
THE DESIGN AND IMPLEMENTATION OF A

TWO PASS ASSEMBLER

THESIS

Presented to the Graduate Council of

Southwest Texas State University

in Partial Fulfillment of

the Requirements

For the Degree of

MASTER OF SCIENCE

By

Jack Joseph Murphy

San Marcos, Texas

August, 1976

TABLE OF CONTENTS

LIST OF FIGURES.

PREFACE.

Chapter
I.

II.

III.

.
PRELIMINARY CONCEPTS.

Introduction .••.•....••....
Internally Stored Program.
Address Modification ..
Relocation .•••..••...•
Symbolic Addressing.
The Assembler ••••••..•.

MACHINE AND ASSEMBLY LANGUAGE ...

Memory . •••••••••••.••••••
The Accumulator (A} .•••••
The Instruction Register
The Program Counter (PC}.

(IR}

Instruction Set .•..•.•.••••.•.••
Memory Reference Instructions •••.•••.•
Micro Instructions •.•...••..••••
Input/Output Instructions ..•••..••••.•••.••.
Definition of JACK-1 Assembly Language .•
Statement Format. . •••...••••••••.
Label Field ••••..••.
Operation Field .•
Operand Field •••
Comments • •..••••••••
Assembler Directives ...•••.•..
Programming Examples. • •.
Use of Indirect Addressing •••
Output of JACK-1 ••...••••

DATA BASES AND ALGORITHMS ..
The
The

User Symbol Table (UST) ••.
Machine Op Table (MOT}.

The Pseudo Op Table (POT} .•
Character Code Table (CODES}
The Load Module ••..•..••••••
Algorithms ••••••••••••.

......

/' Searching Algorithms.

ii

iv

V

1

1
2
4
6
8
9

13

14
15
16
16
17
18
20
22
24
24
25
25
26
27
27
29
30
31

33

34
35
37
37
38
39
42

IV.

v.

Table Insertion Algorithm •.•......
Sorting Algorithms ..•.•.......•...•.

.

THE ASSEMBLER AND SIMULATOR

PASSI
PASS2 . .••.....
The Simulator.

CONCLUSIONS • ••••••••••••••••••••••••••••••••••

45
46

52

52
56
58

61

.
APPENDIX A: DATA BASES • •••••••••••••••••••••••••••••• 65

APPENDIX B: ASSIGNMENTS • •••.•••••••••.••••.•••••••••• 69

BIBLIOGRA.PHY. • • • • • • • • • • • . • . • • • 7 2

iii

LIST OF FIGURES

1. Sample Output from Assembler •••••••••••••••••• 63

2. Sample Output from Simulator ...••••••.•••••••• 64

iv

PREFACE

This thesis is written with the student in mind. It

was conceived to be a study in the design of one of the most

basic systems programs, namely the assembler. My motivation

in writing this thesis came after studying assembly language

programming and systems programming almost independently of

each other. Very rarely is a student given the opportunity

to actually code and implement systems software. The mate

rial in this thesis provides just such an opportunity. In

fact, the novice assembly language programmer should be able

to write the assembler defined in the following chapters.

The appendices provide projects that will help the student

develop his assembler. It is hoped that these chapters and

the appendices may be used in a classroom environment to

teach assembly language in a way that the student sees and

appreciates the assembler that he or she is using by build

ing another assembler. It is not the purpose of this thesis

to study everything there is to know about assemblers or

assembly languages, however, it is a good first step.

It is very difficult to thank the myraids of people

who helped in the research and writing of this thesis. As

the reader will discover, each machine has hundreds of idio

syncrasies that are not found in the manuals. When a prob

lem of this nature occurs and the answer is not in a text-

v

book, the student should do as the author has done--ask a

friend. Of the many friends who provided assistance, the

writer especially wishes to express his appreciation to the

supervising professor, Dr. Grady G. Early, Assistant Pro

fessor of Mathematics and Computer Science, for his guidance

and assistance in the preparation of the material presented

here. Also, he wishes to express his gratitude to Dr. James

L. Poirot, Assistant Professor of Mathematics and Computer

Science, for his careful reviewing of the material and to

thank Dr. Henry N. McEwen, Professor of Mathematics and Com

puter Science, for serving on the committee and for his

cooperation and assistance. Finally, the writer wishes to

express his deep gratitude and appreciation to his parents,

Mr. and Mrs. John D. Murphy, for their care, encouragement,

and continuous support.

J.J.M.

Southwest Texas State University

San Marcos, Texas

August, 1976

vi

CHAPTER I

PRELIMINARY CONCEPTS

INTRODUCTION

~he intent of this thesis is to study the purpose,

design, and implementation of an assembler. In Chapter I

we present some basic concepts which motivate the creation

of an assembler and we discuss such basic ideas as the in

ternally stored program concept. Several types of assem

blers are in existence; some whose purposes will be consid

ered in this chapter. The material presented in this chap

ter will show that an assembler is a necessary systems pro

gram. After reading this thesis and studying the appendices

the reader should be able to develop a simple assembler of

his own.

In Chapter II a ficticious but typical machine and

associated instruction set is defined. Chapter II will

serve as a programming manual for the assembly language

which we will call the JACK-1 assembly language, named after

our hypothetical machine, the JACK-1 computer. The assembly

language contains some "pseudo ops" that are representative

of many machines, thus allowing programming flexibility as

well as an opportunity to investigate how an assembler

handles such instructions.

1

2

After the JACK-1 assembly language and the JACK-1 com

puter have been defined the data base for the assembler will

be defined in Chapter III. Table formats and record formats

will be defined in addition to a discussion of sortin~ al

gorithms, insertion algorithms, and search procedures which

are a very important part of any assembler. To show the

overall process involved, Chapter III concludes with a dis

cussion of a more sophisticated algorithm which combines

advantages of the other algorithms discussed.

In Chapter IV the necessary algorithms and subroutines

are developed. To acquaint the programmer with fundamental

concepts, a general algorithm is provided. While reading

this chapter the reader should refer often to the appendices

which present projects that ultimately lead to the comple

tion of an assembler.

Since the machine and language are hypothetical, simu

lation will be used to test the output for validity. The

PDP-11 computer will be used for this purpose since it is

available. It is assumed that the reader is familiar with

the assembly language of the PDP-11, although this is not

required.

INTERNALLY STORED PROGRAM

The internally stored program was introduced by mathe

matician Jon Von Neumann in the late 1940's. Prior to this

time all programming was done by means of hardwired circuits.

3

Programs written after the introduction of the Von Neumann

machine were coded into the machine's primary memory as bi

nary l's and O's. Each word of memory contained an instruc

tion or part of an instruction which was the binary repre

sentation of a machine executable instruction. The program

mer had to know the binary code of all instructions as well

as the absolute memory address of any operands. After the

programmer had devised an algorithm and flowcharted the nec

essary steps, he then coded his program in machine language;

that is, each instruction was coded into a machine language

instruction interpretable by the control unit of the Central

Processing Unit (CPU). Both instructions and data had to be

coded in this manner. When he had finished coding the pro

gram, his pad of paper was an image of primary memory as it

would appear in the machine immediately prior to execution

of the program. He then performed the following sequence

of steps to load and execute the program:

(1) Toggle into the Switch Register (SR) the initial pro

gram load address (IPLA), push the load address button

to deposit the contents of the Switch Register into

the Address Register (AR).

(2) Toggle the next instruction into the Switch Register.

(3) Depress the Deposit Button (DEP) to deposit the con

tents of the Switch Register in primary memory at the

address specified in the Address Register.

(4) Push an increment button to add 1 to the Address

4

Register so the next instruction will be loaded at

the proper address,.

(5) If not last instruction go to (2).

(6) Toggle into the SR the initial program load address

(address of first instruction to execute). Push a

load address button to deposit this address into the

Address Register (AR).

(7) Push the start button to begin execution of the pro

gram.

This procedure was difficult and tedious. If the pro

gram did not produce the expected results, the machine lan

guage programmer had to "debug" his program--a very diffi

cult task which was sure to produce a headache if nothing

else. Despite its difficulties, the concept of an internally

stored program was one of the most significant advances in

computer technology. Surely it was better than sitting with

a handful of wires and a giant circuit board trying to de

cide which wire to plug in which hole. The internally stored

program was here to stay. New programming techniques such

as address modification were made possible for the first

time.

ADDRESS MODIFICATION

The internally stored program concept permits instruc

tions as well as data to be stored simultaneously in memory.

5

In fact it is difficult to distinguish data from instruc

tions; visual inspection alone of a specific address in mem

ory is not sufficient to determine if that word is data or

instruction. Actually a particular word could be interpreted

as either or both depending on the context of a given pro

gram. The following MACRO-11 assembly language program,

assumed to be loaded at memory location 10 8 , illustrates

this capability. The technique is referred to as address

modification. It is not recommended as a general program

ming technique, but can occasionally be useful.

ABSOLUTE ADDRESS

10

12

14

16

20

22

24

26

CONTENTS

062767

000010

000054

062767

000002

177770

000771

INSTRUCTION

A: ADD #10,72

ADD #2,14

Notice that the first instruction requires three con

secutive memory locations for storage. The first word of

the instruction signals the controller that this is an add

instruction and therefore requires two operands. The low

order byte indicates that the first operand is in the next

consecutive word, and the address of the second operand is

to be obtained by adding the contents of the third word of

6

the instruction and the contents of the program counter.

Upon execution of this instruction, 10 will be added to the

contents of memory location 72 8 • The second instruction has

a similar form, but consider the consequences upon execution:

the number 2 will be added to the contents of memory loca

tion 14 8• Notice that 14 8 was previously part of an instruc

tion and is now the operand. After the branch is executed

the next instruction to be executed is the first ADD in

struction. But this instruction has been changed! It is

now equivalent to:

A: ADD #10,74 062767

000010

000056.

