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CONTINUOUS HOST-MACROPARASITE MODELS WITH
APPLICATION TO AQUACULTURE

CATHERINE BOULOUX MARQUET

Abstract. We study a continuous deterministic host-macroparasite system

which involves populations of hosts, parasites, and larvae. This system leads
to a countable number of partial differential equations that under certain hy-
potheses, is reduced to finitely many equations. Also we assume hypotheses

to close the system and to define the global dynamics for the hosts. Then, we
analyze the spatially homogeneous model without demography (aquaculture

hypothesis), and show some preliminary results for the spatially structured

model.

1. Introduction

The aim of this paper is to study the dynamics of epidemic models for a host-
macroparasite system. A spatially discrete model concerning a marine host-parasite
system was first modelled in [13, 20]. The host is a fish, the sea bass Dicentrarchus
labrax, and the parasite is a flat worm, Diplectanum aequans (Plathelminth, Mono-
genea), which parasitizes the gills of this host. After a cross-fertilization on fish
gills [18], adult parasites lay eggs from which larvae hatch. The larvae try actively
to find a host. If they succeed, the larvae settle on the host’s scales and then move
to its gills. At that time, the larvae undergo a maturing process leading to an adult
stage that is capable of laying eggs.

A more complete age-structured formulation of the parasite population dynam-
ics has been proposed in [7, 8]. This model, which is also a discrete model, concerns
a fish-farmed population of sea bass, so the parasite population dynamics are de-
scribed for a cohort of fish having the same age and initially without parasites. We
have incorporated in this model a couple new features. First, we have integrated
the existence of different cohorts into the parasite population. Second, as some
demographical parameters (development of eggs, death rate or fertility rate of par-
asites) are under the influence of temperature linked to the season, we have added
some temperature effects to this model.

The discrete model involves numerous parameters which cause two main prob-
lems. First, the complexity of the model makes the mathematical analysis of it ex-
tremely difficult. Second, this complexity results in long computation times when
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attempting to study the behavior of the model by performing numerical simula-
tions. These difficulties lead to the consideration of a new approach. In the first
part of this paper we introduce a continuous spatially structured model. The model
will follow the idea first used by Anderson where one breaks the host population
into a countable number of “populations” –hosts with 0, 1, 2, . . . parasites.

In [14, 15] we can find another approach. The authors introduced modelling
host-parasite dynamics through a convection then a convection-diffusion partial
differential equation which uses the parasites density as a continuous structure
variable. Here, one conserves the Anderson’s well accepted hypothesis:

(H1) These “populations” could increase by the death of one parasite within the
next higher increment of infection or by immigration of one parasite into a
host belonging to the “population” of hosts with the next lower increment
of infection[1].

This gives a countable number of equations –one for each class of host having k
parasites, where k is a nonnegative integer. As with the discrete model, one assumes
a particular parasite distribution on the hosts. This assumption allows to reduce the
model to a system of equations involving three population classes: hosts, parasites,
and larvae. We will show that hosts and parasites have the same spatial structure.
Also, if one supposes there is no spatial structure, one obtains some known models
[1, 2, 3, 4, 5, 6].

In the second part of this paper, we analyze the ordinary differential equation
model and give some results for the partial differential equation model. Describing
the model, one includes births and intrinsic mortality, mortality not due to the
presence of parasites, with the host population, but in the analysis one ignores it,
because one is thinking of situations where it is not important, for example, in some
aquaculture situations.

2. Description of a continuous spatially structured model

2.1. The structured populations. Let hk = hk(x, t) denote the spatial density
of hosts having k parasites, k ∈ N, at a point x and time t. So

∫
Ω

hk(x, t) dx is the
total number of hosts in the region Ω with a load of k parasites. Let H = H(x, t)
be the spatial density of the total number of hosts. It is given by

H =
+∞∑
k=0

hk. (2.1)

One defines the following parameters related to hosts.

• b((hl)l, x, t) is the natural fertility rate of hosts at a point x and time t,
where (hl)l = (h0, h1, h2, . . . ).

• γ(k) is the factor reducing the fertility of hosts having k parasites; 0 ≤
γ(k) ≤ 1.

