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Abstract: A major consideration for consumers and the residential construction industry is the
cost-benefit and break-even of various sustainable construction options. This research provides
a publicly available simulation that allows users to compare baseline construction options versus
sustainable options and evaluates both break-even costs as well as environmental effects. This R
Shiny Monte Carlo simulation uses common pseudo-random number streams for replicability and
includes options for solar, rainwater harvesting, wells, Icynene foam, engineered lumber, Energy
Star windows and doors, low flow fixtures, aerobic/non-aerobic/city waste treatment, electric versus
gasoline vehicles, and many other options. This is the first simulation to quantify multiple sustainable
construction options, associated break-even points, and environmental considerations for public use.
Using user default parameters, coupled with a 100% solar solution for a baseline 3000 square foot/279
square meter house with 2 occupants results in a break-even of 9 years. Results show that many of
the sustainable options are both green for the environment and green for the pocketbook.

Keywords: construction; rainwater harvesting; simulation; solar

1. Introduction

Reducing the impact of the built environment is a necessary step to address concerns of climate
change, as well as population growth. Green building codes and certifications (GBCCs) have arisen to
help provide best practice for green construction. Understanding which codes actually result in effective
environmental changes that are positive for the consumer is necessary [1]. Incorporating requirements
into GBCC systems improves environmental performance 15-25% across 12 environmental impact
categories when compared with the construction of a standard office building, as defined by the
National Institute of Standards and Technology [1].

In a recent study, electricity, tap water consumption, and employee commuting dominated 10
out of 12 environmental impact categories, categories that included global warming; human health
consequences; eutrophication, acidification, and use of water; and smog formation. For land use
impacts, wood products contributed the most (perhaps, unsurprisingly) [2]. Overall, GBCCs have been
found to cause up to 25% fewer environmental impacts than standard building techniques. Specific
improvements include acidification (25%), human health—respiratory (24%), and global warming
(22%) [2].

Net Zero (or even Net Positive) construction involves the design of facilities that either consume
no net energy (demand less supply) or that produce more energy than consumed [3], reducing global
warming. Net Zero construction may even power user transportation [4]. Rainwater harvesting
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removes the stress on below-ground and groundwater sources for both residential and business
construction (including hospitals) [5,6].

Evaluating cost-benefit for certain elements of sustainable construction is not unique, and the
evidence is both international and mixed. A study in Israel demonstrated lower electricity and
water bills for certain sustainable interventions in schools, but there was no achievable or meaningful
break-even [7]. A United States study illustrated that the construction costs were larger up front for
green-certified residences, and that these houses demanded a significant price premium [8]. Sun, Chen,
Wang, Lo, Yau, and Wu [9] demonstrated increased costs for green construction between 1.58% and
9.3% in Taiwan. Dwaikat and Ali conducted an empirical review of evidence associated with green
building. They discovered a cost premium range for green construction between —0.4% and 21% in 17
studies [10]. These findings may be due partially to different definitions of “green” construction (i.e.,
different elements) and geography. Up-front costs exist.

Still, the break-even for such costs may be trivial, depending on the consumer’s needs or desires.
A study in China showed green building can generate incremental economic benefits [11]. Liu and Liu
provided a decision framework for sustainable construction options partially based upon mortgage
analysis. In their framework, they focused on thermal efficiency in Australia and found that a 45%
improvement in energy consumption would be amortized in 25 years [12]. This type of break-even
analysis is important for both the consumer and the builder. In New Zealand, a study indicated that
the New Zealand Green Building Commission’s Homestar standards may deliver operational savings,
but that many residences are unable to experience the savings estimates suggested [13].

Qualitative and policy analysis of cost-benefits also exist in the literature. A qualitative essay
provided empirical evidence of cost offsets and break-even points for some but not all sustainable
construction techniques employed [14]. With increased legislation requiring sustainable construction,
such as California’s measure to require 100% solar offset of new residential construction [15],
affordability is likely to be affected [16]. When considering both criteria (sustainability and affordability),
policymakers and consumers need to understand both the short-term and the long-term effects.

These studies provide the basis for building a flexible simulation, one which evaluates both costs
and environmental impact. The simulation itself was motivated by a research residence. The research
home, once the highest certified home for sustainable construction based on the National Association of
Homebuilders standards [4], exists on 100% solar and 100% rainwater harvesting. The user interactive
simulation is based on cost, demand, supply, and environmental considerations. The primary
hypothesis is that some elements of green construction might also be green for the pocketbook as well.
Using distributions based upon known costs and relationships, we propose a simulation that allows
users to investigate singularly or simultaneously various green construction options. Break-even
analysis is therefore produced.

