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ABSTRACT

Out-of-core algorithms can process data sets that are too large to fit entirely into the

computer’s main memory. This thesis develops an out-of-core algorithm for graph color-

ing. It dynamically partitions the graph into subgraphs, processes them in sequence, and

records the color information needed by later subgraphs in a dense format. The algorithm

is guaranteed to produce the same coloring as the first-fit in-core algorithm. It employs

a new method to compactly record information and automatically resizes the associated

data structure to save memory. As there are no pre-existing out-of-core graph coloring

codes, the implementation can only be compared to leading in-core graph coloring codes.

Based on the geometric mean over 18 graphs from various domains, JP-D1 is 25% faster

and uses 13% fewer colors. FirstFit and Boost both use the same number of colors as the

presented implementation, but FirstFit is 4 times faster whereas Boost is 6 times slower.
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1. INTRODUCTION

Out-of-core algorithms, or external algorithms, refer to processing large data sets that

are too massive to fit completely inside the computer’s internal memory (Vitter, 2001).

As computers usually contain a memory hierarchy, the speed to access internal memory

and external memory differs greatly. The major performance bottleneck of the out-of-core

algorithm is the input/output (or I/O) communication between the internal memory and

the external memory.

This thesis explores solutions to this problem for graph coloring. Formally, a (vertex)-

coloring of an undirected graph G = (V,E) is an assignment of a color v.color to each

vertex v ∈ V such that, for every edge (u,v) ∈ E, u.color 6= v.color holds (Hasenplaugh

et al., 2014). In addition, the goal of graph coloring is to use as few colors as possible.

Graph coloring problems arise in many practical applications such as compiler register

allocation, constructing timetables, and taxi scheduling (Lewis, 2015). The rapid growth

of the Internet and the recent advances in information technology results in large scale

data sets, which can be modeled as graphs (Lin et al., 2017). The practical importance and

the growth of massive graphs brings attention to the out-of-core graph coloring algorithm.

Since graph coloring is NP-hard (Zuckerman, 2006), several heuristic algorithms have

been developed. The greedy algorithm is one of them. It iterates over vertices in a certain

order and colors the current vertex with the best available color (i.e., the smallest color

that is not assigned to its already colored neighbors). In practice, the order in which the

vertices are colored in the greedy algorithm affects the number of colors needed (Hasen-

plaugh et al., 2014).
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To reduce the number of colors, several ordering heuristic have been proposed (Ala-

bandi et al., 2020), including first-fit (FF), where the vertices are colored in the order in

which they are given in the input, random (R), where the vertices are colored in random

order, and largest degree first (LDF), where the vertices with larger degrees are colored

first.

The massive graph is most easily partitioned into subgraphs (to fit into the CPU’s

main memory) according to the order in which the vertices appear in the vertex set. Con-

sequently, I use the greedy algorithm with first-fit (FF) ordering. It assigns an ID to each

vertex based on its location in the vertex set (i.e., the first vertex in the set has ID 0, the

second vertex in the set has ID 1, and so on). A lower ID represents a higher priority.

Each subgraph may have edges that connect to previous subgraphs or later subgraphs.

Hence, I need a good data structure to record this information and pass it to the later

subgraphs such that the global result is correct (i.e., each vertex is assigned the same

color as when processing the graph as a whole). For performance reasons, I also need

to minimize I/O, that is, this information should be stored as compactly as possible and

operating on it should be efficient.

The contributions of my thesis are as follows.

• I developed an out-of-core graph coloring algorithm that can process graphs that are

too large to fit in a user-defined memory size.

• I created a data structure that minimizes the storage space and supports fast inser-

tion and searching.
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• I evaluated the performance of different parameter values (e.g., the number of bit

vectors associated with the colors, the ratio of the information size to the maximum

information size, the ratio of the maximum graph size to maximum total size) to

tune my implementation and to gain insight.
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2. BACKGROUND

In graph coloring, the available colors have a particular order (the first color, second

color, etc.). The first color is the best color and has the highest priority. For a vertex v,

if at least one of its neighbors has already been assigned the first color, the second color

becomes the best available color. If that color is also already used by at least one neighbor,

the third color becomes the best available color and so on.

For a graph G = (V,E), the degree of a vertex v is the number of its neighbors, and

the degree of G is the largest degree among all vertices. In the greedy graph coloring

algorithm, the upper bound on the number of colors needed is one more than the degree of

G (Hasenplaugh et al., 2014). For a vertex in the graph, the range of its available colors is

one more than the degree of the vertex. Figure 2.1 (a) shows an example graph to describe

the out-of-core coloring algorithm I developed. Figure 2.1 (b) presents the color order that

is used in the illustration.

0

1

2

3 4

5

(a) Sample graph

First Second Third Fourth Fifth Sixth

(b) Color order

Figure 2.1: Example graph and assumed priority among the colors
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The sample graph has 6 vertices and I assumed only subgraphs with 2 vertices fit in

the memory. Figure 2.2 shows each subgraph (the vertices and edges that are not con-

nected to the subgraph are not presented). As the adjacency list of each vertex contains

all neighbors, even though each subgraph only has 2 vertices, it still holds the edges that

connect to the vertices that are not in the current subgraph.

0

1

2

3

5

(a) First subgraph

0

1

2

3 4

5

(b) Second subgraph

0

2

4

5

(c) Third subgraph

Figure 2.2: Subgraphs after paritition

For each subgraph, the first step is to transform the subgraph into a directed acyclic

graph (DAG). The direction of the edge is from a smaller vertex ID to a larger vertex ID.

The first subgraph is converted as shown in Figure 2.3 (a). A vertex with a smaller ID has

a higher priority. Hence, the vertex with ID 0 is colored first. For each vertex, only the

color of its parents (higher-priority neighbors) matter. Vertex 0 has no parent, so the first

color is the best color for it. Vertex 1 has a parent (vertex 0) colored with the first color, so

its best color is the second color. Figure 2.3 (b) presents the first subgraph after coloring.