• mh((hl)l, x, t) is the intrinsic mortality of hosts at a point x and time t.
• α(k) is the induced mortality of hosts due to the burden of having k para-

sites. So, in each class of hosts with k parasites, the host mortality is given
by mh((hl)l, x, t) + kα(k)

• dh∇hk is the flux of the host population.
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Let P = P (x, t) denote the spatial density of parasites at a point x and time t.
It can be obtained by

P =
+∞∑
k=0

khk. (2.2)

Parasites are subject to three mortalities:
• A natural mortality for parasites with a rate µ(k)
• A mortality due to the intrinsic host mortality
• A mortality due to the induced mortality of hosts caused by a burden of k

parasites linked to α(k).
The last two mortalities are due to the fact that if a host dies, its parasites must
die.

The spatial density of larvae at a point x and time t is given by L = L(x, t).
One defines the following parameters related to larvae.

• ν(L, x, t) is the natural death rate of larvae at a point x and time t;
• λ̂(k) is the laying rate per host in the class hk of parasites at time t;
• Rk((hl)l, L, x, t) is the fixation rate of larvae on hosts of class hk;
• dL∇L is the flux of the larvae population.

2.2. The population dynamics. First we consider hosts having no parasites.
The following assumption is made

(H2) Hosts are born free from parasites. That is, at birth they belong to the
class h0.

Aside from spatial migration, the rate of change of the size of the class h0 consists
of the following four terms.

• mh((hl)l, x, t)h0 = mhh0, l ≥ 0, is the spatial density of hosts having 0
parasite which die from natural mortality at a point x and time t.

• R0((hl)l, x, t)h0, l ≥ 0 is the spatial density of hosts having 0 parasite at a
point x and time t that recruit larvae with rate R0.

• µ(1)h1 is the spatial density of hosts which come into the class h0 from
class h1 because of natural mortality of their parasites (H1).

• The fertility of hosts having k parasites is γ(k)b((hl)l, x, t), and the total
birth rate of hosts is

∞∑
k=0

γ(k)b((hl)l, x, t)hk.

Then the equation for hosts having 0 parasite is

∂h0

∂t
− dh∆h0 =

+∞∑
k=0

b((hl)l, x, t)γ(k)hk −mhh0 −R0h0 + µ(1)h1. (2.3)

Second, we consider hosts having parasites. The equation for the class hk, k ≥ 1,
is similar to (2.3). Because of (H2), the birth term is not present. These hosts
possess parasites, so there is an added mortality term, kα(k)hk, due to parasitism.
There is also an additional positive term on the right side of the equation, Rk−1hk−1,
that takes into account hosts from class hk−1 that recruit a parasite and enter class
hk. Finally, there is an additional negative term, kµ(k)hk, that takes into account
hosts from class hk that have a parasite that dies moving these hosts to class hk−1.
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The other terms are analogous to the ones in (2.3). So the equation describing the
dynamics of hosts with k parasites is

∂hk

∂t
− dh∆hk

= (k + 1)µ(k + 1)hk+1 − [mh + kα(k) + Rk + kµ(k)]hk + Rk−1hk−1

= F k.

(2.4)

One adds some hypotheses to close the system and to define the global dynamics
for hosts, H =

∑+∞
k=0 hk. First one assumes

(H3) Rk = Rk((hl)l, L, x, t) = R(H,L).
One considers two different functions for R:

R(H,L) = βL (2.5)

where β is a positive constant, and

R(H,L) =
ρL

Ĉ0 + H
. (2.6)

where ρ and Ĉ0 are positive constants. The function (2.5) was proposed by An-
derson [4]. With it one supposes the recruitment function is proportional to the
number of larvae. For the second function (2.6), one takes inspiration from what
was proposed by Langlais et al. [13] and Bouloux et al. [8] in the discrete model.
One also includes the following hypotheses in order to describe the global dynamics
of hosts.

(H4) The fertility rate is spatially and temporally homogeneous, and density
dependent: b((hl)l, x, t) = b(H).

(H5) The intrinsic death rate of hosts is spatially and temporally homogeneous,
and density dependent: mh = mh((hl)l, x, t) = mh(H).

