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Distributional asymptotic expansions of spectral

functions and of the associated Green kernels ∗

R. Estrada & S. A. Fulling

Abstract

Asymptotic expansions of Green functions and spectral densities as-
sociated with partial differential operators are widely applied in quantum
field theory and elsewhere. The mathematical properties of these expan-
sions can be clarified and more precisely determined by means of tools
from distribution theory and summability theory. (These are the same,
insofar as recently the classic Cesàro–Riesz theory of summability of se-
ries and integrals has been given a distributional interpretation.) When
applied to the spectral analysis of Green functions (which are then to
be expanded as series in a parameter, usually the time), these methods
show: (1) The “local” or “global” dependence of the expansion coeffi-
cients on the background geometry, etc., is determined by the regularity
of the asymptotic expansion of the integrand at the origin (in “frequency
space”); this marks the difference between a heat kernel and a Wightman
two-point function, for instance. (2) The behavior of the integrand at
infinity determines whether the expansion of the Green function is gen-
uinely asymptotic in the literal, pointwise sense, or is merely valid in a
distributional (Cesàro-averaged) sense; this is the difference between the
heat kernel and the Schrödinger kernel. (3) The high-frequency expan-
sion of the spectral density itself is local in a distributional sense (but not
pointwise). These observations make rigorous sense out of calculations in
the physics literature that are sometimes dismissed as merely formal.

1 Introduction

The aim of this article is to study several issues related to the small-t behavior
of various Green functions G(t, x, y) associated to an elliptic differential opera-
tor H. These are the integral kernels of operator-valued functions of H, such
as the heat operator e−tH , the Schrödinger propagator e−itH , various wave-
equation operators such as cos(t

√
H), the operator e−t

√
H that solves a certain

elliptic boundary-value problem involving H, etc. All these kernels are expressed
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(possibly after some redefinitions of variables) in the form

G(t, x, y) =
∫ ∞

0

g(tλ) dEλ(x, y), (1)

where Eλ is the spectral decomposition of H, and g is a smooth function on
(0,∞).

Each such Green function raises a set of interrelated questions, which are
illumined by a set of familiar examples. (To avoid cluttering this introduction
with the details of these examples, we have put the formulas in an appendix,
which the reader may wish to read at this point.)

(i) Does G(t, x, y) have an asymptotic expansion as t ↓ 0? For the heat
problem, (A1), it is well known [34, 22] that

K(t, x, x) ∼ (4πt)−d/2
∞∑

n=0

an(x, x)tn/2, (2a)

where d is the dimension of the manifold M and a0(x, x) = 1. Similar formulas
hold off-diagonal; for example, if M ⊆ Rd and the leading term in H is the
Laplacian, then

K(t, x, y) ∼ (4πt)−d/2e−|x−y|2/4t
∞∑

n=0

an(x, y)tn/2. (2b)

In the case (A7b), the elementary heat kernel on R1, all an = 0 except the first.
In fact, this is true also of (A11b), the elementary Dirichlet heat kernel on (0, π),
because as t goes to 0 the ratio of any other term to the largest term (e−(x−y)2/4t)
vanishes faster than any power of t. In particular, therefore, the expansion (2)
for fixed (x, y) ∈ (0, π) × (0, π) does not distinguish between the finite region
(0, π) and the infinite region R. (However, the smallness of the two nearest image
terms in (A11b) is not uniform near the boundary, and hence

∫ π

0
K(t, x, x) has

an asymptotic expansion (4πt)−1/2
∑∞

n=0An with nontrivial higher-order terms
An.) This “locality” property will concern us again in questions (iv) and (v).

The Schrödinger problem, (A2), gives rise to an expansion (4) that is for-
mally identical to (2) (more precisely, obtained from it by the obvious analytic
continuation) [37, 6]. However, it is obvious from (A12b) that this expansion
(which again reduces to a single term in the examples (A8) and (A12) is not
literally valid, because each image term in (A12b) is exactly as large in modulus
as the “main” term!

