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SELF SIMILAR SOLUTIONS OF GENERALIZED BURGERS
EQUATION

ABDELILAH GMIRA, AHMED HAMYDY, SALEK OUAILAL

Abstract. In this paper, we study the initial-value problem

(|u′|p−2u′)′ + βru′ + αu− γ|u|q−1u|u′|p−2u′ = 0, r > 0,

u(0) = A, u′(0) = 0,

where A > 0, p > 2, q > 1, α > 0, β > 0 and γ ∈ R. Existence and complete

classification of solutions are established. Asymptotic behavior for nonnegative
solutions is also presented.

1. Introduction

This paper concerns the nonlinear parabolic equation

Ut − (|Ux|p−2Ux)x = −k
t
U + |U |q−1U |Ux|p−2Ux in R× R+, (1.1)

where p > 2, q > 1 and k > 0. As is often the case in nonlinear PDE’s of parabolic
type the characteristic properties of an equation, are displayed by means of the
existence of so-called self similar solutions; this is our main interest. It is worth
mentioning that if p = 2, q = 1 and k = 0, we get the classical one dimensional
Burgers equation

Ut = Uxx + UxU, (1.2)

which is originally proposed as a simplified model of Navier-Stokes Turbulence (see
[3] and [4]) .

By design, Burgers equation is the simplest model of hydrodynamic flow that
captures the interaction of nonlinear wave propagation and viscosity. Burgers tur-
bulence is often viewed as a pared-down model of acoustic turbulence (see [8] and
[14]).

The importance and popularity of equation (1.2) lie in its simplicity and in the
fact that the well known Hopf-cole substitution w = Ux

U reduces it to the linear
heat equation. This nonlinear change of variables permits an explicit description
of solutions of (1.2) and explains their essentially nonlinear first order asymptotic
as t goes to infinity.
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If p = 2 and k 6= 0, equation (1.1) becomes

Ut = Uxx + |U |q−1UUx −
k

t
U (1.3)

which is studied by [13]. Note that, if q = 1, equation (1.3) describes the propaga-
tion of weakly nonlinear longitudinal waves in gases or liquids from a non planar
source (see [9] and [10]).

If p > 2, equations (1.1) appears in the description of ice sheet dynamics (see [5]
) where the reaction term −k

tU can be considered as a turbulent term. In this case
the selfsimilar solutions of problem (1.1) take the form

U(x, t) = tσf(y), where y = xtη,

with
σ =

−1
pq + p− 2

and η =
−q

pq + p− 2
.

Then the profile f is determined as a solution in of the ODE

(|f ′|p−2f ′)′ +
q

pq + p− 2
yf ′ − (k − 1

pq + p− 2
)f + |f |q−1f |f ′|p−2f ′ = 0, y ∈ R.

Where the prime denotes the differentiation with respect to y. If we set

g(y) =
{
f(y) ∀ y ∈ R+,
f(−y) ∀ y ∈ R−,

then, g satisfies

(|g′|p−2g′)′ + αg + βyg′ + γ|g|q−1g|g′|p−2g′ = 0,

in R; with α = −k + 1
pq+p−2 , β = q

pq+p−2

α = −k +
1

pq + p− 2
, β =

q

pq + p− 2
and γ = −1, if y > 0; γ = 1, if y < 0. Consequently, we have just to focus on the
study of the initial-value problem

(|u′|p−2u′)′ + βru′ + αu− γ|u|q−1u|u′|p−2u′ = 0, r > 0

u(0) = A, u′(0) = 0,
(1.4)

when α > 0, β > 0 and γ ∈ R. We will mainly discuss: (i) The existence and
uniqueness of solutions for (1.4); (ii) the asymptotic behavior of positive solutions,
and (iii) a classification of solutions.

The main results of this paper are the following.

Theorem 1.1. Assume p > 2, q > 1, α > 0, β > 0, and γ ∈ R. Then for each
A > 0, there exists a real Rmax > 0 such that (1.4) has a unique solution u ≡ u(., A)
defined in the right open interval [0, Rmax[, meaning that u and |u′|p−2u′ are a C1

functions in [0, Rmax[, satisfying (1.4).

The following result gives the monotonicity of solutions of problem (1.4) with
respect to initial data.

Theorem 1.2. Assume α > 0, β > 0 and γ < 0. Let u(., A) and u(., B) be two
solutions of problem (1.4) with u(0, A) = A, u(0, B) = B and A 6= B. Then u(., A)
and u(., B) can not intersect each other before their first zero.

Concerning the asymptotic behavior, we have the following results.
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Theorem 1.3. Let u be a strictly positive solution of (1.4). Then

lim
r→+∞

u(r) = lim
r→+∞

u′(r) = 0.

Furthermore, if α > 0, β > 0 and γ ≤ 0, then

lim
r→+∞

r
α
β u(r) = L

exists and lies in [0,+∞[. Moreover this limit L is strictly positive for 0 < α ≤ β
and γ < 0.

Finally, the structure of solutions of problem (1.4) consists of three families:
The set of strictly positive solutions, the set of changing sign solutions and finally
solutions with compact support. This classification depends strongly on the sign of
γ(α− β).

Theorem 1.4. Assume p > 2, q > 1, and γ < 0. Then we have
(i) For α > β there exist two constants A1 and A2 such that for any A > A1,

the solution u(., A) is strictly positive and for A < A2, u(., A) changes sign.
Moreover, there exists at least one solution with compact support.

(ii) For 0 < α ≤ β, any solution of (1.4) is strictly positive.

The situation for γ > 0 is quite the opposite.

Theorem 1.5. Assume p > 2, q > 1 and γ > 0. Then
(i) If α ≥ β any solution of (1.4) change sign.
(ii) If α < β, there exist two constants A1 and A2 such that for any A < A2,

the solution u(., A) is strictly positive and for A > A1, u(., A) changes sign.

The organization of this paper is as follows. Theorems 1.1, 1.2 and 1.3 are
proved in section 2. In section 3 a classification of solutions is investigated and
then Theorems 1.4 and 1.5 are established.

2. Existence and asymptotic behavior of solutions

In this section, we investigate existence, uniqueness and asymptotic behavior
of solutions of the problem (1.4). We start with a local existence and uniqueness
result.

Proposition 2.1. Assume p > 2, q > 1, α > 0, β > 0 and γ ∈ R. Then for each
A > 0, there exists a right open interval I = [0, Rmax[ and a unique function u such
that, u and |u′|p−2u′ lie in C1(I) and satisfy (1.4).

First of all, we note that, for a fixed α, β and γ, it easy to see that u(., γ, A) =
−u(., γ,−A). Therefore, in the sequel we restrict ourselves to the case of A > 0.

Remark 2.2. The first equation in (1.4) can be reduced to the first order system

X ′ = |Y |−
p−2
p−1Y

Y ′ = −αX − β|Y |−
p−2
p−1Y + γ|X|q−1XY.

(2.1)

Since the mapping

(X,Y ) 7→
(
|Y |−

p−2
p−1Y,−αX − β|Y |−

p−2
p−1Y + γ|X|q−1XY

)
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is a locally Lipschitz continuous function in the set {(X,Y ) ∈ R× R∗}, we deduce
that, for any r0 > 0, A ≥ 0 and B 6= 0, there exists a unique solution of (1.4) in a
neighborhood of r0 such that u(r0) = A and u′(r0) = B.