2. Materials and Methods

In this Monte Carlo simulation study, we evaluate break-even considerations, environmental
impacts, and efficacy of multiple sustainable building innovations for residences. Included in the
simulation are user options for lumber selection, insulation selection, window and door selection, the
water system, the electrical system, the water heating system, geothermal heating and cooling, and
vehicle selection. Vehicle selection is an important consideration, as an electric vehicle (EV) powered
100% by the home requires additional solar power but may reduce emissions and eliminates the
owner’s need for gasoline, all of which have impacts on costs and the environment.

A simulation of costs over time, based on construction materials selection, provides information
about the cost and environmental effects of residential construction decisions. Measured outputs
include cost, demand for water and electricity, CO,e emissions, trees required for the construction
process, and water required to support the demand of occupants. The simulation is implemented in R
Shiny [17] and freely available here: https://rminator.shinyapps.io/sustain4/. Figure 1 is the motivation
for this simulation, a sustainable residence [18].
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Figure 1. The residence as constructed.
2.1. Acquisition Costs and Selection of Lumber, Engineered vs. Traditional

Finger-jointed studs use reclaimed wood that might otherwise be discarded (Figure 2). They are
straighter and result in less wood wasted. Further, they have a strong vertical load capability, with
evidence that many species (including pine) have better structural properties when finger-jointed [19].

Figure 2. Finger-jointed stud used in the residence construction.

A 20” diameter tree with 42 feet length of usable wood produces about 260 board feet (0.614 cubic
meters). The Idaho Forest Products Commission estimated that a typical 2000 square foot (185.8 square
meters) house would use 102 trees of that size, 19.6 trees per square foot [20]. For the simulation,
there is little quantitative support about the amount of reduction achieved in construction through the
use of engineered lumber. This uncertainty translated to a uniform distribution with a conservative
range of 10% to 20% reduction (flexible) based on the user input on trees per square foot (defaulted
to 20, flexible). Equation (1) provides the operationalization for lumber usage. In this equation, the
number of trees used is a binomial mixture, where LUM is an indicator for the use of engineered
lumber. The resulting equation reduces consumption by 10 to 20% uniformly when engineered lumber
is selected and 0% otherwise.

# Trees = LUM X iz x U(0.8, 0.9) x house size ft> + (1 — LUM) x f_zs x house size ft> (1)
The cost of finger-jointed studs may be more expensive than regular studs. At one lumber site,
retail cost of a 2 X 4 X 104 5/8” regular pine stud versus the same size finger-jointed stud is listed at
$3.62 [21] versus $5.59 [22], respectively. This is a 54.4% cost increase for materials, which might be
offset by lower labor costs due to engineered lumber’s straightness. Engineered lumber typically
results in a lowered installed cost per square unit [23].
The cost differential is not atypical, as many engineered lumber products have upcharges between
1.5 and 2 times the cost of traditional lumber [24]. A reasonable estimate for the total cost of traditional
framing is between $4 to $10 per square foot for labor and $3 to $6 per square foot for materials [25].
These values were used in a uniform distribution for non-engineered lumber. Conservatively, a uniform
10% to 20% reduction in labor costs and uniform 1.5 to 2.0 times increase in material costs were used

trees tree:
t

for engineered lumber calculations. Equation (2) shows the lumber cost calculations in the simulation.
In this binomial mixture equation, the indicator variable LUM mixes traditional wood construction
(1-LUM) with engineered wood construction (LUM). Traditional wood construction labor and material
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costs are modeled uniformly between $4 and $10 per square foot and between $3 and $6 per square
foot, respectively. For engineered wood construction, labor costs are reduced between 10 and 20%
uniformly and material costs are 1.5 to 2.0 times higher. No operations and maintenance (O&M) costs
were assessed for lumber selection due to its lengthy lifespan.

$ Lumber = (1— LUM) x house size ft* x (U($4,$10) + U($3,$6)) + LUM ?
xhouse size ft* x (U($4,$10) x U(0.8,0.9) + U($3,$6) x U(1.5, 2.0))

2.2. Acquisition Costs of Air, Water, and Vapor Barriers

For the research house motivating this simulation, Icynene spray foam was selected over other
products (e.g., fiberglass, cork, pressed straw, coconut fiberboard, etc.) as it is multipurpose, providing
an air barrier, vapor barrier, and water barrier, eliminating the need for attic vents, test ductwork,
or air-seal attics. Icynene is environmentally friendly, made of 100% pure water-blown air, and it
contains no artificial chemicals [26]. Residential spray foam insulation (Figure 3) provides a thermal
barrier with exceedingly low conductivity (0.021 W/mK in one study [27]). Spray foam has reasonable
hygrothermal properties and is resistant to moisture migration. The practical relevance of the tight seal
around the residence is that during the heat of the Texas summer (in excess of 100 °F), the observed
temperature in the attic spaces does not exceed 80 °F/26.7 °C with the house thermometer set to
76 °F/24.4 °C. The estimated wall U-values are 0.12, while the U-values for the slab foundation (8” to
8" on the slope) are estimated between 0.07 to 0.83. The simulation includes an Icynene spray foam
option for these reasons.