(ii) In what sense does such an expansion correspond to an asymptotic ex-
pansion for Eλ(x, y) as λ→ +∞? Formulas (2) would follow immediately from
(1) if

Eλ(x, y) ∼ λd/2
∞∑

n=0

αnλ
−n/2 (3)

with αn an appropriate multiple of an. The converse implication from (2) to (3),
however, is generally not valid beyond the first (“Weyl”) term. (For example,
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in (A11a) or any other discrete eigenvector expansion the Eλ is a step function;
its growth is described by α0 but there is an immediate contradiction with the
form of the higher terms in (3).) It has been known at least since the work
of Brownell [1, 2] that (3) is, nevertheless, correct if somehow “averaged” over
sufficiently large intervals of the variable λ. That is, it is valid in a certain
distributional sense. Hörmander [27, 28] reformulated this principle in terms of
literal asymptotic expansions up to some nontrivial finite order for each of the
Riesz means of Eλ. Riesz means generalize to (Stieltjes) integrals the Cesàro
sums used to create or accelerate convergence for infinite sequences and series
(see Section 2).

(iii) If an ordinary asymptotic expansion for G does not exist, does an ex-
pansion exist in some “averaged” sense? We noted above that the Schwinger–
DeWitt expansion

U(t, x, y) ∼ (4πit)−d/2ei|x−y|2/4t
∞∑

n=0

an(x, y)(it)n/2 (4)

is not a true asymptotic expansion under the most general conditions. Never-
theless, this expansion gives correct information for the purposes for which it is
used by (competent) physicists. Clearly, the proper response in such a situation
is not to reject the expansion as false or nonrigorous, but to define a sense (or
more than one) in which it is true. At this point we cannot go into the uses made
of the Schwinger–DeWitt expansion in renormalization in quantum field theory
(where, actually, H is a hyperbolic operator instead of elliptic). We can note,
however, that if U is to satisfy the initial condition in (A2), then as t ↓ 0 the
main term in (A12b), which coincides with the whole of (A8b), must “approach
a delta function”, while the remaining terms of (A12b) must effectively vanish
in the context of the integral limt↓0

∫ π

0
U(t, x, y)f(y) dy. These things happen

by virtue of the increasingly rapid oscillations of the terms, integrated against
the fixed test function f(y). That is, this instance of (4) is literally true when
interpreted as a relation among distributions (in the variable y). All this is,
of course, well known, but our purpose here is to examine it in a more general
context. We shall show that the situation for expansions like (4) is much like
that for (3): They can be rigorously established in a Riesz–Cesàro sense, or,
equivalently, in the sense of distributions in the variable t. This leaves open the
next question.

(iv) If an asymptotic expansion does not exist pointwise, does it exist dis-
tributionally in x and/or y; and does the spectral expansion converge in this
distributional sense when it does not converge classically? What is the connec-
tion between this distributional behavior and that in t? Such formulas as (A8a),
(A10), (A12a), (A14a) are not convergent, but only summable or, at most,
conditionally convergent. The Riesz–Cesàro theory handles the summability is-
sue, and, as remarked, can be rephrased in terms of distributional behavior in t.
However, one suspects that such integrals or sums should be literally convergent
in the topology of distributions on M or M×M.

This interpretation is especially appealing in the case of the Wightman func-
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tion (see (A4)–(A5), (A10), (A14)). To calculate observable quantities such as
energy density in quantum field theory, one expects to subtract from W (t, x, y)
the leading, singular terms in the limit y → x; those terms are “local” or “uni-
versal”, like the an in the heat kernel. The remainder will be nonlocal but finite;
it contains the information about physical effects caused by boundary and initial
conditions on the field. (See, for instance, [16], Chapters 5 and 9.) The fact that
this renormalized W (t, x, x) is finite does not guarantee that a spectral integral
or sum for it will be absolutely convergent. Technically, this problem may be
handled by Riesz means or some other definition of summability; but in view
of the formulation of quantum field theory in terms of operator-valued distribu-
tions, one expects that such summability should be equivalent to distributional
convergence on M. It was, in fact, this problem that originally motivated the
present work and a companion paper [17].

