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SELF SIMILAR SOLUTIONS OF GENERALIZED BURGERS
EQUATION

ABDELILAH GMIRA, AHMED HAMYDY, SALEK OUAILAL

ABSTRACT. In this paper, we study the initial-value problem
(|u/|p72u')' + Bru’ + au — 'y\u|‘171u\u'|p72u/ =0, r>0,
u(0) = A, u'(0) =0,
where A >0,p>2,¢g>1,a>0,3>0and v € R. Existence and complete

classification of solutions are established. Asymptotic behavior for nonnegative
solutions is also presented.

1. INTRODUCTION

This paper concerns the nonlinear parabolic equation
k
Uy — (U P20, = —gU + U \U U P20, in R x RT, (1.1)

where p > 2, ¢ > 1 and k > 0. As is often the case in nonlinear PDE’s of parabolic
type the characteristic properties of an equation, are displayed by means of the
existence of so-called self similar solutions; this is our main interest. It is worth
mentioning that if p = 2, ¢ = 1 and k = 0, we get the classical one dimensional
Burgers equation

Uy = Upa + U, U, (1.2)

which is originally proposed as a simplified model of Navier-Stokes Turbulence (see
[3] and []) .

By design, Burgers equation is the simplest model of hydrodynamic flow that
captures the interaction of nonlinear wave propagation and viscosity. Burgers tur-
bulence is often viewed as a pared-down model of acoustic turbulence (see [§] and
[14]).

The importance and popularity of equation lie in its simplicity and in the
fact that the well known Hopf-cole substitution w = % reduces it to the linear
heat equation. This nonlinear change of variables permits an explicit description
of solutions of and explains their essentially nonlinear first order asymptotic
as t goes to infinity.
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If p =2 and k # 0, equation (|1.1)) becomes
k
Up = Upe + [UTUU, — nd (1.3)
which is studied by [I3]. Note that, if ¢ = 1, equation ([1.3)) describes the propaga-
tion of weakly nonlinear longitudinal waves in gases or liquids from a non planar
source (see [9] and [10]).
If p > 2, equations (1.1)) appears in the description of ice sheet dynamics (see [5]

) where the reaction term —%U can be considered as a turbulent term. In this case
the selfsimilar solutions of problem (|1.1)) take the form

U(z,t) =t°f(y), where y=uxt",

with
1 —q
pqg+p—2 pqg+p—2
Then the profile f is determined as a solution in of the ODE
_ q ’ 1 -1 1"p—2 g/
P2+ ———yf = (k= ———) [+ [P =0, yeR.
(520 + sl = (k= )+ 17 111

Where the prime denotes the differentiation with respect to y. If we set

_ [ fly) YyeRt,
9(v) { f(=y) VyeR,
then, g satisfies
(I9'P~29") + ag + Byg + 191" "glg'|P 29 =0,
in R; with o = -k +

1 _ q
pq+p—2’ p= pg+p—2
1 _ q
pg+p—2" pg+p—2
and v = —1,if y > 0; v =1, if y < 0. Consequently, we have just to focus on the
study of the initial-value problem

o=—k+

(| 1P~ + Bru’ 4+ au — y|uT Tuld/ P20’ =0, >0

uw(0) = A, 4/(0) =0,
when a@ > 0, 8 > 0 and v € R. We will mainly discuss: (i) The existence and
uniqueness of solutions for (1.4)); (ii) the asymptotic behavior of positive solutions,

and (iii) a classification of solutions.
The main results of this paper are the following.

(1.4)

Theorem 1.1. Assumep > 2, ¢q>1, a >0, 8 >0, and v € R. Then for each
A >0, there exists a real Rpyyax > 0 such that (1.4) has a unique solution u = u(., A)
defined in the right open interval [0, Ryax|, meaning that u and |u'|P~2u’ are a C!

functions in [0, Rmax[, satisfying (1.4)).

The following result gives the monotonicity of solutions of problem ([1.4) with
respect to initial data.

Theorem 1.2. Assume o > 0, 5> 0 and v < 0. Let u(.,A) and u(.,B) be two
solutions of problem (L.4) with w(0,A) = A, w(0,B) = B and A # B. Then u(., A)
and u(., B) can not intersect each other before their first zero.

Concerning the asymptotic behavior, we have the following results.
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Theorem 1.3. Let u be a strictly positive solution of (1.4). Then

li = 1 '(ry=0.
A ulr) = L wr)

Furthermore, if « >0, 8 >0 and v <0, then

lim réu(r)=L

r——+400

exists and lies in [0, +00[. Moreover this limit L is strictly positive for 0 < a < 3
and v < 0.

Finally, the structure of solutions of problem (|1.4]) consists of three families:
The set of strictly positive solutions, the set of changing sign solutions and finally
solutions with compact support. This classification depends strongly on the sign of

V(e = B).
Theorem 1.4. Assume p > 2,q > 1, and v < 0. Then we have

(i) For o > 3 there exist two constants Ay and As such that for any A > Ay,
the solution u(., A) is strictly positive and for A < As, u(., A) changes sign.
Moreover, there exists at least one solution with compact support.

(ii) For 0 < a < 3, any solution of is strictly positive.

The situation for v > 0 is quite the opposite.

Theorem 1.5. Assumep > 2, q¢>1 and v > 0. Then

(i) If « > B any solution of (1.4) change sign.
(ii) If a < B, there exist two constants Ay and Ay such that for any A < As,
the solution u(., A) is strictly positive and for A > Ay, u(., A) changes sign.

The organization of this paper is as follows. Theorems and are
proved in section 2. In section 3 a classification of solutions is investigated and
then Theorems [[.4] and are established.

2. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS

In this section, we investigate existence, uniqueness and asymptotic behavior
of solutions of the problem (1.4). We start with a local existence and uniqueness
result.

Proposition 2.1. Assumep >2,qg>1, a >0, >0 and v € R. Then for each

A >0, there exists a right open interval I = [0, Ryax| and a unique function u such
that, u and ['|P~2u’ lie in CY(I) and satisfy (1.4).

First of all, we note that, for a fixed «, 8 and , it easy to see that wu(.,v, ) =
—u(.,y, —A). Therefore, in the sequel we restrict ourselves to the case of A > 0.

