
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 63, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT
BOUNDARY-VALUE PROBLEMS WITH SIGN CHANGING

NONLINEARITIES DEPENDING ON x′

YUN CHEN, BAOQIANG YAN, LILI ZHANG

Abstract. Using a fixed point theorem in cones, this paper shows the exis-

tence of positive solutions for the singular three-point boundary-value problem

x′′(t) + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1,

x′(0) = 0, x(1) = αx(η),

where 0 < α < 1, 0 < η < 1, and f may change sign and may be singular at

x = 0 and x′ = 0.

1. Introduction

The study of multi-point boundary value problem (BVP) for linear second-order
ordinary differential equations was initiated by Il’in and Moiseev [3, 4]. Since
then, many authors studied more general nonlinear multi-point BVPs, for example
[2, 5, 6], and references therein. Recently, Liu [5] proved the existence of positive
solutions for the three-point BVP

y′′(t) + a(t)f(y(t)) = 0, 0 < t < 1,

y′(0) = 0, y(1) = βy(η),

where 0 < β < 1, 0 < η < 1 and f : [0,+∞) → [0,+∞) has no singularity at y = 0.
Guo and Ge [2] presented the existence of positive solutions for the three-point
BVP

x′′(t) + f(t, x, x′) = 0, 0 < t < 1,

x(0) = 0, x(1) = βx(η),

where βη ∈ (0, 1), 0 < η < 1 and f ∈ C([0, 1] × [0,+∞) × R, [0,+∞)) has no
singularity at t = 0, x = 0 and x′ = 0.
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Motivated by the works of [4, 5], in this paper, we discuss the equation

x′′(t) + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1,

x′(0) = 0, x(1) = αx(η),
(1.1)

where 0 < α < 1, 0 < η < 1, f may change sign and may be singular at x = 0 and
x′ = 0.

The features in this article, that different from those in [2, 5], are as follows:
First, the nonlinearity a(t)f(t, x, x′) may be singular at t = 0, t = 1, x = 0 and
x′ = 0; also the degree of singularity in x and x′ may be arbitrary; i. e., if f contains
1

xα and 1
(−x′)γ , α and γ may be big enough). Second, f is allowed to change sign.

The paper is organized as follows. In the next section, we present some prelim-
inaries. Section 3 is devoted to our main result, Theorem 3.1. An example is also
given to illustrate the main result. Some of the idea used here come from [6, 7].

2. Preliminaries

In this paper, we assume the following conditions
(P1) f(t, x, y) ∈ C((0, 1)× (0,+∞)× (−∞, 0), (−∞,+∞));
(P2) β(t), a(t), k(t) ∈ C((0, 1), (0,+∞)), F (x) ∈ C((0,+∞), (0,+∞)), G(y) ∈

C((−∞, 0), (0,+∞)), a(t)k(t) ∈ L[0, 1];
(P3) 0 < α < 1, 0 < η < 1 and |f(t, x, y)| ≤ k(t)F (x)G(y);
(H1) There exists δ > 0 such that f(t, x, y) ≥ β(t), y ∈ (−δ, 0);
(H2) supF [z,+∞) = sup{F (x), z ≤ x < +∞} < +∞ for all fixed z ∈ (0,+∞);
(H3) 1

G(y) 6∈ L(−∞,−1];

Lemma 2.1 ([1]). Let E be a Banach space, K a cone of E, and BR = {x ∈ E :
‖x‖ < R}, where 0 < r < R. Suppose that F : K ∩ BR\Br = KR,r → K is a
completely continuous operator and the following two conditions are satisfied

(1) ‖F (x)‖ ≥ ‖x‖ for any x ∈ K with ‖x‖ = r.
(2) If x 6= λF (x) for any x ∈ K with ‖x‖ = R and 0 < λ < 1.

Then F has a fixed point in KR,r.

