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POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT
BOUNDARY-VALUE PROBLEMS WITH SIGN CHANGING
NONLINEARITIES DEPENDING ON 2/

YUN CHEN, BAOQIANG YAN, LILI ZHANG

ABSTRACT. Using a fixed point theorem in cones, this paper shows the exis-
tence of positive solutions for the singular three-point boundary-value problem

2" (t) +a(t)f(t,z(t), 2’ (t) =0, 0<t<]1,
2’(0) =0, =(1) = az(n),

where 0 < a < 1, 0 < 7 < 1, and f may change sign and may be singular at
z=0and 2’ =0.

1. INTRODUCTION

The study of multi-point boundary value problem (BVP) for linear second-order
ordinary differential equations was initiated by II'in and Moiseev [3, [4]. Since
then, many authors studied more general nonlinear multi-point BV Ps, for example
[2, 5, 6], and references therein. Recently, Liu [B] proved the existence of positive
solutions for the three-point BVP

y'(t) +a(t)f(y(t) =0, 0<t<1,
y'(0)=0, wy(1)=pBy(n),

where 0 < < 1,0 <n < 1land f:[0,400) — [0,+00) has no singularity at y = 0.
Guo and Ge [2] presented the existence of positive solutions for the three-point
BVP

2'(t) + f(t,z,2") =0, 0<t<l1,
2(0) =0, z(1) = Bz(n),

where 0n € (0,1), 0 < n < 1 and f € C([0,1] x [0,400) X R,[0,+0c0)) has no
singularity at t =0, z = 0 and 2’ = 0.
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Motivated by the works of [4, B], in this paper, we discuss the equation
2" (t) +a(t) f(t,z(t),2' () =0, 0<t<1, .
() =0, (1) = aaln) -

where 0 < a < 1, 0 < 1 < 1, f may change sign and may be singular at x = 0 and
' =0.

The features in this article, that different from those in [2, [], are as follows:
First, the nonlinearity a(t)f(t,z,2’) may be singular at t = 0, t = 1, x = 0 and
z' = 0; also the degree of singularity in x and &’ may be arbitrary; i. e., if f contains
I% and ﬁ, « and 7 may be big enough). Second, f is allowed to change sign.

The paper is organized as follows. In the next section, we present some prelim-
inaries. Section 3 is devoted to our main result, Theorem [3.1] An example is also

given to illustrate the main result. Some of the idea used here come from [6 [7].

2. PRELIMINARIES

In this paper, we assume the following conditions
(Pl) f(t,x,y) € C((O, 1) X (07+OO) X (70070)7 (7003 +OO));
(P2) B(t),a(t), k() € C((0,1),(0,+00)), F(z) € C((0,+00), (0, +00)), G(y) €
C((—00,0), (0, +0)), a(t)k(t) € L[0,1];
(P3) 0<a<1,0<n<1land |f(t,z,y)| < k(t)F(z)G(y);
(H1) There exists § > 0 such that f(¢t,z,y) > B(t),y € (-4,0);
(H2) sup Fz,4+00) =sup{F(z),z < x < 400} < 400 for all fixed z € (0, +00);
(H?’) @ ¢ L(—OO, _1];
Lemma 2.1 ([I]). Let E be a Banach space, K a cone of E, and Br = {z € E :

lz|| < R}, where 0 < r < R. Suppose that F' : K N BR\B, = Kr, — K is a
completely continuous operator and the following two conditions are satisfied

(1) [|F(z)]] = |lz|| for any x € K with ||z| = r.

(2) If x # AF(x) for any x € K with ||z|| =R and 0 < A < 1.
Then F has a fized point in Kg .