Remark 2.2. The first equation in ([1.4) can be reduced to the first order system

X' =YY

) o . (2.1)
Y'i=—aX - Y| 1Y +4| X7 XY.

Since the mapping

(X,Y) (|Y|1’2%3Y, —aX - BlY|TFY + 7|X|q_1XY)
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is a locally Lipschitz continuous function in the set {(X,Y) € R x R*}, we deduce
that, for any rq > 0, A > 0 and B # 0, there exists a unique solution of (1.4]) in a
neighborhood of ry such that u(rg) = A and u/(rg) = B.

Because of the presence of the term |Y|_%Y, the above function is not locally
Lipschitz continuous near ry whenever u'(rg) = 0. Consequently, for our problem
the above argument does not work. To avoid this difficulty, we make use an
idea from [7]. Then the proof becomes similar to that of [I, proposition 1.1] and
[0, proposition 2.1]. We present it here for the convenience of the reader.

Proof proposition[2.1] The idea of the proof is to convert our initial value problem
to a fixed point problem of some operator. This will be done in two steps.
Step 1. Local existence and uniqueness. It is clear that to solve problem
is equivalent to find a function v € C''(I) defined in some interval I = [0, R[ with
R > 0 such that |u/|P~2u’ € C'(I) and satisfies the integral equation

u(r) =A— / G(Fy,)(s)ds, (2.2)
0
where G(s) = |s|?~P)/(P=1s for all s € R, and

Fu(s) = Bsu(s) + (o — ) /OS u(r)dr — 7/(: |7 (7)o [P~ 2 (7) dor. (2.3)

Now, let us define on [0, 4] the following two functions

_ JaA—X) — xrH A+ X)e if o> 5,
f1(X)—{a(A+X)_25X_7|XP—1(A—|—X)‘1 if a < 8, 24
and
_ A+ X {a+ XA+ X)) ifa>
R = {a(A —X) + [y XPHA + X)1 fa<p. )

Since f; is continuous and f1(0) = aA > 0, then there exists some interval [0, Ag] C
[0, A] such that
f1i(X) >0 VX €0, Ao

Let us introduce some useful notation for the proof:

Ag_l Kf_2
fi(Ao) = K1, f2(Ao) = K2, Ro = inf{l, A WL (2.6)
where
D=0+ |a—6+(2p—2+¢q)2 4|42, (2.7)
It is easy to see that the function fo satisfies the estimate
f2(X) < 24T, VX €0, A]. (2.8)
Now, we consider the complete metric space
X ={p e ([0, Ro)) : [l — Allx < Ao} (2.9)
where
lellx = max([l¢llo, 1¥llo)- (2.10)

and ||.||o denotes the sup norm. Next we define the mapping 7 on X, by

T(p)=A—- /07“ G(F,)(s)ds, Yr e [0, Ry (2.11)
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Claim 1. 7 maps X into itself. In fact, take ¢ € X. First, it is easy to see that
T (p) € C(]0, Ro]). Also by a simple calculation we get

0< Kis< F¢(S) < Kgs Vse [O,Ro] (212)
And thereby, 7 () satisfies the following estimates
" -1 _
1T (¢)(r) — Al S/O F;/(pil)(S)dS < pTK;/(p 1)7,p/(p71)’ (2.13)
[T (p)(r)] < Fi/ P~ (r) < K/ P70t/ 07, (2.14)

for any r €[0, Ry]. These last two equations, combined with the expression of Ry
given by (2.6 imply that 7 () € X.

Claim 2. 7 is a contraction. To prove this, take ¢ and ¥ € X. Then
1 T(p)(r) = T () (r)] S/O G(F,(s)) — G(Fy(s))lds, (2.15)

for any re [0, Ro], where F, is given by (2.3). In view of estimate (which is
also valid for F), we get
(G(F)(s) = G(Fy)(s)] <[ FY/ P (s) = B/ (s)]
1

< KT OTIIR () = Fu(s)ls® 00D,
Recalling the expression of F, and F;, we deduce
[Fo(s) = Fy(s)] < [B+ = Blllle = Pllos + [y (2.16)
where .
I= [l o) - el R ) (217)

But
IS/ |<p,(7.)|p71|80q(7_)_wq(T)|dT+/ YUl P2 — [ P72y |dr. (2.18)
0 0

Using the fact that ¢ and 1 are elements of X, we get

1< (q+2p - 2277 AT 2o — | . (2.19)
Combining this last equation with (2.16)), we get
[Fp(s) = Fy(s)| < Tlle = ¥llxs, Vs €0, Ro] (2.20)
where I' is given by (2.7)). Therefore
r - _ _
T(R)r) = T@))] < SKFP g =g/ @70 (2.21)
Similarly, one can easily obtain
r _ _
|T’(§0)(T‘) _ /]-l(w(r” < E[(l@ p)/(p 1)“%0 _ wHX,rl/(P—l). (222)

(From the choice of Ry, these last two equations imply that 7 is a contraction.
The use of the Banach’s Contraction theorem leads to the existence of a unique
function u solving problem in (0, Rp).

Step 2. |u/|P~2u’ € C1([0, Ry)). We have just to prove the regularity at r = 0. For
this purpose, note that the first equation in gives

lir%(\u'\p_2u’)’(r) = —aA. (2.23)
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Integrating equation (1.4) from 0 to r, and letting r go to 0, we obtain

lp—2,,/
lim [P ) = —aA. (2.24)

r—0 T

Hence |v/[P~2u/ € CY(([0, Ro[). This completes the proof of Proposition O

Remark 2.3. It is not difficult to see that the solution u of (|1.4)) is a C'*° function
at any r > 0 whenever v/ (r) # 0.

The remaining of this section is devoted to the proof of the Theorem For
this purpose we start with the following lemma.

Lemma 2.4. Let A > 0 and u be the corresponding solution of (1.4). Then as
long as u is strictly positive we have 0 < u(r) < A and v'(r) < 0.