Lemma 2.2. For each natural number n > 0, there exists yn(t) ∈ C[0, 1] with
yn(t) ≤ − 1

n such that

yn(t) = − 1
n

+ min{0,−
∫ t

0

a(s)f(s,Ayn(s) +
1
n

, yn(s))ds}, t ∈ [0, 1]. (2.1)

Proof. For y(t) ∈ P = {y(t) : y(t) ≤ 0, y(t) ∈ C[0, 1]}, define the operator

Ty(t) = − 1
n

+ min{0,−
∫ t

0

a(s)f(s,Ay(s) +
1
n

,min{y(s),− 1
n
})ds},

Ay(s) =
1

1− α

∫ 1

0

−y(τ)dτ − α

1− α

∫ η

0

−y(τ)dτ −
∫ s

0

−y(τ)dτ,

where n > 0 is a natural number. Using the equality min{c, 0} = c−|c|
2 and

c(y(t)) = −
∫ t

0

a(s)f(s,Ay(s) +
1
n

,min{y(s),− 1
n
})ds,

it is easy to know that

Ty(t) = − 1
n

+
c(y(t))− |c(y(t)|

2
.
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Let yk(t), y(t) ∈ P, ‖yk − y‖ → 0, then there exists a constant h > 0, such that
‖yk‖ ≤ h and ‖y‖ ≤ h, and let

c(yk(t)) = −
∫ t

0

a(s)f(s,Ayk(s) +
1
n

,min{yk(s),− 1
n
})ds,

which yields

|Tyk(t)− Ty(t)| = 1
2

∣∣c(yk(t))− c(y(t))− |c(yk(t))|+ |c(y(t))|
∣∣

≤ 1
2

∣∣c(yk(t))− c(y(t)) + |c(yk(t))− c(y(t))|
∣∣.

Assumption (P1) implies that {a(s)f(s,Ayk(s) + 1
n ,min{yk(s),− 1

n} converges to
{a(s)f(s,Ay(s) + 1

n ,min{y(s),− 1
n}, for s ∈ (0, 1). By the Lebesgue dominated

convergence theorem (the dominated function a(s)k(s)F [ 1
n ,+∞)G[−h − 1

n ,− 1
n ]),

|Tyk(t)− Ty(t)| → 0, T is a continuous operator in P .
Let C be a bounded set in P , i.e., there exists h1 > 0 such that ‖y‖ ≤ h1, for

any y(t) ∈ C, t1, t2 ∈ [0, 1], t1 < t2, y(t) ∈ P ,

|Ty(t2)− Ty(t1)| =
1
2

∣∣− ∫ t2

t1

a(s)f(s,Ay(s) +
1
n

,min{y(s),− 1
n
}

+
∫ t2

t1

a(s)f(s,Ay(s) +
1
n

,min{y(s),− 1
n
|)ds

∣∣
≤

∣∣− ∫ t2

t1

a(s)k(s)dsF [
1
n

+∞)G[−h1 −
1
n

,− 1
n

]

+
∫ t2

t1

a(s)k(s)dsF [
1
n

,+∞)G[−h1 −
1
n

,− 1
n

]|
∣∣.

According to the absolute continuity of the Lebesgue integral, for any ε > 0, there
exists δ > 0 such that, when |t2 − t1| < δ, |

∫ t2
t1

a(s)k(s)ds < ε holds. Therefore,
{Ty(t), y(t) ∈ P} is equicontinuous. Hence T is a completely continuous operator
in P .

By (H3), we may choose a sufficiently large Rn > 1 to fit∫ −1

−Rn

dy

G(y)
≥

∫ t

0

a(s)k(s)ds supF [
1
n

,+∞).

