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Abstract. We prove a Liouville-type theorem for stable solution of the sin-

gular quasilinear elliptic equations

− div(|x|−ap|∇u|p−2∇u) = f(x)|u|q−1u, in RN ,

− div(|x|−ap|∇u|p−2∇u) = f(x)eu, in RN

where 2 ≤ p < N , −∞ < a < (N−p)/p and the function f(x) is continuous and

nonnegative in RN \{0} such that f(x) ≥ c0|x|b as |x| ≥ R0, with b > −p(1+a)

and c0 > 0. The results hold for 1 ≤ p − 1 < q = qc(p, N, a, b) in the first
equation, and for 2 ≤ N < q0(p, a, b) in the second equation. Here q0 and

qc are exponents, which are always larger than the classical critical ones and

depend on the parameters a, b.

1. Introduction and main results

Recently, Ghergu and Rădulescu [19] studied the singular elliptic problem

− div(|x|−2a∇u) = K(x)|x|−bq|u|q−2u+ λg(x), x ∈ RN , (1.1)

where −∞ < a < (N − 2)/2, a ≤ b < a + 1, q = 2N/(N − 2(1 + a − b)) and
N ≥ 2. Under some natural assumptions on the positive potential K(x), the
authors established the existence of some λ0 > 0 such that the problem (1.1) has
at least two distinct solutions provided that λ ∈ (0, λ0). For λ = 0, there exists an
interesting question: does (1.1) admit a nontrivial solution?

D’Ambrosio and Mitidieri [7] considered the existence and nonexistence of non-
trivial weak solution to the following quasilinear elliptic equation with singular
weights and critical exponent

div(A(x, u,∇u)) + V (x)|u|p−2u = a(x)|u|q−1u, x ∈ RN (1.2)

Here A contains the p−Laplacian operator A(x, t, ξ) = |ξ|p−2ξ and the mean curva-
ture operator A(x, t, ξ) = ξ/

√
1 + |ξ|2 for ξ ∈ RN , p > 1, V ≥ 0 is a singular poten-

tial function, a(x) : RN → R is a nonnegative measurable function and q > p − 1.
Similar consideration can be found [1, 2, 16, 17, 18, 20] and the references therein.
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In this article, motivated by Chen [5], Dancer et al. [8] and the references men-
tioned above, we study the nonexistence of stable solutions to the singular quasi-
linear elliptic equation

− div(|x|−ap|∇u|p−2∇u) = g(x, u), in RN . (1.3)

In particular, we are interested in the Liouville-type theorems for stable solutions
of the singular quasilinear elliptic equations

−div(|x|−ap|∇u|p−2∇u) = f(x)|u|q−1u, in RN , (1.4)

− div(|x|−ap|∇u|p−2∇u) = f(x)eu, in RN , (1.5)

where 2 ≤ p < N , −∞ < a < (N − p)/p, f(x) ∈ C(RN \ {0}) is nonnegative. The
exact assumption on f(x) will be given in (H1) below.

For a 6= 0 and p 6= 2, to our knowledge, there is very little information on the
nonexistence of stable solutions for problems (1.4) and (1.5).

In this article, we are concerned about stable solutions of (1.4) and (1.5) in the
following sense.

Definition 1.1 ([7, 27]). Let g(x, ·) : R → R be a C1 function for almost every
x ∈ RN . We say that u is a weak solution of (1.3) if u ∈ C1,ω

loc (RN )(0 < ω < 1)
satisfies g(x, u) ∈ L1

loc(RN ) and∫
RN
|x|−ap|∇u|p−2∇u∇ζ dx =

∫
RN

g(x, u)ζ dx, ∀ζ ∈ C1
0 (RN ). (1.6)

Let u be a weak solution of (1.3). We say that u is stable if gu(x, u) ∈ L1
loc(RN )

and

Qu(ζ) :=
∫

RN
|x|−ap

(
|∇u|p−2|∇ζ|2 + (p− 2)|∇u|p−4(∇u · ∇ζ)2

)
dx

−
∫

RN
gu(x, u)ζ2dx ≥ 0,

(1.7)

for every ζ ∈ C1
0 (RN ).

The Morse index of a solution u, i(u) is defined as the maximal dimension of
all subspace X of C1

0 (RN ) such that Qu(ζ) < 0 for any ζ ∈ X \ {0}. Clearly, u is
stable if and only if i(u) = 0.

We note that the C1,ω regularity assumption is natural to the solution of (1.3)
due to the results in [1, 8, 10, 29].