Proof. Let

Er) =7 . Lo + SU(r), Vr € [0, R, (2.25)

be the induced energy function. We have
E'(r) = =pr|u[* + y|u|? ulu'|P,  Vr € [0, Ruax|. (2.26)

Then if v < 0 the energy function is decreasing as long as u is positive. Particularly
u(r) < A. On the other hand since

(Ju'|P~24/) (0) = —aA < 0, (2.27)
the lemma follows easily when ~ > 0. g

The next result gives the monotonicity of solutions of the problem (1.4) with
respect to initial data. More exactly, we have

Proposition 2.5. Assume o > 0, > 0 and v < 0. Let 0 < A; < As. Then
u(., A1) and u(., A2) can not intersect each other before their first zero.

Proof. For ease of notation, we write u(., A1) = wu(.) and u(., A2) = v(.) and we
denote by Ry (respectively Rs) the first zero of u (respectively v). The proof will
be done by contradiction: it is based on the idea of |11, Lemma 2.4 ]. We assume
that there exists some point Ry € [0, min{R;, R }[ such that

u(r) <wv(r) for re[0,Ry] and u(Ry) = v(Ro). (2.28)
Now, for any k > 0, we set
u(r) = k=P =Dy (kr), rel0, =] (2:29)
Then uy, satisfy the equation
(g P22, (1) + Brug (r) + g, — vk uf (s)|ug, [P~ uj (r) = 0, (2.30)
with p =1+ pquQ. Since w is strictly positive and decreasing on [0, R1[, the function

k +— wuy is strictly increasing. Moreover for any r € [0, Ry] limy_oug(r) = +oo.
Then there exists a small kg >0 such that

up(r) >v(r) forrel0,Ro] andk € [0, ko]
Therefore, the set
Q = {k €]0, ko[; ur(r) > v(r)for r € [0, Ry} (2.31)
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is not empty and open. In particular if we denote by K the supremum of €2, the real
K ¢ Q and thereby, necessarily there exists 9 € [0, Rp] such that ug (ro) = v(ro).
As kg is small without loss of generality we assume

Ay
ko = (==—)P=2/p, 2.32
0= (3 A2) (2.32)
If ro = Ry, then
ug(Ro) = KP/P=2y(KRy) = v(Ry). (2.33)

But u(Rg) = v(Rp), then using again the strictly increasing of the function k +— uy
is strictly increasing we deduce necessarily K = 1. This is a contradiction with the
choice of the real kg. If 7o = 0 we get

ug(0) = K7P/P=2y(0) = K~ P/(P=2 4, = A,

which contradicts (2.32)). Consequently we deduce that there exists some point
ro € [0, Ro[ such that

ug >v on 0, Ry[ and ug(ro) = v(rg). (2.34)

So ux — v has a local minimum at the point g, where the graphs of ux and vare
tangent. Moreover, as v’ and u’ are strictly negative, the equation satisfied by v
(respectively by ug) can be written in the form

(p— D |P720" + Bro’ + av — i/ P20 =0, (2.35)
and respectively
(p — D |P~2uf + Bruf, + aur — yK ul |u|P~?ul = 0. (2.36)
Subtract from , we obtain at point rg,
(p = D[P (u —v)" () = y(K* = D)oo’ [P~ (ro). (2.37)

Since v < 0, v/ < 0, K <1 and p > 0, we get
(p— DV P2 (ug —v)"(ro) = y(E* — D)o/ [P~/ (1) < 0. (2.38)
This is impossible because (ux — v) has a local minimum at = and then the propo-

sition is proved. ([

In the next result, we investigate the asymptotic behavior of positive solutions.
Proposition 2.6. Let u be a positive solution of (1.4)) defined on [0,+o0[. Then

. . . / _
A = I ) =0
The proof of this result depends strongly on the sign of . In fact, if v < 0,
the result follows from the energy function. However, for v > 0 we need some
information about the monotonicity of u’ this is given in the following lemma.

Lemma 2.7. Assume v > 0. Let a real A > 0 and u(., A) be a strictly positive
solution of (1.4)) defined in [0,4o00[. Then there exists a unique real number R(A) >
0 such that

u” <0 on[0,R(A)] and u’ >0 on[R(A),+odl.
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Proof. First, note that from Lemma[2.4] the solution u = u(., A) is decreasing and
converges to some nonnegative constant. On the other hand , implies that
(Ju'[P=2u')" must change sign. Let R(A) > 0 its first zero. For simplicity we set
R = R(A). Then (|u/|P~2u')(r) < 0 for any r in [0, R[. Furthermore,

au(R) = ~[BR — yu|u'[P*(R)]u (R). (2.39)

As w is strictly positive we deduce that u'(R) # 0, and then u is a C*° function at
the point R. So, the first equation in ([1.4)) can be written in some neighborhood of
R, say ][R —e,R+¢[ (¢ > 0), in the form

(p— D [P72u" + pru’ + au — yul|u/|P~u" = 0. (2.40)
Differentiating this last equality and taking » = R, we obtain
(p— D[/ [P72u®(R) = —(a + B)u/(R) + yqui~ [/ [P(R). (2.41)

But, since v > 0, a + 8 > 0 and «v/(R) < 0, then the left hand side of the last
equation is strictly positive. By continuity of u(®) we get

u®(r) >0 forany r € [R,R+¢l.
Hence " is non-negative on [R, R + ¢[. Finally, using we deduce
u”(r) >0 for any r in [R, 400,
which completes the proof. O
Remark 2.8. Note that the right hand side of satisfies

(o + 80 (R) ™ PR = S qutlae () — (o B)u()
Using (2.39), the relation becomes
B\l (R)? p

)R

(p = D' PP2u(R) = B+ ~ —y(1+ = —qui ™ |u/[P(R).

u(R)

Hence, if vy <0 and ¢ < 1+ g, we get u(3)(R) > 0 and thereby the Lemma also
holds in this case.