Because of the presence of the term |Y |−
p−2
p−1Y , the above function is not locally

Lipschitz continuous near r0 whenever u′(r0) = 0. Consequently, for our problem
(1.4) the above argument does not work. To avoid this difficulty, we make use an
idea from [7]. Then the proof becomes similar to that of [1, proposition 1.1] and
[6, proposition 2.1]. We present it here for the convenience of the reader.

Proof proposition 2.1. The idea of the proof is to convert our initial value problem
(1.4) to a fixed point problem of some operator. This will be done in two steps.
Step 1. Local existence and uniqueness. It is clear that to solve problem (1.4)
is equivalent to find a function u ∈ C1(I) defined in some interval I = [0, R[ with
R > 0 such that |u′|p−2u′ ∈ C1(I) and satisfies the integral equation

u(r) = A−
∫ r

0

G(Fu)(s)ds, (2.2)

where G(s) = |s|(2−p)/(p−1s, for all s ∈ R, and

Fu(s) = βsu(s) + (α− β)
∫ s

0

u(τ)dτ − γ

∫ s

0

|u|q−1u(τ)|u′|p−2u′(τ)dτ. (2.3)

Now, let us define on [0, A] the following two functions

f1(X) =

{
α(A−X)− |γ|Xp−1(A+X)q if α ≥ β,

α(A+X)− 2βX − |γ|Xp−1(A+X)q if α < β,
(2.4)

and

f2(X) =

{
(A+X)

{
α+ |γ|Xp−1(A+X)q−1

}
if α ≥ β,

α(A−X) + |γ|Xp−1(A+X)q if α < β.
(2.5)

Since f1 is continuous and f1(0) = αA > 0, then there exists some interval [0, A0] ⊂
[0, A] such that

f1(X) > 0 ∀X ∈ [0, A0].
Let us introduce some useful notation for the proof:

f1(A0) = K1, f2(A0) = K2, R0 = inf{1, A
p−1
0

2ΓA
,
Kp−2

1

(2Γ)p−1
}, (2.6)

where
Γ = β + |α− β|+ (2p− 2 + q)2q−1|γ|Aq+p−2. (2.7)

It is easy to see that the function f2 satisfies the estimate

f2(X) ≤ 2AΓ, ∀X ∈ [0, A]. (2.8)

Now, we consider the complete metric space

X = {ϕ ∈ C1([0, R0]) : ‖ϕ−A‖X ≤ A0} (2.9)

where
‖ϕ‖X = max(‖ϕ‖0, ‖ϕ′‖0). (2.10)

and ‖.‖0 denotes the sup norm. Next we define the mapping T on X, by

T (ϕ) = A−
∫ r

0

G(Fϕ)(s)ds, ∀r ∈ [0, R0] (2.11)
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Claim 1. T maps X into itself. In fact, take ϕ ∈ X. First, it is easy to see that
T (ϕ) ∈ C1([0, R0]). Also by a simple calculation we get

0 < K1s < Fϕ(s) < K2s ∀s ∈ [0, R0]. (2.12)

And thereby, T (ϕ) satisfies the following estimates

|T (ϕ)(r)−A| ≤
∫ r

0

F 1/(p−1)
ϕ (s)ds ≤ p− 1

p
K

1/(p−1)
2 rp/(p−1), (2.13)

|T ′(ϕ)(r)| ≤ F 1/(p−1)
ϕ (r) ≤ K

1/(p−1)
2 r1/(p−1), (2.14)

for any r ∈[0, R0]. These last two equations, combined with the expression of R0

given by (2.6) imply that T (ϕ) ∈ X.
Claim 2. T is a contraction. To prove this, take ϕ and ψ ∈ X. Then

|T (ϕ)(r)− T (ψ)(r)| ≤
∫ r

0

|G(Fϕ(s))−G(Fψ(s))|ds, (2.15)

for any r∈ [0, R0], where Fϕ is given by (2.3). In view of estimate (2.12) (which is
also valid for Fψ), we get

|G(Fϕ)(s)−G(Fψ)(s)| ≤|F 1/(p−1)
ϕ (s)− F

1/(p−1)
ψ (s)|

≤ 1
p− 1

K
(2−p)/(p−1)
1 |Fϕ(s)− Fψ(s)|s(2−p)/(p−1).

Recalling the expression of Fϕ and Fψ, we deduce

|Fϕ(s)− Fψ(s)| ≤ [β + |α− β|]‖ϕ− ψ‖0s+ |γ|I (2.16)

where

I =
∫ s

0

|ϕq(τ)|ϕ′|p−2ϕ′(τ)− ψq(τ)|ψ′|p−2ψ′(τ)|dτ. (2.17)

But

I ≤
∫ s

0

|ϕ′(τ)|p−1|ϕq(τ)− ψq(τ)|dτ +
∫ s

0

ψq(τ)
∣∣|ϕ′|p−2ϕ′ − |ψ′|p−2ψ′

∣∣dτ. (2.18)

Using the fact that ϕ and ψ are elements of X, we get

I ≤ (q + 2p− 2)2q−1Aq+p−2‖ϕ− ψ‖Xs. (2.19)

Combining this last equation with (2.16), we get

|Fϕ(s)− Fψ(s)| ≤ Γ‖ϕ− ψ‖Xs, ∀s ∈ [0, R0] (2.20)

where Γ is given by (2.7). Therefore

|T (ϕ)(r)− T (ψ)(r)| ≤ Γ
p
K

(2−p)/(p−1)
1 ‖ϕ− ψ‖Xrp/(p−1). (2.21)

Similarly, one can easily obtain

|T ′(ϕ)(r)− T ′(ψ(r)| ≤ Γ
p− 1

K
(2−p)/(p−1)
1 ‖ϕ− ψ‖Xr1/(p−1). (2.22)

¿From the choice of R0, these last two equations imply that T is a contraction.
The use of the Banach’s Contraction theorem leads to the existence of a unique
function u solving problem (1.4) in (0, R0).
Step 2. |u′|p−2u′ ∈ C1([0, R0)). We have just to prove the regularity at r = 0. For
this purpose, note that the first equation in (1.4) gives

lim
r→0

(|u′|p−2u′)′(r) = −αA. (2.23)
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Integrating equation (1.4) from 0 to r, and letting r go to 0, we obtain

lim
r→0

|u′|p−2u′(r)
r

= −αA. (2.24)

Hence |u′|p−2u′ ∈ C1(([0, R0[). This completes the proof of Proposition 2.1. �

Remark 2.3. It is not difficult to see that the solution u of (1.4) is a C∞ function
at any r > 0 whenever u′(r) 6= 0.

The remaining of this section is devoted to the proof of the Theorem 1.2. For
this purpose we start with the following lemma.

Lemma 2.4. Let A > 0 and u be the corresponding solution of (1.4). Then as
long as u is strictly positive we have 0 < u(r) < A and u′(r) < 0.

