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REGULARITY CRITERIA FOR WEAK SOLUTIONS TO THE 3D
NAVIER-STOKES EQUATIONS IN BOUNDED DOMAINS VIA
BMO NORM
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Communicated by Jesus Ildefonso Diaz

ABSTRACT. We study three-dimensional incompressible Navier-Stokes equa-
tions in bounded domains with smooth boundary. We present regularity cri-
teria of weak solutions to this equation via the BMO norm.

1. INTRODUCTION
We study the three-dimensional Navier-Stokes equation
u+(u-Viu—Au+Vr=0, divu=0 inQp:=Qx(0,T), (1.1)

where ) is a domain in R? with smooth boundary 09 € C?. Here u : Qr — R3
is the flow velocity vector and 7 : Qr — R is the pressure. We consider the
initial-boundary value problem of (|1.1)) with initial condition

u(z,0) = up(x) x e (1.2)
together with two types of boundary conditions: Either
u=0, (1.3)
or
u-n=0, (Vxu)xn=0, (1.4)

where n is the outward unit normal vector along boundary 0f2. The initial condi-
tions satisfy the compatibility condition, i.e. V - ug(z) = 0. A weak solution u of
(1.1)—(1.2) with boundary conditions either

(1.3) or is regular in Q7 provided that ||ul[z-~(g,) < 0o. The notion of
weak solutions will be introduced in Definition 2] of Section 2.

The initial conditions hold the compatibility condition, i.e. V - ug(x) = 0. Since
Leray [24] proved the existence of weak solutions of the Navier-Stokes equations
(see also [16]), regularity question has remained open.

Definition 1.1. A weak solution u of ([L.1)—(1.2) with boundary conditions (|1.3))
or (1.4)) is regular in Q7 provided that [|ul| L (g,) < 0.
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It is known that any weak solution becomes unique and regular in @, provided
that the following scaling invariant conditions [3, [7, 277, [30], so called Serrin’s type
conditions, are satisfied:

uwe L90,T; LP(R?), 3/p+2/qg<1,3<p<oo,

3
Vu € LU0, T; L' (R?)), 3/p+2/g<2, 5 <p<oo,

3
™€ L0, T; LV (R?)),  3/p+2/q<2, 5 <p< oo,
Vr e LU0, T; LP(R%)), 3/p+2/q<3, 1<p<oc.

In this direction, thee are numerous contributions, see [2] 9] 111 [14] 23], 25] 26, 29].
In view of the regularity conditions in view of the BMO space, Kozono and Taniuchi
proved in [20] that a weak solution u become regular if u satisfies

u € L*(0,T; BMO(R?),
w:=V xu € L'0,T;BMO(R?), T < oo,

which is the result to the space BMO, which is larger than L>°(R3). Also, Fan and
Ozawa proved in [I2] that a weak solution u become regular if u satisfies

Vp € L?3(0, T; BMO(R?)), 0<T < cc.

Our study is motivated by the works above, that is, we obtain the regularity condi-
tions for a weak solution to 3D Naiver-Stokes equations f with the bound-
ary conditions or in bounded domains. In particular, for bounded do-
mains, the difficulty lies in treating the pressure. To be more precise, in the case
that 0 = R3, using the equation of pressure, we observe that the pressure 7 satisfies

||7T||LP(Rn) < C|‘u||%2p(R3)7 1< p < oo. (15)

However, it is not known yet whether or not the estimate above (1.5) holds for
domains with the boundary condition. Thus, the methods of proof in a whole
space R3 do not seem to be applicable to our case. To overcome these difficulties,
we use the maximal estimates of Stokes system for both cases of slip and no-slip
boundary conditions, regarding the nonlinear term as an external force (see Lemma
in section 2). Since such estimates of the Stokes system are also available for
domain with boundaries, this approach allows for control of pressure and is useful
for our analysis. On the other hand, to obtain the regularity condition for a vorticity
vector, we consider the vorticity equations for Navier-Stokes equations to avoid the
estimate of terms containing the pressure term. In this case, our proof is based on a
priori estimate for the vorticity. At last, we give regularity criteria for the pressure
to this equations using the maximal regularity theorem (see Lemma in section
2). Our main results read as follows.