For any fixed n, we prove that

y(t) 6= λTy(t) =
−λ

n
+λ min{0,−

∫ t

0

a(s)f(s,Ay(s)+
1
n

,min{y(s),− 1
n
})ds} (2.2)

for any y(t) ∈ P with ‖y‖ = Rn and 0 < λ < 1.
In fact, if there exist y(t) ∈ P with ‖y‖ = Rn and 0 < λ < 1, such that

y(t) =
−λ

n
+ λ min{0,−

∫ t

0

a(s)f(s,Ay(s) +
1
n

,min{y(s),− 1
n
})ds}. (2.3)

First, we prove an important fact: for t, z ∈ [0, 1], t > z, y(t) < y(z) ≤ − 1
n ,∫ y(z)

y(t)

dy

G(y)
≤

∫ t

z

a(s)k(s)ds supF [Ay(t) +
1
n

,+∞). (2.4)
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Let t′ ∈ (0, t] such that y(t′) = y(t), y(s) ≥ y(t′), s ∈ (0, t′]. We may choose
{ti}(i = 1, 2, . . . , 2m) to fit

1) t′ = t1 > t2 ≥ t3 > t4 ≥ t5 > · · · ≥ t2m−1 > t2m = z ≥ 0;
(1) y(t1) = y(t′), y(t2i) = y(t2i+1), i = 1, 2, . . . m− 1, y(t2m) = y(z);
(2) y(t) is decreasing in [t2i, t2i−1], i = 1, 2, . . . m. (if y(t) is decreasing in [0, t′].

Let m = 1, i.e. [t2, t1] = [0, t′].)
Note that y(t) < − 1

n , t ∈ (t2i, t2i−1], which implies

−
∫ t

0

a(s)f(s,Ay(s) +
1
n

,min{y(s),− 1
n
})ds < 0, t ∈ (t2i, t2i−1].

Differentiating (2.3) and using (H2), we obtain

−y′(t) = λa(t)f(t, Ay(t) +
1
n

, y(t))

−y′(t)
G(y(t))

≤ a(t)k(t) sup F [Ay(t) +
1
n

,+∞) ≤ a(t)k(t) supF [
1
n

,+∞),

for t ∈ (t2i, t2i−1], i = 1, 2, . . . m. Integrating from t2i to t2i−1, we have∫ y(t2i)

y(t2i−1)

dy

G(y)
≤

∫ t2i−1

t2i

a(s)k(s)ds supF [
1
n

,+∞), i = 1, 2, . . . m.

Summing from m to 1, we have∫ y(z)

y(t)

dy

G(y)
≤

∫ t

z

a(s)k(s)ds supF [
1
n

,+∞).

Set y(z) = − 1
n , y(t) = −Rn in (2.4), we have∫ −1

−Rn

dy

G(y)
≤

∫ − 1
n

−Rn

dy

G(y)
≤

∫ t

0

a(s)k(s)ds supF [
1
n

,+∞),

which contradicts ∫ −1

−Rn

dy

G(y)
≥

∫ t

0

a(s)k(s)ds supF [
1
n

,+∞).

Hence (2.2) holds. Put r = 1
n , Lemma 2.1 leads to the desired result. �

3. Main results

Main result in this paper is as follows.

Theorem 3.1. Let (H1)–(H3) hold. Then the three-point boundary-value problem
(1.1) has at least one positive solution.

Proof. Put Mn = min{yn(t) : t ∈ [0, η]}. (H1) implies γ = sup{Mn} < 0. Set
τ = max{γ,−δ}, n > − 1

τ .
(1) First, we prove that

yn(t) = − 1
n
−

∫ t

0

a(s)f(s,Ayn(s) +
1
n

, yn(s))ds, t ∈ [0, 1]. (3.1)

Set yn(tn) = τ, tn ∈ (0, η], yn(t) ≥ τ, t ∈ [0, tn]. We easily check that yn(t) is
decreasing in (0, tn]. We only need to prove that

yn(t) ≤ τ, t ∈ [tn, 1]. (3.2)
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If there exist t ∈ (tn, 1] such that yn(t) > τ , then we may choose t′, t′′ ∈ [tn, 1], t′ <
t′′ to fit yn(t′) = τ, τ < yn(t) < − 1

n , t ∈ (t′, t′′], we have from (2.1)

0 <

∫ t′′

t′
a(s)f(s,Ayn(s) +

1
n

, yn(s))ds = yn(t′)− yn(t′′) < 0.