(H6) dh ≥ 0.
(H7) The natural death rate of larvae is spatially and temporally homogeneous,

and density dependent: ν(L, x, t) = ν(L)
The global dynamics of hosts can be described as follows. One assumes that X is
a random variable that represents the number of parasites. The probability for a
host to have k parasites is P (X = k) = hk

H ; see [9, 10, 11]. Summing (2.3) and (2.4)
over all classes, we obtain

∂H

∂t
− dh∆H = [b(H)E(γ(X))−mh(H)− E(Xα(X))]H. (2.7)

To obtain the global dynamics for parasites, we multiply (2.4) by k, then sum over
all k, and recall (2.2). Using (H6), this gives

∂P

∂t
= dh

+∞∑
k=1

k∆hk +
+∞∑
k=1

kF k, (2.8)

where F k is defined by (2.4). After some calculations using hypothesis (H3) and
the fact that hk = P (X = k)H, one can express the dynamics of parasites by

∂P

∂t
− dh∆P = [R(H,L)−mh(H)E(X)− E(Xµ(X))− E(X2α(X))]H. (2.9)

The larvae dynamics involves three phenomena:
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• There is one gain term which corresponds to the number of larvae that
parasites lay. λ̂(k)hk is the number of eggs laid by parasites on hosts having
k parasites, so

∑+∞
k=0 λ̂(k)hk is the total number of laid eggs by parasites

on all hosts.
• There are two loss terms:

– One is the recruitment of larvae by hosts at a point x and time t.
R(H,L)H is the rate at which larvae manage to attach themselves on
hosts.

– The other is the number of larvae which die from natural death at a
point x and time t, ν(L)L.

Following (H3) and (H7), one models the larvae dynamics as

∂L

∂t
− dL∆L = E(λ̂(X))H −R(H,L)H − ν(L)L. (2.10)

Putting equations (2.7), (2.9), and (2.10) together, the dynamics for the host-
parasite system is described by

∂H

∂t
− dh∆H = b(H)E(γ(X))H − [mh(H) + E(Xα(X))]H,

∂P

∂t
− dh∆P = H[R(H,L)−mh(H)E(X)]− [E(Xµ(X)) + E(X2α(X))]H,

∂L

∂t
− dL∆L = E(λ̂(X))H −R(H,L)H − ν(L)L.

(2.11)
For biological reasons, all parameters are nonnegative. So one has

(H8) mh(H) ≥ 0, b(H) ≥ 0, λ̂(k) ≥ 0, ν(L) ≥ 0, α(k) ≥ 0, µ(k) ≥ 0, R(H,L) ≥
0.

(H9) µ(k) = µkl−1 and α(k) = αkl−1 for l = 1, 2, γ(k) = γk, 0 < γ ≤ 1,
λ̂(k) = λ̂k,

where l = 2 means that natural parasite death rates or induced mortality of hosts
are dependent on the number of parasites, whereas l = 1 means that those rates do
not depend on how many parasites are present on hosts.

To have a generic model in terms of H, P and L, one makes assumptions on the
distribution of parasites in hosts. One assumes that parasites are distributed on the
host population according to a Poisson law with mean z = P

H or a negative binomial
with the same mean and a clumping parameter Ψ [4, 5]. The second distribution is
characterized by the fact that a few hosts carry a high parasite burden, while the
majority of hosts have few parasites [1, 2, 3, 4, 5, 7, 8, 13]. This type of distribution
is said to be overdispersed.

One obtains four types of models, denoted I to IV, in which one supposes the
induced mortality of hosts is intensity dependent or independent, and the natural
death rate of parasites is density dependent or not.

• In model I the induced mortality of hosts is intensity independent, and
the natural death rate of parasites is density independent. This can be
expressed by α(k) = α and µ(k) = µ.

• In model II the induced mortality of hosts is intensity dependent, and
the natural death rate of parasites is density independent. This can be
expressed by α(k) = αk and µ(k) = µ.
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• In model III the induced mortality of hosts is intensity independent, and the
natural death rate of parasites is density dependent. This can be expressed
by α(k) = α and µ(k) = µk.

• In model IV the induced mortality of hosts is intensity dependent, and the
natural death rate of parasites is density dependent. This can be expressed
by α(k) = αk and µ(k) = µk.

For each model, using the Poisson or binomial distribution, one can calculate the
different moments in the model (2.11), and whatever the distribution used, one has
the generic model

∂H

∂t
− dh∆H = H[h(H,P )−mh(H)−M(H,P )],

∂P

∂t
− dh∆P = R(H,L)H − P [(mh(H) + µ + α) + Q(H,P )],

∂L

∂t
− dL∆L = λ̂P −R(H,L)H − ν(L)L,

(2.12)

where M(H,P ) = E(α(X)), Q(H,P ) satisfies

P [µ + α + Q(H,P )] = H[E(Xµ(X)) + E(X2α(X))]

and h(H,P ) = b(H)E(γ(X)) (see the second equations of (2.11) and (2.12)). What-
ever the model one chooses, one always finds the terms µ+α in the second equation
of (2.12). Finally, using the Poisson or negative binomial distributions, one obtains
the forms for h(H,P ), M(H,P ) and Q(H,P ) [7] listed in Tables 1 and 2 in the
Appendix. In the rest of the paper, it will be assumed that M(H,P ) and Q(H,P )
are given by one of those forms.