A fully satisfactory treatment of these issues cannot be limited to the inte-
rior of M; it should take into account the special phenomena that occur at the
boundary. These questions are related to the “heat content asymptotics” re-
cently studied by Gilkey et al. [39, 5] and McAvity [32, 33]. (A longer reference
list, especially of earlier work by Van den Berg, is given by Gilkey in [21].)

(v) Is the expansion “local” or “global” in its dependence on H? We have
already encountered this issue in connection with the Wightman function, but
it is more easily demonstrated by what we call the “cylinder kernel” T (t, x, y),
defined by (A3). Examination of (A9b) and (A13b-c) shows that T has a non-
trivial power-series expansion in t, which is different for the two cases (M = R
and (0, π)). (See [17] for more detailed discussion.) More generally speaking,
T (t, x, x) differs in an essential way from K(t, x, x) in that its asymptotic expan-
sion as t ↓ 0 is not uniquely determined by the coefficient functions (symbol) of
H, evaluated at x. T (t, x, x) can depend upon boundary conditions, existence of
closed classical paths (geodesics or bicharacteristics), and other global structure
of the problem. In terms of an inverse spectral problem, the asymptotic expan-
sion of T gives more information about the spectrum of H and about Eλ(x, y)
than that of K does. (Of course, the exact heat kernel contains, in principle,
all the information, as it is the Laplace transform of Eλ.) We shall investigate
the issue of locality for a general Green function (1).

In summary, the four basic examples introduced in the Appendix demon-
strate all possible combinations of pointwise or distributional asymptotic ex-
pansions with local or global dependence on the symbol of the operator:

Pointwise Distributional

Local Heat Schrödinger

Global Cylinder Wightman (5)

In this paper we show that the answers to questions (i) and (iii), and the dis-
tinction between the columns of the table above, are determined by the behavior
of g at infinity: If

g(n)(t) = O
(
tγ−n

)
as t→ +∞ for some γ ∈ R (6)



EJDE–1999/07 R. Estrada & S. A. Fulling 5

(i.e., g has at infinity the behavior characterizing the test-function space K —
see Sec. 2), then the answer to (i) is Yes. On the other hand, when g is of
slow growth at infinity but does not necessarily belong to K, then the expansion
holds in the distributional sense mentioned in (iii).

The answer to (v), and the distinction between the rows of the table, depend
on the behavior of g at the origin. If g(t) has an expansion of the form

∑∞
n=0 ant

n

as t ↓ 0 (even in the distributional sense) then the expansion of G(t, x, y) is local.
However, if the expansion of g(t) contains fractional powers, logarithms, or any
other term, then the locality property is lost. This subject is treated from a
different point of view in [17].

We hope to return to question (iv) in later work.
Our basic tool is the study of the distributional behavior of the spectral den-

sity eλ = dEλ/dλ of the operator H as λ → ∞. We are able to obtain a quite
general expansion of eλ when H is self-adjoint. Using the results of a previous
paper [9], one knows that distributional expansions are equivalent to expan-
sions of Cesàro–Riesz means. Thus our results become an extension of those of
Hörmander [27, 28]. They sharpen and complement previous publications by
one of us [13, 15, 17].

The other major tool we use is an extension of the “moment asymptotic
expansion” to distributions, as explained in Section 5.

The plan of the paper is as follows. In Section 2 we give some results from
[9] that play a major role in our analysis. In particular we introduce the space of
test functions K and its dual K′, the space of distributionally small generalized
functions.

In the third section we consider the distributional asymptotic expansion of
spectral decompositions and of spectral densities. Many of our results hold
for general self-adjoint operators on a Hilbert space, and we give them in that
context. We then specialize to the case of a pseudodifferential operator acting on
a manifold and by exploiting the pseudolocality of such operators we are able to
show that the asymptotic behavior of the spectral density of a pseudodifferential
operator has a local character in the Cesàro sense. That such spectral densities
have a local character in “some sense” has been known for years [18, 13, 14, 15];
here we provide a precise meaning to this locality property.