Remark 1.2. If u is a stable weak solution of (1.5), then from (1.7) it follows that∫
RN

f(x)euζ2dx ≤ (p− 1)
∫

RN
|x|−ap|∇u|p−2|∇ζ|2dx, ∀ζ ∈ C1

0 (RN ). (1.8)

Similarly, if u is a stable nonnegative solution of (1.4), we have from (1.7) that

q

∫
RN

f(x)uq−1ζ2dx ≤ (p− 1)
∫

RN
|x|−ap|∇u|p−2|∇ζ|2dx, ∀ζ ∈ C1

0 (RN ). (1.9)

We recall that Liouville-type theorem is the nonexistence of nontrivial solution
in the entire space RN . The classical Liouville theorem stated that a bounded
harmonic (or holomorphic) function defined in entire space RN must be constant.
This theorem, known as Liouville Theorem, was first announced in 1844 by Liouville
[24] for the special case of a doubly-periodic function. Later in the same year,
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Cauchy [4] published the first proof of the above stated theorem. In 1981, Gidas
and Spruck established in pioneering article [21] the optimal Liouville type result
for nonnegative solutions to the singular equation (1.4) with p = 2, a = 0 and
f(x) = |x|b:

−∆u = |x|b|u|q−1u, x ∈ RN . (1.10)
They proved that (1.10) with b = 0 has no positive solution if and only if 1 < q <
qs = N+2

N−2 if N > 2 and qs =∞ if N = 2.
The case b 6= 0 is less completely understood. Let us first recall that if b ≤ −2,

then (1.10) has no positive solution in any domain Ω containing the origin, see
[3, 21]. We therefore restrict ourselves to the case b > −2 in the rest of this article.
Let us introduce the Hardy-Sobolev exponent

qs(b) =
N + 2 + 2b
N − 2

(=∞), if N = 2. (1.11)

In the class of radial solutions, the Liouville property was completely solved [3, 26].

Proposition 1.3. Let N ≥ 2, b > −2 and q > 1.
(i) If q < qs(b), then (1.10) has no positive radial solution in RN .

(ii) If q ≥ qs(b), then (1.10) possesses a bounded, positive radial solution in
RN .

So far, for the radial solutions, the results have been clean and neat. On the
other hand, using Farina’s approach in [13], Fazly [15] established Liouville type
theorem of the weighted Lane-Emden equation

−∆u = (1 + |x|2)b/2|u|q−1u, in RN . (1.12)

Proposition 1.4 ([15, Theorems 2.3]). Let u be a nonnegative entire semi-stable
solution of (1.12) with b > −2, q ≥ 2. Then u is the trivial solution if the space
dimension N satisfies

2 ≤ N < 2 +
2(2 + b)
q − 1

(
q +

√
q2 − q

)
. (1.13)

Remark 1.5. Obviously, If b > −2 and N > 10 + 4b, then (1.13) implies that
1 < q < qc

:=
(N − 2)(N − 6− 2b)− 2(2 + b)2 + 2(2 + b)

√
(2 + b)(2N − 2 + b)

(N − 2)(N − 10− 4b)
.

(1.14)

Similar works can be founded in [9, 11, 20, 23, 28] and the references therein.
To our knowledge, there are only few works on exponential case (1.5) as compared

with (1.10) and (1.12). Farina in [14] proved that ∆u+eu = 0 has no stable classical
solution in RN for 2 ≤ N ≤ 9. Dancer and farina in [8] proved that (1.5) with p = 2
and f(x) = 1 admits classical entire solutions which are stable outside a compact
set if and only if N ≥ 10. Recently, Wang and Ye in [28] proved

Theorem 1.6. Let p = 2, a = 0 and f(x) = |x|b with b > −2. For 2 ≤ N < 10+4b,
there is no weak stable solution of (1.5).

In this paper, the first aim is to show the nonexistence of stable solutions to (1.5)
with the weighted functions f(x) and 2 ≤ p < N . Since p > 2, the test functions
in the above references does not work. For the estimation of solution, we need to
choose some special test functions to investigate our problem.

Throughout this paper, we make the following assumption on f(x).
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(H1) f(x) ∈ C(RN \ {0}) is nonnegative in RN . In addition, there exist b >
−p(1 + a), c0 > 0 and R0 > 0 such that f(x) ≥ c0|x|b for all |x| ≥ R0.

Denote

q0(p, a, b) =
p(p+ 3)(1 + a) + 4b

p− 1
.

Our main results in this paper are as follows.