In the first subgraph, vertex 0 and vertex 1 both have edges that connect to later sub-

graphs. The color and ID of both vertices are, therefore, required by later subgraphs. This

information, which is shown in Figure 2.3 (c), is recorded and must be passed to later

subgraphs.

Each subgraph repeats the above three steps: 1) convert the subgraph into a DAG, 2)

color each vertex, and 3) record the color and ID of each vertex that has edges connecting

5



0

1

2

3

5

(a) DAG representation

0

1

2

3

5

(b) After coloring

Color Vertex ID

First {0}

Second {1}

(c) Recorded information

Figure 2.3: Coloring the first subgraph

to later subgraphs. Figure 2.4 and Figure 2.5 show the steps to color the second and third

subgraph, respectively. All vertices are colored and no adjacent vertices have the same

color after processing every subgraph. Figure 2.6 shows the final result.

0

1

2

3 4

5

(a) DAG representation

0

1

2

3 4

5

(b) After coloring

Color Vertex ID

First {0, 2}

Second {1}

Third {3}

(c) Recorded information

Figure 2.4: Coloring the second subgraph

0

2

4

5

(a) DAG representation

0

2

4

5

(b) After coloring

Color Vertex ID

First {0, 2}

Second {1}

Third {3}

(c) Recorded information

Figure 2.5: Coloring the third subgraph
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0

1

2

3 4

5

Figure 2.6: Final coloring result
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3. IMPLEMENTATION

3.1 Dynamic Partitioning of the Graph

I assume the graph is stored in CSR sparse matrix format to store the graph in 2 arrays

(Chen et al., 2017), which is a dense and frequently used graph representation.

My algorithm first partitions the graph by determining a cut point in the two CSR

arrays. This cut point becomes the starting point of the next iteration. The goal is to find

the cut point quickly and partition the graph to make sure the local subgraph and the

recorded information fit in the given memory size.

A binary-search-based approach is used to make this step efficient. It first calcu-

lates a possible cut point according to the average degree of the graph. Then, it uses

binary search to refine the cut point such that the local subgraph is as large as possible

but smaller than the available size while not cutting a vertex’s adjacency list in the middle.

As the method described in Chapter 2 requires space to store information about ver-

tices that have neighbors in later subgraphs, part of the memory is assigned to this in-

formation and the other part is assigned to the local subgraph and local result. A global

variable G is used to express the initial ratio of the maximum subgraph size to maximum

memory size. The default value of G is 0.5, meaning that half of the memory is assigned

to the local subgraph (and local result) and the other half to storing color information

about earlier subgraphs.

Considering that there are many different graphs, a static G value may not work in all

cases. For example, a dense graph with a large average degree likely requires to store rel-

atively more information about previous subgraphs than a sparse graph. Hence, I change
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the value of G dynamically according to the current information size and local subgraph

size. In other words, the maximum subgraph size is shrunk and expanded as the current

information size changes. A global threshold R is introduced to indicate if the maximum

graph size must be recalculated.

To boost performance, recorded color information that is no longer required for later

subgraphs is only deleted whenever the ratio of the current information size to the maxi-

mum information size exceeds R. If the ratio still exceeds R after the deletion, the maxi-

mum graph size is shrunk to leave more available memory to store color information.

I assume the information size in the next iteration is at most twice the current infor-

mation size for most graphs. Hence, the ratio of the information size to maximum in-

formation size is not likely to exceed the threshold R in the next iteration if this ratio is

currently under R/2. In fact, I increase the allowed maximum graph size when the ratio is

less than R/2. This enables larger subgraphs going forward, which reduce the number of

iterations and require less frequent I/O.

3.2 Bit Vectors

Memory is a scarce commodity in out-of-core algorithms. To save memory when

storing sets of vertices with the same color, I use a a bit vector of size N to represent a

set of N integers. Figure 3.1 depicts such a structure. A vertex ID v can be represented as

v/N and v%N which is recorded in the bit vector. This bitmap covers the N vertices with

offset 0 through N−1. If the kth bit is true, the vertex whose ID with offset k is in the set.

A set with a range of N integers requires up to 4∗N bytes in memory, assuming each

4-byte integer is listed explicitly. The bit-vector version requires N/8 bytes, which is up

9



bits

00…01…00
kth

Figure 3.1: The base value and its associated bit vector

to 32 times smaller for densely populated sets. To search if vertex v is in the set, we first

need to check if a chunk with the value v/N exists. If it does not, return false. Otherwise,

check if bit v%N in that chunk is true. To insert a vertex v, check if a chunk with the value

v/N exists. If it does, set bit v%N. If it does not, create a new chunk and set bit v%N in it.

Hence, the bit-vector representation may comprise multiple chunks.

This representation is very helpful for recording the vertices that are colored with the

first few colors as these colors are typically used by most vertices in the graph. For each

of these colors, I use such bit vectors to indicate whether a vertex has this color. There

is only one chunk per color as N equals the number of vertices. Each bit in the bit vector

represents a vertex and is initialized to false. It is set to true when inserting the vertex ID

(e.g., the best color for this vertex is the color associated with this bit vector and the vertex

has a neighbor in later subgraphs). I use a global parameter C to specify the number of

colors that have such an associated bit vector. The default value of C is 2 because the

majority of the vertices use either the first or the second color in many graphs of practical

interest ((later results will show that the majority of the vertices use the first two colors)).