In the next section we consider two model examples for the asymptotic
expansion of spectral densities. Because of the local behavior, they are more
than examples, since they give the asymptotic development of any operator
locally equal to one of them.

In Section 5 we show that the moment asymptotic expansion, which is the
basic building block in the asymptotic expansion of series and integrals [12],
can be generalized to distributions, giving expansions that hold in an “aver-
aged” or distributional sense explaining, for instance, the small-t behavior of
the Schrödinger propagator.

In the last two sections we apply our machinery to the study of the asymp-
totic expansion of general Green kernels. In Section 6 we show that the small-t
expansion of a propagator g(tH) that corresponds to a function g that has a
Taylor-type expansion at the origin is local and that it is an ordinary or an
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averaged expansion depending on the behavior of g at infinity: If g ∈ K then
the regular moment asymptotic expansion applies, while if g 6∈ K then the “av-
eraged” results of Section 5 apply. In the last section we consider the case when
g does not have a Taylor expansion at the origin and show that in that case
g(tH) has a global expansion, which depends on such information as boundary
conditions.

Some applications of both of the main themes of this paper have been made
elsewhere [10], most notably a mathematical sharpening of the work of Chamsed-
dine and Connes [3] on a “universal bosonic functional”.

We do not claim that the machinery of distribution theory is indispensable
in obtaining the results of this paper. Undoubtedly, most of them could be,
and some of them have been, obtained by more classical methods, in the same
sense that the quantum mechanics of atoms could be developed without using
the terminology of group theory. We believe that our work extends and fills in
previous results, and, perhaps more importantly, provides a framework in which
they are better understood and appreciated.

2 Preliminaries

The principal tool for our study of the behavior of spectral functions and of the
associated Green kernels is the distributional theory of asymptotic expansions,
as developed by several authors [40, 35, 11, 12]. The main idea is that one may
obtain the “average” behavior of a function, in the Riesz or Cesàro sense, by
studying its parametric or distributional behavior [9].

In this section we give a summary of these results. We also set the notation
for the spaces of distributions and test functions used.

If M is a smooth manifold, then D(M) is the space of compactly supported
smooth functions on M, equipped with the standard Schwartz topology [12, 36,
29]. Its dual, D′(M), is the space of standard distributions on M. The space
E(M) is the space of all smooth functions on M, endowed with the topology
of uniform convergence of all derivatives on compacts. Its dual, E ′(M), can
be identified with the subspace of D′(M) formed by the compactly supported
distributions. Naturally the two constructions coincide if M is compact.

The space S ′(Rn) consists of the tempered distributions on Rn. It is the dual
of the space of rapidly decreasing smooth functions S(Rn); a smooth function φ
belongs to S(Rn) if Dαφ(x) = o(|x|−∞) as |x| → ∞, for each α ∈ Rn. Here we
use the usual notation, Dα = ∂|α|/∂xα1

1 · · · ∂xαn
n , |α| = α1 + · · · + αn; o(x−∞)

means a quantity that is o(x−β) for all β ∈ R.
A not so well known pair of spaces that plays a fundamental role in our

analysis is K(Rn) and K′(Rn). The space K was introduced in [23]. A smooth
function φ belongs to Kq if Dαφ(x) = O(|x|q−|α|) as |x| → ∞ for each α ∈ Rn.
The space K is the inductive limit of the spaces Kq as q →∞.
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Any distribution f ∈ K′(R) satisfies the moment asymptotic expansion,

f(λx) ∼
∞∑

j=0

(−1)jµjδ
(j)(x)

j!λj+1
as λ→∞, (7)

where µj = 〈f(x), xj〉 are the moments of f . The interpretation of (7) is in the
topology of the space K′; observe, however, that there is an equivalence between
weak and strong convergence of one-parameter limits in spaces of distributions,
such as K′.

The moment asymptotic expansion does not hold for general distributions
of the spaces D′ or S ′. Actually, it was shown recently [9] that any distribution
f ∈ D′ that satisfies the moment expansion (7) for some sequence of constants
{µj} must belong to K′ (and then the µj are the moments).