Proof of Proposition[2.6, By Lemma lim, —, 4o u(r) = [ exists and lies in [0, AJ.
We start by establishing the proposition when v < 0, in this case the energy function
given by is positive and decreasing. It then converges, and lim,_, ;o /(1) =
0. Moreover integrating equation (1.4]) between 0 and r, we get

'[P (r) + Bru(r / {(a = B)u(s) — yul(s)|u/'|P~2u/(s)} ds = 0. (2.42)
Therefore,
TEI_POO r/ {(a — — yud(s)[u P24 (s) }ds = — B (2.43)

On the other hand, if [ ## 0 the L’Ho6pital rule implies that

lim / {(a = B)u(s) — yul(s)|u'|P~2u/(s)}ds = (a — B)I.

r—+o0 T

This contradicts and therefore [ = 0.
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To handle the case v > 0, we use the above Lemma [2.7] Assume that [ # 0 and
integrate equation (1.4)) on (r,2r) for some r > 0. We obtain

|u/ P20’ (2r) =/ |P72/ (v) + Bru(r) — 26ru(2r)

2r 2r (244)
+ (8- a)/ u(s)ds + ’y/ ul(s)|u' [P~ (s)ds.
Since v > 0 and v’ < 0, for i3 > «, we obtain
W [P~2u/ (2r @ @
PP C < (5 D)l — u(z)) - Sugzr). (2.45)
2r 2 2
On the other hand if 8 < «,
/|\p—2,,1 2
M < Bu(r) —u(2r)) — au(2r). (2.46)
Now, observe that
lim [u(r) —u(2r)]=0 and lim wu(2r)=1# 0;
r—+o00 r——+oo
therefore, for any a, 3 > 0, we get
|u|P=2u’ (2r) «
_— <] —— . .
5 <5 u(2r) for large r (2.47)
This gives
(uP=2/=Dy () < _p;i(%)l/(p—l)rl/(p—l)7 (2.48)
p—
which contradicts that uis strictly positive. Consequently [ = 0 and the proof is
complete. 0

Now, we pass to the asymptotic behavior of positive solutions.

Proposition 2.9. Assume o > 0, 8 > 0 and v < 0. Let u be a strictly positive
solution of (T4). Then lim,_, o r*/Pu(r) = L exists and lies in [0, +oc].

Some preliminary results are needed for the proof of this proposition.

Lemma 2.10. Assumea >0, 3> 0 andy < 0. Letu be a strictly positive solution

of (1.4)) such that

w(r) < KQ+r)"7 forr>0. (2.49)
Then, there exists a constant M depending on K and o such that
' (r)] < M(1+7)"7"" forr>0. (2.50)

Proof. Without loss of generality we have just to prove (2.50) for » > 2. In fact,
as v’ is a continuous function, it is bounded in [0,2]. So there exists some constant
C > 0 such that
|u/(r)] < C, for rin [0,2]. (2.51)
Hence, if we take M > C3°F1, then (2.50)) holds for 7 in [0,2]. For any r > 2, we
set .,
F(r) =exp [i/ u?(s)ds] (2.52)
r—1Jo
and consider the function

G(r) = exp [Z% /Orsu’(s)|2_pds], r> 2. (2.53)
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In view of (2.27) we have
u'(r) ~ —(d)Y P/ =D ag e, (2.54)

Recalling that v’ is strictly negative, we deduce that the function G is well posed.
Now, we write equation (1.4]) in the form

a F(r)

(FGu') (r) + 3 s u(r)G'(r) = 0. (2.55)
Integrating the above equation, we obtain
" F(s)

u'(r)| = @ / u(s)G'(s)ds. 2.56
W= SEmEm e e ) (256)

Since v < 0 the function F is increasing and
u'(r)| < /T U<S)G’ s)ds. 2.57
W< g [ SR (257)

Next, we find a bound the right-hand side of the above inequality. We set
1 r/2 r
L= / US) G (s)ds, I = / US) G (s)ds, Ty = / US) (5)ds, (2.58)
o S 1 s rj2 S
so that

/ @G/(S)d8211 +IQ+I3. (259)
0

First, note that (2.54) implies easily that [; is bounded. On the other hand, in
view of Proposition [2.6] there exists a constant K > 0 such that

|/ (r)|* P > K forr>0. (2.60)
Then
G(r) > exp(Kr?) for r > 2. (2.61)
To estimate I5, we use - ) to obtain
r/2 s+ )
I<C/ fa’( d<C/ G'(s ds<CG() (2.62)
Or SO _ gl =L
1 r/2
—IL, <C )|*~Pd 2.63
Gt < O O b e
Now recalling (2.60), we get
1
%12 S Cexp(leTz), (264)

with Ky = ﬁK But as the solution w is decreasing, then

1 _ 1 Tu(s)'ss gur
G ™ G e 6N S St

Using again the estimate (2.49)), we obtain

1
%Ig <C(r+1)771 forr>2. (2.65)
Finally, putting together (2.57)), (2.64]) and (2.65]) the desired estimate (2.53)) fol-
lows. This completes the proof of the lemma. O
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Lemma 2.11. Assumea >0, 3> 0 andy < 0. Letu be a strictly positive solution

of (1.4). Then

u(r) < Cr=%,  for large r. (2.66)
Proof. Using the first equation in (1.4]), the function wu(r) satisfies

au’(r) [P g, 1
e — _ = _ p—2 /
> T 2t T gl

+ % wI T P72 (r) — =

(2.67)

Recalling the expression of the energy function given by (2.25)) we deduce

E(r) 3p—2[uP ﬂ( 2y _ 1
= — = (u

r 2p T 4 2r2

/|p—2ul

/|p—2u/

—ulu

! (2.68)
_ 5 u|u - ]/ + 277 uq+1|u’|p_2u’(r).
Integrating the above inequality on the interval (r, R) we obtain

/R E(s), _3p-2 /R WP, P )
" s 2 . S s 2r
u(R)W'P?u(R) B

72 J—
R +4u(r)

L u(s)/(s)[P~*u/(s)
-3 /

B o
Zu (R)

| g5+ /R wt (sl ()P (s) )
S 2/, S

Since v’ is negative, S > 0 and v < 0 we get

/R E(s) d5<3p2/3 [ (I 4o W R +Qu2(r)

s - 2p 2R

+1/R ul' P Ivl/ wrt(s ke Ol

(2.69)

2

Since F is strictly decreasing and converges to zero when r approaches to infinity,
we deduce that E’ € L1(]0,0c[). In particular r|u’|? and u?|u’|P lie in L*(]0, 0ol).
Letting R — o0,