3. Analysis of ODE models without demography

As for the discrete model in , we assume that

b(H) = mh(H) = 0 .

When there is no spatial structure, in order to work with the total parasite pop-
ulation, one uses the mean number of parasites on hosts, z = P

H . This gives the
spatially homogeneous model without demography

dH

dt
= −M̃(z)H,

dz

dt
= R(H,L)− z[µ + α + Q̃(z)],

dL

dt
= λ̂zH −R(H,L)H − νL,

(3.1)

with initial conditions

H(0) = H0 > 0, z(0) = z0 > 0, L(0) = L0 > 0, (3.2)

and under the hypotheses
(B0) µ ≥ 0, α ≥ 0, α + µ > 0, ν > 0,
(B1) M̃(z) = a1z + a2z

2, a1 > 0, a2 ≥ 0 (defined in the appendix),
(B2) Q̃(z) = b1z + b2z

2, b1, b2 ≥ 0 (defined in the appendix)
(B3) R(H,L) defined by (2.5) or (2.6).
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Note that R(H, 0) = 0, R(H,L) > 0 for H ≥ 0, L > 0 and RL = ∂R
∂L (H,L) > 0 for

H ≥ 0 and L > 0. See the Appendix for explicit values for aj and bj , for j = 1, 2.
These values do not affect the analysis.

Proposition 3.1. B = {(H, z, L) : H ≥ 0, z ≥ 0, L ≥ 0} is an invariant region for
(3.1)-(3.2). In addition, under hypothesis (B0), (B1), (B2), and (B3), the system
(3.1)-(3.2) has one and only one nonnegative solution defined on [0,+∞).

Proof. The persistence of nonnegativity is a consequence of the fact that the vector
field F (·, ·, ·) defined by

F (H, z, L) = {Fi(H, z, L)}i=1,2,3 =

 −M̃(z)H
R(H,L)− z[µ + α + Q̃(z)]

λ̂zH −R(H,L)H − νL


does not point out of the positive octant R3

+, and hence R3
+ is an invariant region

for solutions. From hypothesis (B1), (B2), and (B3), F (·, ·, ·) is locally Lipschitz
continuous, so from the Cauchy-Lipschitz theorem, there exists a unique local max-
imal solution defined on a maximal interval [0, Tmax), Tmax > 0. If Tmax < +∞,
then

lim
t→T−max

(|H(t)|+ |z(t)|+ |L(t)|) = +∞.

From the equation for H in (3.1), one sees that H(t) is non-increasing by the
nonnegativity of M̃ (B1) and H, so limt→+∞H(t) = H∞ ≥ 0. Also we have

dz

dt
+

dL

dt
≤ R(H∞, L) + λ̂zH0.

One can write R as R(H∞, L) = cL. Then by (B3),
dz

dt
+

dL

dt
≤ max(c, λ̂H0)(z + L).

One concludes that Tmax = +∞. �

Theorem 3.2. One has limt→+∞H(t) = H∞ > 0. In addition, trajectories of
(3.1) are bounded and z(t) → 0, P (t) → 0 and L(t) → 0 when t → +∞.

Proof. First, we show that limt→+∞ L(t) = 0. If one considers the expression
AH ′(t) + L′(t) where A > 0, one has

AH ′(t) + L′(t) = −AM̃(z)H + λ̂zH −R(H(t), L(t))H − νL

= −A(a1z + a2z
2)H + λ̂zH −R(H(t), L(t))H − νL

≤ (λ̂−Aa1)zH − νL

Choosing A > λ̂/a1, AH ′ + νL′ < 0. One integrates over [0, t], and obtains

0 ≤ AH(t) + L(t) + ν

∫ t

0

L(τ)dτ ≤ AH(0) + L(0) = C

So, L ∈ L1 ∩ L∞ and thanks to the nonnegativity of L, lim inft→+∞ L(t) = 0.
Besides,

dL

dt
≤ λ̂zH

But, from the equation for H,
dH

dt
= (−a1z − a2z

2)H ≤ −a1zH
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Integrating over [0, t],∫ t