This program, then, adds 10 8 to each memory location start

ing with 72 8 • Hence that which is data, and that which is

instruction can be determined only in the context of a spe

cific program. This type of programming was not possible

before the internally stored program was invented, because

programs were previously hardwired and hence unalterable.

RELOCATION

The problem of relocation is very important, especially

if a program is to be used as a subroutine by many different

main programs, which is frequently the case. To understand

this problem consider the third word of the first add

7

instruction. The number 10 8 is to be added to memory loca

tion 72 8 , not 54 8 , because the PDP-11 relative addressing

mode is used. Fifty-four is the address of the operand re

lative to the current program counter (PC). To get the ab

solute address, 16 8 (the current content of the PC) must be

added to 54 8 giving 72 8 , the desired absolute memory address.

Relative addressing mode is a must if we are to allow sym

bolic addressing (a topic to be discussed later); therefore,

it should be understood. In terms of programming, relative

addressing means the third word (of the ADD instruction in

our example) must be changed if the program is to be stored

anywhere else in memory and that the machine language ver

sion must be loaded beginning at address 10. Hence the

machine language programmer must be concerned with the ab

solute memory addresses the program will occupy. If he

must load the program starting at address 20 then he must

change t~e third word of the first instruction and second

instruction accordingly. But notice the symbolically coded

program. The code remains the same whether it is loaded

at address 0 or at address 024610. The assembler, by means

of an assembly location counter (ALC) can keep track of

relative addresses and record all address dependent con

stants (constants who value depends on where the program

is loaded) that need to be altered before execution. This

is extremely important if the routine is to be used as a

subroutine for several different programs and must reside

in memory wherever there is space available.

8

SYMBOLIC ADDRESSING

The machine language programmer must compute the ad

dress of each operand. He frequently does not know the ad

dress until the program is almost completely coded. He must

then go back and fill in all these addresses. Programming

in assembly language circumvents this problem by allowing

the programmer to assign symbolic names to memory locations.

In the example given earlier, there was a symbolic label on

the first instruction. Presumably this location will be

referenced at some other point in the program. In fact,

the third instruction commands the processor to transfer

control to the instruction which is identified by the symbol

A. A is thus a user defined symbol that corresponds to the

memory address where the first ADD instruction will be lo

cated. Now consider the alternative machine· code for the

branch instruction. The offset in words must be computed

and stored in the low order byte of the instruction. The

transfer address is 7 words away and in the negative direc

tion so -7 must be stored in the low order byte of the BR

instruction. This is tedious work but to complicate matters

suppose it is decided that an additional instruction should

immediately precede the branch command. In this case the

offset is no longer correct and must be recomputed. How

ever, with a symbolic label no change in the existing in

structions needs to be made. The assembler does the work.

It maintains a table of user defined symbols and their

9

values so that instructions that reference these symbols

can be translated. Thus symbolic addressing makes program

ming much simpler for the user.

THE ASSEMBLER

Coding a program in binary or octal digits, although

much simpler than the old hardwired method, is still some

what tedious and difficult. If the hardware of a machine

can interpret a large number of instructions, then the pro

grammer must learn the binary code for each of the commands.

To further complicate matters these binary codes need have

no logical connection with the operations they perform. As

has already been shown, coding programs in this manner can

be difficult, especially when the program does not function

properly and needs to be debugged.

If each machine instruction had associated with it a

three or four letter mneumonic which suggested the operation

performed by that instruction, then reading, writing, and

coding programs could be simplified. The association of a

meaningful mneumonic to each machine instruction must be a

bijective (one to one) relation. Remember, though, that

the computer only understands machine language instructions,

not manmade mneumonics that identify specific operations.

Now, however, a program could be written in a symbolic lan

guage and translated into machine instructions because of

the one to one correspondence between mneumonic instruction

10

and machine instruction. We still have the problem of trans

lation. This translation could be done by hand, but the bi

jective nature of the mapping suggests that the process

could be automated. A program could be written to perform

the translation--a process called "assembling". This pro

gram should also be able to handle problems like symbolic

addressing and relocation. The program to perform the trans

lation is called an assembler. The purpose then of an as

sembler is to accept as input a file whose records contain

mneumonic instructions and create as an output file a re

locatable object program written in the binary code of the

machine. This is a somewhat oversimplified statement of

the assembler's purpose but is an adequate statement of the

overall problem.

Some important remarks should be made about an assem

bler. First, it is a program like any other program, not

a magic box; therefore, it must be designed and coded as

such. But in what language is this "assembler" program

written? No assembler exists to translate an assembly lan

guage program into an executable form which can then accept

an assembly language program and translate it into a machine

language program. We might therefore assume the assembler

is written in machine language. Although the first assem

blers were written this way, it is doubtful that any as

semblers are written this way today. When a new machine is

designed,it is usually simulated on another system. Hence,

the assembler for one machine can be written on a different

11

machine which simulates the assembly language of the new

machine.

Second, the assembly language program which is input

to the assembler is not executed by the machine or by the

assembler. The assembler's only function is to create a

file which is the machine language version of the input file.

A separate systems program called a linker is used to link

all subroutines used and prepare them for execution. A

loader then loads the final program and transfers control

to the user program. Hence, the assembler must be provided

at least two pieces of information: (1) the name and loca

tion of the input file, and (2) the name of the output file

and where it is to be saved for later execution. The input

for the assembler is called the source program; the output

file is called an object program or relocatable file.

Third, the assembler could conceivably load the pro

gram without the aid of the linker or loader, but there are

some very important objections to this. The assembler is

generally very large compared to a loader; hence, there

may not be space available in memory for both the assembler

and the program to be executed. Furthermore, every time

the program needs to be executed it would first have to be

translated, an unnecessary procedure if the program is de

bugged. It is also a time consuming operation.

Fourth, the assembler, if written well, can detect

some programming errors. Syntax errors can be detected, but

it is impossible for the assembler to detect logic errors.

12

Fifth, unlike other programming languages such as

FORTRAN and COBOL, an assembly language is not machine in

dependent. This means the assembly language is unique to

the machine for which it was designed. This is unfortunate

but any attempt to create a standard assembly language would

be foolhardy since each machine has different capabilities

and hardware configurations.

CHAPTER II

MACHINE AND ASSEMBLY LANGUAGE

We now define the hardware and instruction set for our

hypothetical computer. During the design stage of any piece

of hardware the manufacturer must decide on the character

istics that make the machine marketable. These hardware

characteristics are primarily dictated by user needs and

satisfaction. Some hardware considerations are: speed,

timesharing capability, efficient I/0 processing and ex

pandable memory units. These constraints, although neces

sary to the function the machine is to perform, may some

times result in machine and assembly languages that are very

complex. Since our purpose is to explore the basic compo

nents of an assembler, however, the machine which we will

define shall contain the basic components in computer design,

without an extensive instruction set which would serve only

to increase the complexity of the assembler without a re

sulting increase in the benefits gained.

This fictitious machine, dubbed JACK-1, is a small but

typical machine. It is very similar in design to the PDP-8

manufactured by Digital Equipment Corporation. The PDP-8

was chosen as a pattern for the JACK-1 for several reasons.

First, it is a small simple machine, but it is very powerful

13

14

in the functions it is capable of performing. Second, the

hardware configuration is simple yet typical of many mini

computers. Also, the instruction set is limited to eight

basic machine instructions.

MEMORY

The primary means of storing data on the JACK-1 is the

memory unit. The machine is a stored program computer; con

sequently the memory unit must often contain machine instruc

tions as well as any data in the form of ASCII characters or

two's complement binary numbers. The basic unit of data

storage is the word which on the JACK-1 consists of 16 bi

nary digits. There are 4K (4096) addressable words of pri

mary storage each of which can be accessed as readily as any

other. With 409610 words of primary storage it is easy to

see that 12 bits are required to address any word. Some

larger machines can uniquely address halfwords called bytes

thus doubling the number of uniquely addressable locations.

However, it should also be apparent that an additional bit

is required each time the number of addressable locations

is doubled. Since only 12 bits are required for an address

then 4 bits are free to contain an operation code. On the

JACK-1 each instruction requires exactly one word of storage

thus simplifying the assembly process. Numerical data on

the JACK-1 is stored in two's complement form allowing in

teger values in the range -32,768 to 32,767. This range is

15

quite good for most applications on minicomputers. The fol

lowing diagram illustrates how bits will be numbered in the

remainder of this thesis.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

high order bits low order bits

THE ACCUMULATOR (A)

All computers have special purpose registers, some of

which are accessible to the progrannner and some that are

not. All registers on the JACK-1 are high speed storage

devices that are not a part of primary storage. General

purpose registers are the type available for programmer use.

There is only one general purpose register in the JACK-1.

This is called the accumulator or the A register. It is

given this name because its primary purpose by a user is to

accumulate sums and differences. It is also used for vari

ous logical operations such as testing and branching. The

A register may be thought of as a scratch pad. A typical

memory reference instruction requires two pieces of data,

but there is only room in the instruction for one address;

the accumulator is assumed to be the other operand. In

general the operand that is altered is called the "destina

tion" operand. The unaltered operand is called the "source"

operand. The accumulator is the primary means of performing

16

arithmetic in the computer. An extension of the A register

called the link bit is used to test the state of a previous

operation in the accumulator. Special instructions are

available to operate on the link bit. For example the link

bit is complemented if a carry out of the high order bit

was necessary in an add instruction.