Theorem 1.2. Suppose that u is a weak solution to (1.1)—(1.2]) with initial condi-
tions ug € H2(Q)NW14(Q), ¢ > 3 and boundary conditions (1.3) or (1.4). Assume
further that u satisfies

[l 220, 7:BMO(0)) < 00

Then, u becomes regular in Q.
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Theorem 1.3. Suppose that u is a weak solution to ) with zmtzal condi-
tions ug € H*(Q)NW4(Q), ¢ > 3 and boundary condztwns 1 D or . Assume
further that w := V X u satisfies

||w||L1(o,T;BM0(Q)) < o0
Then, u becomes reqular in Qr.

Theorem 1.4. Suppose that u is a weak solution to —(1.2) with initial condi-
tions ug € H*(Q) NWH4(Q), ¢ > 3 and boundary condztzon (1.3). Assume further
that u satisfies

||7T||L2(0,T;BM0(Q)) < 00
Then, u become regular in Q.

Theorem 1.5. Suppose that u is a weak solution to ) with im’tz’al condi-
tions ug € H*(Q)NW14(Q), ¢ > 3 and boundary condztzons 1 ) or (T.4). Assume
further that u satisfies

V7|l 230, 7:BMO () < ©
Then, u becomes reqular in Q.

Remark 1.6. Theorem can be extended to any dimension Q C RY, because

we do not deal with the terms related to pressure. On the other hand, Theorems

and can be restricted to the case n = 3,4 in view of [I7, Remark 3.2]
r [19].

Remark 1.7. Theorems is given in [I3] under the boundary condition (L.4).

For the convenience of readers, we give a sketch of the proof.

This article is organized as follows. In Section 2, we recall the notion of weak
solutions and review some known results. In Section 3, we present the proofs of

Theorems [[L2HLH

2. PRELIMINARIES

In this section, we introduce the notation and definitions used throughout this
paper. We also recall some lemmas which are useful for our analysis. For 1 < ¢ < oo
and a nonnegative integer k, W*4(f2) indicates the standard Sobolev space with
norm || - ||x.q, i-e., WE(Q) = {u € LI(Q) : D*u € LI(N),0 < |a| < k}. As usual,
Wg(9) is defined as the completion of C§°(2) in W*4(2). When ¢ = 2, we write
Wk4(Q) as H*(€2). Let I be a finite time interval. For a function f(z,t), Q C R3,
we denote ||f||LZ:<tz(QX1) = [fllcarszz ) = H||f|\Lz;(Q)||L?(I). All generic constants
will be denoted by C', which may vary from line to line. We recall first the definition
of weak solutions.

Definition 2.1. Let ug € L?(Q) with divug = 0. We say that u is a distributional
solution (or weak solution) of (L.1)—(1.2) if u satisfies the following:
(1) ue L°°(0 T; L2(Q)) N L2(0,T; HY(Q)) and u satisfies

/ / ——i— (u- V)qﬁ)udwdt—l—/ﬁuoﬂx,O)dm:/OT/QVu:V(bdxdt

for all ¢ € C3°(2 x [0,T)) with div¢ = 0.
(2) u satisfies divergence free condition; that is, fQ u - Vipdr = 0 for any ¢ €
C>®(Q).
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We consider the following Stokes system which is the linearized Navier-Stokes
equations,
v—Av+Vp=f, divv=0 inQr:=Qx(0,7) (2.1)
with initial data v(x,0) = wvo(x). As in and (T.4), boundary data of v are
again assumed to be either no-slip or slip conditions, namely

v(z,t) =0, z€IQ or (2.2)
v.n=0, (Vxv)xn=0, ze&cod. (2.3)

Next, we recall maximal estimates of the Stokes system in terms of mixed norms
(see [I5, Theorem 5.1] and [28, Theorem 1.2] for no-slip and slip boundary cases,
respectively).