This contradiction implies (3.2).
Using yn(t), 1 and 0 in place of y(t), λ and z in (2.3) in Lemma 2.2, we notice

that

Ayn(t) +
1
n

=
1

1− α

∫ 1

0

−yn(τ)dτ − α

1− α

∫ η

0

−yn(τ)dτ −
∫ t

0

−yn(τ)dτ +
1
n

>
α

1− α

∫ 1

η

−yn(τ)dτ

≥ α

1− α
(−τ)(1− η), t ∈ [0, 1].

From (2.4), putting t = tn, we know that∫ − 1
n

yn(tn)

dyn

G(yn)
≤

∫ tn

0

a(s)k(s)ds supF [
α

1− α
(−τ)(1− η),+∞). (3.3)

Equation (3.3) shows t0 = inf{tn} > 0. Also, yn(t) is decreasing for t ∈ (0, t0] and
(H1) imply that W (t) = sup{yn(t)} < 0, t ∈ (0, t0].

(2) We show that {yn(t)} is equicontinuous on [ 1
3k , 1− 1

3k ], for a natural number
k ≥ 1, and uniformly bounded on [0, 1].

Using yn(t), 1 and 0 instead of y(t), λ and z in (2.3) in Lemma 2.2, we notice
that

Ayn(t) +
1
n
≥ α

1− α
(−τ)(1− η), t ∈ [0, 1].

We know from (2.4),∫ − 1
n

yn(t)

dyn

G(yn)
≤

∫ t

0

a(s)k(s)ds supF [
α

1− α
(−τ)(1− η),+∞), t ∈ [0, 1]. (3.4)

Now we use (H3) and (3.4) show that ω(t) = inf{yn(t)} > −∞ is bounded on [0, 1].
On the other hand, it follows from (3.1) and (3.2) that

|y′n(t)| ≤ k(t)a(t) supF [
α

1− α
(−τ)(1−η),+∞) supG[ωk,max{τ,W (

1
k

)}], (n ≥ k).

(3.5)
Where ωk = inf{ω(t), t ∈ [ 1

3k , 1 − 1
3k ]}. Thus (3.5) and the absolute continuity

of Lebesgue integral show that {yn(t)} is equicontinuous on [ 1
3k , 1 − 1

3k ]. Now
the Arzela-Ascoli theorem guarantees that there exists a subsequence of {yn(t)},
which converges uniformly on [ 1

3k , 1− 1
3k ]. When k = 1, there exists a subsequence

{y(1)
n (t)} of {yn(t)}, which converges uniformly on [ 13 , 2

3 ]. When k = 2, there exists a
subsequence {y(2)

n (t)} of {y(1)
n (t)}, which converges uniformly on [16 , 5

6 ]. In general,
there exists a subsequence {y(k+1)

n (t)} of {y(k)
n (t)}, which converges uniformly on

[ 1
3(k+1) , 1−

1
3(k+1) ]. Then the diagonal sequence {y(k)

k (t)} converges everywhere in

(0, 1) and it is easy to verify that {y(k)
k (t)} converges uniformly on any interval

[c, d] ⊆ (0, 1). Without loss of generality, let {y(k)
k (t)} be itself of {yn(t)} in the
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rest. Put y(t) = limn→∞ yn(t), t ∈ (0, 1). Then y(t) is continuous in (0, 1) and
y(t) < 0, t ∈ (0, 1).

(3) Now (3.4) shows that

sup{max{−yn(t), t ∈ [0, 1]}} < +∞.

We have

lim
t→0+

sup{
∫ t

0

−yn(s)ds} = 0, lim
t→1−

sup{
∫ 1

t

−yn(s)ds} = 0, (3.6)

and we obtain

Ayn(t) =
1

1− α

∫ 1

0

−yn(τ)dτ − α

1− α

∫ η

0

−yn(τ)dτ −
∫ t

0

−yn(τ)dτ

<
1

1− α

∫ 1

0

−yn(τ)dτ < +∞, t ∈ [0, 1].
(3.7)

Since (3.6) and (3.7) hold, Fatou’s theorem of the Lebesgue integral implies Ay(t) <
+∞, for any fixed t ∈ (0, 1).