Proof. Let

E(r) =
p− 1
p

|u′|p(r) +
α

2
u2(r), ∀r ∈ [0, Rmax[, (2.25)

be the induced energy function. We have

E′(r) = −βr|u′|2 + γ|u|q−1u|u′|p, ∀r ∈ [0, Rmax[. (2.26)

Then if γ ≤ 0 the energy function is decreasing as long as u is positive. Particularly
u(r) ≤ A. On the other hand since

(|u′|p−2u′)′(0) = −αA < 0, (2.27)

the lemma follows easily when γ > 0. �

The next result gives the monotonicity of solutions of the problem (1.4) with
respect to initial data. More exactly, we have

Proposition 2.5. Assume α > 0, β > 0 and γ < 0. Let 0 < A1 < A2. Then
u(., A1) and u(., A2) can not intersect each other before their first zero.

Proof. For ease of notation, we write u(., A1) = u(.) and u(., A2) = v(.) and we
denote by R1 (respectively R2) the first zero of u (respectively v). The proof will
be done by contradiction: it is based on the idea of [11, Lemma 2.4 ]. We assume
that there exists some point R0 ∈ [0,min{R1, R2}[ such that

u(r) < v(r) for r ∈ [0, R0[ and u(R0) = v(R0). (2.28)

Now, for any k > 0, we set

uk(r) = k−p/(p−2)u(kr), r ∈ [0,
R1

k
]. (2.29)

Then uk satisfy the equation

(|u′k|p−2u′k(r))
′ + βru′k(r) + αuk − γkµuqk(s)|u

′
k|p−2u′k(r) = 0, (2.30)

with µ = 1+ pq
p−2 . Since u is strictly positive and decreasing on [0, R1[, the function

k 7→ uk is strictly increasing. Moreover for any r ∈ [0, R0] limk→0 uk(r) = +∞.
Then there exists a small k0 >0 such that

uk(r) > v(r) for r ∈ [0, R0] andk ∈ [0, k0]

Therefore, the set

Ω ≡ {k ∈]0, k0[;uk(r) > v(r)for r ∈ [0, R0]} (2.31)
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is not empty and open. In particular if we denote by K the supremum of Ω, the real
K /∈ Ω and thereby, necessarily there exists r0 ∈ [0, R0] such that uK(r0) = v(r0).
As k0 is small without loss of generality we assume

k0 = (
A1

2A2
)(p−2)/p. (2.32)

If r0 = R0, then
uK(R0) = K−p/(p−2)u(KR0) = v(R0). (2.33)

But u(R0) = v(R0), then using again the strictly increasing of the function k 7→ uk
is strictly increasing we deduce necessarily K = 1. This is a contradiction with the
choice of the real k0. If r0 = 0 we get

uK(0) = K−p/p−2)u(0) = K−p/(p−2)A1 = A2

which contradicts (2.32). Consequently we deduce that there exists some point
r0 ∈ [0, R0[ such that

uK > v on ]0, R0[ and uK(r0) = v(r0). (2.34)

So uK − v has a local minimum at the point r0, where the graphs of uK and vare
tangent. Moreover, as v′ and u′ are strictly negative, the equation satisfied by v
(respectively by uK) can be written in the form

(p− 1)|v′|p−2v′′ + βrv′ + αv − γvq|v′|p−2v′ = 0, (2.35)

and respectively

(p− 1)|u′K |p−2u′′K + βru′k + αuK − γKµuqK |u
′
K |p−2u′K = 0. (2.36)

Subtract (2.35) from (2.36), we obtain at point r0,

(p− 1)|v′|p−2(uK − v)′′(x) = γ(Kµ − 1)vq|v′|p−2v′(r0). (2.37)

Since γ < 0, v′ < 0,K < 1 and µ > 0, we get

(p− 1)|v′|p−2(uK − v)′′(r0) = γ(kµ − 1)vq|v′|p−2v′(r0) < 0. (2.38)

This is impossible because (uK − v) has a local minimum at x and then the propo-
sition is proved. �

In the next result, we investigate the asymptotic behavior of positive solutions.

Proposition 2.6. Let u be a positive solution of (1.4) defined on [0,+∞[. Then

lim
r→+∞

u(r) = lim
r→+∞

u′(r) = 0.

The proof of this result depends strongly on the sign of γ. In fact, if γ ≤ 0,
the result follows from the energy function. However, for γ > 0 we need some
information about the monotonicity of u′ this is given in the following lemma.

Lemma 2.7. Assume γ > 0. Let a real A > 0 and u(., A) be a strictly positive
solution of (1.4) defined in [0,+∞[. Then there exists a unique real number R(A) >
0 such that

u′′ < 0 on [0, R(A)[ and u′′ ≥ 0 on[R(A),+∞[.
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Proof. First, note that from Lemma 2.4, the solution u = u(., A) is decreasing and
converges to some nonnegative constant. On the other hand (2.27), implies that
(|u′|p−2u′)′ must change sign. Let R(A) > 0 its first zero. For simplicity we set
R = R(A). Then (|u′|p−2u′)′(r) < 0 for any r in [0, R[. Furthermore,

αu(R) = −[βR− γuq|u′|p−2(R)]u′(R). (2.39)

As u is strictly positive we deduce that u′(R) 6= 0, and then u is a C∞ function at
the point R. So, the first equation in (1.4) can be written in some neighborhood of
R, say ]R− ε,R+ ε[ (ε > 0), in the form

(p− 1)|u′|p−2u′′ + βru′ + αu− γuq|u′|p−2u′ = 0. (2.40)

Differentiating this last equality and taking r = R, we obtain

(p− 1)|u′|p−2u(3)(R) = −(α+ β)u′(R) + γquq−1|u′|p(R). (2.41)

But, since γ > 0, α + β ≥ 0 and u′(R) < 0, then the left hand side of the last
equation is strictly positive. By continuity of u(3) we get

u(3)(r) > 0 for any r ∈ [R,R+ ε[.

Hence u′′ is non-negative on [R,R+ ε[. Finally, using (1.4) we deduce

u′′(r) ≥ 0 for any r in [R,+∞[,

which completes the proof. �

Remark 2.8. Note that the right hand side of (2.41) satisfies

−(α+ β)u′(R) + γquq−1|u′|p(R) =
u′(R)
u(R)

{γquq|u′|p−2u′(R)− (α+ β)u(R)}.

Using (2.39), the relation (2.41) becomes

(p− 1)|u′|p−2u(3)(R) = β(1 +
β

α
)R
|u′(R)|2

u(R)
− γ(1 +

β

α
− q)uq−1|u′|p(R).

Hence, if γ < 0 and q ≤ 1 + β
α , we get u(3)(R) > 0 and thereby the Lemma 2.7 also

holds in this case.

Proof of Proposition 2.6. By Lemma 2.4 limr→+∞ u(r) = l exists and lies in [0, A[.
We start by establishing the proposition when γ ≤ 0, in this case the energy function
given by (2.25) is positive and decreasing. It then converges, and limr→+∞ u′(r) =
0. Moreover integrating equation (1.4) between 0 and r, we get

|u′|p−2u′(r) + βru(r) +
∫ r

0

{
(α− β)u(s)− γuq(s)|u′|p−2u′(s)

}
ds = 0. (2.42)

Therefore,

lim
r→+∞

1
r

∫ r

0

{(α− β)u(s)− γuq(s)|u′|p−2u′(s)}ds = −βl. (2.43)

On the other hand, if l 6= 0 the L’Hôpital rule implies that

lim
r→+∞

1
r

∫ r

0

{(α− β)u(s)− γuq(s)|u′|p−2u′(s)}ds = (α− β)l.