Lemma 2.2. For each natural number n > 0, there exists y,(t) € C[0,1] with
Yn(t) < —2 such that

n(®) ==+ min{0,~ [ (o). Apa(6) + om(e)ds), e DAL @1
Proof. For y(t) € P = {y(t) : y(t) <0,y(t) € C[0, 1]}, define the operator
Ty(t) = —% + min{0, - /0 a(s) £ (s, Ay(s) + %,min{y(s), —%})ds},
1 ! o n

ate) = 12 [ —utmiar = 2 Mgty = [y,

where n > 0 is a natural number. Using the equality min{¢, 0} = %IC\ and

c(o(t)) = = [ as) (s, Ay(s) + % miny(s). — 1 D),

it is easy to know that
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Let yx(t),y(t) € P,|lyx — y|| — 0, then there exists a constant h > 0, such that
lyxll < h and ||y|| < h, and let

() == [ a(o) (5, Ape(s) + 3 min{on(5), ).

which yields

1

[ Tye(t) = Ty(t)| = 5]ewr(®)) = e(y(®) = le(ye(®)] + lely®)]]

< 2lelun(t)) — ely(®) + leur(t)) — (D)

Assumption (P1) implies that {a(s)f (s, Ayk(s) + +, min{yx(s), —+} converges to
{a(s)f(s, Ay(s) + £, min{y(s),—L1}, for s € (0,1). By the Lebesgue dominated
convergence theorem (the dominated function a(s)k(s)F[L,+00)G[—h — 1, —1]),
|Tyr(t) — Ty(t)| — 0, T is a continuous operator in P.

Let C be a bounded set in P, i.e., there exists hy > 0 such that |ly|| < hy, for

any y(t) € Catlat2 € [07 1}7 tl < t27 y(t) € Pa
1 t2 1. 1
[Ty(t2) = Ty(t)| = 5] = [ a(s) (s, Ay(s) + 1 mindy(). ~1)

+ [ alo) 1o Ay(s) + 1 min{y(s), 1 )ds

ty

<|- /;2 a(s)k(s)dsF[% + 00)G[—hy — %, *%]
+ /t ’ a(s)k(s)dsF[%,—i—OO)G[—hl — %» _%m

According to the absolute continuity of the Lebesgue integral, for any e > 0, there
exists ¢ > 0 such that, when [ta — t1] < J, ]| fttf a(s)k(s)ds < € holds. Therefore,
{Ty(t),y(t) € P} is equicontinuous. Hence T is a completely continuous operator
in P.
By (H3), we may choose a sufficiently large R,, > 1 to fit
T dy
“r, G)

For any fixed n, we prove that

2/0 a(s)k‘(s)dssupF[%,—i—oo).

98) 7 XTy(t) = 2+ Aminf0,~ [ a(s)f(s. Ay(s) + 1 min{y(s). — s} (2:2)

for any y(t) € P with ||y|| = R, and 0 < A < 1.
In fact, if there exist y(¢) € P with ||y|| = R, and 0 < A < 1, such that

y(t) = _7)\ + Amin{0, —/0 a(s)f(s, Ay(s) + %, min{y(s), —%})ds} (2.3)

First, we prove an important fact: for ¢,z € [0,1], t > z, y(t) < y(z) < —2,

v(z) gy t 1
/y(t) ) < /Z a(s)k(s)dssup F[Ay(t) + - +00). (2.4)
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Let t' € (0,t] such that y(t') = y(t),y(s) > y(t'),s € (0,t']. We may choose
{t;}(i =1,2,...,2m) to fit
1) t/:tl>t2Ztg>t42t5>"'Zt2m,1>t2m2220;

(1) y(tl) = y(t/)7 y(tQZ) = y(t2i+1)7 1= 17 27 s = 17 y(tQm) = y(z)7

(2) y(t) is decreasing in [ta;, to;—1], i = 1,2,...m. (if y(¢) is decreasing in [0,¢'].
Let m =1, i.e. [to,t1] = [0,¢].)
Note that y(t) < —L, t € (ta;,t2;_1], which implies

¢ 1 1
—/ a(s)f(s, Ay(s) + ﬁ,min{y(s)7 —E})ds <0, té€ (ta,ta—1]
0
Differentiating (2.3) and using (H2), we obtain
1
=y () = Aa(®) f(t, Ay(t) + . y(1)