Here follows an example of a graph with 24 vertices that is partitioned into 3 sub-

graphs to describe how this bit vector is used to record the vertex ID. I assume the first

subgraphs processes vertices 0 through 7, the second subgraphs 8 through 15, and the

10



last subgraphs 16 through 23. As C = 2, the first color and the second color both have an

associated bit vector. Each bit vector consists of 24 bits to represent each vertex in the

graph. Every bit is initialized to false as presented in Figure 3.2(a). The first subgraph is

processed and vertices 0, 2, and 5 are colored with the first color and vertices 3 and 6 are

colored with the second color. Hence, bits 0, 2, and 5 of the first bit vector and bits 3 and

6 of the second bit vector are set to true as shown in Figure 3.2(b). Then the second sub-

graphs is processed. Vertices 10, 13, and 14 are colored with the first color and vertices

9, 12, and 15 are colored with the second color. The bit vectors are updated as shown in

Figure 3.2(c). The last subgraph does not need to record any such information because the

bit vectors are only used to record the colors of vertices needed in later subgraphs.

Color Bit vector

First {0, 0, …, 0}

Second {0, 0, …, 0}
24 bits

24 bits

(a) Initializing the bit vectors

Color Bit vector

First {1, 0, 1, 0, 0, 1, 0, 0,…, 0}

Second {0, 0, 0, 1, 0, 0, 1, 0 …, 0}
First chunk

First chunk

(b) After processing the first subgraph

Color Bit vector

First {1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, …, 0}

Second {0, 0, 0, 1, 0, 0, 1, 0 , 0, 1, 0, 0, 1, 0, 0, 1, …, 0}
First chunk

First chunk

Second chunk

Second chunk

(c) After processing the second subgraph

Figure 3.2: Bit vectors for the first two colors

I only use this data structure for vertices that are colored with the first or second color

as those usually result in densely populated sets. The colors of the remaining vertices are

11



recorded in a different data structure. Since the later colors are used much less frequently,

employing bit vectors for them would be inefficient as they would mostly contain zeros.

3.3 Compressed Lists

Recording which vertex has which color can easily be achieved by storing each ver-

tex’s color in an array that is indexed by the vertex ID. Each array element would have

to be large enough to record any possible color, so probably an 8- or 16-bit integer. This

array would likely be too large for an out-of-core implementation. Instead, I opted (1) to

only hold the color information in memory for vertices that have neighbors in later sub-

graphs and (2) to get close to storing just a single bit of information per such vertex. The

resulting data structure is described in this section.

Most graphs, even very large sparse graphs, usually only require a small number

of colors. Hence, a possible way to efficiently record which vertex has which color is

to record the IDs of all vertices of a given color in a data structure. This way, the color

value is implicit and does not need to be stored. As described in Chapter 3.2, the first and

second colors both use a bit vector to record the vertex IDs. For efficiency reasons, higher

colors require another data structure.

First, I thought a binary search tree might be a good choice. However, this thesis

implements the FF order, meaning the vertex IDs are inserted into the data structure in

increasing order. It leads the binary search tree to become a linked list. Hence, I created a

compressed lists data structure for each color to store the vertex IDs, which is presented in

Figure 3.3. These lists allow for dense storage, support fast insertion, and can be searched

relatively quickly.

12



Each subgraph has its own color list and dynamic arrays. However, the vector of

chunks is shared by all subgraphs. The color list of each subgraph is a list of pointers to

the dynamic arrays. The dynamic array entries are integers specifying the index of the

element (chunk) in the vector to which they refer.

The size of the color list is determined by the highest color number in the subgraph,

i.e., it is typically very small. The vector of chunks is dynamically increased and de-

creased (see next section). The size of the dynamic array is n/N, where n is the number

of vertices in the subgraph. It is indexed by the value V/N where V is the vertex ID. Each

vertex has a deterministic position in the dynamic array. In other words, the dynamic ar-

ray can be accessed directly through the vertex ID without any search. Each chunk in the

vector has a bit vector for the vertex ID offset and can, therefore, also be accessed directly

without search. The chunks also contain an integer to indicate the maximum neighbor ID

in the range of the vertices that are represented by the bit vector. This information makes

it possible to recycle the chunk as soon as it is no longer needed to keep the data structure

small.

Here follows an example of a graph G = (V,E) to explain the compressed lists in more

detail. The graph is partitioned so that the number of vertices and edges in each subgraph

does not exceed the maximum allowed size and a vertex’s adjacency list is not cut in the

middle. To simplify this example, I assume the graph is partitioned into 2 subgraphs and

each subgraph has V/2 vertices.

As presented in Figure 3.3, the first subgraph and second subgraph have their asso-

ciated color list and dynamic arrays. They share the vector of chunks. The color list of

every subgraph is initially empty to save memory. Whenever a color is added, the corre-

13



sponding dynamic array is allocated with a size of V/(2∗N) and filled with -1. Any unused

colors have a NULL pointer and no dynamic array is allocated, such as the pointer of the

fifth color in the second subgraph.

To insert a vertex ID, it locates the corresponding entry in the color list of the current

subgraph and checks the pointer. If it is NULL, it allocates and initializes the dynamic

array. Then it accesses the dynamic array according to the vertex ID to get the index. If

the element at this index is -1 (e.g., this vertex has no associated chunk in the vector), it

sets the index to the current size of the vector and adds a new chunk to the vector. Also,

it sets the associated bit in the chunk as described in Chapter 3.2. If the index is not -1, it

accesses the vector with this index and sets the bit in the associated chunk to true.

To search for the color of a vertex, it iterates over the C bit vectors and then over every

dynamic array in the associated subgraph (which is determined by the vertex ID) until

finding the vertex. For example, assuming vertex j is in the first subgraph with j/N = 3.

To search for its color using the data structure depicted in Figure 3.3 and assuming it did

not find it in the C bit vectors, it starts with the dynamic array of the third color in the first

subgraph. Accessing this dynamic array yields an index of -1 in position 3. This means

the vertex ID is not found. So it checks position 3 in the next dynamic array, where the

index is again -1. It continues to check position 3 in the dynamic array of the fifth color.

Here, the index is 1. So it accesses the vector with this index. The vertex ID is found if

the associated bit in the selected chunk is true.

