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Abstract

Bootstrap percolation is an iterative process on the vertices of a graph. Initially, a proper,

non-empty set of vertices is infected, and all other vertices are uninfected. At each iteration, every

uninfected vertex with a certain number of infected neighbors becomes infected, and all infected

vertices remain so permanently. At the end of the process, if all vertices are infected, percolation

occurs. In this case, the initial set of infected vertices percolates the graph. Necessary and sufficient

conditions for the minimum size of a percolating set and the minimum number of rounds to achieve

percolation on a cubic graph are presented.
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1 Introduction

Bootstrap percolation is a broad term used to describe an iterative process of infection over graphs

or 1 networks. This process begins with a certain configuration of infected vertices of a graph or

network which infect the other vertices on the graph over a series of rounds, and infected vertices

remain so permanently. The infection spread is controlled by a threshold rule, which varies largely

over different types of percolation.

Bootstrap percolation was originally introduced in 1979 by Chalupa et al [4] as model of particle

interactions in quantum physics. The process implemented in this study was a cellular implemen-

tation based on probability models of infection spread over a lattice. This spread, also called the

random disease problem, looks at a model where spread from one vertex to another is determined

by a certain probability over the edges of the graph [7]. More recently, this process has been used

on graphs with a more discrete spread called r-neighbor bootstrap percolation, which defines the

spread of infection by a discrete threshold rule that says any vertex with r infected neighbors becomes

infected [2]. This version of percolation has been expanded to include (strict) majority bootstrap

percolation which has the threshold that a vertex becomes infected if a vertex has a simple majority

of its neighbors infected. Mathematically, this threshold rule establishes that a vertex v having

d(v) neighbors becomes infected when d(v)+1
2

of its neighbors are infected [9]. This threshold rule

was further expanded to include strong-majority bootstrap percolation, which is defined by some

positive integer k so that a vertex with d(v) neighbors must have at least d(v)+k
2

infected neighbors

to become infected [10].

There are three main problems that are looked in bootstrap percolation: distributions of vertices

in percolating sets, size of percolating sets, and time required to percolate [7]. In this investigation,

we consider the latter two problems, as the first has been extensively researched, and many papers

have produced results related to the distribution of infected vertices over different graphs.

The results from the different kinds of bootstrap percolation have been used to model ferromag-

netism, clustering phenomena, and crack formation in physics, disease spread over a discrete network,

influence spread in social networks, market stability in terms of finance, and neural networks [2].
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2 Background

The definitions and theorems contained in this section are intended to provide the background needed

to understand the structures and processes used in this investigation. Certain known theorems are

also presented and explained in order to allow for understanding of different ideas used in the proofs

contained in the following sections.

2.1 Graphs

A simple graph, G, is a pair of sets, G = (V,E), where V is a non-empty collection of vertices,

V = {v1, v2, . . . vn}, and E is a collection of unordered pairs of different vertices, E = {(u, v)∣u ≐

v and (u, v) = (v, u)}, called edges. The order of G, n, is defined as n = ∣V ∣ and the size of G, is

defined as ∣E∣. We say that if u, v ∈ V and (u, v) ∈ E then the vertices u and v are neighbors or

adjacent, and these vertices are incident to the edge (u, v). The open neighborhood of a vertex v,

denoted N(v), is the set of vertices adjacent to v, and the closed neighborhood of a vertex, denoted

N[v] is the set of vertices adjacent to v and v itself. Similarly, the open neighborhood of a set of

vertices S, N(S) is the set of vertices adjacent to the vertices in S not including any vertex in

S, and the closed neighborhood of S, N[S] is the union of the open neighborhood of S and the

set S. Mathematically, N(S) = (⋃v∈S N(v)) ∖ S and N[S] = N(S) ∪ S. Every vertex v ∈ V has a

non-negative integer, d(v) called the degree of v and is defined as the number of neighbors of v, or

∣N(v)∣ = d(v). A regular graph is defined as a graph G where every vertex v in G has degree r where

r is a non-negative integer [5]. For the purposes of this investigation, we will consider cubic graphs,

which are simply 3-regular graphs, and every graph will be assumed to be cubic unless specifically

stated otherwise.

