowledge distillation 

strategy. Tests on random images from the wild led to an accuracy of 99% to ground reality, 

which is beyond human perception. 
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7. FUTURE WORK 

Object recognition is a critical technology in industrial 4.0, where automation and intelligent 

machines are revolutionizing manufacturing and production. Object recognition allows machines 

to identify and interact with objects in their environment, making it possible to automate tasks 

that were previously done manually. 

 

Here are some ways object recognition is being used in industrial 4.0: 

 

Quality control: Object recognition is used to improve manufacturing processes' quality control. 

For example, cameras and machine vision systems can be used to inspect products and identify 

defects such as cracks, scratches, or incorrect labeling. 

 

Pick and place: Object recognition can be used to automate pick and place tasks, where robots 

are used to move objects from one location to another. Cameras and machine vision systems can 

be used to identify and locate objects, making it possible for robots to pick them up and move 

them without human intervention. 

 

Assembly: Object recognition can be used to automate assembly tasks, where robots are used to 

put together products. Cameras and machine vision systems can be used to identify and locate 

parts, making it possible for robots to assemble products accurately and quickly. 

Inventory management: Object recognition can be used to improve inventory management in 

warehouses and factories. Cameras and machine vision systems can be used to identify and track 
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products as they move through the supply chain, making it possible to manage inventory more 

efficiently. 

Safety: Object recognition can be used to improve safety in manufacturing environments. 

Cameras and machine vision systems can be used to identify people and objects in hazardous 

areas, making it possible to prevent accidents and reduce the risk of injury. 

Overall, object recognition is a critical technology in industrial 4.0, enabling machines to interact 

with the physical world and automate tasks that were previously done manually. By improving 

quality control, reducing errors, and increasing efficiency, object recognition is helping to drive 

the transformation of manufacturing and production. 

 

Digital Pathology: The field of digital pathology utilizes whole-slide scanners to digitize glass 

slides at high resolution in a relatively new and rapidly expanding field of medical imaging. The 

availability of whole-slide images (WSI) has garnered the interest of the medical image analysis 

community, resulting in increasing numbers of publications on histopathologic image analysis. 

WSI is in a multi-resolution pyramid structure. The aim is to evaluate new and existing 

algorithms for the automated detection and classification of cancer metastases in whole-slide 

images of histological lymph node sections. In Digital Pathology, the size does matter. Each 

image is in a few in the order of gigabytes. Lossy compression is unacceptable while hatching 

and patching techniques would induce noise and latency. 

 

Other Applications include but are not limited to: 

• Pose and posture detection and estimation 

• Object Detection and Tracking 



 

 

72 

• Edge detection 

• License Plates and several vehicle attribute recognition 

• Posture detection 

• Sign language recognition 

• Optical Character Recognition (OCR) 

• We can also customize to detect any object by appropriate training 
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