Insertion and searching are efficient as accessing the dynamic arrays and the vector of

chunks take O(1) time. The search operation takes O(k) time where k is the color number

of the vertex because we need to check one color after the other. Note that this is still

14



Color list Dynamic array of indices

Vector of Chunks

Third color

Fourth color

Fifth color

Pointers

First Subgraph

Color list Dynamic array of index

Third color

Fourth color

Fifth color

Pointers

Second subgraph

Sixth Color

Seventh Color

(Number of vertices in the subgraph) / N

NULL

-1 0 -1 -1 -1 -1 -1……

-1 -1 -1 -1 2 -1…… -1

-1 -1 -1 1 -1 -1…… -1

-1 -1 4 -1 -1 -1…… -1

-1 3 -1 -1 -1 -1…… -1

-1 -1 -1 -1 -1 -1…… 5

last_nbr N bits

Chunk

-1 -1 -1 -1 -1 6…… -1

Figure 3.3: Compressed lists to record the vertex ID

efficient as most vertices are colored with a low color number. The vector of chunks is

implemented by the vector in the standard template library. Adding an element at the end

of the vector is amortized O(1). Hence, the insertion operation is O(1).

This compressed list also saves memory. The dynamic array is only allocated when

necessary (i.e., when the pointer in the color list is NULL and a vertex ID is going to be

inserted). The size of the dynamic array is small, it is N times smaller than the range of

the vertices in a subgraph. Also, the vector is dynamically resized and its unused elements

are recycled (see below).

3.4 Resizing the Vector

The vector of chunks should be as small as possible. Hence, it needs to be resized by

deleting unnecessary chunks (i.e., chunks that are not required by later subgraphs) to save

memory.
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A field that records the maximum neighbor vertex ID is included in each chunk to

indicate when this bit vector is safe to be deleted. The structure of each chunk in the

vector is shown in Figure 3.4. Assume the maximum neighbor ID is currently 15 for

the vertices 0 to 3. Assume further that vertex 3 is inserted into the bit vector and its

maximum neighbor ID is 17. Since 17 is larger than 15, we need to update the value

of last nbr with the larger neighbor ID. The structure after the insertion is presented in

Figure 3.4.

last_nbr bits

15 {0, 1, 0, 0}
(a) Adding a field of last nbr

last_nbr bits

17 {0, 1, 0, 1}
(b) Inserting vertex 3 which has vertex 17 as
neighbor

Figure 3.4: Updating the last nbr

If the maximum neighbor ID is less than the last vertex ID of the current subgraph,

then the chunk is no longer required in the following iterations. The resizing of the vector

is implemented by moving every chunk that is not deleted to a new vector. This is imple-

mented by iterating over the dynamic arrays to access the vector chunks and updating the

indices in the dynamic arrays accordingly. Given that this process is expensive, I only

resize the vector when the information is about to exceed the maximum allowed infor-

mation size. The resizing function is called when the ratio of the information size to the

maximum information size exceeds the threshold R.
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4. RELATED WORK

4.1 Out-of-core Algorithms

Several techniques have been developed to process large-scale graphs on CPUs on

a single machine as well as on clusters. In 2001, Jeffrey Vitter surveyed the design and

analysis of out-of-core algorithms and data structures to exploit locality in order to reduce

the I/O costs between disk and main memory on CPUs (Vitter, 2001). His paper discusses

techniques for sorting, operations on matrices (such as matrix multiplication), geometric

data, graphs, dictionary lookup, and range searching. It also considers two important data

structures that are based on extensible hashing and B-trees. Similarly, I designed two

compact data structures that are useful for out-of-core graph coloring.

A disk-based system, GraphChi, was proposed in 2012. It uses parallel sliding win-

dows to update the graph on disk in order to reduce the I/O costs (Kyrola et al., 2012).

Sliding windows is a good method for some algorithm but makes it hard to guarantee a

correct result for graph coloring.

In 2014, a graph data offloading technique using non-volatile memory devices (NVMs)

was introduced to augment the hybrid BFS (Breadth-First Search) algorithm (Iwabuchi

et al., 2014). PrefEdge, a prefetcher for graph algorithms that combines a judicious dis-

tribution of graph state between main memory and solid state drives (SSDs) with a read-

ahead algorithm to prefetch needed data in parallel, was developed in 2014 for mining

large graphs (Yoneki et al., 2014).

MOSAIC, a graph processing engine for a single machine was introduced in 2017.

It enables graph analysis on one trillion edges, employs a new data structure - Hilbert-
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ordered tiles - for locality, load balancing, and compression, and proposes a hybrid com-

putation and execution model that efficiently executes both vertex- and edge-centric oper-

ations (Maass et al., 2017). These techniques all target fast memory devices (e.g., SSDs

and NVMs).

Since GPUs typically have substantially less main memory than CPUs, out-of-core

algorithms are of particular interest in that domain. A fast and scaleable graph processing

method, GTS, that handles even 64 billion edges very efficiently on GPUs was proposed

in 2016. This method stores graphs in PCI-E SSDs (Kim et al., 2016). Even though GTS

is able to process large-scale graphs, it still requires SSDs just like the above CPU meth-

ods.

TOTEM was the only system for processing large-scale graphs on GPUs before GTS.

It provides an environment to implement graph algorithms on hybrid CPU/GPU platforms

(Gharaibeh et al., 2013). Even though TOTEM is able to process large-scale graphs on

GPUs, it often only processes a small part of the graph on the GPU and may underutilize

the computational power of GPUs.

The general graph processing platform Garaph was designed to process large-scale

graphs with better parallelism on the CPU and GPU of a single machine (Ma et al., 2017).

It employs a replication factor to maximize GPU utilization and edge-based partition-

ing to improve the work balance on the CPU. It also proposes an adaptive scheduling

mechanism to exploit the overlap of the two devices (GPU and CPU) and multistream

scheduling for data transfer and GPU kernel execution overlap.

Graphie, a large-scale graph traversing system for a single GPU was developed to

reduce the communication between CPU and GPU by storing the vertex attribute data in
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the GPU memory and stream edge data synchronously to the GPU for processing (Han

et al., 2017).