THE INSTRUCTION REGISTER (IR)

The instruction register is a register not directly

accessible to the programmer. It contains a copy of the

current instruction being executed. It can be considered

a hardware memory device. Before an instruction can be

executed it must first be fetched from primary memory and

sent to the instruction register to be decoded. The JACK-1

is constantly in either of two states. In the fetch state

the control section is fetching an instruction of data from

primary storage. During the execution state of the computer

the function specified in the current instruction is being

executed.

THE PROGRAM COUNTER (PC)

The program counter is a special 12-bit register that

contains the location of the next instruction to be executed.

It is initialized by a loader program to the first instruc

tion to be executed. Since each instruction is only one

word long and instructions are stored consecutively in memory,

17

the PC is incremented by one after each instruction fetch.

When a branch is executed, the control unit resets the PC

to the effective address of the desired branch, thus point

ing to the instruction specified by the branch. The PC is

the only means by which the programmer may alter the normal

flow of control in the program.

There are many other registers internal to the CPU

that serve such special purposes as the interpretation of

instructions, control of I/0 devices and buffer registers.

However, excluding the registers mentioned above, the rest

are transparent to the user. The following diagram illus

trates the conceptual relationship between hardware compo

nents.

memory
address .- -- program

register - - counter

- ,
4K
16 bit JI, -- memory ~ accumulator ~· words of --- -- buffer
memory /\

, I

instruction
~

register

INSTRUCTION SET

There are three broad categories of instructions

available on the JACK-1. (1) Memory Re'ference Instructions

allow the user to operate on data stored in the memory unit.

18

(2) Micro Instructions allow bit manipulation, testing, and

branching. (3) I/O Instructions enable the programmer to

perform simple data transfers to and from peripheral devices.

MEMORY REFERENCE INSTRUCTIONS

There are six memory reference instructions having the

following format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I opcode address

I= 1: address is pointer to effective address

I= 0: address is absolute memory address

The three bit opcode field contains an octal number

in the range 0 through 5 designating which of the six mem

ory reference instructions is to be executed. The 12 bit

address portion of the instruction contains the absolute

memory address of the operand or the address of the address

if the I bit is set to 1. In the following description of

each instruction, the mneumonic indicated is the code re

cognized by the assembler corresponding to the machine trans

lation indicated. Also nnnn is the absolute memory address

of the operand or a pointer to the location containing the

absolute address depending on whether I= 1 or I= 0.

19

(1) AND IOnnnn A + A A I (nnnn)

The AND instruction causes a bit' by bit boolean "and"

of the accumulator and the contents of the effective address.

The result is left in the accumulator. Only the A register

is altered.

(2) TAD Ilnnnn A + A + I (nnnn)

The TAD instruction performs a two's complement add

of the accumulator and the contents of the effective address.

The result is left in the A register. If the addition re

sults in a carry out of the high-order bit the link bit is

complemented.

(3) ISZ I2nnnn I(nnnn) + I(nnnn) + 1, if I(nnnn) =

0 PC + PC + 1

The ISZ instruction is an increment and skip if re

sult is zero. The contents of the effective address is in

cremented and the result compared to zero. If the new con

tents of the effective address is zero,the PC is incremented

thus skipping the next instruction.

(4) DCA I3nnnn I(nnnn) + A, A+ 0

The DCA instruction deposits the contents of the A

register in the effective address and then sets the A reg

ister to all zeroes. The old contents of the effective ad

dress are lost as a result of this operation.

(5) JMS I4nnnn I(nnnn) + PC, PC+ #I(nnnn) +l

The JMS instruction allows the user to jump to a

20

subroutine and save the return address in the first word

of the subroutine. The PC is saved in the effective address

and then control is transferred to the instruction immedi

ately following the effective address. To return from a

subroutine an indirect jump may be made to the word contain

ing the return address.

(6) JMP ISnnnn PC+ I(nnnn)

The JMP instruction transfers control to the effective

address by setting the PC to that effective address. Unlike

the JMS instruction no return address is saved.

MICRO INSTRUCTIONS

Micro Instructions, which do not require operands, al

low the user to manipulate and/or test the data that is

stored in the accumulator and link bit. They may also be

used to branch on certain conditions. The opcode for all

micro instructions is 78 in bits 12-14, however the micro

instructions may be subdivided into two groups. Group 1

instructions alter the contents of the A register and the

link bit. The following diagram illustrates the use of

group 1 instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I o 1 1 1 0 CLA CLL CMA CML RAR RAL 0/1 IAC 0 0 ol

Ln~
L indicates group 1 ~O:Rotate 1 place

opcode l:Rotate 2 places

used

21

It is seen from this diagram that the entire word is

used to specify which operation is to be performed. This is

possible since no operand is required for these instructions.

Bits 5-10 and bit 3 specify the operation indicated below.

CLA Clear the accumulator.

CLL Clear the link bit.

CMA Compliment the accumulator.

CML Compliment the link bit.

RAR Rotate the accumulator and link to the right one posi

tion. The least significant bit (bit 0) replaces the

link bit. The link bit is shifted into the high order

bit of the A register.

RTR Rotate the accumulator and link to the right two posi-

tions. This is equivalent to executing RAR twice.

RAL Rotate left one position.

RTL Rotate left two positions.

IAC Increment the accumulator.

NOP If bit 0-11 are all set to zero no operation is per

formed.

Group 2 micro instructions are used to perform branches

depending on certain conditions. These instructions test

the state of the accumulator and link bit to skip the next

instruction depending on the result of the test. Group 2

micro instructions have the following format.

22

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 1 1 1 0 SMA SZA SNL 1/0 OSR HLT 0 0 0 SPA SNA SZL

0: SMA,SZA,SNL are enabled

1: SPA,SNA,SZL are enabled

Indicates Group 2

Opcode

Each bit that is set specified the following action

to be performed.

SMA Skip next instruction if accumulator is negative.

SPA Skip next instruction if accumulator is positive.

SZA Skip next instruction if accumulator is zero.

SNA Skip next instruction if accumulator is not zero.

SNL Skip on non-zero link bit.

SZL Skip on zero link bit.

0

0

SKP Unconditional skip. This instruction is specified if

all of bits 6-9 are clear.

OSR Inclusive "or" of switch register with A register.

The result is left in the A register.

INPUT/OUTPUT INSTRUCTIONS

There are two basic instructions that allow data

transfers from peripheral devices. In both I/O instructions

control is not transferred back to the user until the data

transfer is completed, therefore no waiting loops are

23

necessary. The diagram below illustrates the format for an

I/0 instruction. Notice that indirect addressing is not

allowed on I/0 instructions.

15 14 13 12 11 10 9 8 7: 6 5 4 3 2 1 0

[0/1 1 1 0

i l opcode 40:input

l:output

12 bit address

GET 16nnnn

This instruction places a card image, so10 ASCII

characters, in 40 consecutive memory locations beginning at

the address specified in the operand field. Two characters

are placed in each word. The low order half of the word is

filled first, the next character is placed in the high or

der half of the word. For example the word "computer" would

appear in core as:

0 C

p M

T u
R E

PUT 06nnnn

This instruction causes 13210 ASCII characters be

ginning at the address specified to be printed on the line

printer. Formatting of character strings is the same as

the GET instruction. This means 66 words are assumed to

24

contain 132 characters. Carriage return and line feed

characters are supplied, therefore th~ programmer need not

insert these characters.

DEFINITION OF JACK-1 ASSEMBLY LANGUAGE

A source program is composed of a sequence of source

lines each of which contains a single assembly language

statement. All source programs used as input to the as

sembler must be disk resident contiguous files in which each

record contains exactly 80 characters followed by a car

riage· return and a line feed character. It is suggested

that the file utility program (PIP on the PDP-11) be used

with the appropriate switches to create a source program

satisfying the above constraints. The user creates the

output file by specifying its name in the output field of

a connnand string. For example:

$RUN PALS

#OUTFIL.OBJ<INFILE.PAL

A command string must appear immediately following $RUN PALS

and the command string must contain exactly one input file

and one output file. No switches are permitted.

STATEMENT FORMAT

Each record contains a single 80 character assembly

language statement. Each statement may contain up to four

25

'
fields which are identified by special characters and the

order of appearance on the card. The _general format for a

JACK-1 assembly language source statement is:

<label>, <operation> <operand> /<comment>.

LABEL FIELD

A label (optional) is a user defined symbol which is

assigned a value at assembly time by the assembly location

counter. The label and its value are entered into the user

symbol table created by the assembler during PASSl. JACK-1

does not distinguish absolute from relocatable user defined

symbols. The label is a symbolic means of referencing a

particular location in the text of a source program. If a

label appears it must appear first on the card and must be

terminated by a comma. Only one label per source card is

permitted. Labels are composed of letters A-Zand the
'

digits 0-9. However, a label must begin with an alphabetic

character. Labels may contain more than 6 characters, how

ever each label must be unique in the first 6 characters.

OPERATION FIELD

Every source line must contain an operation field.

This field is the only field that may not be omitted. Legal

operations that may appear in the operation field include:

(1) any of the instructions defined in the preceding pages

26

of this chapter, or {2) assembler directives, called pseudo

ops, defined later in this chapter. Pseudo ops are instruc

tions that direct the assembler to perform certain functions

during assembly. Pseudo ops are not executed by the machine,

they merely aid in the translation process. In all cases

the mneumonic that appears in this field must be followed

by at least 1 blank. Only one operation may be specified

per source line.