0

(zH)(τ)dτ ≤ − 1
a1

(H(t)−H(0)) ≤ 1
a1

H(0)

Therefore, zH ∈ L1. L can be written as the function L(t) =
∫ t

0
L′(τ)dτ + L(0).

From the fact that L′ ∈ L1, and lim inft→+∞ L(t) = 0, one has limt→+∞ L(t) = 0.
Next we show that limt→+∞ z(t) = 0. Note that from the expression of R (see

(B3)), R(H,L) ∈ L1 ∩ L∞. Consider the equation for z:

z′(t) ≤ R(H,L)− (µ + α)z

⇔ e(µ+α)sz′(s) + (µ + α)e(µ+α)sz(s) ≤ R(H,L)e(µ+α)s

⇔ d

ds

[
e(µ+α)sz(s)

]
≤ R(H,L)e(µ+α)s

⇔ e(µ+α)tz(t)− z(0) ≤
∫ t

0

R(H,L)e(µ+α)sds

⇔ z(t) ≤ e−(µ+α)tz(0) +
∫ t

0

R(H,L)e−(µ+α)(t−s)ds

The right-hand side is in L1∩L∞; therefore, (1) z ∈ L1∩L∞. Since dz
dt ≤ R(H,L),

one can immediately conclude that (2) dz
dt ∈ L1 ∩ L∞. ¿From (1) and (2), z is

uniformly continuous. Indeed,

z(t) = z(t0) +
∫ t

t0

z′(s)ds

Thanks to (2), there exists B > 0 such that ‖z′‖ < B, so

|z(t)− z(t0)| ≤
∫ t

t0

|z′(s)|ds ≤ |t− t0|B ≤ Bη.

Choosing η = ε
B , one obtains the desired result. The uniform continuity and the

fact that z ∈ L1, implies that limt→∞ z(t) = 0.
Next we show that limt→∞H(t) = H∞ > 0. One has M̃(z) = a1z + a2z

2, so
integrating over [0, t], one obtains∫ t

0

|M̃(z(τ))|dτ ≤
∫ t

0

a1|z(τ))|dτ +
∫ t

0

a2|z2(τ))|dτ

≤ a1‖z‖L1 + a2‖z‖L∞‖z‖L1

So M̃(z) ∈ L1. From the H equation in (3.1),

H(t) = H(0) exp
(
−

∫ t

0

M̃(z(τ))dτ
)

(3.3)

where H(0) > 0. Suppose that limt→∞H(t) = H∞ = 0. This implies

lim
t→∞

∫ t

0

M̃(z(τ))dτ =
∫ +∞

0

M̃(z(τ))dτ = +∞.

But this is inconsistent with the fact that M̃(z) ∈ L1. So limt→∞H(t) = H∞ > 0.
We may conclude that without demography on the host population, trajectories

are bounded and the origin is globally asymptotically stable–there is no regulation
of parasite and larva populations. And the theorem is proven. �
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Besides, from (3.3),

H(t + s) = H(0) exp
(
−

∫ t+s

0

M̃(z(τ))dτ
)

= H(0) exp
(
−

∫ t

0

M̃(z(τ))dτ
)
exp

(
−

∫ t+s

t

M̃(z(τ))dτ
)

= H(t) exp
(
−

∫ t+s

t

M̃(z(τ))dτ
)

When s → +∞, one obtains

H∞ = H(t) exp
(
−

∫ +∞

t

M̃(z(τ))dτ
)

We remark that the set {(z, L) = (0, 0)} is an invariant manifold for the system
(3.1), so each point (H, z, L) = (H, 0, 0) is a stationary solution for (3.1).

4. Some results for the PDE model

Once again one has the assumption that

b(H) = mh(H) = 0.

One must define some notation. Suppose Ω is a bounded domain in Rn, n = 1 or
2, with a smooth boundary, ∂Ω. Let Q(0, t) = Ω × (0, t). If u ∈ Lp(Ω), one takes
the Lp-norm of u, ‖u‖p,Ω, to be

‖u(·)‖p,Ω =

{
(
∫
Ω
|u(x)|pdx)1/p if 1 ≤ p < +∞,

ess supx∈Ω |u(x)| if p = +∞.

The Lp(Q(0, t))-norm is

‖u(·, ·)‖p,Q(0,t) =

{( ∫ t

0
‖u(·, t)‖p

p,Ωdt
)1/p if 1 ≤ p < +∞,

ess supτ∈(0,t) ‖u(·, τ)‖∞,Ω if p = +∞.