This contradicts (2.43) and therefore l = 0.
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To handle the case γ > 0, we use the above Lemma 2.7. Assume that l 6= 0 and
integrate equation (1.4) on (r, 2r) for some r > 0. We obtain

|u′|p−2u′(2r) =|u′|p−2u′(r) + βru(r)− 2βru(2r)

+ (β − α)
∫ 2r

r

u(s)ds+ γ

∫ 2r

r

uq(s)|u′|p−2u′(s)ds.
(2.44)

Since γ > 0 and u′ ≤ 0, for iβ ≥ α, we obtain

|u′|p−2u′(2r)
2r

≤ (β − α

2
)(u(r)− u(2r))− α

2
u(2r) . (2.45)

On the other hand if β < α,

|u′|p−2u′(2r)
r

≤ β(u(r)− u(2r))− αu(2r). (2.46)

Now, observe that

lim
r→+∞

[u(r)− u(2r)] = 0 and lim
r→+∞

u(2r) = l 6= 0;

therefore, for any α, β ≥ 0, we get

|u′|p−2u′(2r)
2r

≤ −α
2
u(2r) for large r. (2.47)

This gives

(u(p−2)/(p−1))′(r) ≤ −p− 2
p− 1

(
α

2
)1/(p−1)r1/(p−1), (2.48)

which contradicts that uis strictly positive. Consequently l = 0 and the proof is
complete. �

Now, we pass to the asymptotic behavior of positive solutions.

Proposition 2.9. Assume α > 0, β > 0 and γ ≤ 0. Let u be a strictly positive
solution of (1.4). Then limr→+∞ rα/βu(r) = L exists and lies in [0,+∞[.

Some preliminary results are needed for the proof of this proposition.

Lemma 2.10. Assume α > 0, β > 0 and γ ≤ 0. Let u be a strictly positive solution
of (1.4) such that

u(r) ≤ K(1 + r)−σ for r ≥ 0. (2.49)
Then, there exists a constant M depending on K and σ such that

|u′(r)| ≤M(1 + r)−σ−1 for r ≥ 0. (2.50)

Proof. Without loss of generality we have just to prove (2.50) for r > 2. In fact,
as u′ is a continuous function, it is bounded in [0, 2]. So there exists some constant
C > 0 such that

|u′(r)| ≤ C, for r in [0, 2]. (2.51)
Hence, if we take M ≥ C3σ+1, then (2.50) holds for r in [0, 2]. For any r > 2, we
set

F (r) = exp
[ −γ
p− 1

∫ r

0

uq(s)ds
]

(2.52)

and consider the function

G(r) = exp
[ β

p− 1

∫ r

0

s|u′(s)|2−pds
]
, r > 2. (2.53)
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In view of (2.27) we have

u′(r) ∼ −(αA)1/(p−1)r1/(p−1) as r → 0. (2.54)

Recalling that u′ is strictly negative, we deduce that the function G is well posed.
Now, we write equation (1.4) in the form

(FGu′)′(r) +
α

β

F (r)
r

u(r)G′(r) = 0. (2.55)

Integrating the above equation, we obtain

|u′(r)| = α

βF (r)G(r)

∫ r

0

F (s)
s

u(s)G′(s)ds. (2.56)

Since γ ≤ 0 the function F is increasing and

|u′(r)| ≤ α

βG(r)

∫ r

0

u(s)
s
G′(s)ds. (2.57)

Next, we find a bound the right-hand side of the above inequality. We set

I1 =
∫ 1

0

u(s)
s
G′(s)ds, I2 =

∫ r/2

1

u(s)
s
G′(s)ds, I3 =

∫ r

r/2

u(s)
s
G′(s)ds, (2.58)

so that ∫ r

0

u(s)
s
G′(s)ds = I1 + I2 + I3 . (2.59)

First, note that (2.54) implies easily that I1 is bounded. On the other hand, in
view of Proposition 2.6, there exists a constant K > 0 such that

|u′(r)|2−p ≥ K for r ≥ 0. (2.60)

Then
G(r) ≥ exp(Kr2) for r > 2. (2.61)

To estimate I2, we use (2.52) to obtain

I2 ≤ C

∫ r/2

1

(s+ 1)−σ

s
G′(s)ds ≤ C

∫ r/2

1

G′(s)ds ≤ CG(
r

2
). (2.62)

Or
1

G(r)
I2 ≤ C

G(r/2)
G(r)

≤ C exp[
−β
p− 1

∫ r

r
2

s|u′(s)|2−pds]. (2.63)

Now recalling (2.60), we get
1

G(r)
I2 ≤ C exp(−K1r

2), (2.64)

with K1 = 3β
8(p−1)K. But as the solution u is decreasing, then

1
G(r)

I3 =
1

G(r)

∫ r

r/2

u(s)
s
G′(s)ds ≤ 2

r
u(r/2).

Using again the estimate (2.49), we obtain
1

G(r)
I3 ≤ C(r + 1)−σ−1 for r > 2. (2.65)

Finally, putting together (2.57), (2.64) and (2.65) the desired estimate (2.53) fol-
lows. This completes the proof of the lemma. �
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Lemma 2.11. Assume α > 0, β > 0 and γ ≤ 0. Let u be a strictly positive solution
of (1.4). Then

u(r) ≤ Cr−
α
β , for large r. (2.66)

Proof. Using the first equation in (1.4), the function u(r) satisfies

α

2
u2(r)
r

=
|u′|p

2r
− β

2
uu′ − 1

2r2
u|u′|p−2u′

+
γ

2r
uq+1|u′|p−2u′(r)− 1

2
[
u|u′|p−2u′

r
]′.

(2.67)

Recalling the expression of the energy function given by (2.25) we deduce

E(r)
r

=
3p− 2

2p
|u′|p

r
− β

4
(u2)′ − 1

2r2
u|u′|p−2u′

− 1
2

[
u|u′|p−2u′

r
]′ +

γ

2r
uq+1|u′|p−2u′(r).

(2.68)

Integrating the above inequality on the interval (r,R) we obtain∫ R

r

E(s)
s

ds =
3p− 2

2p

∫ R

r

|u′(s)|p

s
ds+

u(r)|u′|p−2u′(r)
2r

− u(R)|u′|p−2u′(R)
2R

+
β

4
u2(r)− β

4
u2(R)

− 1
2

∫ R

r

u(s)|u′(s)|p−2u′(s)
s2

ds+
γ

2

∫ R

r

uq+1(s)|u′(s)|p−2u′(s)
s

ds.

Since u′ is negative, β ≥ 0 and γ ≤ 0 we get∫ R

r

E(s)
s

ds ≤3p− 2
2p

∫ R

r

|u′(s)|p

s
ds+

u(R)|u′(R)|p−1

2R
+
β

4
u2(r)

+
1
2

∫ R

r

u(s)|u′(s)|p−1

s2
ds+

|γ|
2

∫ R

r

uq+1(s)|u′(s)|p−1

s
ds.

