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ABSTRACT. De Bruijn’s identity in information theory states that if u is the
solution of the heat equation, then the time derivative of the Shannon entropy
for this solution is equal to the amount of Fisher information at w. In this ar-
ticle, we show how this identity changes if we replace the heat channel by the
Fokker Planck, or passing from Fokker Planck to Ornstein-Uhlenbeck chan-
nels. Through these passages we investigate the different properties of these
solutions. We exclusively dissect different properties of Ornstein-Uhlenbeck
semigroup given by the Mehler formula expression.

1. INTRODUCTION

Let the probability triplet be (Q,.%, u), where Q is the sample space, .# a o-
algebra and y is a probability measure. Let ¢ : R™ — Ry with [, ¢(z)du(z) =1
be a density function of a random variable X. We extend the function x € (0, 00) —
xlnz by 0 at = 0 and assume that plng € L'(R", du). This function defines so
called Shannon’s entropy or Boltzmann H function

Hp) = [ o) o) duo).

If we place ourselves in a dynamical system at time ¢, this entropy will be written as
H(p(-,t)). In this context the term of de Bruijn identity was pointed by Stam [5],
which was communicated to him by Prof. de Bruijn and indicate that Shannon’s
entropy decreases in time when v runs through a Gaussian channel with rate equal
to Fisher information.

In mathematical information theory, the Fisher information is a way of measuring
the amount of information that an observable random variable X carries about the
distribution that models ¢. For example by taking X : Qx [0, 00) — R a Markovian
process and defining the density function ¢(-,t) of the random variable valued in
R, can be considered as a probability distribution depending on ¢ € R;. Formally,
the Fisher information is the variance of the score, which is the gradient of the log-
likelihood function which is logarithm of ¢(+,¢). This is the fundamental concept
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in information theory as it is indicated in the seminal book of Cover and Thomas
2].
The Fisher information is defined by the following quantity in [0, oo]

7o) = [ (5o 1e(.0) oot dula)
= [ (5oetan)) ele.)™ duto).

The most well-known example in a dynamical system is the unitary heat equation

%; =Au, t>0,z€eR" (L.1)

with an initial condition ug(-) = u(-,0) € LL (R™, du) where dju = dx is the standard
Lebesgue measure with

/n ug(z)dx = 1. (1.2)

As a straightforward consequence of the explicit expression of the solution in term
2
of the Green function G(t,z,y) := (4nt) ™/ Zexp ( — %),

u(e.t) = [ w6t ay)dy, (1.3

it follows that u(x,t) is positive for any (z,¢) € R™ x R,. The mass conservation
implies also that

/n u(z, t)de = / uo(z)dz = 1. (1.4)

In this case we say that u runs through the Gaussian or heat channel.

The noticeable connection between Fisher information and Shannon’s entropy is
the so-called De Bruijn relation [2] (see also [IL [4]). That is, if 4 runs through the
Gaussian channel, then

d
dt

(For completeness, the proof is provided in the Appendix).
Before trying to deduce the De Bruijn relation for Fokker-Planck equation

9, 0? 0
av(m,t) = @(’U(.’E,t)) - g(xv(:mt)),

H(u) = Z(u) (1.5)

in the next section we show how one can derive the Fokker-Planck equation from
the heat equation and in the section 3 we establish the De Bruijn relation for
Fokker-Planck equation.

In section 4 we show how the Ornstein-Uhlenbeck equation %—lt” = %w(x,t} —

xa%w(x, t) can be deduce from Fokker-Planck equation. For this equation the mass

conservation takes place in L'(R™, du), where du is the Gaussian measure. The
section 5 is devoted to Ornstein-Uhlenbeck semigroup in which we prove the hyper-
contractivity of this semigroup which deduces the Chapman-Kolmogorov relation
for its kernel. In the section 6 we recover the De Bruijn relation for this channel.