—y'(t) ) ,
Gw) < a(t)k(t)sup F[Ay(t) + - +00) < a(t)k(t) SuPF[ﬁ’ +00),

for t € (to;,t2i—-1], i = 1,2,...m. Integrating from to; to to;_1, we have

/y(tQi) dy /t2i—1 ( ) ( ) [1 )
—— < a(s)k(s)dssup F|—,+0), i=1,2,...m.
y(t2i_1) G(y) to; n

Summing from m to 1, we have

[ < [ awmspissp r, o0
—— < a(s)k(s)dssup F|—, 400).
Set y(2) = =1, y(t) = =R, in (2.4), we have

-1

dy = dy ! 1
@07 = L, Gy = ) oI P 50

which contradicts

1 ody ¢ 1
—_— > a(s)k(s)dssup F|—, 400).
G0 2 ), ks s P o0)
Hence ([2.2)) holds. Put r = %, Lemma leads to the desired result. O

3. MAIN RESULTS
Main result in this paper is as follows.

Theorem 3.1. Let (H1)-(H3) hold. Then the three-point boundary-value problem
(1.1) has at least one positive solution.

Proof. Put M, = min{y,(t) : t € [0,n]}. (H1) implies v = sup{M,,} < 0. Set
T =max{y,—6},n > -1
(1) First, we prove that

yn(t) = 1 —/0 a(s)f(s, Ayn(s) + %,yn(s))ds, t €[0,1]. (3.1)

n

decreasing in (0, ¢,]. We only need to prove that
yn(t) <7, tE [tn,1]. (3.2)

Set yn(tn) = T,tn € (0,0],yn(t) > 7,t € [0,t,]. We easily check that y,(t) is
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If there exist t € (t,, 1] such that y, (¢) > 7, then we may choose t',t" € [t,,1],t' <
t" to fit Y (t') = 7,7 < ya(t) < —L1,t € (¢, "], we have from (2.1)

0< [ als) (s Apn(s) + o (s)ds = . (¢) =y (t") <0

This contradiction implies (3.2)).

Using y,,(t),1 and 0 in place of y(¢),\ and z in (2.3) in Lemma we notice
that

a0+ 2= [ a2 e [ ]
Yn n_lfao Yn\T)aT I—alf, Yn\T)aT ) Yn\T)aT n

1
o
> — —yn(T)dT
11—« 7

@
> —(—7)(1 — t € (0,1].
> (), telo]
From (2.4), putting ¢t = t,,, we know that

1
n

Tn dy, tn «
/yn(tn) Gl S/o a(s)k(s)dssupF[l —a( 7)(1 —n), +00). (3.3)
Equation shows to = inf{t,} > 0. Also, y,(¢) is decreasing for ¢ € (0, to] and
(H1) imply that W(t) = sup{yn,(t)} <0, t € (0,%0].

(2) We show that {y,(t)} is equicontinuous on |5, 1 — 37, for a natural number
k > 1, and uniformly bounded on [0, 1].

Using y,(t), 1 and 0 instead of y(t), A and z in in Lemma we notice
that

(07

>

Ayn(t) + % (), tefo)

We know from ([2.4)),

1

n

T dy, t «
/yn(t) Gl < /0 a(s)k(s)dssup F[m(fr)(l —n),+00), tel0,1. (3.4)

Now we use (H3) and (3.4)) show that w(t) = inf{y,(t)} > —oo is bounded on [0, 1].
On the other hand, it follows from (3.1)) and (3.2)) that

(07

1
[y (O] < k(B)a(t) sup F[7——(=7)(1 =), +00) sup Gloy, max{r, W()}], (n = k).
(3.5)
Where wy, = inf{w(t), t € [5:,1 — 5%]}. Thus (3.5) and the absolute continuity
of Lebesgue integral show that {y(t)} is equicontinuous on [57,1 — 37]. Now
the Arzela-Ascoli theorem guarantees that there exists a subsequence of {y,(¢)},

which converges uniformly on [5-,1 — 57]. When k = 1, there exists a subsequence

{yﬁl)(t)} of {y,(t)}, which converges uniformly on [%, 2]. When k = 2, there exists a
subsequence {y,(f) (t)} of {y,(Ll)(t)}, which converges uniformly on [, 2

there exists a subsequence {y%k+1)(t)} of {yslk)(t)}, which converges uniformly on