We define a path between two vertices u and v on G to be a sequence of k distinct vertices, k

a positive integer, {a1, . . . , ak} with a1 = u and ak = v such that for each integer 1 ≤ i ≤ k − 1, ai is

adjacent to ai+1. The length of the path is the number of edges in the path, equal to k − 1. We then

define a cycle to be a path where a1 = ak, and k > 3. Since a cycle is a particular path, the length of

a cycle is also the number of edges in the cycle, equal to k. We say that a graph G is connected if it

has exactly one vertex, or if there is a path between every pair of distinct vertices in G. An edge e

in a connected graph G is a bridge, if the graph obtained by removing e from G, denoted G − e, is

not connected. A bridgeless graph is a graph that does not contain any bridges [5].

2



(a) The complete graph,
called K4 is the smallest pos-
sible cubic graph of order 4
and size 6.

(b) The graph of the geomet-
ric cube, for which the cubic
graph was named, of order 8
and size 12.

(c) A more complex cu-
bic graph, demonstrating the
possible complexity and size,
of order 28 and size 42.

Figure 1: Examples of Cubic Graphs

The Handshake Theorem, stated below, is a popular result in graph theory, and it is generally

unknown who it can be attributed to. A proof and possible reference to this proof can be found in

[5].

Theorem 2.1.1 The Handshake Theorem Let G = (V,E) be a simple graph with ∣E∣ edges. Then

2∣E∣ = ∑v∈V d(v).

From this theorem, we see that for a cubic graph, 2∣E∣ = ∑v∈V 3 = 3n. Thus, ∣E∣ =
3n
2

. Since

the size of a graph must be an integer, then we see that the order of the graph, n must be even for

every cubic graph.

Many concepts in graph theory are expressed in terms of colorings of the vertices and/or edges

of a graph. For a positive integer k, a k-coloring of a graph G is function that assigns to each vertex

of G one of k different colors, usually denoted 1, . . . , k. Moreover, a proper k-coloring of G is a k-

coloring of G in which any two adjacent vertices are assigned different colors. The chromatic number

of a graph G is c(G), defined as the minimum number of colors k in a proper k-coloring of G. One

important graph theory concept which can be expressed via colorings is that of vertex independence.

A set S of vertices of a graph G is said to be independent if no two vertices in S are adjacent in G.

As a result, in any proper coloring of a graph G, the set of all vertices assigned to the same color

must be an independent set. Moreover, the minimality of the chromatic number guarantees that

c(G) coincides with the number of sets in a partition of the vertices of G into independent sets [5].

Theorem 2.1.2 Brook’s Theorem [3] The chromatic number of a graph is at most its maximum

degree, ∆ unless the graph is complete, in which case ∆ + 1 colors are required at most.

From this theorem, we see that the chromatic number of a cubic graph is three, except for K4
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(see Figure 1(a)), which means that the vertex set of every cubic graph can be partitioned into three

independent sets.

Let G = (V,E) be a graph. If there exists a set M ⊆ E such that every vertex v ∈ V is incident to

exactly one edge in M , then M is a perfect matching in G. Not every graph has a perfect matching,

but the following theorem gives a sufficient condition for a cubic graph to have a perfect matching.

Theorem 2.1.3 Petersen’s Theorem [11] Every bridgeless cubic graph has a perfect matching.

2.2 Bootstrap Percolation

Bootstrap Percolation is an iterative process on a graph G = (V,E) in which a set of infected vertices,

called I and assumed to have cardinality p, infects uninfected vertices, initially V ∖ I, according to

the threshold rule. For the purpose of this exploration, we use the threshold rule called Majority

Bootstrap Percolation which states that an uninfected vertex v becomes infected when it has at

least d(v)+1
2

. Once a vertex becomes infected, it remains so permanently. [1] We also note that this

threshold rule is equivalent to 2-neighbor bootstrap percolation on cubic graphs. This means that a

vertex will become infected if two or more of its neighbors are infected.

We also use the following notation:

• We define a sequence of sets {Ri}
m
i=0 where the originally infected set, I is the 0th round, or

R0, and for each i, the set
i−1
⋃

j=0
Rj infects the vertices in Ri and we say the vertices in

i−1
⋃

j=0
Rj

percolate Ri in the ith round.

• If there exists an integer m ≥ 0 such that
m

⋃

j=0
Rj = V , then we say the originally infected set I

percolates the graph.

(a) R0 with p = 4 shown
in green

(b) R0 shown in green,
R1 shown in blue

(c) R0 shown in green,
R1 shown in blue, R2

shown in red

(d) R0 shown in green,
R1 shown in blue, R2

shown in red, R3 shown
in yellow

Figure 2: Bootstrap Percolation Illustrated
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3 Special Families of Graphs

3.1 Generalized Petersen Graphs

The Petersen graph is an interesting graph to begin this investigation on as it has a unique structure

with several unique properties. An overview of some of these properties can be found [6]. In fact,

many conjectures made about all cubic graphs can be proved or disproved on the Petersen graph.