4.2 Graph Coloring

As mentioned in the introduction, the order in which the greedy coloring algorithm

colors the vertices matters. There are many studies on serial ordering heuristic. A 2014

paper evaluates 6 of the most popular heuristics: 1) first-fit ordering (FF), where the ver-

tices are colored in the order in which they appear in the vertex set, 2) random ordering

(R), where the vertices are colored in random order, 3) largest-degree-first ordering (LDF),

where the vertices with larger degrees are colored first, 4) smallest-degree-last ordering

(SDL), where the vertices with the smallest degree are successively removed from the

graph, the modified graph is colored using the LDF heuristic, and finally the removed

vertices are reinserted and colored, 5) saturation-degree ordering (SD), where the vertices

whose colored neighbors have the largest number of unique colors are colored first (us-

ing the vertex degree as a tie breaker), and 6) incidence-degree ordering (ID), where the

vertices with the largest number of colored neighbors are colored first irrespective of the

number of unique colors (using the vertex degree as a tie breaker) (Hasenplaugh et al.,

2014). This study highlights the tradeoff between coloring quality and runtime. I use FF

because it is both fast and yields a reasonable color quality while fitting my partitioning

strategy well.

ColPack is a package comprising of implementations for a variety of graph coloring

and related problems, including general graph coloring, bipartite graph one-sided col-

oring, and bipartite graph bicoloring (Gebremedhin et al., 2013). It includes a greedy
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algorithm with various ordering techniques for general graph coloring such as largest

degree first, smallest degree first, etc. (ColPack, 2019).

Several parallel strategies have been proposed to promote the performance of graph

coloring. One approach to parallel graph coloring uses independent sets. Luby’s paral-

lel maximal independent set algorithm is one of them (Luby, 1986). It finds the maxi-

mal independent set in parallel and all vertices in the independent set are assigned the

same color. Jones and Plassmann proposed another parallel graph coloring algorithm that

chooses a random number for each vertex and assigns each vertex to a processor (Jones

and Plassmann, 1993). Each vertex is colored with the best color available to it.

The Parallel Boost Graph Library is an extension of the Boost Graph Library (BGL)

for parallel and distributed computing (Boost, 2009). It implements graph coloring by

iterating over the vertices once and selecting the lowest-numbered available color. The

number of colors used in Boost is related to the sequential order of the vertices in the

serial cases. The distributed version produces a different number of colors depending

on the ordering, the distribution of the vertices, and the number of parallel processes

cooperating to perform the coloring.

Graph coloring on GPUs has been widely researched in recent years. Grosset et al.

proposed the first GPU graph coloring algorithm (Grosset et al., 2011). Their work is

based on the Gebremdhin-Manne algorithm that has 3 phases: optimistic coloring, con-

flict detection, and conflict resolution to color the graph for a shared memory computation

model. Naumov et al. developed a ”csrcolor” implementation using the cuSPARSE li-

brary (Naumov et al., 2015). It operates on the graph in CSR format, which is the same

format I am using in this thesis. Che et al. observed that a static work allocation runs into
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load imbalance so that they use the largest-degree-first for early iterations followed by a

randomized strategy (Che et al., 2015). Merill also proposed a load balancing optimiza-

tion that maps the workload of a vertex to a thread, wrap, or block depending on the size

of the vertex’s adjacency list (Merrill et al., 2012).

Chen et al. (Chen et al., 2017) proposed two graph coloring algorithms on GPUs with

multiple optimizations such as a bitmap to reduce the memory footprint and Merill’s load

balancing strategy. The first algorithm is topology-driven and the second is data-driven.

They both use the FF ordering heuristic, i.e., the same as my implementation.

In 2019, a parallel graph coloring algorithm for GPUs that uses a data-centric (Gun-

rock) abstraction and a linear-algebra-based (GraphBLAS) abstraction were proposed

(Osama et al., 2019). They investigated how different optimizations such as hashing,

avoiding atomics, and a max-min independent sets impact on the coloring quality and

runtime. Gunrock’s independent set implementation shows better performance than Nau-

mov et al.’s implementation and other optimizations investigated in the paper. A shortcut

approach was proposed in 2020 to break data dependencies and thus increase the paral-

lelism of graph coloring (Alabandi et al., 2020). It is almost three times faster on average

and uses as few or fewer colors as the best prior GPU codes. However, it is hard to take

advantage of this approach to reduce I/O communication.
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5. EXPERIMENTAL METHODOLOGY

This thesis compares my code to the fastest serial CPU codes I could find, which

are listed in Table 1. As there is no preexisting out-of-core graph coloring code, these

codes are the leading in-core graph coloring codes. I measure the runtime of the codes,

excluding the time it takes to read the input file from disk and to verify the result. Each

experiment is run three times and the median measured runtime is presented.

Table 5.1: The codes that are evaluated

Name Version Source Order
Out-of-Core GC (my code) 1.0 my code First fit

FirstFit 1.0 (Chen et al., 2017) First fit
JP-D1 (ColPack, 2019) Largest degree first
Boost 1.66.0 (Boost, 2009) First fit

The system I used has dual 10-core 3.1 GHz Xeon E5-2687W v3 CPUs. Each core

has separate 32 kB L1 caches, a 256 kB L2 cache, and the cores on a socket share a 25

MB L3 cache. The 128 GB main memory has a peak bandwidth of 68 GB/s. The op-

erating system is Fedora 23. The codes were compiled with gcc/g++ 8.3.1 using “-O3

-march=native”.