There is still another characterization of the elements of K′. They are pre-
cisely the distributions of rapid decay at infinity in the Cesàro sense. That is
why the elements of K′ are referred to as distributionally small.

The notions of Cesàro summability of series and integrals are well known
[25]. In [9] this theory is generalized to general distributions. The generaliza-
tion includes the classical notions as particular cases, since the behavior of a
sequence {an} as n → ∞ can be studied by studying the generalized function∑∞

n=0 an δ(x−n). The basic concept is that of the order symbols in the Cesàro
sense: Let f ∈ D′(R) and let β ∈ R \ {−1,−2,−3, . . .}; we say that

f(x) = O(xβ) (C) as x→∞, (8)

if there exists N ∈ R, a function F whose Nth derivative is f , and a polynomial
p of degree N − 1 such that F is locally integrable for x large and the ordinary
relation

F (x) = p(x) +O(xβ+N ) as x→∞ (9)

holds. The relation f(x) = o(xβ) (C) is defined similarly by replacing the big
O by the little o in (9).

Limits and evaluations can be handled by using the order relations. In
particular, limx→∞ f(x) = L (C) means that f(x) = L+ o(1) (C) as x→∞.
If f ∈ D′ has support bounded on the left and φ ∈ E , then in general the
evaluation 〈f(x), φ(x)〉 does not exist, but we say that it has the value S in
the Cesàro sense if limx→∞G(x) = S (C), where G is the primitive of fφ
with support bounded on the left. The Cesàro interpretation of evaluations
〈f(x), φ(x)〉 with supp f bounded on the right is similar, while the general case
can be considered by writing f = f1 + f2, with supp f1 bounded on the left and
supp f2 bounded on the right.

The main result that allows one to obtain the Cesàro behavior from the
parametric behavior is the following.

Theorem 2.1. Let f be in D′ with support bounded on the left. If α > −1,
then

f(x) = O(xα) (C) as x→∞ (10)
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if and only if
f(λx) = O(λα) as λ→∞ (11)

distributionally.
When −(k + 1) > α > −(k + 2) for some k ∈ R, (10) holds if and only if

there are constants µ0, . . . , µk such that

f(λx) =
k∑

j=0

(−1)jµjδ
(j)(x)

j!λj+1
+O(λα) (12)

distributionally as λ→∞.

Proof: See [9]. ♦
The fact that the distributions that satisfy the moment asymptotic expansion

are exactly those that satisfy f(x) = O(x−∞) (C) follows from the theorem
by letting α → −∞. Thus the elements of K′ are the distributions of rapid
distributional decay at infinity in the Cesàro sense. Hence the space K′ is a
distributional analogue of S. We apply this idea in Section 5, where we build a
duality between S ′ and K′.

Another important corollary of the theorem is the fact that one can relate
the (C) expansion of a generalized function and its parametric expansion in a
simple fashion. Namely, if {αj} is a sequence with <e αj ↘ −∞, then

f(x) ∼
∞∑

j=0

ajx
αj (C) as x→∞ (13)

if and only if

f(λx) ∼
∞∑

j=0

ajgαj
(λx) +

∞∑
j=0

(−1)jµjδ
(j)(x)

j!λj+1
(14)

as λ→∞, where the µj are the (generalized) moments of f and where

gα(x) = xα
+ if α 6= −1,−2,−3, . . . , (15)

while in the exceptional cases gα is a finite-part distribution [12]:

g−k(x) = P.f. (χ(x)x−k) if k = 1, 2, 3, . . . , (16)

χ being the Heaviside function, the characteristic function of the interval (0,∞).
Notice that

gα(λx) = λαgα(x), α 6= −1,−2,−3, . . . , (17)

g−k(λx) =
g−k(x)
λk

+
(−1)k−1 lnλ δ(k−1)(x)

(k − 1)!λk
, k = 1, 2, 3, . . . . (18)
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3 The asymptotic expansion of spectral decom-
positions

Let H be a Hilbert space and let H be a self-adjoint operator on H, with
domain X . Then H admits a spectral decomposition {Eλ}∞λ=−∞. The {Eλ} is
an increasing family of projectors that satisfy