Theorem 1.7. Suppose that the function f(x) satisfies (H1) and 2 ≤ p < N <
q0(p, a, b). Then there is no weak stable solution of (1.5).

Open problem. When N > q0(p, a, b) or 1 < p < 2, does equation (1.5) admit a
stable solution?

Remark 1.8. If p = 2, a = b = 0, then q0(2, 0, 0) = 10. The result in Theorem 1.7
coincides with that in [14]. If p = 2, a = 0 and b > −2, q0(2, 0, b) = 10 + 4b. It is
the critical exponent qc = 10 + 4b in [28].

Theorem 1.9. Suppose that the function f(x) satisfies (H1) and p ≥ 2, b > −p(1+
a). Let u ∈ C1δ

loc(RN ) be a stable solution of problem (1.4). Assume that{
p− 1 < q <∞, if N ≤ q0(p, a, b),
p− 1 < q < qc = qc(p, a, b), if N > q0(p, a, b)

(1.15)

with the critical exponent

qc(p,N, a, b)

=
(

(p− 1)[N2(p− 1)− p(1 + a)(N(p+ 2)− p(1 + a))

+ b(N(p− 4)− p2(1 + a))− 2b2]
)

÷
(

(N − p(1 + a))[N(p− 1)− p(p+ 3)(1 + a)− 4b]
)

+
2(p(1 + a) + b)

√
(p− 1)(p(1 + a) + b)[p(N − 1− a) + b(p− 1)]

(N − p(1 + a))[N(p− 1)− p(p+ 3)(1 + a)− 4b]
.

(1.16)

Then u ≡ 0 in RN .

Remark 1.10. If a = 0, then

qc(p,N, 0, b)

=
(p− 1)[N2(p− 1)− p(N(p+ 2)− p) + b(N(p− 4)− p2)− 2b2]

(N − p)[(N(p− 1)− p(p+ 3)− 4b]

+
2(p+ b)

√
(p+ b)(p− 1)[p(N − 1) + b(p− 1)]

(N − p)[(N(p− 1)− p(p+ 3)− 4b]
.

(1.17)

It is the critical exponent qc in [5]. Furthermore, if a = b = 0, then

qc(p,N, 0, 0)

=
(p− 1)[N2(p− 1)− p(N(p+ 2)− p)] + 2p2

√
(p− 1)(N − 1)

(N − p)[(N(p− 1)− p(p+ 3)]
.

(1.18)

It equals the critical exponent pc in [6]. Also, we observe that the critical exponent
qc(p,N, 0, 0) is always greater than the classic critical exponent N(p−1)+p

N−p . If a =
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b = 0 and p = 2, we find

qc(2, N, 0, 0) =
N2 − 8N + 4 + 8

√
N − 1

(N − 2)(N − 10)
. (1.19)

It is the critical exponent pc in [13] and the exponent qc(p,N) in [22] and p(N,α)
in [12], and coincides with that in [25].

Remark 1.11. Clearly, problems (1.4) and (1.5) are an extension of problems in
[14, 22, 25, 28] respectively. Our conclusions in Theorems 1.7 and 1.9 extend results
in the above references.

Remark 1.12. For (1.1), we let λ = 0 and N(1 + 8b
N−2(1+a−b) ) < 10(1 + a). Then,

an application of Theorem 1.9 shows that there are no stable solutions.

The rest of the paper is devoted to the proof of Theorems 1.7 and 1.9. In the
following, we denote by Cj (j = 1, 2, . . . ) positive constants, which may vary from
line to line.

2. Proof of Theorem 1.7

To prove the nonexistence of solutions to (1.5), we use the test function method,
which has been used in [6, 14] and references therein. Since 2 ≤ p < N , some
modification in choosing functions is necessary. The proof is based on argument by
contradiction which involves a priori estimate for a solution of (1.5) by carefully
choosing the special test function and scaling argument.

For any nonnegative function ϕ ∈ C1
0 (RN ) and α > 0, we denote ζ = epαuϕp.

Then, it follows from (1.5) and (1.6) that∫
RN
|x|−apepαu|∇u|pϕpdx

=
1
pα

∫
RN

f(x)e(pα+1)uϕpdx− 1
α

∫
RN
|x|−apepαuϕp−1|∇u|p−2∇u · ∇ϕdx.