Figure 3. Open-cell spray foam insulation installed in the residence.

The 2020 cost for open-cell spray foam insulation is about $0.35 to $0.55 per board foot [28].
Assuming 3.5” depth of spray converts to $1.23 to $1.93 per square foot, values used in the simulation
of cost. Fiberglass batt insulation runs $0.64 to $1.19 per square foot (2359.17 cubic centimeters) [29];
however, this value provides an incomplete picture. Spray foam works as an air barrier, vapor barrier,
water-resistant barrier, and insulation. There is no need for attic vents, test ductwork, or air-seal attics.
When evaluated in this manner, it is actually 10-15% less expensive than traditional construction [30].
To account for these components when selecting non-spray foam insulation, a uniform distribution
between 0.85 and 0.90 was divided by the non-spray foam insulation costs to inflate them (see Equation
(3)). In this equation, the indicator variable INS is coded as 1 if Icynene foam is selected and 0 otherwise
and U indicates a uniform variable on the ranges provided. No O&M costs were assigned for insulation,
as all forms can last beyond 40 years.

$ Insulation = INS x Size x U($1.23, $1.93) + (1 - INS) x U($1.23, $1.93)/U(0.85,0.90)  (3)

2.3. Acquisition Costs and Selection of Windows and Doors

In the simulation, the user can select Energy Star windows and doors similar to those used in the
motivating residence’s construction. The choice of windows and doors based on the solar heat gain
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coefficient (SHGC) is important to the home energy usage. The SHGC is defined as the fraction of
incident solar radiation admitted through a window. In warm climates, windows should have solar
heat gain coefficients (SHGCs) lower than 0.25 [31]. Further, the U-value, a factor that expresses the
insulative value of windows, should be 0.4 or lower.

Low emissivity windows are typically 10% to 15% more expensive than standard windows [32].
The typical cost range in 2020 dollars is $385 to $785 with an average of $585 [33]. The Department of
Energy (DOE) estimates savings of $125 to $465 per year from replacing windows with new windows
that have higher Energy Star ratings [34]. In the simulation, Energy Star windows are modeled as a
12% reduction from kWh based on DOE estimates [34]. The simulation requests that the user specify
the number of windows and doors in the house and select whether they will be Energy Star certified
(checkbox). Acquisition costs are shown in Equation (4) based upon a 15% premium for Energy Star
doors and windows per the Department of Energy. In this equation, ENERGY is an indicator variable
indicating that Energy Star doors were installed. Doors need not be replaced during the maximum
40-year simulation, but windows are modeled as being replaced every 20 years.

$Windows and Door Acquisition
= ENERGY X (#Doors x U($900, $1200) + #Windows x U($385, $785)) )
+(1 - ENERGY) x (#Doorsxu($9oo,$1zoo)ﬁsvvmdowsxu(%sawss))

2.4. Selection of Water System

The decision to install a rainwater harvesting (RWH) system versus a well or municipal water
is one that is dependent on environmental considerations, the availability of municipal water, the
homeowner’s wishes, and regulations. For the residence that informed the simulation, no city water
sources were available, so the choice was either well or RWH. After a cost analysis, it was estimated
that the acquisition costs for a well and the cost for an RWH system would be nearly identical based on
well depth and rainwater design considerations. The simulation provides the user the opportunity to
select rainwater, well, or municipal water options. More information about RWH system design and
quality is available from these resources: [5,34-36].

2.4.1. Acquisition Costs of Well, Rainwater, and City Options

Acquisition costs for an RWH system (guttering, PVC piping, cistern with butyl rubber liner,
and accessories) are approximately $8000 to $10,000 [37], but a large tank requirement can increase
this value (e.g., $25,500 for the tank [38]). The cistern is the largest expense. The retail cost is $0.0625
per gallon for a Pioneer tank at one location [37], although it is possible to use fiberglass tanks at a
less expensive rate ($0.50 per gallon) [38]. Current well drilling prices in the U.S. are between $15
and $30 per foot, up to $50 for difficult terrain [39]. For the simulation, users select the well depth
or the cistern size. If city or municipal water is available, there is no acquisition cost. Equation (5)
illustrates how acquisition costs were assessed. In this equation, WELL is an indicator variable for the
construction of a well with an associated cost distribution (triangular) based on [39] and well depth.
RWH is an indicator variable for the selection of a rainwater system with the price equal to $0.50 to
$0.70 per gallon of storage. This price includes complete installation of the system (including the
pump). The indicator CITY is omitted, as municipal connection fees are nominal and not charged as
part of the acquisition of a water system.