/TOO @ds g%ﬁ(r) L2 /TOO WO 4

2p ]

[eS] / p—1 oo, q+1 ! p—1
= u(s)w'(s)| d5+m/ W)l (s)P

(2.70)

s 2 s

Now, we set
(oo}
E
/ (2.71)

First, using the fact that u?(r) < 2 E(r), we obtain

H(r) > /27‘ @ds > BOr) S 2 (2.72)
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On the other hand, inequality (2.70) gives

HGr) + i) <222 /oo |u/(;)|pds + % /oo WP

2 - 2
“ f = u(s) s (2.73)
u(s 1
Assume that the function u satisfies
u(r) < Cr=? forr>1, (2.74)

for some fixed ¢ > 0 and some constant C' (this is possible because u(r) < A for
all r > 0). If o0 > (2a)8 we have obviously (2.66). Assume now that o < (2a)8.
Lemma implies |u/(r)| < Cr=2~! for any r > 1. Consequently

[r2/BH(r)) < Cr2e/B=1=plet D[] 4 p1799]  for ¢ > 1, (2.75)
By a simple integration, we obtain
H(r) < Cr=2e/B 4 op=p(+o) 4 Opl=p=(p+a) (2.76)

when [p(1+ o) — 2a/p8][2a/8 —p+1— (p+ q)o] # 0. Otherwise if [p(1 + o) —
2a/0]2a/8—p+1— (p+ q)o] =0, we have

H(r) < Cr=2e/8 4 gp=20/8 Iny 4 Cp~(1ma0+20/8) (2.77)

Combining (2.72)), (2.76)), (2.77) and using the fact that o < (2«)3, we deduce that
there exists m > o such that

u(r) < Cr™™ forall r > 1. (2.78)

If m = «/f we have exactly the estimate (2.66). Otherwise if m # «/f, the desired
estimate (2.66]) follows by induction starting with ¢ = m. This completes the

proof. ([l
Proof of Proposition[2.9. Set
1
I(r) = r*P[u+ —|u/[P~2%d] . (2.79)
Br
Then we have
1 /\p—2,,/
I'(r) = Era/ﬁ—l [(% _ ) yud! |P~2u]. (2.80)

In view of Lemma and Lemma [2.11] the functions r — /8= 14|/ ()P~ and
7 /B2y ()[P~1 are in L'(]0, oo[). Consequently, I'(r) € L'(]0, oc[). Moreover
(2.54)) implies I(0)=0, and therefore
lim I(r)= / I'(s)ds

0

r——+o00
exists. Since lim,_. o 7*/#71|u/[P72u’ = 0, we deduce that

lim r*/Pu(r) =L € [0, 00].

r—+00
This completes the proof. ([

Proposition 2.12. Assume o > 0, 3 > 0, v < 0 and L = 0 in Proposition [2.9
Then r™u(r) — 0 and r™u'(r) — 0 as 1 — 400 for all positive integers m.
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Proof. jFrom the proof of the previous proposition, lim, . I(r) = 0. Thus,

I(r) = — [ I'(s)ds. Therefore ,(2.79) gives

_1 o0

u(r) = E|u'|p_2u’(r) - r_a/g/ I'(s)ds. (2.81)

Since v < 0 and v’ < 0, we deduce from ([2.84]) that

1 1« e
u(r) < — /[P~ 4+ = 7_17;0‘/[3/ s/B=2)y/ 1P~ 1. 2.82
(r) 5T| | 5|ﬁ | : || (2.82)
Then in view of Lemma [2.10, we get

u(r) < Cr~ptp=1)a)/5, (2.83)

Define the sequence (mg)ren by
mo = a/ﬁv (284)
mE=p+ (p— 1)my_1.

Then limg—, 40 mir = 400. Consequently, the proposition follows by induction

starting with mq = «/(. This completes the proof. O

Proposition 2.13. Assume o < 3 and v < 0. Let u be a strictly positive solution
of (T4). Then lim,_ o r*Pu(r) > 0.

Proof. By Proposition [2.9

lim 7*/Pu(r) € [0, 00].

r——40o0

Suppose that lim, . 4 o0 7*/?u(r) = 0. Then Proposition implies

TEEIOO ’ra/ﬁil |u’|p*2u/ = Oa

and therefore, lim,_, ;o I(r) = 0. On the other hand, (2.80)) implies that the func-
tion I given by (2.79) is strictly increasing; this is a contradiction which completes
the proof. 0

3. CLASSIFICATION OF SOLUTIONS

In this section we give a classification of solutions of (1.4]). For this purpose we
Set

P={A>0:u(r,A) > 0,Yr > 0},
N={A>0:3ry>0;u(r,A) > Ofor r € [0, 79[, u(ro, A) = 0 and u'(rg, A) < 0},
C={A>0;3r9 > 0;u(ro, A) = u'(rg, A) = 0}.

This classification depends strongly on the sign ofy and o — 3. First, we start with
the following result.

Proposition 3.1. Assume v > 0 and o > 3. Then any solution of (L.4)) changes
Sign.

Proof. Let u be a solution of (1.4). Then

T

[u' P2 (r) = —Bru(r) — (o — B3) /0?" u(s)ds + 7/0 ul(s)u/[P~%u/ (s)ds.  (3.1)
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for any r € [0, Rimax. If the set C is not empty, there exists a finite rg > 0 such that
u(rg) = u'(r9) = 0 and u(r) > 0 on ]0,ro[. Taking r = rg in (3.1) and using again
Lemma [2.4] we get

(a—f) /07‘0 u(s)ds + v /07"0 u?|u'|P~ds = 0. (3.2)

This contradicts v > 0 and a — 3 > 0. Hence C = .

If the set Pis not empty, without loss of generality we can assume that equation
holds with w strictly positive and u’ negative. Then since a— /3 > 0 and v > 0
we deduce

Ju'[P~24 (r) < —Bru(r). (3.3)

By integrating this last inequality we get a contradiction. [
Proposition 3.2. Assume v > 0 and o < 3. Then
(i) u(., A) is strictly positive for any A €]0, Ag| with

-1 8-
Ao =L . G - @ o/ (1) (0=1)/ (o(a+1)-2)

(ii) u(., A) changes sign for large A.