The generalized Petersen graphs were introduced to extend the unique properties of the Petersen

graph to graphs of arbitrarily larger order. Their definition is presented next.

Definition 3.1.1 (Generalized Petersen Graphs, [8]) Let h and k be positive integers, h ≥ k ≥

1 The Generalized Petersen Graph P (h, k) is defined as a cubic graph with vertex set A ∪B where

A = {a0, a1, . . . ah−1} and B = {b0, b1, . . . bh−1} such that the edge set is defined as follows:

• For each integer i 0 ≤ i ≤ h − 1, ai is adjacent to bi

• For each integer i 0 ≤ i ≤ h − 1, ai is adjacent to a(i−1) mod h and a(i+1) mod h

• For each integer i 0 ≤ i ≤ h − 1, bi is adjacent to b(i−k) mod h and b(i+k) mod h

(a) The Generalized Petersen graph P(7, 2) of
order 14

(b) The Generalized Petersen graph P(12, 5) of
order 24

Figure 3: Examples of Generalized Petersen Graphs

Lemma 3.1.2 The graph P (h, k), of order n = 2h can percolate with an initial set of vertices of

cardinality p = ⌈
n+2
4

⌉ or p = ⌈
n+2s
4

⌉ where s is the minimum number of disjoint cycles in B.

Proof. Let B = {C1, . . .Ct} where each Ci is a cycle in the inner set of vertices. Suppose each ∣Ci∣

is even. Then if we place infected vertices in each cycle such that every other vertex in a cycle is
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infected, then we get ∑
t
i=1

∣Ci∣
2

=
∑t

i=0 ∣Ci∣
2

=
n
4

infected vertices in B placed so that every vertex in B

will percolate. We then place exactly one infected vertex in A, giving ⌈
n+4
4

⌉ infected vertices total.

Now suppose we have some integer 1 ≤ s ≤ t such that there are s cycles where ∣Ci∣ is odd.

Then, for t − s even cycles, we use the same vertex placement as outlined in the first part of this

proof. For the s odd cycles, we place ∣Ci∣−1
2

vertices in the cycle such that no two infected vertices

are adjacent. This will leave two uninfected adjacent vertices in each cycle. We then see that there

are n
4
−

s
2

infected vertices in B. Then, for each odd cycle, we add one infected vertex in the outer

cycle, such that it is adjacent to one of the two adjacent uninfected inner vertices in the odd cycle

of B. This gives us n+2s
4

infected vertices with a placement that guarantees all of B will percolate.

Then, every vertex in A has at least one infected neighbor, and at least two vertices in A

have two infected neighbors. Thus, we will percolate around A over several rounds, as each newly

infected vertex in A will infect at least one other in A. Thus, the whole graph is percolated by a set

of cardinality

p =
h

2
+ 1 =

h

2
+

4

4
=

n + 4

4

if there are only even cycles or

p =
n + 2s

4

if there are s odd cycles. Since n+4
4

= ⌈
n+2
4

⌉ when h is even (the only case where there will only be

even cycles), then it is sufficient that p = ⌈
n+2
4

⌉ or p = n+2s
4

.

We note that when gcd(h, k) = 1, our bound is always p = ⌈
n+2
4

⌉, as s = 1 in this case. Lemma

3.1.2 is for the sufficiency of this bound. We prove the necessity of this bound in section 4.1.
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(a) The Generalized Petersen graphs P(8, 3)
and P(11, 2) at Round 0 with percolating set
represented in green

(b) Round 0 in green, Round 1 in blue

(c) Round 0 in green, Round 1 in blue, Round
2 in red, Round 3 in yellow, Round 4 in purple,
Round 5 in orange, Round 6 in pink

Figure 4: Example of Percolation on Generalized Petersen Graphs

3.2 Cubic Graphs with Special Restrictions

Lemma 3.2.1 Let G be a cubic graph with a perfect matching M such that there exist cycles A and

B with G −M = A ∪B and each edge in M, is incident with a vertex in A and a vertex in B. Then

it is sufficient for a percolating set to have cardinality p = ⌈
n+2
4

⌉

The proof of Lemma 3.2.1 is nearly identical to the sufficiency proof presented for Lemma 3.1.2,

and follows from this proof.