(4) y(t) satisfies

y(t) = −
∫ t

0

a(s)f(s,Ay(s), y(s))ds, t ∈ (0, 1).

Since yn(t) converges uniformly on [a, b] ⊂ (0, 1), (3.6) leads that Ayn(s) converges
to Ay(s) for any s ∈ (0, 1). For each fixed t ∈ (0, 1), thee exists d > 0 such that
0 < d < t, then

yn(t)− yn(d) = −
∫ t

d

a(s)f(s,Ayn(s) +
1
n

, yn(s))ds.

for all n > k. Since yn(s) ≤ max{τ,W (d)}, Ayn(s)+ 1
n ≥ α

1−α (−τ)(1−η), s ∈ [d, t],
the set {Ayn(s)} or {yn(s)} is bounded and equicontinuous on [d, t]. Let n →∞

y(t)− y(d) = −
∫ t

d

a(s)f(s,Ay(s), y(s))ds. (3.8)

Putting t = d in (3.4), we have∫ − 1
n

yn(d)

dyn

G(yn)
≤

∫ d

0

a(s)k(s)ds supF [
α

1− α
(−τ)(1− η),+∞).

Let n →∞ and d → 0+, we obtain

y(0+) = lim
d→0+

y(d) = 0.

Letting d → 0+ in (3.8), we have

y(t) = −
∫ t

0

a(s)f(s,Ay(s), y(s))ds, t ∈ (0, 1), (3.9)

and Ay(1) = αAy(η). Hence x(t) = Ay(t) is a positive solution of (1.1). �

Corollary 3.2. Suppose that (H1)-(H3) hold , then the set of positive solutions of
(1.1) is compact.
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Proof. Let M = {y ∈ C[0, 1] : Ay(t)is a positive solution of (1.1)}. First we show
that M is compact. Note that (1) M is not empty; (2) M is relatively com-
pact(bounded, equicontinuous). (3) M is closed.

Obviously Theorem 3.1 implies M is not empty.
First we show that M ∈ C[0, 1] is relatively compact. For any y(t) ∈ M , differ-

entiating (3.9) and using (H2), we obtain

−y′(t) = λa(t)f(t, Ay(t), y(t))

−y′(t)
G(y(t))

≤ a(t)k(t) supF [Ay(t),+∞)

≤ a(t)k(t) sup F [
α

1− α
(−τ)(1− η),+∞), t ∈ [0, 1].

Integrating from 0 to t, we have∫ 0

y(t)

dy

G(y)
≤

∫ 1

0

a(s)k(s)ds supF [
α

1− α
(−τ)(1− η),+∞), t ∈ [0, 1]. (3.10)

Now (H3) and (3.10) show that for any y(t) ∈ M , there exists K > 0 such that
|y(t)| < K, for all t ∈ [0, 1]. Then M is bounded.

For each y(t) ∈ M , we obtain from (3.9),

−y′(t) = a(t)f(t, Ay(t), y(t))

≤ a(t)|f(t, Ay(t), y(t))|

≤ a(t)k(t)F [
α

1− α
(−τ)(1− η),+∞)G(y(t)), t ∈ (0, 1),

and

y′(t) = −a(t)f(t, Ay(t), y(t))

≤ a(t)|f(t, Ay(t), y(t))|

≤ a(t)k(t)F [
α

1− α
(−τ)(1− η),+∞)G(y(t)), t ∈ (0, 1),

which yields

−y′(t)
G(y(t)) + 1

≤ a(t)k(t) supF [
α

1− α
(−τ)(1− η),+∞), t ∈ (0, 1), (3.11)

y′(t)
G(y(t)) + 1

≤ a(t)k(t) supF [
α

1− α
(−τ)(1− η),+∞), t ∈ (0, 1). (3.12)

Note that the right-hand sides of the above inequalities are always positive. Let
I(y(t)) =

∫ y(t)

0
dy

G(y)+1 , for any t1, t2 ∈ [0, 1]. Integration from t1 to t2 in (3.11) and
(3.12) yields

|I(y(t1))− I(y(t2))| ≤
∫ t2

t1

a(t)k(t)F [
α

1− α
(−τ)(1− η),+∞)dt. (3.13)