Lemma 2.2. Let 1 < I,m < oo. Suppose that [ € L;T(QT) and vy € Dll_%’m,
If (v,p) is the solution of the Stokes system satisfying one of the boundary
conditions or , then the following estimate is satisfied:

||UtHle~T(QT) + ||V2UHL;~?(QT) + ||Vp||Li’?(QT)
< Clfllgr o + l0ll v am o @4
- LV (Qr) leﬁ’m(Q)

We note that ||1)0||Dl,%,m < lvollw.i(q) because
1

(2)

D (9) 1= (L), W ()]

“mom

(see e.g., [1, Chapter 7]) and, therefore, ”UOHD“%”"(Q) in (2.4) can be replaced by
1
l[vollwa(a)-
The John-Nirenberg space or the space of the Bounded Mean Oscillation (in
short BMO space) [22] consists of all functions f which are integrable on every ball
Br(x) C R? and satisfy

1
£ I3po = sup sup ———
2€R3 R>0 B(l‘,R)

/ If(y) = fBr(y)|dy < oo.
B(z,R)

Here, fp, is the average of f over all ball Br(x) in R3. Next we recall a Gagliardo-
Nirenberg inequality using BMO-norm (See [8, Theorem 2.3] and [2I, Theorem
2.2]).

Lemma 2.3. Suppose that 1 <p <r < oo and f € LP(Q2) N BMO(R?). Then there
exists a constant C = C(n,p,r,Q) such that

T 1-2
112y < CIF IR oy I Flpnioe)-

Also, we recall estimates with respect to smooth vector field under the slip
boundary condition. (See [4, Lemma 2.2],[5, Theorem 2.1] and [0, Lemma 2.1-2.2]).

Lemma 2.4. Let Q be a smooth domain in R3. Then, for each q¢ > 1, reqular
smooth vector fields f,

()
I O 4(q - 2) 12
~ [ s sisrae =g [ iperiwirans 22 e

- / Fl52(n - V) - fdS.
oN
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(b) Moreover, using the vector identity,

(n-V)f-f=V)f-n+(Vx[f)xn)f,
we deduce that

- / INB T
/\flq |V fPda U ) /yV|f|q/2| dzx

7/ If\p’Q(fV)fwde/ FP2((V % f) x n) - fdS.
oN o0

Lemma 2.5. Assume that u is a regular enough satisfying the boundary condition

(1.4) on 0Q. Then, the for w =V X u we have

ow
~On

where €;;;, denotes the totally anti-symmetric tensor such that (a X b) = €1j5a;b.

In particular,
/Aw-wdxg —/ |Vw|2dx+0/ |w|?dz.
Q Q a0

3. PROOF OF MAIN RESULTS

cw = (€1;k€18y + €2k€28y T €3k€38~y)WjWE0KN, 0NILY,

Proof of Theorem[I1.3 Following the argument in [I8, [19], it is sufficient to show
the L*-estimate of u. Suppose that T be the first time of singularity. Then u must
satisfies for any § > 0,

lim (||u(-,t)||§4+/;6 (Ivut )l )17

t T
+ [Vl P )dar) = o

In the proof, we consider only the boundary condition (1.4}, since the case of (|1.3)
is much simpler. Multiplying the first equation of (1.1)) with |u|?u, and integrating

over (), we have
13 Lt [P 5 [ e

/Vﬂ'|u|2u+ Z/ Wi g |ul®ng,

1,7=1

(3.1)

(3.2)

where we used integration by parts, divergence-free conditions of u and trace the-
orem. Let € be a sufficiently small positive number, which will be specified later.
Integrating (3.2)) in time over (T* —¢, 7) for any 7 with T* —¢ < 7 < T*, we observe

that
/|u |dw—7/|u * —o)|*dx
+/ /|Vu|2|u\2dmdt+f/ /|V|u\2’2dxdt (3.3)
*—e T*—e JQ
g/ /|v7r|\u| |u|da:dt+/ /|u\3|Vu|dxdt L+
T*—e¢ T*—e JQ
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*

For convenience, we denote @, := Q x (T* — ¢, 7). Using Holder’s inequality, the

first term I; can be estimated as follows:

T T
B [ IVl <C [ IVl fulo
T*—e T*—e
<C ; 7
= ”VWHLQ(QT)||u||L2(O,T;BMO(Q)) sup  flu(-, t)[|7q,
T*—e<t<T

For convenience of computations, we denote C, := |[u(-,T* — €)|[w1.2(q). Using the
estimate ([2.4)), we continue to estimate I; as

L < C(H(U “Vullz2(q,) + Ce) lull 2 (7% —e,r);BMO(Q)) - SUEK Ju(-, )] 74

—€

< Cll(u- Vyull 2@ lull 2 —emmyvo@)  sup lul, 8|74 (3-4)