The codes are evaluated on the 18 graphs listed in Table 2, the rightmost column

shows the number of colors used by FF ordering. They are obtained from Center for Dis-

crete Mathematics and Theoretical Computer Science at the University of Rome (Dimacs)

(DIMACS, 2010), the Galois framework (Galois) (Galois, 2018), the Stanford Network

Analysis Platform (SNAP) (SNAP, 2014), and the SuiteSparse Matrix Collection (SMC)
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(SMC, 2011). The graphs are in CSR format. Where necessary, I made the graphs undi-

rected and removed any self-edges.
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Table 5.2: Information of the input graphs

Graph name Type Origin Vertices Edges davg dmax Number of colors
2d-2e20.sym grid Galois 1,048,576 4,190,208 4.0 4 5
amazon0601 co-purchases SNAP 403,394 4,886,816 12.1 2,752 13
as-skitter Internet topo. SNAP 1,696,415 22,190,596 13.1 35,455 76
cit-Patents patent cites SMC 3,774,768 33,037,894 8.8 793 15
citationCiteseer publication SMC 268,495 2,313,294 8.6 1,318 17
coPapersDBLP publication SMC 540,486 30,491,458 56.4 3,299 337
delaunay n24 triangulation SMC 16,777,216 100,663,202 6.0 26 9
europe osm road map SMC 50,912,018 108,109,320 2.1 13 5
in-2004 web links SMC 1,382,908 27,182,946 19.7 21,869 490
internet Internet topo. SMC 124,651 387,240 3.1 151 9
kron g500-logn21 Kronecker SMC 2,097,152 182,081,864 86.8 213,904 602
r4-2e23.sym random Galois 8,388,608 67,108,846 8.0 26 8
rmat16.sym RMAT Galois 65,536 967,866 14.8 569 31
rmat22.sym RMAT Galois 4,194,304 65,660,814 15.7 3,687 65
soc-LiveJournal1 community SNAP 4,847,571 85,702,474 17.7 20,333 325
uk-2002 web links SMC 18,520,486 523,574,516 28.3 194,955 944
USA-road-d.NY road map Dimacs 264,346 730,100 2.8 8 5
USA-road-d.USA road map Dimacs 23,947,347 57,708,624 2.4 9 5
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While it may or may not be useful to color these graphs, I chose them to be able to

measure the performance and coloring quality of the codes on a wide variety of graphs.

In particular, the number of vertices differs by up to a factor of 776, the number of edges

by up to a factor of 1352, the average degree by up to a factor of 41, and the maximum

degree by up to a factor of 53,476.
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6. RESULTS

This chapter compares the performance of my out-of-core code to the in-core graph

coloring codes FirstFit by Chen et al. (Chen et al., 2017), ColPack’s Jones-Plassmann

code with the fastest heuristic (D1) (ColPack, 2019), and the graph coloring code in the

Boost library (Boost, 2009). The maximum memory size for my implementation is set to

64 MB in the tests because it is large enough to process some graphs without partitioning

and it is small enough to partition most graphs to several chunks. The largest graph is

partitioned into more than 100 chunks.

6.1 Coloring Quality

Figure 6.1 shows the number of colors that are used by the 4 different graph coloring

codes. The x-axis lists the name of the input graph and the y-axis the number of colors.

The smaller the number on the y-axis the better the coloring quality is. The rightmost set

of bars reflects the geometric mean over all the inputs.

JP-D1 uses 13% fewer colors than my implementation because JP-D1 implements the

Jones-Plassmann algorithm with the largest-degree-first ordering, which tends to be better

than FF. My implementation colors the graph with the same number of colors as FirstFit

and Boost. This is expected because they are using the same FF ordering heuristic as my

code.
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Figure 6.1: Number of colors used by the graph coloring codes

6.2 First and Second Color Usage

Usually, graphs can be colored with a relatively small number of colors and many

vertices are colored with the first few colors. Table 3 shows the percentage of vertices

ending up with the first or second color. The last row is the geometric mean over all the

inputs. It indicates that approximately 40% of the vertices use the first color and over 60%

of the vertices use the first two colors. These results validate the use of bit vectors for the

first few colors as the majority of the vertices typically end up with one of these colors.

6.3 Throughput

Figure 6.2 presents the throughput of the 4 codes on the Xeon system. The x-axis

again lists the name of the input graph, and the y-axis lists the throughput in millions of

vertices per second. Higher throughputs are better. The rightmost set of bars presents the

geometric mean over all the inputs.
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Table 6.1: Percentage of vertices receiving the first two colors

Graph name First color First two colors
2d-2e20.sym 36.5% 73.1%
amazon0601 21.2% 38.6%
as-skitter 49.2% 79.5%
cit-Patents 52.0% 68.6%
citationCiteseer 44.2% 68.1%
coPapersDBLP 10.6% 18.5%
delaunay n24 24.9% 48.8%
europe osm 48.1% 95.9%
in-2004 56.1% 80.1%
internet 51.5% 86.2%
kron g500-logn21 73.8% 83.5%
r4-2e23.sym 27.9% 53.1%
rmat16.sym 36.7% 58.7%
rmat22.sym 42.0% 63.9%
soc-LiveJournal1 43.7% 65.3%
uk-2002 57.5% 77.6%
USA-road-d.NY 43.9% 85.4%
USA-road-d.USA 44.4% 84.0%
GEOMETRIC MEAN 39.3% 64.6%

FirstFit is 4 times faster and JP-D1 is 25% faster than my implementation. This is

reasonable considering that they are both in-core codes. They incur no extra workload for

partitioning the graph, dealing with local subgraphs, “compressing” color information,

searching complex data structures, and copying local results to the global result. Surpris-

ingly, Boost is 6 times slower than my implementation. This indicates that the out-of-core

overhead of my implementation is low.

6.4 Throughput for Different Values of R

My implementation has four global parameters: R – the resize function is called when

the ratio of the information size to the maximum information size exceeds the value of R,
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Figure 6.2: Throughput (millions of vertices per second) of the graph coloring codes

C – the number of the bit vectors for all vertices for one color, G – the maximum graph

size to total maximum size, and N – the number of bits in the bit vectors. As these global

parameters relate to how to assign the available memory and when to resize the informa-

tion data structure, it is important to evaluate the performance of different values of these

parameters. The default values are R = 0.5, C = 2, G = 0.5, and N = 32∗16 as described

in Chapter 3.