(2.69)

Since E is strictly decreasing and converges to zero when r approaches to infinity,
we deduce that E′ ∈ L1(]0,∞[). In particular r|u′|2 and uq|u′|p lie in L1(]0,∞[).
Letting R→ ∞,∫ ∞

r

E(s)
s

ds ≤β
4
u2(r) +

3p− 2
2p

∫ ∞

r

|u′(s)|p

s
ds

+
1
2

∫ ∞

r

u(s)|u′(s)|p−1

s2
ds+

|γ|
2

∫ ∞

r

uq+1(s)|u′(s)|p−1

s
ds.

(2.70)

Now, we set

H(r) =
∫ ∞

r

E(s)
s

ds. (2.71)

First, using the fact that u2(r) ≤ 2
αE(r), we obtain

H(r) ≥
∫ 2r

r

E(s)
s

ds ≥ E(2r)
2

≥ α

4
u2(2r). (2.72)
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On the other hand, inequality (2.70) gives

H(r) +
β

2α
rH ′(r) ≤3p− 2

2p

∫ ∞

r

|u′(s)|p

s
ds+

|γ|
2

∫ ∞

r

uq+1(s)|u′(s)|p−1

s
ds

+
1
2

∫ ∞

r

u(s)
s2

|u′(s)|p−1ds.

(2.73)

Assume that the function u satisfies

u(r) ≤ Cr−σ for r ≥ 1, (2.74)

for some fixed σ ≥ 0 and some constant C (this is possible because u(r) ≤ A for
all r ≥ 0). If σ ≥ (2α)β we have obviously (2.66). Assume now that σ < (2α)β.
Lemma 2.10 implies |u′(r)| ≤ Cr−σ−1 for any r ≥ 1. Consequently

[r2α/βH(r)]′ ≤ Cr2α/β−1−p(σ+1)[1 + r1−qσ] for r ≥ 1. (2.75)

By a simple integration, we obtain

H(r) ≤ Cr−2α/β + Cr−p(1+σ) + Cr1−p−(p+q)σ (2.76)

when [p(1 + σ) − 2α/β][2α/β − p + 1 − (p + q)σ] 6= 0. Otherwise if [p(1 + σ) −
2α/β][2α/β − p+ 1− (p+ q)σ] = 0, we have

H(r) ≤ Cr−2α/β + Cr−2α/β ln r + Cr−(1−qσ+2α/β). (2.77)

Combining (2.72), (2.76), (2.77) and using the fact that σ < (2α)β, we deduce that
there exists m > σ such that

u(r) ≤ Cr−m for all r ≥ 1. (2.78)

If m = α/β we have exactly the estimate (2.66). Otherwise if m 6= α/β, the desired
estimate (2.66) follows by induction starting with σ = m. This completes the
proof. �

Proof of Proposition 2.9. Set

I(r) = rα/β
[
u+

1
βr
|u′|p−2u′

]
. (2.79)

Then we have

I ′(r) =
1
β
rα/β−1

[
(
α

β
− 1)

|u′|p−2u′(r)
r

+ γuq|u′|p−2u′
]
. (2.80)

In view of Lemma 2.10 and Lemma 2.11, the functions r 7→ rα/β−1uq|u′(r)|p−1 and
r 7→ rα/β−2|u′(r)|p−1 are in L1(]0,∞[). Consequently, I ′(r) ∈ L1(]0,∞[). Moreover
(2.54) implies I(0)=0, and therefore

lim
r→+∞

I(r) =
∫ ∞

0

I ′(s)ds

exists. Since limr→+∞ rα/β−1|u′|p−2u′ = 0, we deduce that

lim
r→+∞

rα/βu(r) = L ∈ [0,∞[.

This completes the proof. �

Proposition 2.12. Assume α > 0, β > 0, γ < 0 and L = 0 in Proposition 2.9.
Then rmu(r) → 0 and rmu′(r) → 0 as r → +∞ for all positive integers m.
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Proof. ¿From the proof of the previous proposition, limr→+∞ I(r) = 0. Thus,
I(r) = −

∫∞
r
I ′(s)ds. Therefore ,(2.79) gives

u(r) =
−1
βr
|u′|p−2u′(r)− r−α/β

∫ ∞

r

I ′(s)ds. (2.81)

Since γ < 0 and u′ < 0, we deduce from (2.84) that

u(r) ≤ 1
βr
|u′|p−1 +

1
β
|α
β
− 1|r−α/β

∫ ∞

r

sα/β−2|u′|p−1ds. (2.82)

Then in view of Lemma 2.10, we get

u(r) ≤ Cr−(p+(p−1)α)/β . (2.83)

Define the sequence (mk)k∈N by{
m0 = α/β,

mk = p+ (p− 1)mk−1.
(2.84)

Then limk→+∞mk = +∞. Consequently, the proposition follows by induction
starting with m0 = α/β. This completes the proof. �

Proposition 2.13. Assume α ≤ β and γ < 0. Let u be a strictly positive solution
of (1.4). Then limr→+∞ rα/βu(r) > 0.

Proof. By Proposition 2.9,

lim
r→+∞

rα/βu(r) ∈ [0,∞[.

Suppose that limr→+∞ rα/βu(r) = 0. Then Proposition 2.12 implies

lim
r→+∞

rα/β−1|u′|p−2u′ = 0,

and therefore, limr→+∞ I(r) = 0. On the other hand, (2.80) implies that the func-
tion I given by (2.79) is strictly increasing; this is a contradiction which completes
the proof. �

3. Classification of solutions

In this section we give a classification of solutions of (1.4). For this purpose we
Set

P = {A > 0 : u(r,A) > 0,∀r > 0},
N = {A > 0 : ∃ r0 > 0;u(r,A) > 0for r ∈ [0, r0[, u(r0, A) = 0 and u′(r0, A) < 0},

C = {A > 0;∃ r0 > 0;u(r0, A) = u′(r0, A) = 0}.

This classification depends strongly on the sign ofγ and α−β. First, we start with
the following result.

Proposition 3.1. Assume γ > 0 and α ≥ β. Then any solution of (1.4) changes
sign.

Proof. Let u be a solution of (1.4). Then

|u′|p−2u′(r) = −βru(r)− (α− β)
∫ r

0

u(s)ds+ γ

∫ r

0

uq(s)|u′|p−2u′(s)ds. (3.1)
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for any r ∈ [0, Rmax. If the set C is not empty, there exists a finite r0 > 0 such that
u(r0) = u′(r0) = 0 and u(r) > 0 on ]0, r0[. Taking r = r0 in (3.1) and using again
Lemma 2.4, we get

(α− β)
∫ r0

0

u(s)ds+ γ

∫ r0

0

uq|u′|p−1ds = 0. (3.2)

This contradicts γ > 0 and α− β ≥ 0. Hence C = ∅.
If the set P is not empty, without loss of generality we can assume that equation

(3.1) holds with u strictly positive and u′ negative. Then since α−β ≥ 0 and γ > 0
we deduce

|u′|p−2u′(r) ≤ −βru(r). (3.3)
By integrating this last inequality we get a contradiction. �

Proposition 3.2. Assume γ > 0 and α < β. Then
(i) u(., A) is strictly positive for any A ∈]0, A0[ with

A0 = [
q − 1
β

(
β − α

γ
)p/(p−1)](p−1)/(p(q+1)−2)

(ii) u(., A) changes sign for large A.