OPERAND FIELD

The operand field may or may not be present depending

on which operation is specified in the operation field. On-
1

ly memory reference instructions and some pseudo ops may

have operands. Valid operands include symbolic labels de

fined in the label field of some instruction or octal or

decimal numbers on some pseudo ops. On memory reference in

structions an operand may be declared "indirect" by insert

ing the character "I" between the operation code and the

operand. The assembler will recognize this and set bit 15

accordingly. The character "I" must be preceded and followed

by at least one blank character. The effect of declaring an

operand indirect is the topic of a later section.

Example: DCA I NUMB

This declares NUMB to be an indirect operand of DCA. The

following example illustrates how I may be used as an

27

indirect indicator as well as an operand. The second I is

assumed to be a symbolic name defined ·in the label field of

some source line, while the first I indicates this operand

is declared indirect.

Example: DCA I I

COMMENTS

Connnents, if they appear, must be the last field on

the card. The character"/" indicates the beginning of a

connnent. Connnents are for the benefit of user documenta

tion, therefore any characters jljtthe connnent field are ig

nored by the assembler.

Example:

LABEL, TAD I NUMB / THIS IS.AN EXAMPLE ITS VALID

Ji.
ASSEMBLER DIRECTIVES

Assembler directives are "pseudo-operations" which

are processed by the assembler. They aid in the translation

of the program, but have no machine language equivalent.

?seudo ops are used to allocate storage and define the con

tents of that storage. Also, since source programs are of

varying length, we must have a pseudo instruction which in

dicates the end of the source deck. Such an instruction

has no machine language equivalent, however it does contain

28

important information necessary for the assembler. The pur

pose of each pseudo op is given below •.

OCTL The octal pseudo op contains one operand which con

sists of a string of ASCII digits representing the oc

tal integers from Oto 77777. The purpose of the OCTL

pseudo op is to define one word of storage containing

the value indicated in the operand.

DCML The DCML pseudo op fulfills the same purpose as the

OCTL but allows the user to express the operand as a

decimal integer in the range Oto 32767. No decimal

point is permitted since the instruction already as

sumes decimal.

CHAR This pseudo op permits the user to define storage to

contain the 26 characters, the blank, and the 10 deci

mal digits. The operand consists of two characters

to be stored in the assigned word preceded immediately

by a single quote.

END The END pseudo instruction contains one operand. The

END pseudo op designates the physical end of the pro

gram source deck. It must therefore always be the

last card in a source deck. The operand must be a

user symbol identifying the first instruction to be

executed when the program is loaded and ready to run.

This location is called the transfer address and need

not'be physically first in the program.

29

PROGRAMMING EXAMPLES

Even though the instruction set for the JACK-1 is

fairly small, many progrannning techniques are possible.

Some of these techniques are illustrated below.

Example 1: Move X to Y

CLA / CLEAR THE A REGISTER

TAD X I ADD X

DCA Y / MOVE XTO Y

Example 2: Subtraction. Subtraction is done by

using the two's complement and adding. To subtract X from

Y and leave the result in Z.

x, DCML 23

Y, DCML 25

z, DCML 0

CLA I CLEAR THE A REGISTER

TAD X I PUT X IN THE A REGISTER

CMA I COMPLEMENT A

IAC I NOW -X IS IN A REGISTER

TAD y / A REGISTER NOW HAS X - y

DCA z / STORE IT IN Z

Example 3: Comparisons. To compare two numbers X

and Y subtract and compare to zero. This program compares

X and Y and branches to GREATER if X > Y or LESS if X < Y.

30

CLA I CLEAR THE A REGISTER

TAD y I MOVE Y TO A REGISTER

CMA

IAC I -Y IS IN A REGISTER

TAD X I X - y IS IN A REGISTER

SMA I SKIP NEXT INSTRUCTION IF X - Y < 0

JMP GREATER I X - y > 0 X > y -
JMP LESS I X - y < 0 X < y

USE OF INDIRECT ADDRESSING

If an operand is declared indirect by inserting I be

tween the mneumonic and the operand then the specified oper

and is assumed to be a pointer to the effective operand. An

indirect operand (pointer address) identifies the location

which contains the effective address. When the instruction

is executed the processor will detect this condition and in

terpret the value in the address field of the instruction to

be a pointer to a location which is assumed to contain the

effective address. Such an addressing mode is particularly

useful especially in the use of subroutines and array pro

cessing. The following example illustrates how indirect ad

dressing may be used to return from a subroutine and to sim

plify handling arguments. The example puts A - Bin C.

Example 4:

JMS ABS

A, DCML 12

31

B, DCML 13

C, DCML 0

ABS, NOP / POINTER TO ARGUMENT AND RETURN

CLA

TAD I ABS I PUT A IN A REGISTER

DCA TEMP I SAVE A

ISZ ABS I POINT AT NEXT ARGUMENT

TAD I ABS I PUT BIN A REGISTER

CLA

IAC / A REGISTER CONTAINS -B

TAD TEMP, I NOW IT CONTAINS A-B

ISZ ABS I POINT TO C

SMA

JMP RETURN I ONLY IF A - B > 0 -
CMA I OTHERWISE

IAC I FIND ABSOLUTE VALUE

RETURN, DCA I ABS I PUT RESULT INC

ISZ ABS I POINT TO NEXT INSTRUCTION

JMP I ABS I RETURN

OUTPUT OF JACK-1

JACK-1 provides the programmer with the following:

(1) A list of the user symbol table.

(2) Program length and transfer address.

(3) A listing of the program including any error messages

relating to syntax or semantics.

32

(4) An object module.

The object module is a disk resident contiguous file

identified by the name specified in the output specification

of the command string. The first word of the object module

contains the transfer address. The second word contains

the program length. The remainder of the object module con

tains the machine text code for the source program. Since

all addressing is absolute t?e module may be loaded directly

and executed. Execution and loading are the topic of Chapter

IV.

CHAPTER III

DATA BASES AND ALGORITHMS

Several data bases or tables are required for assembly

and several algorithms capable of processing these data

bases are also required. Such algorithms may be considered

small but important subroutines to a larger algorithm--the

assembler itself. Chapter IV presents a detailed study of

the assembler algorithm; however, it is beneficial at this

point to present an overview of the assembly process.

Our assembler processes each record or statement twice

and consequently is called a two pass assembler. To facili

tate this task the first phase of the assembler called

PASSl must save a card image of each statement so it may be

processed again by PASS2. This is easy to implement since

we require the source file to be a disk resident random ac

cess file. All that is required is to reset a pointer at

the end of PASSl to indicate that the next input will be the

first record in the file. Although processing during each

pass is sequential, the contiguous nature of the file allows

rapid reread capability. The primary function of PASSl is

to collect all alphanumeric symbols found in the label

field, assign an addressing value, and put them in a user

symbol table, the UST. These values must correspond to the

33

34

relative address (equivalent to absolute address in this

problem) of the instruction or data identified by the symbol.

During PASS2 the actual translation of the assembly

language code is performed. This translation must be de

layed until PASS2 because of forward referencing of symbols

which would otherwise have no value assigned to them. The

machine code which is the most important output from the

assembler is stored in another contiguous disk file called

a load module. Once loaded into primary memory the load

module is ready for execution. In the problem presented here

the function of loading and execution is done by a simulator

program, a topic to be treated in the second half of Chapter

IV.

THE USER SYMBOL TABLE (UST)

The UST contains a copy of all symbols (labels) and

their values. The following diagram describes the format

of each entry in the symbol table. Since each symbol must

S Y M B O L value

be unique in the first six characters, the symbol field of

the record must be six bytes long (on the PDP-11). Charac

ters in the symbol field are left justified and padded with

blanks. Each record in the UST requires four words, three

for the symbol and one for the value. In the example pro

gram in the preceding chapter there are four user defined

_35

symbols: A, B, C, and ABS whose relative addresses are 1,

2, 3, and 5 respectively. The symbol ,table for this program

might appear as is shown here. Notice that the symbol table

A 1

B 2

C 3

A B s 5

illustrated above is not ordered. For small programs such

as the one illustrated it is probably unwise to spend time

sorting this table; however, for large programs some order

must be imposed on the table before it is used by PASS2. To

improve speed of processing it becomes necessary to keep the

UST core resident at all times. Consequently, this table

must be of some fixed size. Space can be allocated as sym

bols are found, however, this is difficult to manage. The

obvious alternative is to allocate some fixed number of con

secutive memory locations capable of containing some suf

ficiently large number of records. For this application

409610 words is more than adequate since a possible 102410

symbols can be contained in this space. This allocation is

accomplished by a single command as shown here.

UST: .BLKW 4096.

THE MACHINE OP TABLE (MOT)

The assembler must maintain a permanent list of

36

allowable operation mneumonics. Such a list shall be divid

ed into two distinct tables: the Machine Op Table (MOT) and

the Pseudo Op Table (POT). The latter of which contains

only valid pseudo ops. The MOT is unaltered during execution

of the assembler and is only referenced during PASS2. The

construction of the MOT must include in each entry the ASCII

code identifying a valid instruction; however, to success

fully perform the translation to machine language we might

also include the machine translation as part of the entry.

This is possible but an alternative might be to include in

stead the address of an action routine to perform the trans

lation. This is desirable since some instructions (MRI's)

contain an address field which should be built into the

instruction at the same time. This could be accomplished

by appropriate action routines. The following diagram il

lustrates the format of each entry in the MOT.

C 0 D E pointer I
As with the UST, the code field contains the ASCII

code left justified. Each entry in the MOT occupies three

words of memory, and there are a fixed number of valid op

codes. Therefore a permanently core resident block of 96

consecutive words is required to contain all 32 valid in

structions as defined in Chapter II. The appendices show

the table in its entirety. Notice that the table is pre

ordered for faster searching.