T*—e<t<T

+ CCcllul| L2(0,7BMO(Q)) . sup  Jlu(-, t)]|74-

—e<t<T

On the other hand, by direct calculations, I is bounded by
GV ull g,y s, e Dl

Summing the estimates of I; and I with using Young’s inequality, we obtain

/\u )*de — = /\u * —o)|dx
+/ /|Vu|2|u|2dxdt+f/ /{V|u|2}2dxdt
*—e JQ 2 T*—e JQ

<

[ull Vul 22 Il 20 rmvo@)  sup lu(6)]7:
T*—e<t<T

+CCe||UHL2(0,r;BMO(Q))T sup lu(-,t)[|74

*—e<t<T

1
< SullVulliz2 . + CCE + ClullZzo,mpmo(0)) +€) 25 (-, ) za-

Since the above estimate holds for all ¢ with T* — € < ¢ < 7, we obtain

T 1 T
sup Hu(-7t)|\‘i4+/ /|Vu|2\u|2|dxdt+f/ /’V|u|2’2d:pdt
T*—e<t<T T*—e JQ 2 T*—e JQ

/ lu(-, T* — €)|*dx + CC?
+ c(||u||L2<<T*_6,7);BM0<9)) +e) swpful Dl
T*—e<t<r
With sufficiently small e so that (HUH%2((T*7e,7-);BMO(Q)) +€) < 55 with a constant
C > 0 in the above estimate, we have
1 1
w310, + IVl F20) + SIVIUP IR 0.
<2)u(-, T = €)[|74 ) + CC2.

For simplicity, we denote Q. = Q x (T* — ¢, T*). Since 7 is arbitrary with 7 < T,
we obtain

1 2
[[ul, )||L4oo . 5HWU|IU|||L2(Q) IIV\UI 1200, < C,
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where C'is a constant depending on [[u(-, 7™ — €)|w1.2(q). This is contrary to the
hypothesis of (3.1). Therefore, T* cannot be a maximal time of existence less than
or equal to T. This completes the proof. (Il

Proof of Theorem[I.3. First, we consider the vorticity equation
—Aw+(u-V)w—(u-V)w=0. (3.5)

Multiplying the first equation of (3.5)) by w, integrating over 2, and adding them,
we have

ow
24 2< — w|:=1LH +1II
531 [ 1ol [ 1l < [ polvaliel + [ |Gl =104 10,

where we use Lemmas [2.4] and 2.5] Using Holder inequality and Lemma [2:3] the
term [1; is estimated as follows:

I < |[Vullpa@ylwlizs @) < Cllwllgsq) < Cllwllzs g lwlizmow),

Next, we can easily estimate II5. Indeed, we use the Trace theorem (see e.g., [I0}
pp 257-258]) and smoothness of boundary to find

IIQS/ ‘8—w-w|§0/|w|2,
aq On Q

Summing the estimates I1; and I15, we obtain
d 2 2 2
Zlwlze +1Vwlz: < O+ wlsmo@) [wlz.- (3.6)

Applying the Gronwall’s inequality to (3.6]),

T
stMH@+AIWW%SCWﬂ%

0<t<T
which is the desired result. (I

Proof of Theorem[I]] First, we note that, without loss of generality, the mean
value of the pressure 7 is assumed to be zero, namely fQ (-, t)dz = 0 for each time
t €1[0,T). We get 7 satisfies

17l L2y < CIVT L2(0)-

The proof of Theorem is similar to that of Theorem Indeed, from (3.3]), we
note that

/\u |4dx—f/ lu(-, T* — €)|*dx
/ /|Vu| |u|? dz dt + = / /’V|u| } dx dt
T*—e¢

g/ /w |u| [u]|Vul dxdt+/ /|u|3|Vu|dxdt =111 + I11,.
T*—e JQ T*—e JQ

Using Holder’s inequality, the first term 1177 can be estimated as

T T
i< [ el Vel <€ [ ol V]
T*—e T*—e

-

1/2 1/2

sﬁj Cllml S22 0 el o |l 92
*—e
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1/2 T 2 4 1/4
< CIValifign( [ . ImlEaolullts de) [l Vel agq,