(2.1)

By Young inequality with any ε > 0, one sees that

1
α

∫
RN
|x|−apepαuϕp−1|∇u|p−1|∇ϕ|dx

≤ ε
∫

RN
|x|−apepαu|∇u|pϕpdx+ Cε

∫
RN
|x|−apepαu|∇ϕ|pdx

(2.2)

It follows from (2.1) and (2.2) that

(1− ε)
∫

RN
|x|−apepαuϕp−1|∇u|p−1|∇ϕ|dx

≤ 1
pα

∫
RN

f(x)e(pα+1)uϕpdx+ Cε

∫
RN
|x|−apepαu|∇ϕ|pdx

(2.3)



6 C. CHEN, H. SONG, H. YANG EJDE-2018/81

On the other hand, we take ζ = (epαuϕp)1/2 in (1.8) and obtain∫
RN

f(x)e(pα+1)uϕpdx

≤ (p− 1)
∫

RN
|x|−ap|∇u|p−2|∇(epαu/2ϕp/2)|2dx

=
p2(p− 1)

4

∫
RN
|x|−apepαu

(
α2|∇u|pϕp + 2αϕp−1|∇u|p−2∇u∇ϕ

+ |∇u|p−2|∇ϕ|2ϕp−2
)
dx

(2.4)

Similarly, by Young inequality, we have∫
RN
|x|−apepαuϕp−2|∇u|p−2|∇ϕ|2dx

≤ ε
∫

RN
|x|−ap|∇u|pepαuϕpdx+ Cε

∫
RN
|x|−apepαu|∇ϕ|pdx

(2.5)

Then an application of (2.3)-(2.5) gives∫
RN

f(x)e(pα+1)uϕpdx

≤ p2(p− 1)(α2 + ε+ 2αε)
4

∫
RN
|x|−ap|∇u|pepαuϕpdx

+ Cε

∫
RN
|x|−apepαu|∇ϕ|pdx

≤ p2(p− 1)(α2 + ε+ 2αε)
4pα(1− ε)

∫
RN

f(x)e(pα+1)uϕpdx

+ Cε

∫
RN
|x|−apepαu|∇ϕ|pdx.

(2.6)

Then, one sees that

λ1

∫
RN

f(x)e(pα+1)uϕpdx ≤ Cε
∫

RN
|x|−apepαu|∇ϕ|pdx, (2.7)

where

λ1 = λ0 −
λ2ε

1− ε
, λ0 = 1− p(p− 1)α

4
, λ2 =

p(p− 1)(1 + α)2

4α
. (2.8)

in which we choose 0 < α < 4
p(p−1) such that λ0 > 0. Furthermore, let ε > 0 be so

small that λ1 > 0.
By Hölder inequality, from (2.7) we obtain∫
RN

fe(pα+1)uϕpdx ≤ Cε
(∫

RN
fe(pα+1)uϕpdx

) pα
pα+1

×
(∫

RN
f−pα|x|−pa(pα+1)ϕ−p

2α|∇ϕ|p(pα+1)dx
) 1
pα+1

,

(2.9)

where f = f(x). This implies∫
RN

f(x)e(pα+1)uϕpdx ≤ Cε
∫

RN
f−pα|x|−pa(pα+1)ϕ−p

2α|∇ϕ|p(pα+1)dx (2.10)
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We now choose ϕ0(s) ∈ C1
0 [0,∞) defined by

ϕ0(s) =


1, 0 ≤ s ≤ 1,
2(2− s)k − (2− s)2k, 1 < s < 2,
0, s > 2,

(2.11)

where k = pα + 1 > 1. It is not difficult to verify that 0 ≤ ϕ0(s) ≤ 1 and
|ϕ′0(s)| ≤ β0ϕ

1−1/k
0 (s) with β0 = 21/kk.

We let ϕ = ϕ(x) = ϕ0( |x|R ) with R > R0, where R0 is given in (H1). Then,
setting x = Rξ, we get∫

RN
f−pαϕ−p

2α|∇ϕ|p(pα+1)dx ≤ CRθ
∫

1≤|ξ|≤2

( |ϕ′0(|ξ|)
ϕ0(|ξ|)1−

1
pα+1

)p(pα+1)

dξ

≤ CRθβp(pα+1)
0

(2.12)

where C is a positive constant independent of R and θ = N − p(1 + a) − pα(b +
p(1 + a)). Noticing that 0 < p(p − 1)α < 4 and N < q0(p, a, b) = p(p+3)(1+a)+4b

p−1 ,
we can so choose that α such that N < p(1 + a) + pα(b+ p(1 + a)). Then, letting
R→ +∞, we obtain from (2.12) that∫

RN
f(x)e(pα+1)udx = 0 (2.13)

This is impossible. This completes the proof.