37

THE PSEUDO OP TABLE (POT)

The pseudo op table is referenced during both passes

of the assembler, however, it is primarily used during PASS2

to allocate and define the contents of storage locations.

Since each pseudo op requires special processing, we define

the POT so that each entry has the format shown here.

C 0 D E

Since pseudo ops have no direct machine translation it is

not possible to include such a code in the entry. Similarly

in the algorithm for this assembler a single subroutine is

called when a pseudo op is encountered, consequently each

entry in the POT need only contain the mneumonic itself and

the action taken will be determined by the subroutine. The

entire POT is shown here.

POT: .ASCII /DCML/

.ASCII /END/

.ASCII /OCTL/

.ASCII /CHAR/

CHARACTER CODE TABLE (CODES)

One additional table whose function is partially in

cidental to the system we are using is a table of character

codes. Each entry in the table contains the ASCII code and

the card reader code for each legal character in the assembly

38

language. This table's only function is to facilitate I/0.

Each entry in the table has the following format. Each field

card code ASCII code

in the record occupies one word. The complete table is pro

vided in the appendices.

THE LOAD MODULE

The primary purpose of the assembler is to create a

load module as described in earlier sections. This module

is actually a machine executable program which is stored in

a contiguous disk file identified by the output specifica-
'

tion of the command string for the assembler. Prior to exe-

cution of a load module the Loader/Simulator must be pro

vided the following information:

(1) Name of object module.

(2) Program length.

(3) Transfer address (Address of first instruction

to execute).

(4) Text of the program.

To accomplish this the following format is adopted for the

object program:

length

transfer

text

text

text

39

The name of the object module is provided by means of the

command string supplied to the Loader/Simulator. The rules

for the object program are:

(1) It must occupy contiguous blocks on the disk.

(2) The first word of the first block must contain

the number of words occupied by the text of the

program.

(3) The second word is the relative address of the

first instruction to execute as identified in

the END pseudo op.

ALGORITHMS

In this section we present algorithms which aid in

the processing and maintaining of the data bases described

in the last few sections. A modular approach to program

ming is presented here so that the reader may program and

understand each module and eventually combine them into an

assembler.

We start by presenting an algorithm for the semantic

and syntactic interpretation of each record. A means of

stripping off the various parts of each statement (label,

opcode, operand) is desirable so that the tables of our

data base may be searched to find a match and perform the

appropriate action. If a fixed format we~e adopted for

each record,this task might be somewhat simpler; however,

for appropriate error checking the entire card should be

40

scanned. The free format algorithm presented here is no

more complex than a fixed format algorithm with appropriate

error checking. This algorithm scans each statement from

left to right picking off one token at a time and determin

ing its type. The algorithm requires the following con

straints:

(1) The card image is stored in ASCII form in pri

mary memory at an identifiable address.

(2) The card image occupies exactly 80 bytes.

(3) A 6 byte area is reserved in the calling program

to store the label.

(4) A 6 byte area is reserved in the calling program

to store the operand.

(5) A 4 byte area is reserved in the calling program

to store the opcode.

(6) A status word is reserved in the calling program

to indicate certain information about the card

image.

Each bit in the card status word has some preassigned

meaning. The algorithm presented here makes no attempt to

account for all possible errors. It should serve as a

basic outline to be expanded in actual application. The

calling sequence to this algorithm is shown here.

JSR R0,CARDSCAN

.WORD INPUT ; Address of 80 byte record.

.WORD LABEL ; For rule (3) above.

.WORD OPCODE ; For rule (5) above.

.WORD OPERAND . For rule (4) above. I

.WORD STATUS . For rule (6) above. I

41

ALGORITHM C

(Cl) Rl+(RO), R2+address of token, blank out token, I+O.

(C2}

(C3)

I+-I+l,

if (Rl)
if (Rl)
if (Rl)
if (Rl)

if

=
=
=
=

I>80 (blank card) go to ERROR.

Rl+-Rl+l, go to C2.
/(only a comment) go to ERROR
, (no label preceding comma) go
number go to ERROR

(C4) (R2)++-(Rl)+, I+I+l if I>80 go to Cl4

(CS) if (Rl) =, go to C6
if (Rl) = go to C14
if (Rl) =/go to ERROR

(C6) (this token is label) R4+-2 (RO)

to ERROR

R2+-address of token
R3+-6

(C7) R3+R3-l, if R3<0 go to C9.

(C8) (R4)++(R2)+ go to C7.

(C9) blank out token, R2 address of token.

{Cl0) Rl+Rl+l, I+I+l, if I>80 (label without operation)
then go to ERROR.

(Cll) if (Rl) = go to Cl0
if (Rl) =/or, or number go to ERROR.

(Cl2) (R2)++(Rl)+, I+I+l, if I>80 go to Cl4.

(C13) if (Rl) = go to Cl4
if (Rl) =/or, or <number> go to ERROR.

(C14) (this token is opcode) R4+-4(RO)
R2+address of token
R3+4.

(C15} R3+R3-l, if R3<0 go to Cl7.

(C16) (R4)++(R2)+, go to Cl5.

(C17) blank out token, R2+address of token.

(Cl8) Rl+Rl+l, I+I+l, if I>80 go to C30.

(C19) if (Rl) =
if (Rl) =
if (Rl) =

go to Cl8,
/goto C30,
, go to ERROR.

42

(C20) (R2)++(Rl)+, I+I+l, if I>80 go to C27.

(C21) if (Rl) = go to C22,
if (Rl) = I go to C27,
if (Rl) = '

go to ERROR,
go to C20.

(C22) (this token is operand, see if there is another
operand, if so this one should be I to indicate
indirect)
Rl+Rl+l, I+I+l, if I>80 go to C27.

(C23) if (Rl) = go to C22,
if (Rl) =/go to C27,
if (Rl) =,goto ERROR.

(C24} See if first token is I if so set indirect bit
in status word and blank out token otherwise go to
ERROR.

(C25} (R2)++(Rl}+, I+I+l, if I>80 go to C27.

(C26) if (RO)= go to C27,

(C27)

otherwise go to C25.

(this token is real operand) R4+6(RO),
R2+address of token
R3+6.

(C28) R3+R3-l, if R3<0 go to C30.

(C2 9) (R4) ++ (R2) +, go to C 2 8.

(C30) Set all appropriate bits in status word and return.

SEARCHlNG ALGORITHMS

The CODES table is ordered only by the card reader

codes. It ma~ however,be necessary to convert a card code

to an ASCII code in which case a linear search through the

card code portion of the table would provide the appropriate

conversion. It is necessary to have a linear search sub

routine which might also be used to search the symbol table

to determine if a particular symbol is in the table.

43

Constraints on the algorithm presented here are:

Cl) The table must occupy contiguous locations in

primary memory at an identifiable address.

(2) The record length, key length, and the maximum

number of records in the table must be known.

(3) The address of the key to search for must be

known.

The calling sequence to this routine is as follows:

JSR RO, LINEAR
• WORD TABLE
. WORD KEY
• WORD m
. WORD n
. WORD p
. WORD 0

ALGORITHM L

; address of first key to check •
; address of key to search for •
; # of records in table •
; # of bytes of each record •
; # of bytes of each key .
; upon return will contain address

of key or 0 if not found.

(Ll) Rl+(R0), R2+2(R0), R3+4(R0), R4+6(R0), RS+l0(R0).

(L2) R3+R3-l, if R3<0 (searched whole table) then
12(RO)+0, go to L7.

(L3) RS+RS-1, if RS<0 (found it) go to L6.

(L4) if (Rl)+ = (R2)+ go to L3.

(LS) (set pointers to next record--next key)
R2+R2-(10(R0)-R5),
Rl+Rl-(10(R0)-RS)+R4,
RS+l0(R0),
go to L2 (get next record).

(L6) 12(R0)+Rl-(10(R0)+l)

(L7) R0+R0+14 and return.

Binary searches are notably faster than linear searches

particularly if the table to be searched contains a large

44

number of records. Such a table is the symbol table which

may contain up to 1024 entries. If a binary search algorithm

is used,then the table searched must satisfy four constraints.

{1) For simplicity the maximum number of records in

the table must be a power of two.

(2) Each record in the table must be the same length.

(3) The table must be in order of some key.

(4) All keys must be of the same length.

A search of this nature is easily adaptable to search

ing the MOT since all the constraints are already satisfied.

If this routine is to be used to search the symbol table the

user must first order the records and then pad the unused

portion of the table with positive infinity to assure proper

operation of the algorithm. In a sense a binary search nar

rows down the table size by chopping it in hqlf at each probe

similar to guessing the value of a random number between O

and 1000 as quickly as possible by first guessing 500 then

either 250 or 750 depending on whether the first guess was

too high or too low. Calling the binary search subroutine

should be as follows:

JSR RO, SEARCH
• WORD KEY
• WORD TABLE
• WORD n
• WORD m
.WORD t

.WORD 0

; address of key to search for •
; address of first key •
; number of bytes of each record •
; number of bytes of each key •
; maximum# of records (power of

two).
; will contain record# if pre

sent, 0 otherwise.

45

ALGORITHM B

(Bl) RS+(R0), R2+2(R0), M+4(R0), N+6(~0), R3+10(R0),
Rl+RS, R3+R3/2, RS+R3.

(B2) RS+RS/2,
W+R3*M+R2,
N+6(R0).

(B3) (check this key) N+N-1, if N<0 go to B8,
If @W>(Rl) Rl+Rl+l then go to B4,
If @W<(Rl) Rl+Rl+l go to BS
otherwise W+W+l, repeat this step.

(B4) (too high in table) R3+R3-R5 and go to B6.

(BS) (too low in the table) R3+R3+RS.