For (x, t) ∈ Ω× (0,+∞), one recalls the spatially structured model

∂H

∂t
− dH∆H = −HM(H,P ),

∂P

∂t
− dH∆P = R(H,L)H − P [(µ + α) + Q(H,P )],

∂L

∂t
− dL∆L = λ̂P −R(H,L)H − νL,

(4.1)

with the initial conditions on Ω× {0}

H(x, 0) = H0(x) > 0, P (x, 0) = P0(x) > 0, L(x, 0) = L0(x) > 0, (4.2)

and for (x, t) ∈ ∂Ω× [0,+∞) one chooses homogeneous Neumann conditions

∂H(x, t)
∂η

=
∂P (x, t)

∂η
=

∂L(x, t)
∂η

= 0. (4.3)

Here hypotheses (B0) and (B3) apply, and M(H,P ) and Q(H,P ) are defined in
the appendix. Problem (4.1)-(4.3) is a singular problem because M(H,P ) = M( P

H )
and Q(H,P ) = Q( P

H ) (see the appendix). So, one approximates this problem by a
regular problem containing a small coefficient ε, where 0 < ε ≤ 1. One replaces H
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in the functions M and Q by Hε + ε. This gives the following approximate problem

∂Hε

∂t
− dH∆Hε = −HεM(Hε + ε, Pε),

∂Pε

∂t
− dH∆Pε = R(Hε, Lε)Hε − Pε[(µ + α) + Q(Hε + ε, Pε)],

∂Lε

∂t
− dL∆Lε = λ̂Pε −R(Hε, Lε)Hε − νLε,

(4.4)

with initial conditions, on Ω× {0},

Hε(x, 0) = H0(x) > 0, Pε(x, 0) = P0(x) > 0, Lε(x, 0) = L0(x) > 0, (4.5)

and the boundary conditions on Ω× (0,+∞)

∂Hε(x, t)
∂η

=
∂Pε(x, t)

∂η
=

∂Lε(x, t)
∂η

= 0. (4.6)

One now shows that (4.4)-(4.6) possesses a unique, nonnegative solution.

Theorem 4.1. For any initial condition (H0, P0, L0) ∈ C(Ω̄)3, there exists a unique
nonnegative continuous classical solution, (Hε, Pε, Lε) defined on Q(0,∞) = Ω ×
(0,+∞) to (4.4)-(4.6). In addition, if λ̂ ≤ µ + α,

∫
Ω
(Pε(x, t) + Lε(x, t))dx is a

partial Lyapunov function and the solution is globally bounded in L∞(Q(0,∞)).

Proof. As in the previous section, one may check that (Hε, Pε, Lε) for the sys-
tem (4.4)-(4.6) is nonnegative [21]. In addition, the regularity of the vector field
F (·, ·, ·) = {Fi(H,P, L)}i=1,2,3 implies local existence of a unique classical solution
(Hε, Pε, Lε) ≥ (0, 0, 0), defined on Q(0, Tmax). Also, by the positivity of Hε and
M(Hε + ε, Pε), looking at the first equation in (4.4) one can see that

∂Hε

∂t
− dH∆Hε ≤ 0. (4.7)

Then, by the maximum principle, Hε is globally bounded in L∞(Ω × (0,+∞)),
because

‖Hε(·, t)‖∞,Ω ≤ ‖H0(·)‖∞,Ω, (4.8)

for t ≥ 0, and so
sup
t≥0

‖Hε(·, t)‖∞,Ω ≤ ‖H0(·)‖∞,Ω. (4.9)

One now considers Pε and Lε. If one sums the last two equations in (4.4) and
integrates over Ω, one has, after throwing out some negative terms on the right
hand side,

d

dt
‖Pε(·, t) + Lε(·, t)‖1,Ω ≤ (λ̂− µ− α)‖Pε‖1,Ω. (4.10)

There are two cases to be considered.
Case 1: λ̂ ≤ µ + α. One has

d

dt
‖Pε(·, t) + Lε(·, t)‖1,Ω ≤ 0,

so ‖Pε(·, t) + Lε(·, t)‖1,Ω is a Lyapunov function. In addition, one has the following
two inequalities. First,

∂Pε

∂t
− dH∆Pε ≤ CLε, (4.11)
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where C is a constant depending on choice for R(Hε, Pε), and second,