Lemma 3.2.2 Suppose G is a cubic graph such that there is a cycle that contains every vertex.

Then it is sufficient to have a percolating set of cardinality n
2

.

Proof. As shown above, a cubic graph must have an even degree. Thus, if every vertex in G belongs

to the same cycle, then n
2

infected vertices can be placed around the cycle such that every

The condition of Lemma 3.2.2 is a well studied property in graphs called Hamiltonicity. Graphs

having a cycle containing every vertex are called Hamiltonian, and the study of Hamiltonian graphs

is a major field in graph theory. For more information about Hamiltonian graphs, see [5].
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4 Minimum Cardinality of Percolating Set

From looking at certain families of graphs, we attempt to expand our study to include all cubic

graphs. In order to prove these conditions, we first look at necessary bounds, and then look at

sufficiency bounds to determine tightness.

The first minimal aspect that we investigate is the cardinality of the percolating set.

4.1 Necessary Conditions for a Percolating Set

Lemma 4.1.1 In order for percolation to occur, it is necessary that every cycle in a cubic graph G

have at least one infected vertex.

Proof. Let G be a cubic graph and let Ca be some cycle in G with length a ≥ 3. Let v be a vertex

in Ca. Then v has at least 2 neighbors that also belong to Ca. Now assume that Ca has no infected

vertex. Then v will be adjacent to at most one infected vertex. Thus, v will never become infected,

and hence Ca will never percolate. Therefore G will never percolate. Hence, there must be at least

one infected vertex of Ca.

Theorem 4.1.2 For a cubic graph G of order n to percolate, it is necessary that the set of originally

infected vertices have cardinality at least n+2
4

.

Proof. We begin with a set, R0, of p infected vertices. In any cubic graph G, this set can infect at

most 3p
2

other vertices in the graph, ie R1 ≤
3p
2

. In the next step, as the vertices in R1 require two

neighbors in R0 in order to have percolated, at most 3p
4

vertices can become infected, i.e. R2 ≤
3p
4

.

We see by this logic that for each positive integer i, Ri ≤
3p
2i

. However, since each Ri < Ri−1, and G

is cubic, the process ends at some integer m when Rm−1 = 4 and Rm = 2 or Rm−1 = 3 and Rm = 1

or Rm−1 = 2 and Rm = 1 and there is some vertex left over in another level. We can condense these

cases to Rm−1 ≤ 4 and Rm ≤ 2. As this is a geometric series, then we can write

n = R0 +

m

∑

i=1
Ri ≤ p +

m

∑

i=1

3p

2i

Since the sum of a geometric series is given by ∑
m
i=1 ar

i
=

ar−arm+1
1−r , then the sum of the above

geometric series, simplified, is n ≤ 4p − 2, or equivalently, p ≥ n+2
4

.
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Figure 5: Example of Set Creation with p = 8: Each vertical row of vertices represents a round with
the maximum possible connections that would result from percolation in the prior round (i.e. the
furthest row to the left contains p vertices, the next row contains ⌊

3p
2
⌋, the next has ⌊

3p
4
⌋, and so

on, as described in the proof above).

Figure 6: A general representation of the creation of the sets sorted by rounds with maximal set
cardinality

4.2 Sufficient Conditions for a Percolating Set

In the previous examples of specific graphs, we see that graphs of order n can percolate from sets of

cardinality greater than or equal to n+2
4

. While it is logical to try and extend these results to all cubic

graphs, we find that this conditions fails on the cubic graph of order 10 presented in Figure 7. Using

the above bound, we would need to be able to percolate the graph using only 3 infected vertices.

However, there is no placement of three vertices that will infect the graph, as each component on

either side of the bridge requires two infected vertices so that every cycle has at least one infected

vertex.
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Figure 7: Each cycle is highlighted in a different color. There is no placement of three infected
vertices so that every cycle has at least one infected vertex.

Lemma 4.2.1 A cubic graph G of order n, can percolate with a set of cardinality at most 2n
3

.

Proof. By Brook’s Theorem, every cubic graph has n
3

independent vertices i.e. there is a set In of

cardinality n
3

such that no two vertices in the set are adjacent. As such, if we let I be the set V ∖In,

then every vertex in In must percolate, and thus G percolates.

Figure 8: By Brook’s theorem, one third of the vertices must be independent. Infecting the rest of
the vertices, shown in the oval, will guarantee percolation.