Finally in section 7 we prove the De Bruijn identity for relative Fisher information
and Kullback-Leibler divergence which is already discussed in [7].
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2. RELATIONSHIP BETWEEN FOKKER-PLANCK AND HEAT EQUATION

In general the Fokker-Planck equation in one dimensional space reads as

5 0007) = 5500, ) — 5ol ), (2.)

where f(y,t) and g(y,7) can be arbitrary positive functions define on R, x R.
In this section we take ¢ = 1 and f(y) = —y and the following theorem gives an
explicit expression of the solution of (2.1)).

Theorem 2.1. If u is the solution of the heat equation (1.1)) with initial condition
ug satisfying (1.2)), then v(y,7) = eu(eTy, (2™ — 1)/2), that is

eT
(Y, T) = ————=—= [ v
0:7) = o [, 0l®
satisfies the Fokker-Planck equation

9 oty = Looyr) + o) + 90w, 7) (2.3)
67_'() y,T = ayQU y,T 'Uy,T yayv y77' . .

_(eTy—8)?

e 20 de, (2.2)

Proof. First we remark that for t = (e?” —1)/2 = 0, we have ¢?” —1 = 0, so T
should be equal zero. Hence

ug = v(y,0) = vo. (2.4)

If we replace u(zx, t) by its explicit expression (|1.3]) and we find (2.2)). Now we have
to verify that this function bears out (2.3)). Indeed, let us denote
e’ (e7y — &)?
A(r) = , B:=B(r,y,&) = ,
™) 2m(e2m — 1) (7:4,€) 2(e?7 - 1)

I(r,y) = /R vo(€)e BT g

such that (2.2)) can be expressed as

v(y, ) = A(T)I(T,y).
‘We remark that

) eT 637’
7A T) = - )
57 47) V2r(e —1)  /2n(e? —1)°
=Aq(1) =Az(T)
yeT(eTy —§)  e*(eTy —§)?
7B = -
or (Tyyvg) 627' -1 (62T — 1)2 ’
—_— —
=B1(7,9,£) =Ba2(1,y,¢)
d e(ey —¢§)
7B == -—-—————
8y (Tay7£) e2m — 1 ’
N———
=B3(7,y,£)
8 627’
8y 3(7-7 Y, 5) 62T -1

Hence,

71}(va) = _A(T) / UO(€>B3(T,y,§)6_B(T7y7€) d£

R
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and
2 2T
8%2”(2/77') = A(T)( - /Rvo(f) e; — 16—B(T»y75) de
2,—B(mw:9) ¢4
+ [ (@ Batry. e 3
= —Ax()I(7,y) + A(T)/Ruo(g)(BS(ﬂy’g))Qe*B(‘ﬁy-ﬁ) d¢
= —Az(7)I(7,y) +A(r)/Ruo(g)BQ(ﬂy,g)gB(r’y»e) de.
Consequently,
2 o)
= Ay (1) (7,y) —A2(7)I(7,y)
=o(y,7)

—A)( /R uo(€) Bi(r,y, §)e” P dé — /R 00(&) Ba(r,y, )BT de)

g Ovy,T)
=y=5

ov(y,T) 9?

=v(y,7) + yTy + aTJQU(yaT)-

3. DE BRUIJN IDENTITY IN FOKKER-PLANCK CHANNELS

In this section we will use the above Theorem for obtaining an identity similar
to (T3).

Theorem 3.1. Assume thatt > 0, the Fisher information is defined by the positive
quantity

I(v(-,t))—/R<§;1nv(y,t)>2v(y,t)dy.

and Shannon’s entropy is

H(o 1)) = = [ o(y ) ol t)dy. (31)
R
Then v :=v(y, T) the solution of
d 02 0
——0Y, 7)== 7350y, T +v Y, T +y*7} Y,7T),
0T) = S50 T) + 0l 7) +y ) -
o(0,0) = wo(p). with [ woly)dy =1
R
will satisfy the modified De Bruijn identity in Fokker-Planck channels
d
—H(w)=27Z(v) —1. .
2 () =1(0) (33)
Proof. According ,
lim |yv| =0, (3.4)

ly|—o0
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and

L) = - [ (g0wm) + 5l () dy
~ [ (o) + ) dy
= [ (Gor o+ v m)) dy

—T() - / oly,7) dy = I(v) -

according to (3.4), Fokker-Planck equation has the mass conservation property and
for t = 0 the mass is equal 1, that is

/ v(y,7)dy =1 forall 7€ R,. (3.5)
R

O
4. RELATIONSHIP BETWEEN FOKKER-PLANCK AND ORNSTEIN- UHLENBECK

EQUATION

Let voo (y) \/17

e~ ¥ /2 be the unique stationary solution of Fokker-Planck
equation with [i veo (y

)dy = 1, and denote by du = vo dxr the Gaussian
measure. Now if we transform the expression ) to the form

_ (y—g/eT)?