For the proof we need some preliminary results. Let u be a solution of problem
(1.4) defined in [0, Rmax[. Set

h(r) = (β − α)u(r) + γ|u|q−1u|u′|p−2u′(r) ∀r ∈ [0, Rmax[. (3.4)

Then the following result holds.

Lemma 3.3. Assume α < β. Let u be a solution of (1.4). Then u cannot vanish
before the first zero of h.

Proof. On the contrary, suppose that u vanishes beforehand let r0 be the first zero
of u. As h(0) = (β − α)u(0) > 0, then h(r0) ≥ 0 and h(r) > 0 for r ∈ [0, r0[.
Integrating (1.4), we obtain

|u′|p−2u′(r0) =
∫ r0

0

h(s)ds > 0. (3.5)

This contradictsu′(r0) ≤ 0 and then, the Lemma is proved. �

Now, assume that there exists some initial data A > 0 such that u(., A)(= u) is
a strictly positive solution of (1.4) and set

g(r) = βr − γuq|u′|p−2(r), r > 0. (3.6)

Lemma 3.4. There exists ρ(= ρ(A)) > 0 such that

g(ρ) = 0 and g(r) < 0 for r in ]0, ρ[. (3.7)

Furthermore,

lim
A→+∞

u(ρ,A) = 0 and lim
A→+∞

u′(ρ,A) = −∞. (3.8)

Proof. First, we observe that the function g satisfies

(|u′|p−2u′(r))′ = −αu(r)− u′(r)g(r) for all r > 0. (3.9)

The proof is divided in 3 steps.
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Step 1. g(ρ) = 0 and g(r) < 0 for r ∈ [0, ρ[. Recalling (2.24) we get

|u′|p−2u′(r) ∼ −αAr, as r → 0. (3.10)

Hence,
g(r) ∼ −γAq(αAr)(p−2)/(p−1), as r → 0. (3.11)

and therefore g starts with a negative value. If g has a constant sign for all r > 0,
equation (3.9) gives

(|u′|p−2u′)′(r) < −αu(r) < 0, for r > 0.

and then the solution u(., A) must change sign; this is a contradiction and then
(3.7) follows.
Step 2. We claim that limA→+∞ u′(ρ,A) = −∞. In fact, equation (3.9) implies
that the solution u satisfies[p− 1

p
|u′|p +

α

2
u2

]′(r) = −(u′)2g(r), for r > 0. (3.12)

Integrating this last equality on [0, R] ⊂ [0, ρ[ and using the fact that g is negative
on [0, ρ[, we get

|u′|p(r) ≥ pα

2(p− 1)
[A2 − u2(r)], ∀r ∈ [0, ρ[. (3.13)

Hence, if u(ρ,A) is bounded, by letting A approach ∞, we deduce

lim
A→+∞

u′(ρ(A), A) = −∞.

Otherwise if u(ρ,A) is not bounded, then there exists a subsequence, denoted also
ρ(A) such that

lim
A→+∞

u(ρ(A), A) = +∞.

Now, recalling (3.7) and (3.9) we get

(|u′|p−2u′(r))′ ≤ −αu(r) < 0, for any r ∈ [0, ρ[. (3.14)

In particularly, we deduce that u is concave in [0, ρ[ and therefore

u(r) ≥ A+
u(ρ)−A

ρ
r, for any r ∈ [0, ρ[. (3.15)

Thus integrating (3.14) on (0, ρ), we obtain

|u′|p−2u′(ρ) ≤ −α
∫ ρ

0

(
A+

u(ρ)−A

ρ
r
)
dr. (3.16)

Hence,
|u′|p−2u′(ρ) ≤ −α

2
ρ[A+ u(ρ)]. (3.17)

But g(ρ) = 0, then uq|u′|p−2(ρ) = β
γ ρ. Inserting this last equality in (3.17) the

following estimate holds

|u′(ρ)| ≥ γα

2β
uq(ρ)[A+ u(ρ)]. (3.18)

Consequently, limA→+∞ u′(ρ,A) = −∞.
Step3. We assert that limA→+∞ u(ρ,A) = 0. In fact, integrating (3.14) on an
interval ]0, r[⊂]0, ρ[ and using (3.15) we obtain

|u′|p−2u′(r) ≤ −αr[A+
u(ρ)−A

2ρ
r] for any 0 < r < ρ. (3.19)
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On the other hand (3.14) implies that u′ is decreasing in ]0, ρ[, so (3.19) gives

|u′(ρ)|p−2u′(r) ≤ −αr[A+
u(ρ)−A

2ρ
r] for any 0 < r < ρ. (3.20)

Integrating this last inequality on ]0, ρ[ we get

A[|u′(ρ)|p−2 − α

3
ρ2] ≥ u(ρ)[

α

6
ρ2 + |u′(ρ)|p−2]. (3.21)

Therefore,

|u′(ρ)|p−2 − α

3
ρ2 ≥ 0. (3.22)

Recalling that g(ρ) = 0, this means

ρ =
γ

β
uq(ρ)|u′(ρ)|p−2. (3.23)

Combining (3.22) and (3.23) we obtain

u(ρ) ≤ [
3
α

(
β

γ
)2]1/2q|u′(ρ)|(2−p)/2q, (3.24)

Since limA→+∞ u′(ρ,A) = −∞, we deduce that limA→+∞ u(ρ,A) = 0. The proof
is complete. �

Lemma 3.5. Let u(., A) be a strictly positive solution and let R(A) given by Lemma
2.7. Then,

lim
A→+∞

u(R(A), A) = 0 and lim
A→+∞

u′(R(A), A) = −∞. (3.25)

Proof. First, note that Lemma 2.7 implies that u′′ < 0 on [0, R(A)[ and then from
step1 of the proof of Lemma 3.4 we get

ρ(A) ≤ R(A) and u′(R(A), A) ≤ u′(ρ(A), A). (3.26)

On the other hand, since the function r → u(r,A) is decreasing, we deduce

u(R(A), A) ≤ u(ρ(A), A). (3.27)

Letting A→∞ in there two inequalities, (3.25) holds. �

Proof of Proposition 3.2. The proof is divided in two steps.
Step 1. the proof of part (i). Set

R0 = sup{r > 0;h(s) > 0 on [0, r[}. (3.28)

Since h(0) = (β − α)u(0) > 0, the set {r > 0 : h(r) > 0 on [0, r[} is not empty.
We claim that R0 is infinite. To the contrary, assume that R0 is a real number.