3. Proof of Theorem 1.9

We first establish some estimation for solutions of (1.4).

Lemma 3.1. Let u ∈ C1,ω
loc (RN ) be a stable weak solution of (1.4) with q > p−1 ≥

1. Then for every k ∈ (1, k0(q)), where

k0(t) =
2t− p+ 1 + 2

√
t(t− p+ 1)

p− 1
, t > p− 1, (3.1)

and for any integer n with n ≥ max{2, q+k
q−p+1}, there exists a constant C =

C(q, p, n, k) such that∫
RN

f(x)|u|q+kϕpndx+
∫

RN
|x|−ap|∇u|p|u|k−1ϕpndx

≤ C
∫

RN
|x|−ap|∇ϕ|

p(q+k)
q−p+1 |f(x)|−

k+p−1
q−p+1 dx,

(3.2)

where ϕ ∈ C1
0 (RN ) is the nonnegative cut-off function, in which ϕ(x) = ϕ0( |x|R ) for

any R > 0 with ϕ0(s) ∈ C1
0 (R+), 0 ≤ ϕ0(s) ≤ 1 and

ϕ0(s) =

{
1, 0 ≤ s ≤ 1,
0, s ≥ 2.

(3.3)

Proof. By the definition of ϕ(x), we know that there exists C > 0 such that
|∇ϕ(x)| ≤ CR−1 in x ∈ B2R \ BR and |∇ϕ(x)| = 0 if x ∈ BR ∪ Bc2R, where
Br = {x ∈ RN : |x| < r}.
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Let u ∈ C1,ω
loc (RN ) be a stable solution of (1.4) and k > 1. Multiplying (1.4) by

|u|k−1uϕp and integrating by parts, we find

k

∫
RN
|x|−ap|∇u|p|u|k−1ϕpdx

≤ p
∫

RN
|x|−ap|∇u|p−1|∇ϕ||u|kϕp−1dx+

∫
RN

f(x)|u|q+kϕpdx.
(3.4)

Then applying Young’s inequality with parameter ε ∈ (0, 1), we have

p

∫
RN
|x|−ap|∇u|p−1|∇ϕ||u|kϕp−1dx

≤ ε
∫

RN
|x|−ap|∇u|p|u|k−1ϕpdx+ C1

∫
RN
|x|−ap|∇ϕ|p|u|k+p−1dx.

(3.5)

Then from (3.4) and (3.5) it follows that

(k − ε)
∫

RN
|x|−ap|∇u|p|u|k−1ϕpdx

≤
∫

RN
f(x)|u|q+kϕpdx+ C1

∫
RN
|x|−ap|∇ϕ|p|u|k+p−1dx.

(3.6)

On the other hand, taking ζ = |u| k−1
2 uϕ

p
2 in (1.9), one sees that

q

p− 1

∫
RN

f(x)|u|q+kϕpdx

≤ 1
4

(1 + k)2
∫

RN
|x|−ap|∇u|p|u|k−1ϕpdx

+
p2

4

∫
RN
|x|−ap|∇u|p−2|∇ϕ|2|u|k+1ϕp−2dx

+
1
2
p(1 + k)

∫
RN
|x|−ap|∇u|p−1|∇ϕ||u|kϕp−1dx.

(3.7)

By Young’s inequality with ε > 0, we obtain∫
RN
|x|−ap|∇u|p−2|∇ϕ|2|u|k+1ϕp−2dx

≤ ε
∫

RN
|x|−ap|∇u|p|u|k−1ϕpdx+ C2

∫
RN
|x|−ap|∇ϕ|p|u|k+p−1dx,

(3.8)

∫
RN
|x|−ap|∇u|p−1|∇ϕ||u|kϕp−1dx

≤ ε
∫

RN
|x|−ap|∇u|p|u|k−1ϕpdx+ C3

∫
RN
|x|−ap|∇ϕ|p|u|k+p−1dx.