For the proof we need some preliminary results. Let u be a solution of problem
(1.4) defined in [0, Rpax[- Set

h(r) = (8 — @)u(r) + v|u|T  ulu/ P20 () Vr € [0, Ruax]. (3.4)
Then the following result holds.

Lemma 3.3. Assume oo < 3. Let u be a solution of (1.4]). Then u cannot vanish
before the first zero of h.

Proof. On the contrary, suppose that u vanishes beforehand let ry be the first zero
of u. As h(0) = (8 — a)u(0) > 0, then h(rg) > 0 and h(r) > 0 for r € [0,ro][.
Integrating (|1.4)), we obtain

ro
[u/ P20 (1) = / h(s)ds > 0. (3.5)
0
This contradictsu’(rg) < 0 and then, the Lemma is proved. O

Now, assume that there exists some initial data A > 0 such that u(., A)(= u) is
a strictly positive solution of (1.4]) and set

g(r) = pr — |/ P~3(r), r>0. (3.6)
Lemma 3.4. There exists p(= p(A)) > 0 such that
g(p) =0 and g¢g(r) <0 forr in]0,p|. (3.7)
Furthermore,
. _ . / _
AEIEoou(p7 A)=0 and AEI—EOOU (p,A) = —o0. (3.8)

Proof. First, we observe that the function g satisfies
('[P~ (1)) = —au(r) —u/'(r)g(r) for all + > 0. (3.9)
The proof is divided in 3 steps.



EJDE-2005/80 SELF SIMILAR SOLUTIONS 15

Step 1. g(p) =0 and g(r) < 0 for r € [0, p[. Recalling (2.24) we get

[/ |P72u (1) ~ —aAr, asr — 0. (3.10)
Hence,
g(r) ~ =y AN (aAr)P=2/ (=D ag 0. (3.11)
and therefore g starts with a negative value. If g has a constant sign for all » > 0,
equation (3.9)) gives

(| [P~2u") (r) < —au(r) <0, for r > 0.

and then the solution u(., A) must change sign; this is a contradiction and then
follows.
Step 2. We claim that lima_ 1, u/(p, A) = —co. In fact, equation implies
that the solution u satisfies

[p

;1|u/|17_~_ g 2

5 U ]I(r) = —(u')?g(r), forr>0. (3.12)

Integrating this last equality on [0, R] C [0, p[ and using the fact that g is negative
on [0, p[, we get

u'|P(r >&A2—u2r, vr € [0, p[. 3.13
W) 2 g AR =), e 0] (313)
Hence, if u(p, A) is bounded, by letting A approach oo, we deduce

li "(p(A), A) = —oc0.
Jm u'(p(4), ) = —oo
Otherwise if u(p, A) is not bounded, then there exists a subsequence, denoted also

p(A) such that
lim wu(p(A), A) = +o0.

A—+o0
Now, recalling (3.7) and (3.9) we get
(|'[P~24/(r))" < —au(r) <0, for any r € [0, p[. (3.14)
In particularly, we deduce that w is concave in [0, p[ and therefore
—A
u(r) > A+ u(p)pr, for any r € [0, pl. (3.15)
Thus integrating (3.14]) on (0, p), we obtain
P —A
[u'[P~2u (p) < —a/ (A+ u(p)pr)dr. (3.16)
0
Hence,
_ a
P20 (p) < ~ % p[A + u(p)]. (3.17)
B

But g(p) = 0, then u?|u/'|P~2(p) = =p- Inserting this last equality in lj the
following estimate holds
e’
u'(p)| = ﬁuq(/’) [A+u(p)]. (3.18)
Consequently, lim g, o0 %' (p, A) = —oc.
Step3. We assert that limyg_, o u(p, A) = 0. In fact, integrating (3.14)) on an
interval |0, r[C]0, p[ and using (3.15) we obtain
(p) —A

|u' [P~ (r) < —ar[A + 4 2 r] for any 0 < r < p. (3.19)
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On the other hand (3.14)) implies that «’ is decreasing in ]0, p[, so (3.19) gives

A
Tr] for any 0 < r < p. (3.20)

Integrating this last inequality on ]0, p[ we get

[/ (p)[P~? (r) < —ar[A +

Al ()2 = 2 2) 2 ulp) (S + ()] (3.21)
Therefore,
[ ()% = 6% > 0. (3.22)
Recalling that g(p) = 0, this means
p= %uq<p>|u'<p>|p-2. (3.23)
Combining and we obtain
ulp) < (2 (CPP )7, (324
Since lim g, 400 /' (p, A) = —o0, we deduce that lim4_, o u(p, A) = 0. The proof
is complete. ([l

Lemma 3.5. Let u(., A) be a strictly positive solution and let R(A) given by Lemma

[27 Then,

. _ . 12 _
AEIEWU(R(A),A) =0 and Agrfwu (R(A),A) = —o0. (3.25)

Proof. First, note that Lemma [2.7] implies that «” < 0 on [0, R(A)[ and then from
stepl of the proof of Lemma [3.4] we get

p(A) < R(A) and u/(R(A),A) <u'(p(A),A). (3.26)

On the other hand, since the function r — u(r, A) is decreasing, we deduce
u(R(4), A) < u(p(A), 4). (3.27)
Letting A — oo in there two inequalities, holds. ([

Proof of Proposition|3.2. The proof is divided in two steps.
Step 1. the proof of part (i). Set
Ry = sup{r > 0;h(s) > 0 on [0, [} (3.28)

Since h(0) = (8 — a)u(0) > 0, the set {r > 0: h(r) > 0 on [0,7[} is not empty.