Then h(R0) = 0 and h′(R0) ≤ 0, so from Lemma 3.3, u(R0) > 0. Moreover, by
continuity, u(r) 6= 0 for r ∈]R0 − ε,R0 + ε[ (with some ε > 0). Thus, we can write
h(r) in the form

h(r) = uq(r)h̃(r), (3.29)

for any r ∈]R0 − ε,R0 + ε[, with

h̃(r) = (β − α)u1−q(r) + γ|u′|p−2u′(r). (3.30)



EJDE-2005/80 SELF SIMILAR SOLUTIONS 17

We clearly have

h̃′(R0) =u(R0)[−γβ + γβR0(
β − α

γ
)1/(p−1)u−(q−1)(p−1)−1(R0)

+ (q − 1)(β − α)(
β − α

γ
)1/(p−1)u(2−p(q+1))/(p−1)(R0)].

(3.31)

Since u is decreasing, γ > 0 and β − α ≥ 0,

h̃′(R0) > u(R0)[−γβ + (q − 1)(β − α)(
β − α

γ
)1/(p−1)A(2−p(q+1))/(p−1)]. (3.32)

Consequently, for any A such that

A(p(q+1)−2)/(p−1) <
q − 1
β

(
β − α

γ
)p/(p−1), (3.33)

we obtain h̃′(R0) > 0. This contradicts h̃(r) > 0 for r∈ [0, R0[ and h̃(R0) = 0.
Hence R0 is infinite; meaning that the function h is strictly positive and therefore
by Lemma 3.3, u is also strictly positive.
Step 2. The proof of part (ii). Assume for contradiction that u is positive for all
A. Since u′(R(A), A) < 0 and u′′(R(A), A) = 0; then by putting r = R(A) in (1.4)
we get

α
u(R(A))

|u′(R(A)|p−2
= u′(R(A))

{
− β

R(A)
|u′(R(A)|p−2

+ γuq(R(A))
}
. (3.34)

Invoking Lemma 3.5, we deduce

lim
A→+∞

R(A)
|u′(R(A)|p−2

= 0. (3.35)

Integrating equation (1.4) on ]R(A), r[, we obtain

|u′(r)|p−2u′(r)− |u′(R(A)|p−2u′(R(A)) + βru(r)

− βR(A)u(R(A)) + (α− β)
∫ r

R(A)

u(s)ds− γ

∫ r

R(A)

uq|u′|p−2u′(s)ds = 0.
(3.36)

Since u′ is negative and strictly increasing in [R(A),∞[ we get

|u′(r)|p−2u′(r) > |u′(R(A)|p−2u′(r), (3.37)

for any r > R(A). Hence, equation (3.36) gives

|u′(R(A))|p−2u′(r) <|u′(R(A))|p−2u′(R(A))− βru(r) + βR(A)u(R(A))

+ (β − α)
∫ r

R(A)

u(s)ds.
(3.38)

Now using the fact that u is decreasing and that β > α > 0, we obtain

u′(r) < u′(R(A)) + β
R(A)u(R(A))
|u′(R(A))|p−2

+ (β − α)
u(R(A))

|u′(R(A))|p−2
(r −R(A)). (3.39)

Integrating this last inequality on ]R(A), R(A) + 1[ we get

u(R(A) + 1)

< u(R(A)) + u′(R(A)) + β
R(A)

|u′(R(A))|p−2
u(R(A)) +

β − α

2
u(R(A))

|u′(R(A))|p−2
.

(3.40)

Putting together formula (3.35) and Lemma 3.5 we arrive at limA→+∞ u(R(A) +
1) = −∞ which is not possible. �
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The remaining of the paper is devoted to the case γ < 0.

Proposition 3.6. Assume γ < 0 and α ≤ β. Then all solutions of (1.4) are
strictly positive.

Proof. Assume that there exists a real r0 > 0such that u(r0) = 0 and u(r) > 0 in
[0, r0[. Then from Lemma 2.4, u′(r) < 0 in ]0, r0[ and u′(r0) ≤ 0. Now integrating
equation (1.4) on ]0, r0[ we get

|u′|p−2u′(r0) = (β − α)
∫ r0

0

u(s)ds+ γ

∫ r0

0

uq(s)|u′|p−2u′(s)ds. (3.41)

This is a contradiction with γ < 0 and α ≤ β. �

In the case of γ < 0 and α > β > 0 we will prove that the three sets P , N and
C are not empty. More precisely we have the following statement.

Proposition 3.7. Assume γ < 0 and β < α. Then there exist two constants A−
and A+ such that u(., A) is strictly positive for any A ≥ A+ and u(., A) changes
sign for any 0 < A ≤ A−; this implies ]A+,+∞[⊂ P and ]0, A−[⊂ N .

Proof. The proof is divided in two steps.
Step 1. Let A,a large real positive. We scale the variables and set

u(r) = Av(x), x = Aqr, (3.42)

for any r ∈ [0, Rmax[. Then in terms of the new variables, problem (1.4) becomes

(|v′|p−2v′)′ + βxA2−p(q+1)v′ + αA2−p(q+1)v − γ|v|q−1v|v′|p−2v′ = 0

v(0) = 1, v′(0) = 0.
(3.43)

Since γ < 0, the energy function E given by (2.25) is decreasing. In particular for
any r ∈ [0, Rmax[,

0 < u(r) < A and |u′(r)|p ≤ pα

2(p− 1)
A2. (3.44)

Therefore, v and v′ are bounded for all A ≥ 1. In fact for any x ∈ [0, AqRmax[,

0 < v(x) < 1 and |v′(x)| ≤ [
pα

2(p− 1)
]1/pA2/p−(1+q).

Let A → +∞, it follows from standard O.D.E. arguments that v(x) converges to
the solution of the problem

(|V ′|p−2V ′)′ − γ|V |q−1V |V ′|p−2V ′ = 0,

V (0) = 1, V ′(0) = 0.
(3.45)

The first equation of this problem can be written as

(|V ′|p−2V ′exp(−γ
∫ r

0

|V |q−1V (s)ds))′ = 0. (3.46)

Hence V ≡ 1. Consequently, v(., A) converges to 1 when A approaches +∞; in
particular u(., A) is strictly positive.
Step 2. As for (i), we introduce new variables. We set

u(r) = Aw(x) x = rA−(p−2)/p. (3.47)
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Then w satisfies
(|w′|p−2w′)′ + βrw′ + αw − γAq−1+(2(p−1))/p|w|q−1w|w′|p−2w′ = 0,

w(0) = 1, w′(0) = 0.
(3.48)

By letting A approach 0, the function w(x) converges to the solution of the problem

(|W ′|p−2W ′)′ + βxW ′ + αW = 0,

W (0) = 1, W ′(0) = 0.
(3.49)

We claim that W changes sign. In fact we have

|W ′|p−2W ′(x) + βxW (x) = (β − α)
∫ x

0

W (s)ds. (3.50)

If W is strictly positive for all x, by using β − α < 0, we get

(W (p−2)/(p−1))′(x) ≤ −p− 2
p− 1

β
1

p−1x
1

p−1 , ∀x > 0; (3.51)

This is a contradiction. As if there exists some x0 > 0 such that
W (x0) = W ′(x0) = 0 and W (x) > 0 in ]0, x0[ we obtain

(β − α)
∫ x0

0

W (s)ds = 0,

this is also a contradiction because α 6= β.Thereby W is non positive and conse-
quently u(., A) changes sign for small A. This completes the proof. �

We have also the following result.