I =
∫ ∞

−∞
dEλ , (19)

where I is the identity operator, and

H =
∫ ∞

−∞
λ dEλ (20)

in the weak sense, that is,

(Hx|y) =
∫ ∞

−∞
λ d(Eλx|y), (21)

for x ∈ X and y ∈ H, where (x|y) is the inner product in H.
Perhaps more natural than the spectral function Eλ is the spectral density

eλ = dEλ/dλ. This spectral density does not have a pointwise value for all λ.
Rather, it should be understood as an operator-valued distribution, an element
of the space D′(R, L(X ,H)). Thus (19)–(20) become

I = 〈eλ, 1〉 (22)

H = 〈eλ, λ〉, (23)

where 〈f(λ), φ(λ)〉 is the evaluation of a distribution f(λ) on a test function
φ(λ).

The spectral density eλ can be used to build a functional calculus for the
operator H. Indeed, if g is continuous and with compact support in R then we
can define the operator g(H) ∈ L(X ,H) (extendible to L(H,H)) by

g(H) = 〈eλ, g(λ)〉. (24)

One does not need to assume g of compact support in (24), but in a contrary
case the domain of g(H) is not X but the subspace Ng consisting of the x ∈ H
for which the improper integral 〈(eλx|y), g(λ)〉 converges for all y ∈ H.

One can even define f(H) when f is a distribution such that the evaluation
〈eλ, f(λ)〉 is defined. For instance, if Eλ is continuous at λ = λ0 then Eλ0 =
χ(λ0 − H) where χ is again the Heaviside function. Differentiation yields the
useful symbolic formula

eλ = δ(λ−H). (25)

Let Xn be the domain of Hn and let X∞ =
∞⋂

n=1

Xn. Then

〈eλ, λ
n〉 = Hn (26)
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in the space L(X∞,H). But, as shown recently [9], a distribution f ∈ D′(R)
whose moments 〈f(x), xn〉, n ∈ R, all exist belongs to K′(R) — that is, it
is distributionally small. Hence, eλ, as a function of λ, belongs to the space
K′(R, L(X∞,H)). Therefore, the asymptotic behavior of eλσ, as σ → ∞, can
be obtained by using the moment asymptotic expansion:

eλσ ∼
∞∑

n=0

(−1)nHnδ(n)(λσ)
n!

as σ →∞, (27)

while eλ vanishes to infinite order at infinity in the Cesàro sense:

eλ = o(|λ|−∞) (C) as |λ| → ∞. (28)

The asymptotic behavior of the spectral function Eλ is obtained by integra-
tion of (27) and by recalling that lim

λ→−∞
Eλ = 0, lim

λ→∞
Eλ = I. We obtain

Eλ ∼ χ(λσ)I +
∞∑

n=0

(−1)n+1Hn+1δ(n)(λσ)
(n+ 1)!

as σ →∞. (29)

Similarly, the Cesàro behavior is given by

Eλ = I + o(λ−∞) (C) as λ→∞, (30)

Eλ = o(|λ|−∞) (C) as λ→ −∞. (31)

These formulas are most useful when H is an unbounded operator. Indeed,
if H is bounded, with domain X = H, then eλ = 0 for λ > ‖H‖ and Eλ = 0 for
λ < −‖H‖, Eλ = I for λ > ‖H‖, so (28), (30), and (31) are trivial in that case.

In the present study we are mostly interested in the case when H is an elliptic
differential operator with smooth coefficients defined on a smooth manifold M.
Usually H = L2(M) and X is the domain corresponding to the introduction of
suitable boundary conditions. Usually the operator H will be positive, but at
present we shall just assume H to be self-adjoint.