(B6) (reinitialize Rl to first byte of key to search for)
Rl+Rl-(6(R0)-N), if RSi 0 go to B2.

(B7} · (might be first element) See if desired key is first
entry in table, if not then 12(R0)+0 and go to B9.

(BB) (found) 12 (R0)+R3+1

(B9) RETURN.

TABLE INSERTION ALGORITHM

During the first pass of the assembler, while an al

gorithm is stripping off labels and keeping track of the

assembly location counter it is necessary to enter this in

formation in the UST. The first method for inserting a

label and value into the UST is quite simple. The idea in

volved is to keep a count of the number of symbols in the

table and insert the record in the next available location.

Such an algorithm is presented below and is subject to the

following constraints.

(1) The table must be of fixed length.

46

(2) Each record must be of fixed length.

(3) The user must keep a count of the current number

of records in the table.

(4) No error checking is done to insure that we do

not overflow the table or to determine if the

item is not already in the table.

The calling sequence to this algorithm is:

ALGORITHM E

JSR RO, ENTER
• WORD TABLE
.WORD ITEM
• WORD n
• WORD m

; address of table •
; address of item to enter.
; # of bytes for each record •
; current# in the table •

{El} Rl+{R0}, R2+2(R0), R3+4(R0), R4+6(R0).

~2} {get offset from top of table) RS+R3*R4, Rl+Rl+RS.

{E3) {move it) R3+R3-l, if R3<0 go to ES.

(E4) (Rl)++(R2)+ go to E3.

(ES) R0+R0+l0 and RETURN.

If this algorithm is to be used to process the symbol

table then algorithm S should be initiated to assure that

the item is not already in the table. Also note that the

Auto-increment mode in step E4 is a byte increment as with

all other uses of Auto-increment mode in this chapter.

SORTING ALGORITHMS

In order to efficiently use the symbol table during

PASS2 of the assembler as well as to provide a neat listing

of the symbol table to the programmer it becomes necessary

47

to sort the table. The first algorithm proposed is given

the name straight insertion sort by Knuth (1975) and is easy

to implement especially if algorithm Eis used to build the

symbol table. Even with intricate devices that are used on

the more popular bubble sort the insertion sort is much

faster because the number of times a record needs to be

moved is much smaller with the insertion sort. The con

straints for this algorithm are the same as those for al

gorithm E; in addition, however, the calling program must

set up a work space the size of one record. The calling

sequence to this algorithm is as follows:

JSR RO, SORT
. WORD TABLE
. WORD n
. WORD m
. WORD p
. WORD WORK

ALGORITHMS

; address of table to sort •
; # of bytes for each key .
; # of bytes for each record •
; # of records to sort •
; address of buffer area •

(SO) TOP+{RO), KSIZ+2(RO), RSIZ+4(RO), R3+10(RO), Rl+0.

(Sl) Rl+Rl+l, if Rl>6(RO) terminate,
otherwise R2+TOP+Rl*RSIZ.

{S2.0) {move next item to save area) I+Rl-1.

(S2.1) RSIZ+RSIZ-1, if RSIZ<0 then R3+10(RO)
and RSIZ+4(RO) and go to S3.0.

{S2.2} (R3)++(R2)+, go to S2.1.

(S3.0) (compare saved item with last item in sorted sublist)
R2+TOP+I*RSIZ.

(S3.1) KSIZ+KSIZ-1, if KSIZ<0 then KSIZ+2(RO) and go to S5.0.

(S3.2} (still greater than) if (R3)+~(R2)+ then go to S3.l.

(S4.0) (Otherwise move one item up)

48

R4+I*RSIZ+TOP,
RS+(I+l)*RSIZ+TOP.

(S4.l) RSIZ+RSIZ-1. if RSIZ<0 then RSIZ+4(RO) and go to
S4.3.

(S4.2) (move some more) (RS)++(R4)+, go to S4.l.

(S4.3) I+I-1, if I>0 (more items left to compare this key
with) then-KSIZ+2(RO) and go to S3.0.

(SS.0) (found where it goes, put it there)
RS+(I+l)*RSIZ+TOP, R3+10(RO).

(SS.l) RSIZ+RSIZ-1, if RSIZ<0 then RSIZ+4(RO) and
KSIZ+2(RO) and go to Sl.

(SS. 2) (put it where it belongs) (RS)++(R3)+.

Algorithm S above is somewhat complicated, however, it

is quite detailed and designed to be implemented immediately

on a PDP-11. It is a simple matter to translate this al

gorithm to MACRO-11 code. Users of this algorithm and of

all the others presented in this study should be cautioned

that the temptation to alter the value of the variables and

registers to the right of the"+" symbol can lead to serious

difficulty. Temporary locations should be set up to con

tain these intermediate results.

Some interesting observations can be made at this

point. Suppose it is necessary to search the symbol table

during PASSI (and this is necessary if the assembler is to

detect errors resulting from multiple definition of symbols).

If algorithm E (ENTER) is used to enter the symbols then

algorithm L (LINEAR) must be used to search the table during

PASSI since algorithm S (SORT) is only implemented once to

sort the entire table at the end of PASSl. This linear

49

search is slow since every byte of each key must be examined,

especially when the table starts to g~t full. A possible

alternative is to sort the entire table each time a new en

try is made, but this is very inefficient since it would

then be the case that all items would be already sorted ex

cept the last item in the list. This would result in steps

n
Sl through S5.1 of algorithm S to be executed Ei times where

i=l

n is the total number of symbols in the program. The pre

vious considerations suggest that some improved algorithms

exist having the following advantages:

(ll It should eliminate the need for a linear search

by keeping the table ordered throughout PASSl.

(2) ~t should enter one item in the table and im

mediately sort the table thus eliminating al

gorithm E and S.

(3) It should contain steps similar to Sl through

n
S5.1, but execute them n times instead of Ei

i=l

times thus increasing the speed.

(4) Core requirements should not exceed the sum of

the requirements for algorithm E ands.

The calling sequence to this super algorithm is as

follows:

JSR RO, INSERT
• WORD TABLE
• WORD ITEM
• WORD n
• WORD m

; address of table •
; address of item to enter •
; # of bytes for each record •
; # of items already in table •

so

• WORD p
. WORD WORK

; # of bytes for each key •
; Address of work area •

Algorithm Sand E define the constraints that apply to

algorithm I presented here.

ALGORITHM I

(IO) Rl+(R0), R2+2(R0), R3+4(R0), R4+6(RO).

(Il) RS+R3*R4, Rl+Rl+RS.

(I2) R3+R3-l, if R3<0 go to I4.

(I3} (here we enter the item at the end of the list the
previous n-1 records are already sorted)
(Rl)++(R2)+, go to I2.

(I4} (initialize for the sort from back to front for the
item just entered)
TOP+(RO), KSIZ+l0(R0), RSIZ+4(R0), R3+12(R0), Rl+G(RO).

(IS) (one more item now in table) Rl+Rl+l, R2+TOP+Rl*RSIZ,
I+Rl-1.

(I6} RSIZ+RSIZ-1, if RSIZ<O then R3+12(R0) and
RSIZ+4(R0) and go to IS.

(I7) (R3)++(R2)+, go to IG.

(I8) R2+TOP+I*RSIZ.

(I9} KSIZ+KSIZ-1, if KSIZ<0 then go to IlS.

(IlO} (compare new item to next item of previously sorted
list} if (R3)+~(R2)+then go to I9.

(Ill} (otherwise move this item to next highest position
to make room) R4+I*RSIZ+TOP,

RS+(I+l)*RSIZ+TOP.

(I12} RSIZ+RSIZ-1, if RSIZ<0 then RSIZ+4(RO) and go to Il4.

(Il3) (put it there) (RS)++(R4)+, go to Il2.

(I14} I+I-1, if I~O then KSIZ+l0(R0) and go to IS.

(IlS) (this is where it belongs) RS+ (I+l) *RSIZ+TOP,
R3+12 (RO).

(!16) RSIZ+RSIZ-1, if RSIZ<O RETURN.

(!17) (RS)++(R3)+, go to Il6.

51

CHAPTER IV

THE ASSEMBLER AND SIMULATOR

There are two primary functions of an assembler. The

most obvious function is to translate into machine language

the coded instruction mneumonics. Assembler directives aid

in this process by providing storage allocation to the as

sembler. The second function of the assembler is to provide

certain important information to the loader program (see

Chapter II}. We shall discuss these functions separately.

To perform these functions we recall that the as

sembler is divided into two distinct passes. With the data

bases well defined and some important subroutines already

developed it becomes a straightforward problem to build

PASSI and PASS2 of the assembler.

PASSI

The primary functions of PASSl are to create the UST

and to initialize tables and monitor buffers. Most important

ly PASSl must determine what file is to be assembled. Se

condly it must initialize all tables and work areas. For

example+ 00 must be moved to each byte of the UST (See al

gorithm Bin the previous chapter}. Finally, PASSl begins

52

53

the process of building the UST.

Determining the Input file, finding it, and opening it

is not at all as easy as it might seem. To accomplish these

tasks in the simplest manner possible, we make use of some

pre-written subroutines. Most monitors contain a library of

system subroutines available to user programs by use of

macro calls which enable users to easily accomplish file

manipulation tasks. In writing an assembler the programmer

should review this library to see what programs are available

and how they may be used to solve various problems. It is

suggested that the reader refer to the Disk Operating System

Monitor Programmers Handbook to obtain information on the

following subroutines:

.CSil

.CSI2

.INIT

.OPENI

.RECRD

.WAIT

.CLOSE

.RLSE

.ALLOC

.OPENU

command string interpreter

to initialize a file block

opens a file for input

for I/O of records

to delay further execution until

I/O is completed

to close a file

to release a file

to allocate a file

to open a file for output

To determine the input file name we first read a card

containing a command string identifying the input and output

54

files. Next the co:mmand string must be checked for proper

syntax. (Note: the# symbol is not part of a co:mmand string.}

We then initialize the file and open the file for input

since the input specification is known. Methods of identi

fying and accessing a file vary from system to system and

hence the outline of the necessary steps presented above is

intentionally non-specific. For a more detailed discussion,

the reader should refer to the handbook of the current moni

tor being used.