$ Water Acquisition = WELL x T($15,$30, $50) x Depth + RWH x U($0.5,$0.7) x CisternSize  (5)

2.4.2. O&M Costs for Water

Equation (6) accounts for the annual maintenance and operations of the water system selected
for the simulation scenario. According to the Environmental Protection Agency (EPA), the average
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American uses about 88 gallons of water per day [40]. The cost of municipal water in the US is
approximately $0.006 per gallon per person per day [41]. According to the Centers for Disease Control
and Prevention (CDC), wells should also be inspected annually [42] at a cost of $300 to $500 per
year [43]. Rainwater harvesting systems also have annual maintenance expenses. If gutter and roof
cleaning is done by the owner, then the cost is estimated at $328 per year by the Environmental
Protection Agency [44]. These costs are represented in Equation (6). In this equation, city water costs
are based on a per gallon demand and a rate between ($0.004, $0.006) per gallon. Well O&M costs are
$300 to $500 per the CDC, and RWH maintenance costs are centered around the EPA cost estimate.
The accumulation rate is defined as 1 + inflation.

Annual Cost of Water O&M

= CITY X 365 days x Occupants x Annual Water Demand x U($0.004, $0.006)

x Accumulation Ratek~1 + WELL x U($300, $500) x Accumulation Raté~1 + RWH
xU($230,$430) x Accumulation Rate !

(6)

Selection of appliances and fixtures is important for a sustainable house reliant on 100% rainwater.
Toilets, shower heads, and other water fixtures in the residence that inspired this simulation were low
flow/high pressure. Mayer et al. [45] estimate that toilets use 29% of indoor water consumption, while
water used for bathing, dishwashing, and laundry consume about 36%, 14%, and 21%, respectively.
The Environmental Protection Agency (EPA) shows that high pressure, low flow shower heads reduce
flow from 2.5 gallons per minute to 2.0 gallons per minute, a 20% reduction [46]. The Department of
Energy estimates water savings between 25% and 60% [47] (values used in the simulation). Costs for
low flow fixtures are comparable to standard fixtures, so acquisition costs were omitted. Equation (7) is
the water demand. In this equation, LOW is an indicator variable for installation of low flow devices,
and the mixture equation includes a uniform reduction of 25% to 60% if those fixtures are installed.

Annual Water Demand
= LOW x U(80,100)g! x 365 days x Occupants x U(0.4,0.75) (7)
+(1-LOW) x U(80,100)g! x 365 days x Occupants

2.4.3. Acquisition, Replacements Costs, and Environmental Considerations Based on Selection of
Water Heater, Adjusted Water Demand

One of the simulation options is tankless electric water heaters. These water heaters take up
less space than those with tanks and do not constantly use energy to keep water warm. One study
indicated that the life cycle savings over traditional electric storage systems is 3719 Australian dollars
(about $2500 US dollars) [48]. However, that study does not consider the possibility that all electrical
power needed is generated by solar. Further, the carbon footprint is much lower, as it is in operation
only when demanded. Tankless water heaters may be as much as 99% efficient [38], saving 27% to
50% of kWh consumption [49]. The acquisition cost of an electric tankless heater is largely dependent
on size, capability, and brand and may be higher than traditional tank versions; however, many high
capacity electric versions are comparable in acquisition costs with traditional tank versions. Tankless
may also last 1.5 to 2 times as long as tank water heaters (20 years) and save 8% to 34% on water
(values used in the simulation), depending on water demand; however, demand flow for multiple
simultaneous operations must be evaluated and proper capability systems selected [50]. The water
demand reduction factor was included in the simulation by a uniform distribution between 0.66 and
0.92 as shown in Equation (8). Acquisition and replacement costs for tankless and tanked water heaters
were based on user input for average cost (inflation-adjusted), while the replacement life was estimated
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at 8-10 years (uniform distribution) for tanked heaters and 15-20 years (also uniformly distributed) for
tankless [51].

Annual Water Demand with Tankless Water Heater
= U(0.66,0.92) x LOW x U(80,100)g! x 365days x Occupants x U(0.4,0.75) (8)
+U(0.66,0.92) x (1 — LOW) x U(80,100)g! x 365days x Occupants

2.4.4. Environmental Consideration: Water Supply Requirements for Meeting Residents” Water Demand

For the simulation, users select from RWH, well, or city/municipal water sources. From a
sustainability perspective, RWH requires far less water for the same aquifer demand (either well or
municipal). Specifically, run-off, absorption and adsorption, and evaporation and transpiration reduce
aquifer resupply to about 30% [52]. On the other hand, RWH systems capture 75% to 90% of rainwater,
depending on design and rainfall [35]. The amount of water pulled from the aquifer to supply one
gallon is therefore at 2.5 to 3.0 times as much as rainwater harvesting. Equation (9) illustrates how
the simulation accounts for the water supply requirements to satisfy demand. RWH is an indicator
variable indicating a rainwater harvesting system. This equation is adjusted later for selection of low
flow devices and installation of tankless water heaters.