Proposition 3.8. Assume γ < 0 and 0 < β < α. Then N and P are non-empty
open sets.

Before to start the proof we introduce the function

Γ(r) = u(r) + |u′|p−2u′(r). (3.52)

Lemma 3.9. Assume γ < 0, α > 0, and β > 0. Let u be a strictly positive solution
of (1.4). Then the function Γ(r) is strictly positive for large r.

Proof. Since u(r) > 0, Proposition 2.9 implies

lim
r→+∞

rα/βu(r) = L ∈ [0,+∞[.

If L > 0, u(r) ≈ Lr−α/β for large r and then Lemma 2.10 implies

lim
r→+∞

rα/β |u′|p−2u′ = 0.

Thus, the function Γ(r) behaves like Lr−α/β , as r →∞ and therefore, Γ is strictly
positive.

For the case L = 0, the proof will be done into two steps.
Step 1. Γ(r) is monotone for large r. For this purpose we set

J(r) = βru′(r) + αu(r). (3.53)

We assert that J(r)has a constant sign for large r. In fact, assume that there exists
a large r0 such that J(r0) = 0. According to equation (1.4), we obtain

(p− 1)|u′(r0)|p−2J ′(r0) = −β(
α

β
)
p−1up−1(r0)

rp−1
0

{(p− 1)(α/β + 1) + γr0u
q(r0)} .

(3.54)
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Since limr→+∞ rα/βu(r) = 0, we deduce that J ′(r0) < 0. Consequently J(r) has
the same sign for large r. Now, note that for any r > 0,

Γ′(r) = u′(r)− βru′ − αu(r) + γuq|u′|p−2u′(r). (3.55)

Hence Γ′(r) and J(r) have the opposite signs, in particular the function J is mono-
tone for large r.
Step 2. We claim that Γ is not negative for large r. In fact if not,using the step1
we deduce that there exists a large R1 such that Γ(r) = u(r) + |u′|p−2u′ ≤ 0 for
any r ≥ R1. Integrating this last inequality on (R1, r) we get

u(p−2)/(p−1)(r) ≤ u(p−2)/(p−1)(R1)− (p− 2)/(p− 1)r + (p− 2)/(p− 1)R1. (3.56)

By letting r → +∞, we obtain a contradiction.
Combining step 1 and step 2 we deduce Γ(r) > 0 for large r. This completes the

proof. �

Now we use step by step the idea introduced by Brezis et al [2], for studying a
very singular solution of the heat equation with absorption. Ever since, this idea
was used in many papers, see for example [12]. In order to do this, we write (1.4)
as the system

u′ = |v|−(p−2)/(p−1)v,

v′ = −βr|v|−(p−2)/(p−1)v − αu+ γ|u|q−1uv.
(3.57)

For each λ > 0, we define the set

Lλ = {(f1,f2) : 0 < f1 < 1,−λf1 < f2 < 0} (3.58)

Lemma 3.10. For any λ > 0 there exists rλ = [λ + αλ−1/(p−1)]/β; such that Lλ
is positively invariant for r ≥ rλ. That is, if (u0, v0) ∈ Lλ and (u(r), v(r)) is the
solution of (3.57) which satisfies (u(r0), v(r0)) = (u0, v0) for some r0 > rλ, then
for any r ≥ rλ the orbit (u(r), v(r)) lies in Lλ for all r ≥ r0.

Proof. We shall show that, given λ > 0, there exists rλ > 0 such that if r > rλ,
then the vector field determined by (3.57) points into Lλ, except at the critical
point (0, 0). On the top (f2 = 0),

v′ = −αu < 0 for all r > 0.

While on the right side (u = 1),

v′ = −βr|v|−(p−2)(p−1)v < 0 for all r > 0.

On the line f2 = −λf1 we must prove that v′

u′ < −λ for large r. This is true because

v′

u′
=
v′|v|(p−2)/(p−1)

v
= −βr+αλ−1/(p−1)u(p−2)/(p−1)+γλ(p−2)/(p−1)uq+(p−2)/(p−1).

Since γ < 0, if r ≥ (λ+ αλ−1/(p−1))/β = rλ we obtain v′

u′ < −λ. �

Proof of Proposition 3.8. . First, note that from Proposition 3.7, the sets P and N
are not empty. On the other hand, the continuous dependence of solutions on the
initial value implies that N is an open set. To prove that P is open, take A0 ∈ P
and let a large r0 > 0 be fixed. Then by continuous dependence of solutions on
the initial data, there is a neighborhood O of A0 such that u(r,A) > 0 for any
(r,A) ∈ [0, r0]×O. In particular u(r0, A) > 0 for any A ∈ O and then from Lemma
3.9

Γ(r0) = u(r0, A) + |u′|p−2u′(r0, A) > 0. (3.59)
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Since r0 is large then u(r0, A) < 1 and consequently (u(r0, A), |u′|p−2u′(r0, A)) is
in L1. Recalling Lemma 3.10, we deduce that the trajectory remains in L1 for
any r ≥ r0, which implies in particular that u(r,A) > 0 for any r ≥ r0 and
A ∈ O. Therefore, u(r,A) > 0 for any r ≥ 0 and there by P is open. The proof is
complete. �

The rest of the paper is devoted to the study of solution with compact support

Proposition 3.11. Assume that γ < 0 and β < α, then there exists at least one
solution with compact support.

Proof. As P and N are open disjoint sets, then there exists A ∈ R+ − (P ∪ N);
that is, u(., A) has a compact support. �

We conclude this paper with a study of the behavior of solution with a compact
support.

Lemma 3.12. Assume γ < 0.Let ube a solution with compact support [0, R]. Then

(u(p−2)/(p−1))′(R) = −p− 2
p− 1

β
1/(p−1)

R1/(p−1). (3.60)

Proof. Take r close to R. and integrate (1.4) between rand R; using the fact that
uis decreasing, we get

|u′|p−2u′(r) = βru(r)− (α− β)
∫ R

r

u(s)ds+ γ

∫ R

r

uq(s)|u′|p−2u′(s)ds.

Dividing by u(r), we have

|u′|p−1(r)
u(r)

= βr − α− β

u(r)

∫ R

r

u(s)ds+
γ

u(r)

∫ R

r

uq(s)|u′|p−1u′(s)ds.

First, note that

0 ≤
∫ R

r

u(s)ds ≤ u(r)(R− r).

Hence

lim
r→R

α− β

u(r)

∫ R

r

u(s)ds = 0.

On the other hand, since the function u′(s)is negative and also |u′| decreasing near
R, then

γ

u(r)

∫ R

r

uq(s)|u′|p−2u′(s)ds =
|γ|
u(r)

∫ R

r

uq(s)|u′|p−1(s)ds

≤−|γ|
u(r)

|u′|p−2(r)
∫ R

r

uq(s)u′(s)ds

≤ |γ|
q + 1

uq(r)|u′(r)|p−2.

The last term of this inequality approaches zero as r → R and then we get

lim
r→R

|u′|p−1(r)
u(r)

= βR.

This is equivalent to (3.60); thus the proof of the lemma is complete. �
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