The task of initializing all tables and work areas is

easily accomplished, hence no discussion is presented here.

Assuming some method exists for accessing a disk file

the assembler is now ready to process that file. The task

is simply to find all labels and record the relative address

associated with the labels and use this information to build
'

the UST. To accomplish this the following data bases are

maintained during PASSl:

ALC (assembly location counter} ,A pseudo program

counter to keep track of relative addresses.

POT The assembler must be able to allocate storage

as well as determine the end of a file. This

is done by searching the pseudo op table.

CODES Input and output processes may require code

translation.

UST This table is created during PASSl.

Algorithm PI below is a simplified outline of PASSl.

55

(PIO) Initialize record count and assembly location count
er.
RCRDCNT + -1, ALC + 0.

{Pil) Read next record.
RCRDCNT + RCRDCNT + 1.
INPUT RECORD OF INPUT FILE IDENTIFIED BY RCRDCNT.

(PI2) Parse the current record.
CALL CARCSCAN.

{PI3} Search POT to see if this instruction is "END"
pseudo op.
CALL LINEAR, IF YES GO TO Pil0.

(PI 4 l LENGTH + 1.

(PIS) Check Cardstatus word to see if a label exists if
not GO TO PI9.

(P:£6} VALUE + ALC.

{PI7) See if label is already in UST.
CALL SEARCH, If found GO TO PI9.

{PI8l Make new entry in UST.
CALL ENTER.

(PI9) ALC + ALC + LENGTH, GO TO Pil.

(Pil0) Clean up, print symbol table and errors.
CALL PASS2.

At the beginning of this chapter the two primary func

tions of an assembler were stated. We have not yet finished

the first function. However, at the conclusion of PASSl

there is enough information to perform the second function.

The discussion of PASS2 will finish the translation process,

but it is convenient at this time to make some remarks con

cerning the second function.

We may begin PASS2 with an initial routine to make

the first two entries in the load module {see Chapter III).

The output file must first be allocated. A command string

56

interpreter may be used to obtain the name to be given to

the load module. The length of the pr_ogram text is known

from PASSl, hence an allocation routine may be used to create

a file containing the appropriate amount of storage and

named appropriately. On most systems the smallest amount of

disk storage that may be allocated is one block; therefore,

a simple arithmetic computation will give the correct num

ber of blocks to allocate. The program length might be

slightly smaller than the amount allocated, hence we will

output the program length to the first word of the load

module since it is known at this time. Similarly the END

pseudo op in conjunction with the UST provides the transfer

address so we may output this to the second word of the load

module. After these tasks have been performed all the in

formation necessary to the loader has been provided.

PASS2

In PASS2 we actually output the machine language text

of the program to the load module immediately following the

preface information. For micro instructions and other in

structions or data not requiring an operand address this

could have been done during PASSI provided that the file

was already allocated at the beginning of PASSI instead of

the end of PASSI. However, it is conceptually and logically

simpler to do all translation during PASS2. In order to ac

complish this task the following data bases are maintained:

57

UST This table is used to get the value of an

operand so that the add~ess portion of an in

struction can be calculated.

POT This table is used to aid in allocation and

definition of work areas and to recognize

END pseudo ops.

MOT This table is used to build the operation

portion of an instruction.

CODES Used for I/O translation.

INPUT PASS2 roust reread the input file.

OUTPUT This file is the created load module.

Algorithm PII below is a general outline for PASS2.

{PII0) Initialize record count.
RCRDCNT + -1.

(PIIl) Read next record.
RCRDCNT + RCRDCNT + 1,
INPUT RECORD OF INPUT FILE IDENTIFIED BY RCRDCNT.

(PII2) Parse the current card.
CALL CARDSCAN.

(PII3) Search the POT to see if this instruction is any
pseudo op.
CALL LINEAR, if no GO TO PIIS.

(PII4) Branch to a subroutine to process all pseudo ops.
CALL PSEUDO. This subroutine branches to the
appropriate step.

(PIIS) Search MOT for opcode.
CALL SEARCH.

(PII6) Get address of subroutine to build this instruction.
{N =item# in table, TOP= address of top of MOT)
Rl + N*6-2+TOP,
R2 + (Rl), branch to appropriate subroutine.
JSR RO, (R2)+

58

(PII7) Output machine instruction to next free location
in load module. (PUNCH contains machine instruction)
OUTPUT PUNCH TO OUTPUT FILE IDENTIFIED BY RCRDCNT+2.

(PII8) GO TO PII2.

(PII9} FINISH.

In·many computer systems the monitor does not allow

the user to have more than one file open at any given time.

Since PASS2 must read the input file and write the output

file the assembler must open a file, perform the I/O opera

tion, and close the file each time an I/O operation needs

to be performed. This is simple to do yet costly in terms

of execution time. An alternative which is much faster but

harder to implement is to read and write one block at a time.

Upon completion of PASS2 all files should be closed and all

tables reinitialized.

THE SlMULATOR

Although an assembled program is more meaningful to .a

machine than the coded one it still must be loaded in an

executable form and finally executed before it becomes use

ful as a tool of data processing. Since our assembler is

for a JACK-1 computer it must be executed on a JACK-1. The

programs that are output from the assembler (although

created by a PDP-11 program) cannot be executed by a PDP-11.

However we can put the load module in the memory of a JACK-1

and execute it there. In view of the preceding remarks we

see that an assembler could be written on any available

59

machine to assemble a program designed for some specific

machine. In any case, it is still preferable to have the

assembler available on the computer system for which it was

designed. This could be accomplished in either of the fol

lowing ways. First, write a translator to translate the as

sembler we have written in the previous chapters from PDP-11

code to JACK-1 code. Second, rewrite the assembler of the

previous chapters in JACK-1 code and assemble it using the

assembler written in PDP-11 code. The first method suggest

ed is a more difficult problem but has the advantage that

once the translator exists any PDP-11 program can be altered

to run on a JACK-1.

Neither of the above alternatives are possible in the

problem of this paper since no JACK-1 computer exists. We

do, however, desire some means of executing the programs writ

ten in JACK-1. For example, suppose that JACK-1 had some

elegant instruction that was desirable for a particular ap

plication and, furthermore, suppose that such an instruction

does not exist on any other machine. Then the programmer

would like to write his program in JACK-1 code using all the

elegant features of the JACK-1. Since the JACK-1 assembler

already exists, then the obvious solution is to simulate exe

cution of the load module by means of a simulator program.

This simulator program will perform the exact same functions

of the JACK-1 hardware illustrated in Chapter II. The dia

gram in Chapter II will aid in understanding algorithm SI

below which outlines the steps executed by the simulator.

60

(Sil) Load the file.

(SI2) Initialize instruction counter with initial program
load address.
IC+ IPLA + offset.

(SI3) Set the memory address register.
MAR+ IC

(SI4) Put instruction in instruction register.
MBR + (MAR), IR+ MBR

(SIS) If micro instruction GO TO SIB.

(SI6) Determine address of operand.

(SI7} Execute instruction by simulation.

(SIB} IC+ IC+ 1, GO TO SI3.

CHAPTER V

CONCLUSIONS

In sunnnary, we have described an entire computer sy

stem. The major thrust of the investigation was the design

and implementation of an assembler for the system we have

described. An assembler is one of the most fundamental sy

stems. programs since it allows users to interface directly

with the hardware.

Chapter I presented some basic concepts of computers

that relate the intent of this study. Through these con

cepts and through man's necessity to communicate effectively

with a machine, we provided justification for further study

in the field of assemblers as necessary systems programs.

Chapter II began by defining a hypothetical machine

which was conceived to be a suitable model for educational

study. After the basic elements of the hardware were pre

sented, instruction formats, mneumonics and functions were

defined. With the machine and instruction set well defined

the next step was to describe in detail the form that the

assembly language must assume before translation to machine

language by the assembler. Chapter II concluded with a few

programming examples.

In Chapter III a very brief outline of the function of

61

62

an assembler was presented so that an understanding of the

material to follow would be possible. All the various tables

necessary for the translation process were treated. Their

purpose, format, content and restrictions were discussed.

In order to effectively translate an assembly language pro

gram into machine language several algorithms (procedures)

for processing the tables had to be developed. These al

gorithms,which would be subroutines in the assembler,were

developed and defined in the second half of Chapter III.

Chapter IV described in more detail the functions of

an assembler and how these functions might be accomplished.

A description of a two pass algorithm was presented includ

ing data bases, functions of each pass, and algorithms to

perform each of these functions. These algorithms and data

bases,which constituted the assembler,made use of the sub

routine of the previous chapter. Chapter IV concluded with

implementation procedures and a general design of a simulator.

What follows in this chapter is sample output of the assemb

ler and simulator developed in this thesis.