Water Supply Requirements for Meeting Residents’” Water Demand
= RWH X Water Demand /U(0.75,0.90) + (1 )
—RWH x U(2.5,3.0) x Water Demand /U (0.75,0.90)

2.5. Acquisition, O&M Costs, and Environmental Considerations for Waste Management System

Cradle-to-grave water management requires that black water be treated responsibly and
sustainably. Traditional municipal waste management and septic systems (aerobic and anaerobic) are
two options for treating waste at residences, while traditional wastewater treatment plants are a third
option. All three are available in the simulation.

Unlike traditional anaerobic septic fields, Biologically Accelerated Treatment (BAT) plants (also
termed Biologically Accelerated Wastewater Treatment (BAWT) plant) work by treating wastewater
physically and biologically in a pre-treatment compartment. Water then flows through the treatment
compartment where it is aerated, mixed, and treated by a host of biological organisms (a biomass).
The mixture then flows to a settlement compartment where particulate matter settles, returning to the
treatment compartment, leaving only odorless and clear liquid (gray water produced by the biomass)
which is discharged through sprinkler heads [53]. Figure 4 is an encased BAT system. Aerobic systems
break down waste far quicker than anaerobic due to the nature of the bacteria.

Figure 4. Biologically Accelerated Treatment plant during installation at research residence.

Installing a typical anaerobic system averages $3500, whereas an aerobic costs about $10,500 [54].
Maintaining the aerobic septic system is about $200 annually [55], which is somewhat more than
anaerobic systems [56] (modeled as 50% of the cost on average). There are benefits to the environment
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in that (1) pumps for transporting water to wastewater treatment plants are not necessary (and the
associated energy costs), (2) treated water returned to the environment is cleaner, (3) electricity for
processing water (in this case) is largely if not entirely generated by the sun. Equations (10) and
(11) are the acquisition and operation costs for the simulation. In these equations, AEROBIC is an
indicator variable for an aerobic septic system, ANAEROBIC indicates an anaerobic septic, and city
waste management is omitted (zero cost and nominal O&M).

$ Acquisition = AEROBIC x U($9500, $10,500) + ANAEROBIC x U($2000, $3000) (10)

$ O&M = Previous O&MS$ + AEROBIC x U($150,250) + ANAEROBIC x U($100,200)  (11)

2.6. Acquisition/O&M Costs, Electrical Systems

For the simulation, users are asked to select the percent of kWh provided by solar. Acquisition
of a system includes extra capacity to account for 0.004% decay per year. In doing so, O&M costs
for the duration of the simulation are built-in [57]. To illustrate, a 30-year horizon would require
11.33% more panels. Further, users were required to select their state, as geography has an impact on
capture. That impact was acquired by evaluating the ratio of the recommended photovoltaic system
size recommended by manufacturers to the kWh used monthly (e.g., [58]). Cost per solar panel watt
was a user option, set between $2 and $5 with the default value of $3.18 [59]. Equation (12) is the
solar acquisition cost when selected, where SOLAR is an indicator variable for the inclusion of a solar
system, ENERGY is an indicator variable for Energy Star windows/doors.

$Solar Acquistion= ENERGY X %Solar X (1 — Tax Credit) x $per Watt x (Total Monthly kWh)

x.88 + (1 — ENERGY) X (1 — Tax Credit) x $per Watt x (Total Monthly kWh) (12)

O&M costs for solar are negligible, particularly since the decay factor is included in the system [60].
Residential electricity rates are anticipated to be fairly stable over time as well [61]. For the simulation,
the user inputs the initial cents per kWh, which are inflated over time based on the anticipated electrical
inflation rate. Equation (13) provides the electrical O&M costs for the simulation. The total kWh is
calculated later.

$Electrical Cost = %Solar x U($100,$350) x Accumulation Ratek=1

+(1 = %Solar) x %per kWh x Total kWh x Electrical Accumulation Ratek=! (13

From an environmental perspective, the carbon dioxide avoidance by leveraging solar is significant.
The footprint of solar is 6 g CO,e/kWh, while coal carbon capture and storage (CCS) is 109 g and
bioenergy is 98 g. Wind power produces lower emissions (4 g); however, the research residence
location is a low-production wind area [62]. Wind power will be incorporated in a future version of
the simulation. Equation (14) is the CO,e/kWh formula used in the simulation. This equation includes
a calculation for gasoline cars of 8887 grams per gallon of gas consumed [63]. An inherent assumption
of this formula is that the percentage offset by solar is a true offset, not just credited.