Lemma 4.2.2 Let G be cubic graph of order n. If G contains a perfect matching M then

a) G −M is a cycle or a collection of two or more pairwise disjoint cycles.

b) G can percolate with a set of n+s
2

where s is the minimum number of odd cycles in G −M .

Proof. Let G be a cubic graph with at least one perfect matching. Since G has at least one perfect

matching, then we can consider the set {M ∶ M is a perfect matching of G} which is not empty.

Then we let s = min{number of odd cycles in G −M ∶ M is a perfect matching of G} to minimize

the number of odd cycles, and take the matching M which correlates with our s.

We now consider G −M . Since G is cubic, then G −M will be a collection of k disjoint cycles.

Since G −M is G with fewer edges, then if we can percolate G −M , we can percolate G.

Since G−M is a collection of k disjoint cycles, {C1, . . . ,Ck}, we attempt to percolate each cycle

individually. Since there are s odd cycles, there must be k − s even cycles. Similar to the proof of

Lemma 3.1.2, the even cycles can each be percolated with ∣Ci∣
2

infected vertices placed so that each

10



uninfected vertex has two infected neighbors. Similarly, the odd cycles can be percolated with ∣Ci∣+1
2

infected vertices such that every uninfected vertex has two infected neighbors. Taking the sum of the

infected vertices in these cycles gives n+s
2

infected vertices, placed so that every vertex will become

infected, and the graph will percolate.

We note that this result verifies our result of Lemma 3.2.2, as if there is a cycle that contains

every vertex, then there is a perfect matching that leaves only this cycle. Since n must be even,

then G −M is simply one even cycle. By Lemma 4.2.2, then G can percolate with n+0
2

=
n
2

vertices,

producing the same bound as introduced in Lemma 3.2.2.

We also see that since by Petersen’s theorem, every cubic graph contains a perfect matching,

the bound from Lemma 4.2.2 applies to every bridgeless cubic graph.

11



5 Minimum Number of Rounds

We know consider the problem of determining a lower bound for the minimum number of rounds

required for percolation from a given set of infected vertices. Before creating an algorithm for this,

we need the following lemma.

Lemma 5.0.1 For each 1 ≤ i ≤m − 1, ∣Ri∣ ≥ ∣Ri+1∣.

Proof. For each new round, the only change is the addition of ∣Ri∣ vertices to the infected set.

Suppose a vertex is part of the i + 1 round. Then is is not a part of the ith rounds, and before the

ith round, it can have at most one infected neighbor. Thus, the vertices infected in the i + 1 round

are entirely dependent on the vertices in the ith round. Furthermore, since the vertices in the ith

round have become infected, they must have two already infected neighbors, and thus can infect at

most one other vertex. Thus, at most, the i + 1 round can have cardinality ∣Ri∣, hence concluding

the proof.

5.1 Algorithm to find minimum number of rounds

Like above, the first step to determining the minimum number of rounds required is to discover an

algorithm that works to find the minimum number of rounds given certain parameters, then finding

a numerical representation of this algorithm.

Given a cubic graph G of order n with a percolating set of cardinality p, 2 ≤ p ≤ 2n and

n ≤ 2p − 1, E, a set containing extra vertices, and count, a Boolean variable containing either 0 or

1, the algorithm to determine the minimum number of rounds to percolate a graph G of order n is

given below.

Set count to false, or 0. Place the p infected vertices in the set R0 such that every infected

vertex has exactly three uninfected neighbors in the set R1 of uninfected vertices, and every vertex

in R1 is adjacent to exactly two infected vertices. This forces R1 to have ⌊
3p
2
⌋ vertices. If p is odd,

then one infected vertex should have only two adjacent edges, and every other infected vertex should

have exactly three adjacent edges, and we change count to true, or 1, and place the vertex with two

adjacent neighbors in E. Otherwise, every infected vertex should have exactly three adjacent edges,

and every uninfected vertex should have exactly two adjacent edges.

For every two vertices in R1, we create a vertex placed in the set R2 such that it is adjacent

to both vertices in R1. If there is an odd number of vertices in R1, we designate one vertex to E.

If count = 0 then we change count to 1. If count = 1, then we create a new vertex in R2 that is

12



adjacent to both vertices in E. We then set E = ∅ and count = 0.