∂Lε

∂t
− dL∆Lε ≤ λ̂Pε. (4.12)

Thus, the condition of partial sums referred to as the intermediate sums conditions
of Morgan in [16, 17] are satisfied. One may directly apply global existence and
boundedness results contained therein to guarantee a global solution (Hε, Pε, Lε),
globally bounded in L∞(Q(0,∞)).
Case 2: λ̂ > µ + α. According to (4.10),

d

dt
‖Pε(·, t) + Lε(·, t)‖1,Ω ≤ (λ̂− µ− α)‖Pε(·, t) + Lε(·, t)‖1,Ω. (4.13)

The L1 norm does not blow up, so there is global existence in (0,+∞) with
(Hε, Pε, Lε) bounded in L∞(Q(0, T )), for each T > 0, by Morgan [16, 17]. So
one has shown the existence of a global, unique, classical, nonnegative solution
(Hε, Pε, Lε) defined on Q(0,∞), with 0 < ε ≤ 1, for (4.4)-(4.6), and the theorem is
proven. �

The final step is to take solutions to the approximate problems, lets ε shrink
to 0, and obtain a solution to the desired problem. Before one argues that this is
possible, one needs a couple a priori estimates.

Proposition 4.2. There exists α1 > 0 such that for each initial condition H0 ∈
Cα1(Ω̄), and for each T > 0, (Hε)ε≥0 is bounded in Cα1(Ω̄ × [0, T ]) independently
of ε, for 0 < ε ≤ 1.

Proof. We have shown that Hε is nonnegative and bounded in L∞(Ω × [0,+∞))
independently of ε. Using the inequality (4.7), we conclude the result thanks to
[12, theorem 10.1 chapter III]. �

Proposition 4.3. For each initial condition (P0, L0) ∈ Cα1(Ω̄)2, and for each
T > 0, Pε and Lε are bounded in Cα1(Ω̄× [0, T ])2 independently of ε, for 0 < ε ≤ 1.

Proof. We will outline the two steps required. First, note that one has coupled
equations, thanks to the inequalities (4.11) and (4.12). Then one uses [12, theorem
2.2 chapter VII], to ensure that Pε and (ε are bounded in L∞(Ω× [0, T ]) indepen-
dently of ε. Second, one uses [12, theorem 3.1 chapter VII] to conclude that Pε and
Lε belong to a bounded set of Cα1(Ω̄× [0, T ])2. �

One is now ready to pass to the limit.

Proposition 4.4. There exists three subsequences (Hεn)n∈N, (Pεn)n∈N, (Lεn)n∈N
which converge strongly to (H,P, L) in C0(Ω̄ × [0,∞])3). In addition, for each
(x0, t0) such that H(x0, t0) > 0, there exists a neighborhood v(x0, t0) in which
(H,P, L) is a solution of the partial differential equations (4.1) in D′

(v(x0, t0)).

Proof. One knows the family (Hε, Pε, Lε)ε is bounded in Cα1(Ω̄ × [0, T ])3, so one
can extract three subsequences (HεN

), (PεN
), (LεN

) which converge strongly to
(H,P, L) in C0(Ω̄× [0,∞[)3. But, because of singularities, one defines the following
set

θ = {(x, t) : H(x, t) > 0}.
If (x, t) /∈ θ, then H(x, t) = 0. If (x0, t0) ∈ θ, there exists a neighborhood v(x0, t0) ⊂
θ. In v(x0, t0), the problem (4.1) has no singularities. So one can pass to the limit in



12 C. B. MARQUET EJDE-2004/131

the sense of distribution to obtain that (H,P, L) is a solution in D′
(v(x0, t0)). Some

questions are not answered here and will be addressed elsewhere. For example, is
there uniqueness and can H be null in Ω̄ × (0,+∞)? One remarks that if one
adds a diffusion term to the infinite system, there are no problems with existence,
uniqueness and positivity. But that would create a different mathematical model.

�

Proposition 4.5. The nonnegative steady states are (H∗ ≥ 0, 0, 0)

Proof. For these models, M(H,P ) = C1
P
H + C2

P 2

H2 , with C1 > 0 and C2 ≥ 0 (see
Appendix). The equation for H in system (4.1) is

∂H

∂t
− dH∆H = −M(H,P )H, (4.14)

and the steady states satisfy
∂H

∂t
=

∂P

∂t
=

∂L

∂t
= 0.