CO2e¢ = % Solar  x6.0 g x Total kWh + (1 — % Solar) x 109¢ x Total kWh (14)
+(1-EV) x 12 x miles / mpg x 8887 g/ gallon used

2.7. Acquisition/O&M for Vehicle (Important for EV Considerations)

Electricity generated from solar panels may be used to charge electric vehicles (Figure 5). A low-end
electrical vehicle such as a Nissan Leaf 8-year costs are estimated to be $36,537.82 with total 8-year
energy costs (kWh) at $3969 [64]. When powered by solar that is 100% capable of producing both
home and automobile power, there are negligible O&M energy costs. Thus, the difference in cost
between an equal value gasoline car (after accounting for any tax credits and residual) would be the
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maintenance and energy costs. In the simulation, the user selects the car acquisition cost for comparison
(possibly zero to omit this element). Equation (15) reflects the implementation of the comparison in the
simulation if a user selects an electric vehicle. The last portion of the equation uses the complement of
the indicator for electric vehicles (EVs) and multiplies that by the annual cost of driving. The user
selects the starting gasoline cost (inflated), miles driven, and miles per gallon.

$ Vehicle Acquisition &O&M
= Initial Car Cost + Inflated Replacement Car Costs at Life Cycle End (15)
+12 X miles driven monthly /mpg x gasoline cost X (1 —EV)

Figure 5. Nissan Leaf and charging station installed at research residence.
2.8. Acquisition Costs for Heating, Ventilation, and Air Conditioning

As part of the research construction, the residence was equipped with a closed loop, geothermal
system (see Figure 6). This became an option in the simulation. Vertical, closed-loop geothermal units
are heat exchangers that leverage the fact the temperature 200" below the Earth remains relatively
constant. The cost of the system including wells, unit, and ducting (complete) was $26,500. The tax
credit currently stands at 30%. Climatemaster (the brand installed) estimates a $1000 savings in
electrical costs per year over an electric heat pump ($3135 versus $4169) [65].

Figure 6. Geothermal unit and vertical drilling of wells.

Acquisition costs for geothermal are much more than traditional heat pumps [66]. In the simulation,
the user selects the tonnage required, and this tonnage is used to estimate the total install cost. Equation
(16) illustrates the simulation implementation, where GEO is an indicator variable for the installation
of a geothermal system.

$ HVAC Acquisition = GEO x U(Tonnage x 5000, Tonnage x 6000) + (1

1
—GEO) x U(Tonnage x 1000, Tonnage x 2000) (16)

Geothermal systems may be more expensive but reduce kWh usage. This reduction is factored
into the total kWh calculation in Equation (17) along with Energy Star windows and doors, tankless
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water heaters, and electric vehicle consumption. ENERGY, GEO, TANKLESS, and EV are indicator
variables for the presence of Energy Star doors/windows, geothermal heating, tankless water heaters,
and an electric vehicle, respectively.

base kWh Required = 12 x monthly kWh — ENERGY x 12 x monthly kWh
if GEO == 1 then kWh required = base kWh regired x U(0.5,0.9)
if TANKLESS == 1, then kWh required = kWh required x U(0.5,0.73)
Total kWh Required = kWh required + EV x EVKWh X miles x 12

(17)

2.9. Simulation Runs and Flowchart

The number of simulation iterations is user-specified from 1000 to 8000. A confidence interval
of 95% is graphed across the break-even graph for users to evaluate the variability of the estimates.
The default value is 2000 iterations. Figure 7 is the flowchart with red text indicating the step identifier
for discussion. While the equations were explicated earlier, a detailed discussion follows.

The flowchart starts in the upper left (step START), and a common random number seed (step
A) is set for comparison across models. Step B initializes all variables and retrieves parameters from
the user interface for use in the simulation. In step C, the number of simulation iterations indexed
by iis incremented by 1. While i is less than the maximum number of iterations +1 (originally set by
the user in the user interface with values between 1000 and 8000), the simulation continues to step D,
otherwise, it terminates (step END).

Next, acquisition costs are assigned. These costs include lumber (step E), insulation/venting (step
F), doors and windows (step G), water acquisition (as needed, step H), septic (step 1), solar (step J),
HVAC system (step K), vehicle acquisition costs (if desired to compare electrical versus non-electrical,
step L), and water heater acquisition (step M). Additionally, water heater life (step N) and the state
photovoltaic multiplier (step O) are obtained [58]. These elements are included in the left-hand column
on the flowchart. At the bottom of this column, iterations for the number of years (user selected up to
40 and indexed as k) begin (step P).

After acquisition costs, the simulation estimates replacement costs for certain major items. Each
year, there are checks for water heater replacement (step Q) and vehicle replacement (acquisition costs,
step R) based on estimated lifespan. If required, these costs are introduced (step S and T, respectively).
Otherwise, annual vehicle costs (step U) are calculated directly.