For convenience of Computatlons, we denote Ce := |lu(-,T* — €)||w1.2(q). Using the

estimate ([2.4)), we obtain

1T, < O(Il(u V)ull g, +C€> (/

T+ —

T

1/4
ImlEsollulte dt) Il Vulll o g
1/2 ! 2 4 1/4
< Ol Vullhig, (| Imlaollullts de) [l Ve o g,

T 9 4 1/4
+CCE(/T*— 17l 5o llull 7,4 dt) H|quu‘HL2(Q )

Following similar computations as in Is, we obtain

Iy < ClJul| Vg, 50 [ul-8)[ . (3.8)

<T

Summing (3.7] — and using Young’s inequality, we obtain

/|u |4dac—f/ lu(-, T* — €)|*dx
/ /|Vu| |u|? dx dt + = / /|V|u| | dzx dt
T*—e¢

1/2 i
<l Vyulifto, ([ Inuollte ) ullvll» o,

T 1/4
wc( [ Irlboluledt) Va2 g,

1
+ O |lull Vel agq,y 5w lluC 1)
*—e T

1 T
< SIliulltag,, + cctr [ [ IntolBuodi+e] sw uCol.
T*—e€

T*—e<t<T
With sufficiently small € so that

T 1
([, Irtolbuodt+e) < 55

with a constant C' in the above estimate, we have

[u(-, )||L4oo @t || VullullZz i, + 5 ||V|UI I72q.)
<2fu(, T - )||Lf;(Q)+CCe-
By the same argument as in the proof of Theorem we finally obtain
1 2 1
||U(',t)||i§:czc(Qe) + §H‘VU||U|HL2(QE) + §||V‘U|QH%2(QG) < Ca
where C' is a constant depending on [Ju(-, T* — €)lw1.2(q)- O

Proof of Theorem[I.5. This proof is similar to that of Theorem Indeed, from
From l 3)), we note that

/|u |4ac—f/|u *—o)|*dx
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/ /|vu| lul? d dt + = / /\V\u|2|2dxdt

T*—e T*—e JQ

§/ /|V7T| |u|2|u\dxdt+/ /\u|3|Vu|dxdt =1V + IV,
T*—e JQ T*—e JQ

Using Holder’s inequality, the first term IV can be estimated as

T T 1/9 1/2
v < /T Vil llul < © /T IV L2Vl Sl

T 3/4
1/2 2/3
< CIvrliia ( /T IV7C0lENodr) T sup [l 1),

*—e<t<lT

For convenience of computations, we denote C. := |[u(-,T* — €)|[w1.2(q). Using the

estimate ([2.4)), we obtain
2/3
i < 0 (I Vulde,, +¢) ([ IvmColifiod)

< suplu(,8)l7s,
T*—e<t<t

T 3/4 (3.9)
1/2 2/3
<Clltw- Vo, ([ 1onCoiod)”  sw fu ol
T*—e€ T*—e<t<T
T 2/3 3/4 3
+0C( | VAt DlENodt) swp [l 8
* ¢ T*—e<t<T
Following similar computations as in Is, we obtain
1V < C2||ul| Vo, sup a0 (3.10)
T T —e<t<T

Summing 1} and using Young’s inequality, we obtain

1/ |u(-,7) 4dx—f/ lu(-, T* — €)|*dx

4

+/ /\Vu\ |ul? da dt + = / /|V|u| | dx dt
T*—e¢

T 3/4 .
1/2 2/3
< Cllw Vg, ([ 19nC0lR0d) " swp ful ol

3/4
vee( [ 1vntolifiod)” e uC. ol

T* —e T* —e<t<Tt
+ CeV?||u||Vu sup u(-, )|
IVl gy sup a0l

T

1
< SIlIVal g+ CC+C( [ I19nt 0l +¢)

< sup lu(-t)]|74.
T*—e<t<T

With sufficiently small € so that

-
2/3 1
V(- t dt + ) < =
([ 1ontoliodi+<) < 55
with a constant C' in the above estimate, we have

1 1
w310 o, + IVl F20) + SIVIUPIE2 0.
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<2fu(, T — €)||ig(n) +CCL.

By the same argument from the proof of Theorem [I.2] we finally obtain the desired
result. O

Remark 3.1. The arguments of Theorems 1.2 also hold for a whole space R™
because Lemma [2.2] also established for these cases.
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