Since I−1 is uniformly continuous on [I(−K), 0], for any ε > 0, there is a ε′ > 0
such that

|I−1(s1)− I−1(s2)| < ε,∀|s1 − s2| < ε′, s1, s2 ∈ [I(−K), 0]. (3.14)

Inequality (3.13) guarantees that for ε′ > 0, there is a δ′ > 0 such that

|I(y(t1))− I(y(t2))| < ε′,∀|t1 − t2| < δ′, t1, t2 ∈ [0, 1].
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This inequality and (3.14)imply

|y(t1)− y(t2)| = |I−1(I(y(t1))− I−1(I(y(t2))| < ε, t1, t2 ∈ [0, 1],

which means that M is equicontinuous. So M is relatively compact.
Second, we show that M is closed. Suppose that {yn} ⊆ M and

lim
n→+∞

max
t∈[0,1]

|yn(t)− y0(t)| = 0.

Obviously y0 ∈ C[0, 1] and limn→+∞Ayn(t) = Ay0(t), t ∈ [0, 1]. Moreover,

Ayn(t) =
1

1− α

∫ 1

0

−yn(τ)dτ − α

1− α

∫ η

0

−yn(τ)dτ −
∫ t

0

−yn(τ)dτ

<
1

1− α

∫ 1

0

−yn(τ)dτ

<
K

1− α
, t ∈ [0, 1].

For yn(t) ∈ M , from (3.9) we obtain

yn(t) = −
∫ t

0

a(s)f(s,Ayn(s), yn(s))ds, t ∈ (0, 1).

For fixed t ∈ (0, 1), there exists d > 0 such that 0 < d < t , then

yn(t)− yn(d) = −
∫ t

d

a(s)f(s,Ayn(s), yn(s))ds.

Since yn(s) ≤ max{τ,W (d)}, Ayn(s) ≥ α
1−α (−τ)(1 − η), s ∈ [d, t], the Lebesgue

dominated convergence theorem yields

y0(t)− y0(d) = −
∫ t

d

a(s)f(s,Ay0(s), y0(s))ds, t ∈ (0, 1). (3.15)

From (3.9), we have

−y′n(t) = a(t)f(t, Ayn(s), yn(s)) ≤ a(t)k(t)F [
α

1− α
(−τ)(1− η),+∞)G(yn(t)),

which yields

−y′n(t)
G(yn(t))

≤ a(t)k(t)ds supF [
α

1− α
(−τ)(1− η),+∞), t ∈ (0, 1),

integrating from 0 to d,∫ 0

yn(d)

dyn

G(yn)
≤

∫ d

0

a(s)k(s)ds supF [
α

1− α
(−τ)(1− η),+∞).

Let n → ∞ and d → 0+, we obtain y0(0+) = limd→0+ y0(d) = 0. Letting d → 0+
in (3.15), we have

y0(t) = −
∫ t

0

a(s)f(s,Ay0(s), y0(s))ds, t ∈ (0, 1), Ay0(1) = αAy0(η),

then x0(t) = Ay0(t) is a positive solution of (1.1). So y0(t) ∈ M and M is a closed
set. Hence {Ay(t), y(t) ∈ M} ∈ C1[0, 1] is compact. �
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Example 3.3. In (1.1), let

f(t, x, y) = k(t)[1 + x−γ + (−y)−σ − (−y) ln(−y)], a(t) = t−
1
3 ,

and k(t) = t−
1
2 , 0 < t < 1, where γ > 0, σ ≥ 0, and let F (x) = 1 + x−γ , G(y) =

1 + (−y)−σ + (−y) ln(−y). Then

f(t, x, y) ≤ k(t)F (x)G(y), δ = −1, β(t) = k(t),∫ −1

−∞

dy

G(y)
= +∞.

By Theorem 3.1, equation (1.1) has at least a positive solution and Corollary 3.2
implies the set of solutions is compact.
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