We claim that Ry is infinite. To the contrary, assume that Ry is a real number.
Then h(Ry) = 0 and h/(Ry) < 0, so from Lemma [3.3] u(Ry) > 0. Moreover, by
continuity, u(r) # 0 for r €|Ry — €, Ro + €[ (with some € > 0). Thus, we can write
h(r) in the form

h(r) = ul(r)h(r), (3.29)
for any r €]Ry — €, Ry + €[, with

h(r) = (8 = «)u'~(r) + y|u/[P~%d (r). (3.30)
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We clearly have

' (Ro) =u(R)=1 +18Ro( )0 D=0 1 Ry

3.31

+ (g = 1)(8 = o) (B2 -1 e-rar1)/e-1) (g (331
v

Since u is decreasing, v > 0 and § — «a > 0,

B (Ro) > u(Ro) =13 + (g = (8 - a) (720D AL DIO-D] - (3.30)
Consequently, for any A such that
Aar)=2/=1) o =1 B =) (3.33)
& v
we obtain h/(Ry) > 0. This contradicts h(r) > 0 for re [0, Ro[ and h(Rg) = 0.
Hence Ry is infinite; meaning that the function A is strictly positive and therefore
by Lemma [3.3] u is also strictly positive.
Step 2. The proof of part (ii). Assume for contradiction that w is positive for all
A. Since v/ (R(A),A) < 0 and v”’(R(A), A) = 0; then by putting » = R(A) in (L.4)
we get
u(R(A)) / R(A)
—_— = AV - B—rit— 9(R(A))}. .34
TatRA (R(A){ ﬂ‘u,(R(A)|p_2 +yu(R(A))} (3.34)
Invoking Lemma we deduce
) R(A)
1 R
S T (R(A)P
Integrating equation (1.4) on |R(A), [, we obtain
[ (r) [P~ (r) — [u/ (R(A) P24/ (R(A)) + Bru(r)
r r 3.36
~ SRARA) + @ =9) [ uls)ds = [ wp-las =o.

R(A) R(A)

= 0. (3.35)

Since v’ is negative and strictly increasing in [R(A), co[ we get
[ (r) [P (r) > |u' (R(A)[P2 (1), (3.37)
for any r > R(A). Hence, equation gives
[ (R(A)) P~ (r) <[u(R(A))[P~*u'(R(A)) — Bru(r) + BR(A)u(R(A))

" (3.38)
+ (8 —a) /R(A) u(s)ds.
Now using the fact that u is decreasing and that § > « > 0, we obtain
o RAWRA) | o w(RA)
() < o (R(A)) + B s 4 (8= ) ot B (= ROA)). - (339)

Integrating this last inequality on |R(A), R(A) + 1] we get
u(R(A) +1)

(R(A4)) +

/ R(A o uwlR(A (3.40)
< u(R(A)) +u'(R(A)) + ﬂw(R(;))ﬂwu - 2 |uf(1(%(£1)))|2)2'

Putting together formula (3.35) and Lemma we arrive at lima_, oo u(R(A) +
1) = —oo which is not possible. O
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The remaining of the paper is devoted to the case v < 0.

Proposition 3.6. Assume v < 0 and o < (. Then all solutions of (1.4) are
strictly positive.

Proof. Assume that there exists a real 79 > Osuch that u(rg) = 0 and u(r) > 0 in
[0,70[. Then from Lemma u'(r) < 0in ]0, 79[ and u/(rg) < 0. Now integrating
equation ([1.4]) on ]0,ro[ we get

ro

To
[u/[P~20/ (ro) = (B — a)/ u(s)ds + ’y/ ul(s)|u' [P’ (s)ds. (3.41)
0 0
This is a contradiction with v < 0 and a < . O

In the case of ¥ < 0 and o > 8 > 0 we will prove that the three sets P, N and
C are not empty. More precisely we have the following statement.

Proposition 3.7. Assume v < 0 and § < a. Then there exist two constants A_
and Ay such that u(.,A) is strictly positive for any A > A4 and u(.,A) changes
sign for any 0 < A < A_; this implies |Ay,+oo[C P and |0, A_[C N.

Proof. The proof is divided in two steps.
Step 1. Let A,a large real positive. We scale the variables and set
u(r) = Av(z), x= A%, (3.42)
for any r € [0, Rmax[- Then in terms of the new variables, problem becomes
(|0 [P=20") + Bz A?~PH Dy 4 q A27PH Dy jp|9= Ly P20 = 0 (3.43)
v(0) =1, 2'(0)=0.

Since v < 0, the energy function E given by ([2.25)) is decreasing. In particular for
any 7 € [0, Rmax/,

0<u(r) <A and /()P < —LY 42, 3.44
@ s (3.44)

Therefore, v and v are bounded for all A > 1. In fact for any = € [0, A Rpax|,

pa 2/p—(1
0<v(@)<1l and |V (2)] <[ ]/PA2/P—(ta)
(x) (@) < [z s]
Let A — +o00, it follows from standard O.D.E. arguments that v(z) converges to
the solution of the problem

(V/P=2V) = oV P2y =,

3.45
V(0)=1, V'(0)=0. ( )
The first equation of this problem can be written as
T
(|V'\p_2V'emp(—7/ V|97V (s)ds))’ = 0. (3.46)
0

Hence V = 1. Consequently, v(., A) converges to 1 when A approaches +o0; in
particular u(., A) is strictly positive.
Step 2. As for (i), we introduce new variables. We set

u(r) = Aw(z) = =rA-@P=2/P, (3.47)
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Then w satisfies
(‘wl‘p—Zw/)/ + ﬂrw’ +aw — ,yAq—l—‘r(Q(p—l))/p|w‘q—1w|w/|p—2 ’_ 0,
w(0) =1, w'(0)=0.
By letting A approach 0, the function w(x) converges to the solution of the problem

(3.48)

(W'P=2W") + BaW' +aW =0,

, (3.49)
w(©0)=1, W'(0)=0.
We claim that W changes sign. In fact we have
W/ |P=2 W' (x) + BaW (x —a / W(s (3.50)
If W is strictly positive for all x, by using § — a < 0, we get
-2
(WE=2/0-Dy () < L7 2555550 v >0 (3.51)

p—1
This is a contradiction. As if there exists some zg > 0 such that
W(xo) = W (xo) =0 and W(z) > 0 in |0, z¢[ we obtain

—a/ W(s)ds =0,

this is also a contradiction because o # [.Thereby W is non positive and conse-
quently u(., A) changes sign for small A. This completes the proof. (I

We have also the following result.