]. In general,

[3(k1+1) ,1— 3(k1+1)]. Then the diagonal sequence {y,(ck) (t)} converges everywhere in

(0,1) and it is easy to verify that {y,ik)(t)} converges uniformly on any interval
[e,d] C (0,1). Without loss of generality, let {y,ik)(t)} be itself of {y,(t)} in the



6 Y. CHEN, B. YAN, L. ZHANG EJDE-2007/63

rest. Put y(¢t) = lim,—oo yn(t),t € (0,1). Then y(t) is continuous in (0,1) and
y(t) < 0,t € (0,1).
(3) Now (13.4) shows that

sup{max{—y,(t),t € [0,1]}} < +o0.
We have

t 1
lim sup{/ —yn(s)ds} =0, lim sup{/ —yn(s)ds} =0, (3.6)
t—0+ 0 t—1— :

and we obtain

)= [ ontmiar = 2 [ esniar = [ vnirar

11—«

(3.7)

1
1—a/0 —yn(T)dT < +00, te€]0,1].

Since (3.6]) and (3.7)) hold, Fatou’s theorem of the Lebesgue integral implies Ay(t) <
+00, for any fixed t € (0,1).
(4) y(t) satisfies

t
o(0) == [ als)f(s. Ay(o).y()ds, 1€ (0.1),
0
Since y, (t) converges uniformly on [a,b] C (0,1), (3.6) leads that Ay, (s) converges

to Ay(s) for any s € (0,1). For each fixed ¢t € (0,1), thee exists d > 0 such that
0 < d < t, then

(®) = (@) = = [ a5 A () + 1 ()

for all n > k. Since y,,(s) < max{r, W(d)}, Ay,(s)+1 > 2 (—7)(1-n), s € [d,1],

n — l-«a

the set {Ay,(s)} or {y,(s)} is bounded and equicontinuous on [d, t]. Let n — oo

y@—m@:—La®ﬂ%@®w®M& (3.8)

Putting ¢t = d in (3.4)), we have

T dy, d N
| oGty < ) akessw P -, oo

Let n — oo and d — 0+, we obtain
y(0+) = lim y(d) =0.
Letting d — 0+ in (3.8)), we have
t
o)) == [ als)f(s. Ayl y(9)ds, 1€ (0.1), (39)
0

and Ay(1) = aAy(n). Hence z(t) = Ay(t) is a positive solution of (1.1). O

Corollary 3.2. Suppose that (H1)-(H3) hold , then the set of positive solutions of
(1.1) is compact.
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Proof. Let M = {y € C[0,1] : Ay(t)is a positive solution of (L.I)}. First we show
that M is compact. Note that (1) M is not empty; (2) M is relatively com-
pact(bounded, equicontinuous). (3) M is closed.

Obviously Theorem implies M is not empty.

First we show that M € C[0, 1] is relatively compact. For any y(t) € M, differ-
entiating and using (H2), we obtain

=y (t) = Aa(t)f(t, Ay(t), y(t))

a(t)k(t) sup F[Ay(t), +o0)

IN

< a(t)k(t) sup F[%(—Tm —n),+00), teo,1].

Integrating from 0 to ¢, we have
"< [ atoms)ssup Pl (o)1) +ee), te 0,1 310
—— < a(s)k(s)dssup F|l——(—7)(1 —n),+0), t€[0,1]. 3.10

vy GY) ~ Jo l-a

Now (H3) and (3.10) show that for any y(t) € M, there exists K > 0 such that
ly(t)] < K, for all ¢t € [0,1]. Then M is bounded.
For each y(t) € M, we obtain from (3.9),

—y/(t) = a(t) f(t, Ay(t), y(t))
a(t)|f(t, Ay(t), y(1))|

< a()k(t)F[ro—(=7)(1 = 1), +o0)G(y(t), t€ (0,1),

and
y'(t)