So the PDE system associated at equilibrium satisfies

−dH∆H∗ = −M(H∗, P ∗)H∗, (4.15)

−dH∆P ∗ = R(H∗, L∗)− P ∗[µ + α + Q(H∗, P ∗)], (4.16)

−dL∆L∗ = λ̂P ∗ −R(H∗, L∗)H∗ − νL∗. (4.17)

One multiplies (4.15) by H∗, and one integrates over Ω. One thus obtains

dH

∫
Ω

|∇H∗|2dx = −C1

∫
Ω

H∗P ∗dx− C2

∫
Ω

P ∗
2
dx ≤ 0,

because H∗ and P ∗ are nonnegative. In order to have the equality instead of less
than or equal to, H∗ and P ∗ must satisfy

∇H∗ = 0, H∗P ∗ = 0, P ∗
2

= 0, in Ω.

So, H∗ = C ≥ 0, a constant, and P ∗ = 0. Then equation (4.17) becomes

−dL∆L∗ = −R(H∗, L∗)H∗ − νL∗. (4.18)

But R, which is defined by (2.5) or (2.6), can be expressed in the general form

R(H∗, L∗) = C3L
∗.

So, (4.18) can be expressed as

−dL∆L∗ = −C4L
∗. (4.19)

Now multiply (4.19) by L∗, and integrate over Ω, to obtain that L∗ = 0. Conse-
quently, the nonnegative steady states are (H∗ ≥ 0, 0, 0). �

Conclusions. We introduced a continuous spatially structured model for host-
macroparasite systems. To obtain a finite system of equations, one assumed that
parasites are distributed on the host population according to a Poisson or a nega-
tive binomial distribution. The choice of distribution along with the choices one has
for the factor reducing the fertility of host due to parasitism and for the mortality
rate of parasites, (H10), result in eight different possibilities for right hand sides
of generic model (2.12) (see the appendix for the different forms the functions h,
M , and Q can take). One then eliminated demography in the host population in
order to apply the model to a system where the birth and intrinsic death rates of
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the host population were not important. In this situation, with the hypotheses one
made, one did not prove that the long term behavior of the solution of the con-
tinuous spatially structured model does not depend on the spatial variable. Some
analysis of the system showing existence of a solution was performed. Such issues
as uniqueness, positivity and the asymptotic behavior of the solution of the partial
differential equation system will be discussed elsewhere. Possible continuations of
this work would be to apply this model to a host-parasite system where demogra-
phy in the host population needs to be considered or to a system where birth and
death rates may not be spatially homogeneous.

5. Appendix

Let

h(H,P ) =

{
be

P
H (γ−1) for a Poisson distribution

b( ΨH
ΨH+(1−γ)P )Ψ for a negative binomial distribution.

Then we have

Table 1. Functions M , M̃ , Q and Q̃ for a Poisson distribution

Model Ia Model IIa Model IIIa Model IVa
M(H,P ) α P

H α P
H (1 + P

H ) α P
H α P

H (1 + P
H )

Q(H,P ) α P
H α P

H (3 + P
H ) (µ + α) P

H
P
H (µ + 3α + α P

H )
M̃(z) αz αz(1 + z) αz αz(1 + z)

Q̃(z) 0 2αz µz (µ + 2α)z

Table 2. Functions M , M̃ , Q and Q̃ for a negative binomial distribution

Model Ib Model IIb
M(H,P ) α P

H α P
H (1 + (Ψ+1

Ψ ) P
H )

Q(H,P ) α(Ψ+1
Ψ ) P

H α(Ψ+1
Ψ ) P

H [3 + (Ψ+2
Ψ ) P

H ]
M̃(z) αz αz(1 + (Ψ+1

Ψ )z)

Q̃(z) α
Ψz αz[( 2Ψ+3

Ψ ) + 2(Ψ+1
Ψ2 )z]

Model IIIb Model IVb
M(H,P ) α P

H α P
H [1 + (Ψ+1

Ψ ) P
H ]

Q(H,P ) (µ + α) P
H (Ψ+1

Ψ ) (Ψ+1
Ψ ) P

H [µ + 3α + α(Ψ+2
Ψ ) P

H ]
M̃(z) αz αz[1 + (Ψ+1

Ψ )z]

Q̃(z) z[ α
Ψ + (Ψ+1

Ψ )µ] [µ(Ψ+1
Ψ ) + ( 2Ψ+3

Ψ )α + 2α(Ψ+1
Ψ2 )z]z
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