1)()1),:100 BECiIN, DCML
(1(17777 MA•::;f··., •X1L
01)(1(1,:15 DATA, DCML
1)()(1()()2 DCML
(l(}(J(ll) ~: DCML
1) 1 ()(iCJ2 ADDR, TAD
(172(H)(l CLA
071 (\()() CLL
01UOOS TAD
(l\)1)001 AND
o.~:ooi)o DCA

END

(l

•J7777
5
2
-~:

DATA

ADDF,·
MA'::,~
BECiIN
ADDR

USER DEFINED SYMBOL TABLE
ADDR 000005
BEGIN
DATA
MASV

000000
(100002
(H)/)()()1

/ DUMMY INSTRUCTION WHICH HAS OPERAND DATA

TO C,ET INSTRUCTION CONTAINING ADDRESS OF
1 DATA IN AC AND STRIP OFF THE ADDRESS

FIGURE 1.

SAMPLE OUTPUT FROM ASSEMBLER

072000:
OO· 0040/:..0 070000 oo:;:46:2 000200 00::::601:.. 072054 072054 00172:2: H@02G@@FG, 4,4RC
20: 001402 1040')2 177771:., 001,)41:, 000000 000000 00000/:.. 072112: BCBH>·n,.B@@@@F@,J4
40. 072070 00570(:. 0020/:..(:. (i(H):;:52 001724 OO(H)(l() 000·:::52. 00201:.,0: 84F.,._/:..D*@TC@@*@OD
/:..0: 000006 072070 00570/.:. 072116 177777 072150 07.2150 000000. F@84F•=·:N4?? (4 (4@@

072100:
oo· 000000 000000 077200 000004 000000 ooooc,o 000000 000000: @@@@@::-[!@@@@@@@@@

20· 000012 000002 007777 000005 0(l(l(i()2 f)(l()(l(l";: 010,:1(12 072000· ,J@B@?OE@B@C@BP@4
40· 071000 010005 000(>01 ,:13000() 000000 001)000 OO(H)OO (l(l(l()()(l @2EPA@@r)@@@@@@@@
/:..0: i)0(H)0(l 000000 00()(1()() 1)1)0000 00(i(l(l(l 00000(, ooooon 00<)00(! @@@@@@@@@@@@@@@@

1)72200:
01): 000000 000001) OOO(l(l(l 00000(1 OOO(l(l(l (l(l(l(i()(l 0000(10 000000. @@@@@@@@@@@@@@@@

:20· 000000 OOOO(H) 00(>001) 000(100 000000 1)00(>00 (H)(H)(l(l 000000: @@@@@@@@@@@@@@@@

40: 0000(10 00000() OOOOr)O 0001.>00 on,:1oc,o 00000() 00(>0(1(1 (h)OOOO: @@@@@@@@@@@@@@@@
1:.,0 · (lr)OOOO 000000 000000 (l(lr)()O() (l()(l(ln(l i)(l(l(li)(l ()1)()()()() 000000. @@@@@@@@@@@@@@@@

072:;:oo·
00: 000000 0(l1)(l(l(l (lr)OOOO 00(1000 00000(1 or;OOOO OOOO(H) 000000 @@@@@@@@@@@@@@:@@

20: 000000 (H)(li)OO 0 1)01)00 000000 00000(1 1)(11)000 oonooo 000000: @@@@@@@@@@:@@@@@@

40. 000000 OOO(H)(l (100000 ()(l1)r)(l(l 000000 ()!)0000 (l(li)(°)()(l ()(h)(l(H): @@@@@@@@@@@@@@@@
f:..(l· oonooo O(>()r)r)O oo,:iooo (l(l!)0()i) 0 1:1 1)000 ,:,1·10000 000C1Cn) onoooo (N~@@@@@@@@@@@@@@

072400·
00. ()(H)(H)(l 00001)0 (H)t)000 nooooo 00(H)00 000000 000000 000000: @@@@@@@@@@@@@@@@

20: ooonoo OO(H)(l() 00000(1 001)000 000(>00 000000 00000(1 (l(l(l!)(l() @@@@@@:@@@@@@@@@@

40: 000000 000000 000000 000000 000000 000000 0(l(l(lt)(l 000000· @@@@@@@@@@@@@:@@@

1:.,0: 000000 000000 000000 (100000 000001) 000000 000000 000000· @@@@@@@@@@@@@@:@@

°' ""' FIGURE 2.

SAMPLE OUTPUT FROM SIMULATOR

APPENDIX A

DATA BASES

65

DATA BASES

(1) Machine Op Table

.ASCII /AND/
.WORD AND
.ASCII /CLA /
.WORD CLA
.ASCII /CLL /
.WORD CLL
.ASCII /CMA /
.WORD CMA
.ASCII /CML /
.WORD CML
.ASCII /DCA /
.WORD DCA

.ASCII /GET/

.WORD GET
.ASCII /HLT /
.WORD HLT
.ASCII /IAC /
.WORD IAC
.ASCII /ISZ /
.WORD ISZ
.ASCII /JMP /
.WORD JMP
.ASCII /JMS /
.WORD JMS
.ASCII /NOP/
.WORD NOP
.ASCII /OSR /
.WORD OSR

.ASCII /PUT/

.WORD PUT
.ASCII /RAL /
.WORD RAL

66

.ASCII /RAR /

.WORD RAR

.ASCII /RTL/

.WORD RTL

.ASCII /RTR /

.WORD RTR

.ASCII /SKP /

.WORD SKP

.ASCII /SMA /

.WORD SMA

.ASCII /SNA /

.WORD SNA

.ASCII /SNL /

.WORD SNL

.ASCII /SPA/

.WORD SPA

.ASCII /SZA /

.WORD SZA

.ASCII /SZL /

.WORD SZL

.ASCII /TAD/

.WORD TAD
.WORD 55533
.WORD 55533
.WORD 55533
.WORD 55533
.WORD 55533
.WORD 55533
.WORD 55533
.WORD 55533
.WORD 55533

67

(2) Codes Table

CARD READER ASCII CHARACTER

CODES: .WORD 54 I 50 ; (
.WORD 000 I 40 ;
.WORD 1 , 61 ; 1
.WORD 2 , 62 ; 2
.WORD 3 , 63 . 3 I

.WORD 4 64 . 4 , I

.WORD 5 I 65 ; 5

.WORD 6 I 66 ; 5

.WORD 7 I 67 ; 7

.WORD 10 , 70 ; 8

.WORD 12 , 137 ;

.WORD 13 , 75 ;

.WORD 14 100 .
I I

.WORD 15 , 136 ;

.WORD 16 , 42 ;

.WORD 17 , 134 ;

.WORD 20 , 71 ; 9

.WORD 40 , 60 ; 0

.WORD 41 , 57 ; I

.WORD 42 , 123 ; s

.WORD 43 , 124 ; T

.WORD 44 , 125 ; u

.WORD 45 , 126 ; V

.WORD 46 , 127 ; w

.WORD 47 , 130 ; y

.WORD 50 , 131 ; y

.WORD 52 73 .
I I

.WORD 53 , 54 ; ,

.WORD 55 I 42 ; @

.WORD 56 43 . # , I

.WORD 60 , 132 ; z

.WORD 100 , 55 ;

.WORD 101 , 112 ; J

.WORD 102 , 113 ; K

.WORD 103 , 114 ; L

.WORD 104 , 115 ; M

.WORD 105 , 116 ; N

.WORD 106 , 117 ; 0

.WORD 107 , 120 ; p

.WORD 110 , 121 ; Q

.WORD 112 , 72 ;

.WORD 113 44 . $, I

.WORD 114 52 ; * ,

.WORD 115 , 133 ; [

68

(2) Codes Table (Continued}

.WORD 116 , 76 ; >

.WORD 117 , 46 ; +

.WORD 120 , 122 ; R

.WORD 200 , 53 ; +

.WORD 201 , 101 ; A

.WORD 202 , 102 ; B

.WORD 203 103 . C , I

.WORD 204 , 104 ; D

.WORD 205 , 105 ; E

.WORD 206 106 . F , I

.WORD 207 , 107 ; G

.WORD 210 , 110 i H

.WORD 212 77 . @ , I

.WORD 213 56 ; . ,

.WORD 214 51 . } , I

.WORD 215 , 135 ;]

.WORD 216 74 . < , I

.WORD 217 , 41 ;

.WORD 220 , 111 ; :r:

APPENDIX B

ASSIGNMENTS

69

ASSIGNMENTS

Assignment 1:

Examine and record the contents of memory locations

72-82. Refering to the program in Chapter I: (1) Provide

a means of getting out of the loop after iterations. (2)

Toggle in the program so that the instruction labeled A:

will begin at address 10. (3) Execute the program and re

examine location 72-82 for proper results. What would hap

pen if the program were not loaded at the proper address?

Examine the program area. How does it differ from what

you toggled in?

Assignment 2:

Read and study the monitor routines discussed in

Chapter IV. Write a program to read a command string in

the proper form off a card then use the proper monitor

routine to:

1. Check the command string for proper syntax.

2. Fill in the missing entries in the FILBLK.

3. Initialize and open the file for input.

4. Read the first record from the file by use of the

70

71

.RECRD routine.

5. Print this record on the line printer.

Assignment 3:

Write MACRO subroutines corresponding to each of the

algorithms presented in Chapter III. Be sure to call th~

subroutines in the way specified by writing an appropriate

main-line to test the subroutine.

Assignment 4:

Complete the steps necessary to develop your own

ass-embler.

BIBLIOGRAPHY

Disk Operating System Monitor Programmers Handbook, Maynard
Massachusetts:Digital Equipment Corporation, 1972.

Donovan, John J. Systems Programming, New York:McGraw
Hill Book Company, 1972.

Eckhouse, Richard H., Jr., Minicomputer Systems: Organiza
tion and Programming, Englewood Cliffs, N.J.:Prentice
Hall, Inc., 1975.

Knuth, Donald E., The Art of Computer Programming, Vol. 3,
Reading Massachusetts:Addison-Wesley Publishing Com
pany, 1975.

72