Proposition 3.8. Assume v <0 and 0 < < «. Then N and P are non-empty
open sets.

Before to start the proof we introduce the function
L(r) = u(r) + [/ [P~/ (r). (3.52)
Lemma 3.9. Assumey <0, a >0, and § > 0. Let u be a strictly positive solution
of . Then the function I'(r) is strictly positive for large r.
Proof. Since u(r) > 0, Proposition [2.9] implies
lim r*/Pu(r) = L € [0, +oo|.

r—-+4o00

If L >0, u(r) ~ Lr—/8 for large r and then Lemma implies

lim /8 /[P~ = 0.
r——400
Thus, the function I'(r) behaves like Lr—%/#, as r — oo and therefore, T' is strictly
positive.
For the case L = 0, the proof will be done into two steps.
Step 1. I'(r) is monotone for large r. For this purpose we set

J(r) = Bru/(r) + au(r). (3.53)
We assert that J(r)has a constant sign for large . In fact, assume that there exists
a large ro such that J(rg) = 0. According to equation (|1.4)), we obtain

(b = Dl (ro) =2 (1) = —ﬁ(gf“‘p;_(?) {(p = D)(@/B +1) + Arou(ro)}
7o

(3.54)
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Since lim,_, o0 7*/Pu(r) = 0, we deduce that J'(rg) < 0. Consequently J(r) has
the same sign for large r. Now, note that for any r > 0,

I'(r) = ' (r) — Bru’ — au(r) + yu?|u' [P~/ (r). (3.55)

Hence I"(r) and J(r) have the opposite signs, in particular the function J is mono-
tone for large 7.

Step 2. We claim that I' is not negative for large r. In fact if not,using the stepl
we deduce that there exists a large Ry such that I'(r) = u(r) + [o/|P~2u/ < 0 for
any r > Rp. Integrating this last inequality on (Rq,7) we get

ulp=2/ =0 (py <u@=2/0=V(Ry) — (p = 2)/(p— 1)r + (p— 2)/(p — )Ry (3.56)

By letting r — 400, we obtain a contradiction.
Combining step 1 and step 2 we deduce I'(r) > 0 for large r. This completes the
proof. O

Now we use step by step the idea introduced by Brezis et al [2], for studying a
very singular solution of the heat equation with absorption. Ever since, this idea
was used in many papers, see for example [12]. In order to do this, we write (1.4])

as the system
u = |v|*(p*2)/(p*1)v’

3.57)
v = —ﬁr|v|‘(”‘2)/(”_1)v — au+~[ul!  uw. (
For each A > 0, we define the set

Ly={(f1,f2) : 0< fi <1,=Af1 < f2 <0} (3.58)

Lemma 3.10. For any A\ > 0 there exists ry = [\ + o™/ ®=V]/B: such that L
is positively invariant for r > rx. That is, if (uo,vo) € Ly and (u(r),v(r)) is the
solution of which satisfies (u(ro),v(ro)) = (ug,vo) for some rog > ry, then
for any r > ry the orbit (u(r),v(r)) lies in Ly for all v > 9.

Proof. We shall show that, given A > 0, there exists ry > 0 such that if r > 7y,
then the vector field determined by (3.57) points into Ly, except at the critical
point (0,0). On the top (f2 = 0),

v'=—au<0 forallr>0.
While on the right side (u = 1),
v = —Brlv|~ PPNy <0 for all r > 0.
On the line fo = —A f1 we must prove that Z—: < — A for large r. This is true because

'U/ B fl)/‘q_}|(p72)/(p71)

= —Br+ax™ /=Dy (r=2)/(p=1) L, \(P=2)/(P=1)a+(p=2)/(p=1)
u/

Since v < 0, if 7 > (A + aA™Y/®=1) /3 = r\ we obtain Z—,, <= O

Proof of Proposition[3.8 . First, note that from Proposition [3.7] the sets P and N
are not empty. On the other hand, the continuous dependence of solutions on the
initial value implies that N is an open set. To prove that P is open, take Ag € P
and let a large o > 0 be fixed. Then by continuous dependence of solutions on
the initial data, there is a neighborhood O of Ay such that u(r, A) > 0 for any
(r,A) € [0,79] x O. In particular u(rg, A) > 0 for any A € O and then from Lemma
0.9

v

T(ro) = u(ro, A) + |u'[P~%u'(r, A) > 0. (3.59)
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Since rg is large then u(rg, A) < 1 and consequently (u(rg, A), [u/[P~2u' (rg, A)) is
in L;. Recalling Lemma we deduce that the trajectory remains in Ly for
any r > ro, which implies in particular that u(r,A) > 0 for any r > ro and
A € O. Therefore, u(r, A) > 0 for any r > 0 and there by P is open. The proof is
complete. O

The rest of the paper is devoted to the study of solution with compact support

Proposition 3.11. Assume that v < 0 and B < «, then there exists at least one
solution with compact support.

Proof. As P and N are open disjoint sets, then there exists A € Rt — (P U N);
that is, u(., A) has a compact support. O

We conclude this paper with a study of the behavior of solution with a compact
support.

Lemma 3.12. Assume v < 0.Let ube a solution with compact support [0, R]. Then
—2 _1/-1)

(r=2)/(p-DY(R) = _pb—= RY/ (1) 3.60

(u )R =L (3.60)

Proof. Take r close to R. and integrate (|1.4)) between rand R; using the fact that
uis decreasing, we get

R R
WP ) = Bru) — (@ = 0) [ uls)ds oy [ a2 (s)ds.
Dividing by u(r), we have

o' [P~ (r - R
=Sy [ e s [l o

First, note that

R
0< / u(s)ds < u(r)(R—r).

Hence
lim o—h u(s)ds = 0.
r—R u(r)

On the other hand, since the function u’(s)is negative and also |u'| decreasing near
R, then

R R
qu)/ ul(s)|u' [P~ (s)ds :Uz;')/ ul(s)|[u' [P~ (s)ds

"V' () o (r) P2

q + 1"
The last term of this inequality approaches zero as r — R and then we get
/\p—1
lim M = GR.
r—R U(’I")

This is equivalent to (3.60)); thus the proof of the lemma is complete. (I
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