—a(t) f(t, Ay(t), y(t))
<a(t)|f(t, Ay(t ) y(t))]
(=

< a@kOF[——(=7)(1 = n),+00)G(y(t)), te(0,1),

which yields

_yl(t) o

G(y(t)) +1 < a(t)k(t) S“PF[E(—T)(l —1),+00), te(0,1), (3.11)
y'(t) o

o) £1 = (WkOsw FlI=2 (7)1 =n), +00), € (0.1). (3.12)

Note that the right-hand sides of the above inequalities are always positive. Let

I(y(t)) = Oy(t) G(zyﬂ’ for any t1,t2 € [0,1]. Integration from ¢; to ¢o in (3.11) and

(3.12)) yields
() = 1p(e)| < [ a(kOF|

4 l1-«o

(07

(—7)(1 —n),+o0)dt. (3.13)
Since I~! is uniformly continuous on [I(—K),0], for any € > 0, there is a ¢ > 0
such that
[T (s1) — I (s2)| <& V|s1 — sa| < €, 51,82 € [[(—K),0]. (3.14)
Inequality guarantees that for ¢ > 0, there is a ' > 0 such that
[I(y(t1)) — I(y(t2))] < €,V|ty —ta] < &', t1,t2 € [0,1].
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This inequality and (3.14)imply
ly(t) = y(t2)l = [T (I (y(t)) = I (I (y(t2))| <&  t1,t2 € [0,1],

which means that M is equicontinuous. So M is relatively compact.
Second, we show that M is closed. Suppose that {y,} € M and

I n(t) — o (1) = 0.
Gl e [yn(t) = yo(®)]

Obviously yo € C[0,1] and lim,_, oo Ayn(t) = Ayo(t), t € [0,1]. Moreover,

() = — /Ol—ym)dr— o /O"—yn<r>dr— /Ot—ynmdf

T1-a l-a
1 1
< —yn(7)d
== | (e
K te[0,1]
170[, ) -

For y,(t) € M, from we obtain
nlt) =~ [ 0(6)56. A1), 1€ 0.1)
For fixed t € (0,1), there exists d > 0 such that 0 < d < ¢ , then
onl6) =) = = [ 0(5) 5, A 5). ()

Since y,(s) < max{7,W(d)}, Ayn(s) > 25 (=7)(1 =), s € [d, 1], the Lebesgue
dominated convergence theorem yields

yo(t) — o(d) = — /d a($)/(5, Ayols), vo(s))ds, te (0,1).  (3.15)
From , we have
0 (8) = al6) 70, Apn (), 9 (5)) < a(OR 12— (=)(1 — 1), +00)Glyn (1),

which yields

—Yn(t)
G(yn(t))

integrating from 0 to d,

< a(t)k(t)ds sup Fl—=—(=7)(1 =), +20),  t€ (0,1),

" dyn d N
/yn(d) G(yn) S/o a(s)k(s)dssupF[m(_T)(l — 1), +00).

Let n — oo and d — 0+, we obtain yo(0+) = limg—o+ yo(d) = 0. Letting d — 0+

in (3.15), we have
Yo(t) = _/0 a(s)f(s, Ayo(s), yo(s))ds,t € (0,1), Ayo(1) = aAyo(n),

then zo(t) = Ayo(t) is a positive solution of (|1.1). So yo(t) € M and M is a closed
set. Hence {Ay(t),y(t) € M} € C[0,1] is compact. O
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Example 3.3. In (L.1)), let

[tz y) = k(t)[]. +a2 7+ (—y) 7 —(~y) ln(—y)},a(t) _ t_%7

1

and k(t) =t72,0<t <1, wherey > 0,0 >0, and let F(z) =1+ 277,G(y) =
1+ (=y)~7 + (=y)In(—y). Then

ft,y) <k(OF(@)Gly), 6=-1, B(t) = k),

[ty =+

By Theorem equation (|1.1)) has at least a positive solution and Corollary
implies the set of solutions is compact.
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