In this case the space D(M) of test functions on M is a subspace of X∞. Ob-
serve also that the operators K acting on D(M) can be realized as distributional
kernels k(x, y) of D′(M×M) by

(Kφ)(x) = 〈k(x, y), φ(y)〉y . (32)

In particular, δ(x−y) is the kernel corresponding to the identity I, and Hδ(x−
y) is the kernel of H. The spectral density eλ also has an associated kernel
e(x, y;λ), an element of D′(R,D′(M×M)). Since H is elliptic it follows that
e(x, y;λ) is smooth in (x, y). Warning: Much of the literature uses “e(x, y;λ)”
for what we call “E(x, y;λ)”.

The expansions (27)–(31) will hold in X∞ and thus, a fortiori, in D(M).
Hence

e(x, y;λσ) ∼
∞∑

n=0

(−1)nHnδ(x− y)δ(n)(λσ)
n!

as σ →∞, (33)
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E(x, y;λσ) ∼ χ(λσ)δ(x− y) +
∞∑

n=0

(−1)n+1Hn+1δ(x− y) δ(n)(λσ)
(n+ 1)!

as σ →∞,

(34)
in the space D′λ(R,D′xy(M×M)). Furthermore,

e(x, y;λ) = o(|λ|−∞) (C) as |λ| → ∞, (35)

E(x, y;λ) = δ(x− y) + o(λ−∞) (C) as λ→∞, (36a)

E(x, y;λ) = o(|λ|−∞) (C) as λ→ −∞, (36b)

in the space D′(M×M).
Actually, an easy argument shows that the expansions also hold distribu-

tionally in one variable and pointwise in the other. (For instance, (35) says that
if y is fixed and φ ∈ D(M) then 〈e(x, y;λ), φ(x)〉 = o(|λ|−∞) (C) as |λ| → ∞.)

That the expansions cannot hold pointwise in both variables x and y should
be clear since we cannot set x = y in the distribution δ(x − y). And indeed,
e(x, x;λ) is not distributionally small. However, as we now show, the expansions
are valid pointwise outside of the diagonal of M×M.

Indeed, let U, V be open sets with U ∩ V = ∅. If f ∈ D′(M) and φ ∈ D(R),
then φ(H) is a smoothing pseudodifferential operator, so φ(H)f is smooth in
M. Thus, 〈e(x, y;λ), f(x)g(y)φ(λ)〉 = 〈φ(H)f(x), g(x)〉 is well-defined if f ∈
D′(M), supp f ⊆ U, g ∈ D′(M), supp g ⊆ V . Therefore e(x, y;λ) belongs to
D′(R, E(U × V )). But

〈e(x, y;λ), f(x)g(y)λn〉 = 〈Hnf(x), g(x)〉 = 0, (37)

thus e(x, y;λ) actually belongs to K′(R, E(U×V )); that is, it is a distributionally
small distribution in that space whose moments vanish. Therefore

e(x, y;λσ) = o(σ−∞) as σ →∞, (38)

E(x, y;λσ) = χ(λσ)δ(x− y) + o(σ−∞) as σ →∞, (39)

in the space K′(R, E(U × V )). Similarly, (35)–(36) also hold in E(U × V ).
Convergence in E(U × V ) implies pointwise convergence on U × V , but it gives
more; namely, it gives uniform convergence of all derivatives on compacts. Thus
(35), (36), (38), and (39) hold uniformly on compacts of U×V and the expansion
can be differentiated as many times as we please with respect to x or y.

Example. Let Hy = −y′′ considered on the domain X = {y ∈ C2[0, π] :
y(0) = y(π) = 0} in L2[0, π]. The eigenvalues are λn = n2, n = 1, 2, 3, . . ., with

normalized eigenfunctions φn(x) =
√

2
π sinnx. Therefore,

e(x, y;λ) =
2
π

∞∑
n=1

sinnx sinny δ(λ− n2), (40)
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where 0 < x < π, 0 < y < π. Then

2
π

∞∑
n=1

sinnx sinny δ(λσ − n2) ∼
∞∑

j=0

δ(2j)(x− y)δ(j)(λ)
j!σj+1

as σ →∞ (41)

in D′(R,D′((0, π)× (0, π))), while

2
π

∞∑
n=1

sinnx sinny δ(λσ − n2) = o(σ−∞) as σ →∞ (42)

if x and y are fixed, x 6= y. On the other hand,

e(x, x;λ) =
2
π

∞∑
n=1

sin2 nx δ(λ− n2), (43)

thus if 0 < x < π,

e(x, x;λσ) =
1
π

∞∑
n=1

(1− cos 2nx) δ(λσ − n2)