Figure 6.3 presents the throughput of different values of R. R = 0.1 means the infor-

mation data structure is resized when the ratio of current information size to maximum

information size exceeds 0.1. Hence, smaller R values result in more frequent resizing. I

evaluated R values between 0.1 and 0.9. In practice, the value of R should not exceed 0.5

to ensure that there is enough memory available for the next iteration.

Most of the 18 graphs exhibit no significant difference in throughput with different

values of R. The performance of ”2d-2e20.sym”, ”citationCiteseer”, ”internet”, ”rmat16.sym”,
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Figure 6.3: Throughput (millions of vertices per second) for different values of R

”uk-2002”, and ”USA-road-d.NY” is more related to the value of R compared to other

graphs. They are small graphs, except ”uk-2002”, with a small average degree. The graph

”uk-2002” is the largest graph within the 18 graphs and its performance for R > 0.5 is better

than the performance for R < 0.5. It is because it has a large information data structure and

the number of chunks is also significantly greater than for other inputs.

The geometric mean bars show that the throughput grows with the value of R, though

not significantly. Given that larger R values cause fewer resize operations, this indicates

that resizing is not a performance bottleneck. Considering the performance and the limit

on memory, R = 0.5 should be a good default value for most graphs.

6.5 Throughput for Different Values of C

The global parameter C is the number of bit vector used for the first few colors. C = 1

means there is only one bit-vector to represent the vertices that have the first color.
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Figure 6.4 presents the throughput for different values of C. Similar to the measure-

ment of R, the value of C has no significant impact on the performance. The performance

of smaller graphs such as ”2d-2e20.sym” and ”internet” is more related to the value of C.

The geometric mean shows that the throughput slightly grows from C = 0 to C = 2 and

then stays relatively stable. Hence, C = 2 seems to be a good default value.
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Figure 6.4: Throughput (millions of vertices per second) on different values of C

6.6 Memory Usage for Different Values of C

Considering that memory is critical to the out-of-core graph coloring algorithm and

a different number of the bit vectors yields different memory size, the memory usage (in

bytes) is also measured.

Figure 6.5 presents the geometric mean of the information size in bytes over each

iteration with different values of C. This figure has fewer graphs than the previous one

because there are 6 graphs fit in the available memory, which is 64 MB. The size of the
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information data structure is measured in each iteration. The y-axis is the geometric mean

of this information size. The rightmost set of bars is the geometric mean of all the inputs.
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Figure 6.5: Information size (in bytes) for different values of C

The information size increases with increasing values of C for every graph. It indi-

cates that the use of the 3D array and the array of the bit vector is more compact than a

simple bit vector for the whole graph. For memory concern, C = 0 saves most memory.

However, the previous throughput measurement indicates that C = 2 has better performance

than C = 1 and C = 0. Hence, C represents a performance and memory trade-off. The

best choice depends on the available memory and graph size. For a very large graph with

a limited available maximum size, the value of C should be set to 0 to save memory.

6.7 Throughput for Different Values of G

G is the ratio of maximum available size to be assigned to the local subgraph. G = 0.4

means 40% of the maximum available memory size is reserved for the local subgraph, i.e.,
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its portion of the CSR arrays. I evaluated values between G = 0.3 and G = 0.9 as even

smaller values of G might not assign enough memory for the local subgraph.

Figure 6.6 shows that most graphs have a quite similar throughput for different values

of G. The geometric mean is also quite even. Only the largest graph ”uk-2002” is signif-

icantly faster when G = 0.3. In contrast, ”coPapersDBLP” is significantly faster when

G = 0.9.
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Figure 6.6: Throughput (millions of vertices per second) for different values of G

6.8 Throughput for Different Values of N

N is the number of bits in the bit vectors. As described in Chapters 3.2 and 3.3, the

size of the dynamic array is N times smaller than the number of vertices in the associated

subgraph. Similarly, the number of chunks in the vector also shrinks for larger values of

N. The default value is N = 32 ∗ 16. I evaluate N = 16 ∗ 16, N = 32 ∗ 16, N = 32 ∗ 32,

and then enlarge 4 times of N until N = 4096 ∗ 4096. As presented in Figure 6.7, the

33



performance increases slightly for larger values of N and it decreases when the value of N

becomes too large (e.g., N = 512∗512).
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Figure 6.7: Throughput (millions of vertices per second) for different values of N

6.9 Memory Usage for Different Values of N

As discussed above, N impacts the size of both the dynamic array and the vector of

chunks. Hence, the information size across each iteration varies for different values of

N. The geometric mean of the information size across each iteration is measured and

presented in Figure 6.8. The rightmost column of bars is the geometric mean over all

the inputs. The y-axis is logarithmic. As expected, the figure shows that the information

size decreases for larger N. As the memory is limited, a smaller information size yields a

larger subgraph. The memory size decreases until N = 512∗512. This indicates that large

values of N are preferable to save memory. However, the value of N can not be too large

for efficiency reasons.

34



1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144
524288

1048576
2097152
4194304
8388608

16777216
33554432
67108864

as-s
kit

ter

cit
-Pate

nts

co
Pap

ersD
BLP

delaunay_
n24

euro
pe_osm

in-2004

kro
n_g500-lo

gn
21

r4-2e23.sy
m

rm
at2

2.sy
m

so
c-L

iveJourn
al1

uk-2002

USA
-ro

ad-d.U
SA

GEO
M

ET
RIC M

EAN

N = 16 * 16 N = 32 * 32 N = 32 * 64 N = 64 * 64 N = 512 * 512 N = 1024 * 1024 N = 2048 * 2048 N = 4096 * 4096

By
te
s

Figure 6.8: Information size (in bytes) for different value of N

6.10 Resize Frequency

I profiled the code and found that the resize function is the most expensive function.