This process continues such that for each k a positive integer, for every two vertices in Rk, we

create a vertex placed in the set Rk+1 such that it is adjacent to both vertices in Rk. If there is an

odd number of vertices in Rk, we designate one vertex to E. If count = 0 then we change count to

1. If count = 1, then we create a new vertex in Rk+1 that is adjacent to both vertices in E. We then

set E = ∅ and count = 0.

The algorithm terminates at some positive integer m when either ∣Rm∣ = 2 and count = 0, or

when ∣Rm∣ = 1 and count = 1, or ∑
m
i=0 ∣Ri∣ = n. Then m is the minimum number of rounds that a

cubic graph of size n with percolating set of cardinality p requires to percolate.

Below, we illustrate this algorithm, which we find to be very similar to the previous algorithm

used to determine the minimum cardinality.

Figure 9: The algorithm used to find the minimum number of rounds is similar to that used to find
the minimum percolating set cardinality, but finishes when the sum of the vertices in each rounds
reaches the order of the graph in the mth round.

Theorem 5.1.1 The algorithm described in section 5.1 effectively obtains the minimum number of

rounds needed for a graph G to percolate from a given set I.

Proof. In order to show that this algorithm gives a lower bound for the number of rounds needed to

percolate, it is sufficient to prove that the structure outlined above is the ideal case for percolation.

By Lemma 5.0.1, each round of percolation must infect a number of vertices less than or equal to

the number of vertices in the previous round. Thus, to minimize the number of rounds required, we

must maximize the number of vertices infected in the first round and in subsequent rounds. The

structure described above maximizes the number of vertices infected in the first round by ensuring

13



that every infected vertex is adjacent to the maximum possible number of uninfected vertices in

order to still percolate. In each subsequent round, the percolation is maximized as every subsequent

round uses every possible vertex with an open edge to spread the infection. As the structure forms a

binary tree after the first round, and the first round will always percolate, the structure will always

percolate. Since the tree will always percolate and each round maximizes the number of vertices

percolated in that round, the structure provides the best case possible for percolation. Thus, the

number rounds found by this algorithm gives the minimum bound for a cubic graph of percolating

set size p and graph order of n to percolate.

5.2 Lower Bound for Minimum Number of Rounds

With an established algorithm that finds the minimum number of rounds given a specific p and

n, we then strive to use this algorithm to find a numerical lower bound for the number of bounds

required to achieve percolation.

Theorem 5.2.1 Let G be a cubic graph of order n. A percolating set of cardinality p needs at least

log2(
3p

4p−n) rounds to percolate G.

Proof. Let G be a graph with order n and percolating set p ≥ n+2
4

. By the proof of Theorem 4.1.2,

we know that each round i can add at most 3p
2i

infected vertices. Thus to find the minimum number

of rounds to percolate, we maximize the number of vertices percolated in each round. Then, let m

be our minimum number of rounds.

n = R0 +

m

∑

i=1
Ri ≤ p +

m

∑

i=1

3p

2i

Using the sum of a geometric series, given in the proof of Theorem 4.1.2 and simplifying, we obtain

3p
2m

≤ 4p − n, and equivalently log2(
3p

4p−n) ≤m.
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6 Applications and Future Work

While we have found a lower bound for the cardinality of the percolating set and have shown this

bound is tight through the example of the generalized Petersen graph, we believe that this bound

can be tight for every bridgeless cubic graph. Thus, we propose the following conjecture, and still

attempt to prove the sufficiency condition.

Conjecture 6.0.1 Let G be a bridgeless cubic graph. It is both necessary and sufficient that the

percolating set have cardinality ⌈
n+2
4

⌉.

Further research includes proving this conjecture as well as finding the minimum product of the

number of rounds and the cardinality of the percolating set in an attempt to further minimize the

resources required for percolation. In other words, if the number of rounds decreases significantly

with the addition of several vertices in the percolating set or vice versa, it would be beneficial to

minimize this product to minimize necessary resources.

Furthermore, research could be expanded to include a different percolation rule where there is

the possibility of vertices reverting to a healthy state. This rule would model real life information

and idea spreads more accurately as people have the ability to change their mind and ideas more

than once. In this case, it would be interesting to see which percolating set configurations and

cardinalities would lead to either a domination, steady state, or infinitely variable state of different

graphs.

The applications of this work relate more closely to information and idea spreads, as spread is

based on the number of neighbors instead of a probabilistic spread over the edges. Research shows

that the more often an idea is encountered, the more likely it is to spread, whereas most infection

spreads are based on a probability of infection with each interaction.
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