(3.9)

Then it follows from (3.7)-(3.9) that

q

p− 1

∫
RN

f(x)|u|q+kϕpdx ≤ βε
∫

RN
|x|−ap|∇u|p|u|k−1ϕpdx

+ C4

∫
RN
|x|−ap|∇ϕ|p|u|k+p−1dx

(3.10)



EJDE-2018/81 LIOUVILLE-TYPE THEOREMS FOR STABLE SOLUTIONS 9

with βε = 1
4 [(1 + k)2 + p2ε + 2p(1 + k)ε] > 0. Furthermore, we obtain from (3.6)

and (3.10) that

αε

∫
RN

f(x)|u|q+kϕpdx ≤ C5

∫
RN
|x|−ap|∇ϕ|p|u|k+p−1dx (3.11)

with some constant C5 > 0 and

αε =
q

p− 1
− βε
k − ε

, lim
ε→0+

αε = α0 :=
q

p− 1
− (1 + k)2

4k
. (3.12)

The fact α0 > 0 implies that k ∈ (1, k0(q)). Now, the application of (3.6) and
(3.11) yields∫

RN
|x|−ap|∇u|p|u|k−1ϕpdx ≤ C5

∫
RN
|x|−ap|∇ϕ|p|u|k+p−1dx. (3.13)

We claim that the estimate (3.2) holds. Choose the integer n ≥ max{2, q+k
q−p+1}.

Then one sees that

ϕ
p(n−1)(q+k)

k+p−1 (x) ≤ ϕpn(x), x ∈ RN . (3.14)

Then, replacing ϕ by ϕn in (3.11), we find∫
RN

f(x)|u|q+kϕpndx

≤
(∫

RN
f(x)|u|q+kϕp(n−1)λdx

) 1
λ
(∫

RN
f−

λ′
λ |x|−paλ

′
|∇ϕ|pλ

′
dx
) 1
λ′

≤
(∫

RN
f(x)|u|q+kϕpndx

) 1
λ
(∫

RN
f−

λ′
λ |x|−paλ

′
|∇ϕ|pλ

′
dx
) 1
λ′
,

(3.15)

where λ = (q + k)/(k + p − 1) > 1, λ′ = (q + k)/(q − p + 1) > 1. So, it derives by
(3.15) that ∫

RN
f(x)|u|q+kϕpndx ≤ C

∫
RN
|x|−ap|∇ϕ|

p(q+k)
q−p+1 f−

k+p−1
q−p+1 dx, (3.16)

Similarly, replacing ϕ by ϕn in (3.13), from (3.15) and (3.16) we obtain∫
RN
|x|−pa|∇u|p|u|k−1ϕpndx ≤ C

∫
RN
|x|−paϕp(n−1)|u|k+p−1|∇ϕ|pdx

≤ C
∫

RN
|x|−ap|∇ϕ|

p(q+k)
q−p+1 f−

k+p−1
q−p+1 dx.

So, we obtain (3.2) and the proof of Lemma 3.1 is complete. �

Proof of Theorem 1.9. From estimate (3.2) and the definition of the function ϕ(x),
it follows that∫

RN
f(x)|u|q+kϕpndx+

∫
RN
|x|−ap|∇u|p|u|k−1ϕpndx ≤ CRτ , (3.17)

where assumption (H1) has been used and

τ = N − p(1 + a)− (p(1 + a) + b)(k + p− 1)
t− p+ 1

. (3.18)
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Clearly, if τ < 0, the desired result follows by letting R → ∞ in (3.17). In the
following, we consider the case in which τ < 0. Define the function

g(t) =
k0(t) + p− 1
t− p+ 1

, t > p− 1, (3.19)

where k0(t) is given in (3.1). Obviously,

lim
t→(p−1)+

g(t) = +∞, lim
t→+∞

g(t) = g∞ :=
4

p− 1
. (3.20)

Since

g′(t) =
−1

(t− p+ 1)2
[
1 +

t− p+ 1√
t(t− p+ 1)

]
< 0, for t > p− 1, (3.21)

the function g(t) is decreasing in t > p − 1. So, we have g∞ < g(t) < +∞ for
t > p− 1.

Therefore, if N−p(1+a) ≤ (p(1+a)+b)g∞, then N−p(1+a) < (p(1+a)+b)g(t)
for any t > p− 1. Hence if we fix k ∈ [1, k0(t)) suitably near k0(t), we obtain

N − p(1 + a) <
(p(1 + a) + b)(k + p− 1)

t− p+ 1
. (3.22)

For this reason, the desired result follows by letting R→∞ in (3.17).
Assume now N − p(1 + a) > (p(1 + a) + b)g∞. Since g is decreasing, we get in

this case a critical value qc(p,N, a, b) such that N −p(1+a) < (p(1+a)+ b)g(q) for
p−1 < q < qc(p,N, a). From this, the desired result follows again by letting R→∞
in (3.17). Clearly, qc(p,N, a, b) may be deduced from the equation N − p(1 + a) =
(p(1+a)+b)g(q), which is given the value in (1.16). Then we complete the proof. �
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