Hence, the call frequency of the resize function is measured. Figure 6.9 only shows re-

sults for the 12 graphs that are partitioned (the remaining 6 graphs are small enough to

fit in the allocated memory). Most graphs do not ever have to resize the vector during

processing. For the 4 graphs that do call the resize function, the frequency of resizing

is usually about half of the number of subgraphs. These results show that the expensive

resizing function can often be avoided to improve performance.

6.11 Memory Usage

The memory usage for 3 of the input graphs is evaluated. The graph ”kron g500-

logn21.egr” is evaluated because it is a large graph and has the lowest throughput of

all tested inputs. The graphs ”r4-2e23.sym.egr” and ”rmat22.sym.egr” are evaluated
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Figure 6.9: Frequency to call the resize function

because they are partitioned into the same number of subgraphs (6 subgraphs) but call

the resize function different number of times, i.e., ”r4-2e23.sym.egr” is never resized but

”rmat22.sym.egr” calls resize twice (after processing subgraph 3 and subgraph 4). The

graph size, maximum graph size, information size, and maximum information size for

each subgraph (iteration) are presented in Figure 6.10, Figure 6.11, and Figure 6.12. The

information size is calculated after processing the subgraph and graph size is determined

in the graph partitioning before processing the subgraph. For example, the information

size of subgraph 2 is the size of the information after processing subgraph 2.

Even though these three graphs are very different in graph size, throughput, and fre-

quency of resizing, their memory usage trends are quite similar. The maximum graph size

is dynamic to leave enough memory to store information and import as large a subgraph

as possible. For example, Figure 6.10 shows that the information size is quite small in

the first iteration. The maximum graph size is therefore expanded in the next iteration to

import a larger subgraph. The maximum graph size is becoming smaller in later iterations
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as the information size grows. Also, the information size usually does not exceed half of

the maximum information size.

The maximum graph size increases after processing subgraph 1 in both Figure 6.11

and Figure 6.12. However, the maximum graph size remains the same after subgraph 1 in

Figure 6.11 and the maximum graph size decreases in later iterations in Figure 6.12.

The ratio of information size to maximum information size exceeds 0.5 in the sub-

graph as presented in Figure 6.12. Hence, it calls the resize function after processing

subgraph 3. This ratio still exceeds 0.5 after the resizing and the maximum graph size is,

therefore, decreased in the next iteration which is subgraph 4. Similarly, this ratio exceeds

0.5 again in subgraph 4 and the resize is called. The maximum graph size decreases in

subgraph 5 as this ratio is still relatively large (e.g., exceeds the value of R, which is 0.5).

As long as the information size is smaller than the maximum information size in subgraph

5, the maximum graph size of subgraph 6 will not decrease because the information size

will not increase in the last subgraph. As there is a small part of the graph left, the graph

size of the last subgraph in Figure 6.12 is relatively small compared to other subgraphs.

This similar memory usage trends indicate that the partitioning strategy and resize

function work as expected to maintain the ratio of information size to maximum informa-

tion size within the value of R, which is 0.5 by default.

6.12 Comparing to store the color in an array

The simplest way to record the vertex ID with its associate color is to record the color

in an array. The size of the array is the number of vertices in the whole graph so that

the color can be accessed directly with the vertex ID. Hence, I am curious about if my
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Figure 6.10: Memory usage (in bytes) for graph ”kron g500-logn21.egr” across each iteration

implementation has a smaller size comparing to store the color in an array. The y-axis

in Figure 6.13 is the ratio of my size of implementation to the size of storing the color in

an array. The orange columns present the 3 graphs that my implementation is worse than

a color array. These 3 graphs are all having relatively large average degrees comparing

to their graph size. Hence, my implementation saves more memory for most graphs but

might hurt with the graphs that have relatively large average degrees.
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Figure 6.12: Memory usage (in bytes) for graph ”rmat22.sym.egr” across each iteration
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7. SUMMARY AND CONCLUSIONS

With the constant growth of data sets, graphs such as social networks become larger.

Especially Internet-related graphos are often too massive to fit in the memory of a single

computer. This thesis proposes an out-of-core graph coloring algorithm. It dynamically

partitions the graph so that each subgraph fits in the available memory and leaves part of

the memory to record information for later subgraphs. This algorithm guarantees that the

result is the same as processing the graph as a whole.

To save memory and boost performance, I designed two data structures to compactly

record the color of each vertex that has neighbors in later subgraphs. The basic idea is that

each color has an associated set of vertices that use this color and have neighbors in later

subgraphs. As the number of colors used for the graph is usually small, the number of sets

is also small, which is good for searching. For the first a few colors, every color employs

a chunked bit-vector. A set bit indicates that the corresponding vertex has this color. For

the later, less frequently used colors, the compressed lists is used to represent the vertices.

The dynamic array stores the index of the shared vector. I efficiently resize the vector to

minimize its size.

Three global parameters are introduced to determine how to partition the graph, when

to resize the array, and how many colors should use the bit vectors to record their asso-

ciated vertices. A study of these three parameters indicates that different values have no

significant relation to the resulting performance. However, different graph sizes do tend to

prefer specific settings of these parameters.
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The value of N, which is the number of bit in the bit vector for each chunk impacts the

information size and the performance. Usually, it saves more memory and yields better

performance with a larger N (e.g., N = 64∗64 is better than N = 32∗32), but a very large

N would hurt the performance (e.g., N = 2048∗2048).

Compared to 3 leading in-core graph coloring algorithms running on a Xeon system,

JP-D1 is 25% faster and uses 13% fewer colors than my out-of-core algorithm. FirstFit

and Boost both use the same number of colors as my implementation, but FirstFit is 4

times faster whereas Boost is 6 times slower. Hence, I believe the out-of-core overhead is

reasonable.

In conclusion, this work enables the processing of massive graphs given a limited

memory resource. A similar approach may be useful for implementing other graph algo-

rithms such as maximal independent set (MIS) computation. Also, another avenue for

future work would be to delete the dynamic arrays that are not used to save memory and

parallelize my implementation for better performance.
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