(y,7) = \/W/RUO(@@ 20-e77) g,

we notice that v(y,7) = veo(y) as 7 — 00

(4.1)

Theorem 4.1. Assume that v is the solution of Fokker-Planck equation
Then w = v/vs satisfies the Ornstein-Uhlenbeck equation

ow  0? 0
E = ain/LU(y, T) — ya—w(y, 7—)7 (42)
with initial data wo(y) = uo(y)/Veo, ug € L1 L (R™, dy) and fR,L uo(y) dy = 1.
Proof. First note that by (2.4), wo = w(y,0) = vo(y)/Voo(y) = uo(y)/Voo(y). Con-
sequently, by (3.5) we have [, w(y,7)dp = 1
Now, knowmg that v is the solutlon of (3.1)) we can write
ow 0%v
ar (a z Y “’a )/

(4.3)
On the other hand, by % a”°° = —YVUso, We have

ow _ vil(a— + yv),

dy > oy 4
O (32 oy g,
— = v v
B2 By ya v’
By insert these expressions in we obtain .
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5. MEHLER FORMULA AND ORNSTEIN-UHLENBECK SEMIGROUP

On R™, let p1,, be the canonical Gaussian measure with density (277)’”/26(4‘”‘2/2)
with respect to the Lebesgue measure dx. With this measure we consider the
Banach space LP(R", duy,), 0 < p < oo with the norm [|f|, = ( [g. [f]? dﬂn)l/p
on which we can define the Ornstein-Uhlenbeck semigroup P; by mean of Mehler
formula

Pif(z) = - fle™'z+V1—e2y)dun(y), for f € LP(R", duy).  (5.1)

By taking a; = e7t, 8; = /1 — e~2t and making a change of variable z = .z + By
in this formula we obtain

P, f(z) = (2r2)~"/? i f(z)exp (—|z — ayz/2(B7)) d=. (5.2)
This equality implies that the Gaussian measure dpu, is invariant for P, that is
/ Pf(2)dpn() = | f(@)dpn(x) forall f € LP(R", dpy).  (5.3)
n R?L

To show this we need the following lemma.

Lemma 5.1. Forcy,c0 >0, ¢1 +c2 #0 and a,b € R™, we have

/ efcl\a7z|2752\sz|2dz _ ( s )n/2 exp ( ﬂm _ b|2) (54)

c1+ co 1+ c2

Proof. This follows from the unity of the Gaussian measure that for any p € R”

and a > 0,
n/2
/ exp (—a|x — p|2) dx = (E) ,
n «

which implies
T
[ exp (~alal? + 26ap.2)) dy = ()" explalpl?).
Let @« = ¢1 + ¢o and p = (c1a + c2b)/a, then

/n exp (f(cl + c)|z)? 4 2((c1a + c2b), x}) dx

:( T )n/2exp(|(c1a+62b)|2).

c1+co c1+co

Now since

exp (—ci]a — z|* — co|z — b|?) da

o

n

n b)|?
( s ) /Qexp<|(cla+02 )| _Cl|a|2_c2|b‘2>
c1 + Co 1+ c2

( 7r )"/2 (—clcg\a—bP)
exp (——— ),
c1 + co 1+ c2

we obtain (5.4)). O
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For proving (5.3 we write

_ 2z — agz|? + |Bex]?
P (@) dpne) = (422 [ [ peye (- lss L
Rn n Jrn 25;
oF 1 1
Taking ¢; = 552,02 = 5,0 = Qp and b =0 in Lemma since o? + 2 = 1 we
t

obtain

) dx dz.

|22

| RS dun(e) = @m) 7 | e (=5 )de.

which is ([5.3)).