Operations and maintenance costs, as well as environmental effects, are then estimated. Annual
septic costs are calculated (step V) followed by consumption of kWh per year based on Energy Star or
no Energy Star appliances (step W). This calculation is then adjusted in step X for user selection of
geothermal and electric vehicles. In step Y, the kWh consumption is converted to costs. Annual water
demanded for the residence is then calculated based on occupancy, selection of low flow appliances by
the user, and supply method (well, rainwater, municipal) in step Z. In step AA, the user selections
for the water system are converted to operations and maintenance costs for the water system. Step
AB estimates the CO, emissions for the selected electrical source, percent solar acquisition, and usage
of vehicle (electric or otherwise) based on user input from the simulation. In step AC, the actual
water required to meet the demand is calculated, and in step AD, the number of trees required for the
building construction is estimated. In step AE, all acquisition and discretionary costs are aggregated
for the iteration. Finally, step AF increments the years for the analysis and sends the simulation back to
step P.
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Figure 7. Flowchart for the simulation with red text identifying steps.

2.10. Verification and Validation (V&V)

Since the simulation was written in R Shiny, several methods were available for verification and

validation. To investigate validity, prior and posterior distributions were investigated to ensure that

output distributions matched the input distributions. For validity across experimental conditions, a

common random number stream was used. In doing so, we ensured that comparison differences would
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not be due to the selection of pseudo-random numbers alone. Third, visualization of the simulation
results ensured that the outcomes were as expected.

3. Results

3.1. Baseline vs. Scenario 1

The baseline scenario was set to include the parameters in Figure 8. Runs were based on
30-year ownership, 3000 square feet construction (279 square meters), 25 windows, 3 external doors,
2 occupants, 2 water heaters, $1000 water heater acquisition, 30% tax credit, 5 ton (4.5 metric ton)
heat pump/geothermal heat pump in Texas, 1500 base kWh usage per month, $0.13 per kWh utility
costs, $3.30 per watt solar panels, 3% annual inflation, 0.3 kWh per mile for EV, $30,000 base cost
for vehicles, 1100 monthly miles, 30 mpg for gas vehicles, $2.20 per gallon for gasoline, 8-year car
life, and 2000 simulation runs. Comparative construction analysis in Figure 8 included all possible
sustainable checkboxes offered in the simulation plus rainwater harvesting and an aerobic septic
system, mimicking the research residence.

Jaseline Construction (Master Control of Years & lterations) Comparison Construction

o Sowrte e, PV Symem S /4Wh EV kW ke

- Texas - . =

Suane, Y Srsnem Bie | KW BV ki ke

Waste Syutam Hast Prumg Sizw in Tens Hest Prrmg Sira in Tosa

' 9 B Bane bomthly Wk Usage wia o e 2] T Bane Morily kW Lage wio
- Scstainatis Connrues —

Figure 8. Baseline and comparison construction information, Scenario 1.

3.1.1. Scenario 1—All Sustainable Items Checked

Figure 9 shows the graphical results of the break-even analysis for Scenario 1. The break-even
time based on this analysis is about 23 years due to the up-front expenses. At 30 years, the cost
savings are estimated to be $50,000. The sustainable construction option saves 60,736 kilograms of
CO; (Equation (14)) and requires 5495 fewer kilogallons of water to meet demand over the 30-year
lifespan. The sustainable option requires 201 fewer MWh over the course of 30 years, and the grid cost
is zero as solar provides 100% of the power required. While better for the environment, water and
wastewater are more expensive for sustainable construction and can never achieve any break-even.
An inherent assumption and limitation with this scenario is that a 100% solar option provides sufficient
electricity for the household without the additional need for grey electricity. In other words, the home
has sufficient storage such that it consumes no power from the grid day or night.

3.1.2. Scenario 2—100% Solar Only

Scenario 2 includes 100% solar as the comparison option. Break-even is at nine years with the
maximum cost savings at 30 years equal to $100,000. See the comparison in Figure 10. CO,e savings
over traditional construction totals 55,620 kilograms. If tax credits are reduced to zero, then the
break-even moves to 13 years rather than 9.
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Figure 10. 100% solar versus the baseline.



Sustainability 2020, 12, 2873 14 of 19

3.1.3. Comparison Tables for Various Scenarios

The number of scenarios available is beyond enumeration, as the simulation is designed to support
user input. Thus, the design of experiments and response surface methodology are outside the scope.
Given the fixed parameters for the baseline discussed previously, comparison changes were made for
many of the sustainable construction options. Interestingly, Icynene foam and engineered lumber are
not major contributors to the cost or break-even analysis. The hypothetical advantage of EVs is offset
by the requirement for more solar in a 100% solar solution, as well as gas prices. Other combinations
are left to the user to explore. Table 1 illustrates the results.

Table 1. Comparison of simulation break-even results.