Theorem 5.2. On X, := LP(R", du,,) the operator T; defines a hypercontractive
semagroup; that is,
(i) [ Tellp < 11 fllgs for allp > g > 1 such that p —1 < *'(q —1);
(ii) limyo [|T2f — fllp =0, for all f € X,;
(iii) T,Ts = Tyts, for all (t,s) € RZ.

Proof. (i) Since the constant function 1is in X,, and the Mehler formula P,1 = 1,
the equality implies that P; is doubly Markovian in the sense of Nelson (see
[3]). In the same paper (Theorem 2), Nelson shows that an operator which is doubly
Markovian is hypercontractive in the sense of item (i).

(ii) Since a? + 87 = 1, the vectors (ay, 3;) and (1,0) are both on the unit circle
and (o, Bt) — (1,0) as t — 0. For any continuous bounded function f (taking e.g.
fes),

flawe + 6~ 1) = 1 (e (3) ) = 1(@0) () ) =0

as t — 0. Furthermore, if M = sup, g |f(x)|, then |f(oz + Biy) — f(x)] < 2M in
LY(R"™,du,,). Thus according to Lebesgue’s dominated converence theorem

[ 17w+ ) = F@)] din(w) > 0.

Hence

17 = 11 = [ 1Pf) = F@)P dia(a)

:/n

Since the Schwartz space . being dense in X,,, this implies item (ii).
(iii) Taking the expression of the Ornstein-Uhlenbeck semigroup P; (5.2)),

[ e+ ) = £6a) dan)]” dien(a) =5 0

P,P,f(z) = (2n8%)~"/? /R P, f(z) exp(—|z — ayz|?/2(5%)dz

= (2mBiBs) " /n f(y) /n exp ( Ay atx‘z)dz dy.

262 267
=A
To simplify the expression A we will use the Lemma Let
a? 1
A= exp(— 2 a;ly—z2——z—ax2)dz.
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Comparing this with (5.4]), we obtain

2

« 1

s —1

5, 2= 55, a=ag Yy, b=
232

Cc1 =

Hence,
2

[e3
232
A= (L)n/Q exp ( _ Lﬁflb(;ly _ Oétl‘|2>

257 1 357 287 T 37 (5.5)
2 — e (- e ) jy— e+
=( e ) P (- 2(1— e—2<t+3>))

Replacing the expression of A in (5.5) we find that
ly —e”“Hafy
- m) dy = Piysf(2).

O

PP f(e) = ({1 =) 7 | f(y)esp (

Remark 5.3. From (iii) of the above Theorem one can deduce the Chapman-
Kolmogorov formula
K(x,y,t)K(y,z2,8)dy = K(z,2z,t +s) forall z € R" t,s>0, (5.6)
R’n
where K (x,y,t) is the heat kernel of Ornstein-Uhlenbeck semigroup, that is
Pif(z):= | K(z,y,0)f(y)dy forall f € LP(R", duy).
]:R’Vl
From (5.2) it follows that
—t 2
_ —2¢\\—n/2 le”tz —y|
Hence

PP f(x) = e K(z,y,t)P,f(y)dy
- /R K(x,y,t)K(y, z,8) f(2)dzdy

=Py f(2) = - K(z,z,t+s)f(2)dz

Since this identity holds for all f € LP(R™, du,,), we deduce formula (5.6]) for p,-
a.e. z € R™. The equality holds on R™ by continuity of the left and right hand side
with respect to z.

6. DE BRUILIN IDENTITY IN ORNSTEIN-UHLENBECK CHANNELS

In this section we work in L!(R, 1) which is a Lebesgue space with the Gaussian
measure = p1. In this space fR w(-,7)dp = 1. If we define the entropy by

(7)) = = [ 0wl 7) dufy) (61)
and the Fisher information by
Lo, i= [ w5 mw(.n) du) (62)
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then the De Bruijn identity in Ornstein-Uhlenbeck channels reads as follows.

Theorem 6.1. Assume thatt > 0, then

L Hy(w(,7)) = Tu(w( 7)) (63)

where w s the solution of Ornstein-Uhlenbeck equation (4.2)).

Proof. For the proof we will use
d

Y v
@ B — v 6.4
") Ton y (6.4)
The derivative of (6.1) with respect to 7 reads
d
EHH (w(ya T))

= _/R (%w(yﬂ—) Inw(y, 7)) du

[ (2.7~ v v muty, i [ wipr)a
= . 8y2wyaT yaywyaT Nw\y,T)ap dr ]Rwy”r H

=0 by
(0 2 3}
= [wtn (Gowt) duw) = [ Sl r) i)y

n / y%w(w)(lnw(w)) dyt = T (w(y, 7). 0

7. DE BRUIJN IDENTITY FOR RELATIVE FISHER INFORMATION AND
KULLBACK-LEIBLER DIVERGENCE

Let ¢ and v, be two distribution functions for two random variables X and Y.
The relative Fisher information with respect to a is defined by

L(6llv) i= [ o) (510 50) ate)de

We define the Kullback-Leibler divergence which can be interpreted as the relative
entropy between ¢ and 1 by

Dis () = | so(x)lnﬁgdx.

(see [6]).

The following result establishes that the relative entropy between any two solu-
tions of (2.3]) is always decreasing, with a rate given by the relative Fisher infor-
mation:

Theorem 7.1. Assume that p(z,t) and (x,t) two distinct solutions of the Fokker-
Planck equation in its general form:

1ol 02 0
3¢ (&) = 55 (alx,1)d(2,1)) — = (b(z, 1)d(2, 1)) (7.1)
Then p
—Drr(ellv) = —Tu(¢l[¥). (7.2)

dt
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Proof. Let (x,t) € R x Ry and assume (-, t),%(-,t) € H?(R). By differentiating
under the integral sign and using the chain rule, we have (For simplicity we write
o(z) instead of p(z,t))

d
< Dicw(ellv)
d

_ p(x
¢(z)In o

5@
/at )

p(z 0 )
(I)dm—&—/ oz )8t In p(x)dx —/Rgo(m)alnw(x)dx
()

/at )In ‘p(?d 10— /—ﬂp

By replacing 590(;1:) in the Fokker-Planck equation (7.1) and using integration by
parts we can write the first integral in (7.3) as

9 oy #0,
/Ra#”( AT

dz

= /R (;—;a(aﬁ)gp(x) — (,%b(m)(p(x)) In ;’Zg;dx, (7.4)
= /R (a(x)cp(x) 881:2 In ;’ZEJ;; + b(x)w(x)[% In m)dx
Since
0 (x) Y(x)\ 7 9 olx)
9z ;zp;(x) - (gp(x)) (81: z(g;))’
and

0 elz) _ (w(fc)xcjw(fﬂ)) B (Ql w(x)f’

022 p(x)  \p(@)/\0a2 u(x)) " \oz " Y(x)

by replacing these relations in (7.4]) and using integration by parts and the Fokker-
Planck equation (7.1)) for ¢(x,t) we find that

9 p(x)
/Rago(x) In mdw

2
- 5 () Yo [

Thus,

g X n@ xr = — a\x X 872@ x
[ gretayn Esae - za<sa||w>+/R (@)0(e) 3z 2 + ba)u(o)

or
Plugging this relation into equation (|7.3)) and take into account that ¢ (z
the solution of the Fokker Planck equatlon we conclude that

0 9l
b(@)
)

is also

d
%DKL(QOH@Z}) = —Ta(¢ll¥),

as desired. O
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8. APPENDIX

Here we give the proof of de Bruijn identity for a function running through a
Gaussian channel.
Let H(u) = [, u(x,-) Inu(z,-)dz be Shannon’s entropy, then

d d
%H(u) = a/Ru(x,t) Inu(x,t)dz

= /R(%u)(lnu) —|—u% Inu(z,t))dx
/Aulnudm—l—/iu(x,t)dx

d
— u)?/u) de + — [ u(z,t)dz.
[ (w2 dat 5 [t
Since [, u(z,t)dz = 1, we obtain % H(u) = Z(u).
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