Baseline Plus the Following Years to Break Even ~ Approximate 30-Year Savings in 000’s
100% Solar 9 $100
50% Solar 7 $50
25% Solar 2 $30
Geothermal, No Solar 15 $50
Electric Tankless, No Solar 0 $80
Energy Star Windows & Doors 2 $20
Electric Vehicle with 100% Solar 12 $90
Low Flow 0 $10
Rainwater, 40 kilogallons NA NA
Rainwater, 30 kilogallons 30 $0
Aerobic NA NA

4. Discussion

The simulation results show that building a sustainable house can be both green for the environment
and green for the pocketbook depending on the trade-off considerations of the consumer. The simulation
results show that many but not all sustainable construction options have an associated cost premium
up front. The initial up-front costs may be quickly offset by savings depending on construction options.
Of importance, we note that a 100% solar solution alone offsets the acquisition costs for the baseline
construction in about 9 years with 30% tax credits.

Some construction elements showed no cost-benefit. For example, an aerobic septic system has
both higher acquisition costs and higher maintenance costs than an equivalently sized anaerobic
system. The use of engineered lumber or Icynene foam does not produce measurable cost benefits,
although engineered lumber reduces the number of trees required and is environmentally responsible.
An electric car without any associated solar power offset may actually cost the homeowner more,
depending on the gas prices versus the kWh electrical prices; however, the CO;, admissions are reduced.
Even rainwater harvesting requires more acquisition, operations, and maintenance costs than well or
city water but reduces the total water required for each gallon demanded.

Aside from the economic considerations, there are environmental considerations. The amount of
CO; produced in electrical consumption through coal-powered plants is multiple times that of solar
(109 grams versus 6 grams per kWh). Further, the amount of water required to produce a single gallon
for consumption is significantly reduced by rainwater harvesting. Low flow appliances also reduce
consumption and are of similar cost to more wasteful appliances.

In evaluating the two scenarios presented, both achieved break-even and reduced environmental
impact. Scenario 1 (all sustainable options checked) saved over 60,000 kilograms of CO;, a non-trivial
amount, and required nearly 5500 fewer kilogallons of water to meet demand over the 30-year lifespan.
The consumer, however, would not experience a break-even until year 23. An all solar scenario,
however, had a quick break-even of 9 years and still saved nearly 56,000 kilograms of CO,. Both of
these scenarios illustrate that green construction may be green for the pocketbook as well.
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4.1. Policy Considerations

There are also policy requirements for sustainable construction. For example, California now
requires new residential construction to offset its own electrical demand. This mandate is one aspect of
the California Energy Commission’s initiative to have 50% of the entire State of California’s energy
production be from a clean energy source by 2030 [67]. Another law restricts California residents to 55
gallons/day water usage by 2022 and 50 gallons/day by 2030 [68]. Mandates on both electric and water
usage are likely the wave of the future. A proactive approach leveraging the analysis presented here
and elsewhere will help both builders and buyers.

4.2. Limitations

The limitations of the simulation in this study are significant. First, only a limited subset of
sustainable and non-sustainable construction components is considered. Many others will be added in
future work, but modeling the universe is not realistic. Second, the estimates in this study are based on
evidence and professional assessment; however, they may contain more errors than modeled. Third,
the distributions selected, while ostensibly reasonable, may be improved with additional analysis.
Finally, it is important to note that a 100% solar option assumes that no grey electricity is consumed
(i.e., there is solar power storage).

4.3. Future Sustainable Improvements and Modeling

All add-on construction to the residence included mini-splits (both in wall and in roof systems).
These systems have more upfront costs but are much more energy efficient, as they do not lose energy
through ductwork. Further, they are now inconspicuous and highly effective [69]. See Figure 11 for
pictures of in-roof and in-wall systems installed in the residence. In new construction, these systems
should be considered due to their efficiency and elimination of ductwork and other requirements.

Figure 11. Mini-split units mounted in research residence, wall and roof versions.

Another new construction consideration is the use of wireless multi-gang light switches. These
fixtures can minimize wiring requirements by using a single drop instead of multiple drops. With
the advent of 5G, it might be possible to eliminate CAT6 wiring during residential construction in the
future as well.

This is the first simulation of its type that quantifies multiple sustainable construction options,
associated break-even points, and environmental considerations. In future simulations, wind power,
as well as natural gas and propane, will be modeled. Distributions and parameters will be refined
where possible, and additional input options for users will appear.

5. Conclusions

The primary hypothesis in this study was that some elements of green construction might
also be green for the pocketbook. The simulation demonstrates that break-even is achievable for
many combinations of sustainable construction components but not for each possible combination.
As legislation and best-practice construction methods increasingly push towards sustainable
interventions, knowledge of the environmental and consumer costs is necessary. This publicly
available simulation, the first of its type, addresses this analysis requirement.
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