=
1
π

∞∑
n=1

δ(λσ − n2) +
1

2πσ
δ(λ) + o(σ−∞) as σ →∞,

because the generalized function
∑∞

n=1 cos 2nx δ(λ−n2) is distributionally small
if 0 < x < π, with moments µ0 = −1/2 and µk = 0 for k ≥ 1, since [8]

∞∑
n=1

cos 2nx = − 1
2

(C),

∞∑
n=1

n2k cos 2nx = 0 (C), k = 1, 2, 3, . . . .

But ([12], Chapter 5)

∞∑
n=1

φ(εn2) =
1

2ε1/2

∫ ∞

0

u−1/2φ(u) du− 1
2
φ(0) + o(ε∞) (44)

as ε→ 0+ if φ ∈ S, thus

e(x, x;λσ) =
1

2πσ1/2
λ
−1/2
+ + o(σ−∞) as σ →∞. (45)

It is then clear that e(x, x;λ) is not distributionally small; rather,

e(x, x;λ) =
1

2πλ1/2
+ o(λ−∞) (C) as λ→∞, (46)

that is, e(x, x;λ) ∼ (1/2π)λ−1/2, as λ→∞, in the Cesàro sense. ♦
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Neither is the spectral density e(x, y;λ) distributionally small at the bound-
aries, as follows from the heat content asymptotics of Refs. [39, 5]. That there
is a sharp change of behavior at the boundary can be seen from the behavior
of the spectral density e(x, x;λ) given by (43). Indeed, if 0 < x < π then
e(x, x;λ) = (1/2π)λ−1/2 + o(λ−∞) (C), but when x = 0 or x = π then
e(0, 0;λ) = e(π, π;λ) = 0.

It is important to observe that in the Cesàro or distributional sense, the
behavior at infinity of the spectral density e(x, y;λ) depends only on the local
behavior of the coefficients of H. That is, if H1 and H2 are two operators that
coincide on the open subset U of M and if e1(x, y;λ) and e2(x, y;λ) are the
corresponding spectral densities, then

e1(x, y;σλ) = e2(x, y;σλ) + o(σ−∞) as σ →∞ (47)

in D′(U × U). This follows immediately from (33). In fact, it follows from
Theorem 7.2 that

e1(x, y;λ) = e2(x, y;λ) + o(λ−∞) (C) as λ→∞, (48)

pointwise on (x, y) ∈ U ×U (even on the diagonal!). More than that, (48) holds
in the space E(U × U), so that it is uniform on compacts of U . These results
are useful in connection with the suggestion [18, 13, 14, 15] to replace a general
second-order operator H by another, H0 , that agrees locally with H and for
which the spectral density can be calculated. In the next section we treat two
special classes of operators where this idea has been implemented.

Example. The spectral density for the operator −y′′ on the whole real line
is

e1(x, y;λ) =
χ(λ) cosλ1/2(x− y)

2πλ1/2
, (49)

as can be seen from (A7a) and (A8a). Therefore, comparison with (40) yields

2
π

∞∑
n=1

sinnx sinny δ(λ− n2) =
cosλ1/2(x− y)

2πλ1/2
+ o(λ−∞) (C) as λ→∞.

(50)
In particular, if we set x = y we recover (46).

Formula (50) is uniform in compacts of (0, π)× (0, π) but ceases to hold as
x or y approaches 0 or π. For instance, if y = 0, the left side vanishes while
[cf. (33)]

χ(σλ) cos (σλ)1/2x

2π(σλ)1/2
∼ δ(x)δ(λ)

σ
+
δ′′(x)δ′(λ)

σ2
+ · · ·

as σ →∞. ♦

4 Special cases

In this section we give two model cases for the asymptotic expansion of spectral
densities. They are not just examples, since according to the results of the
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previous section, the spectral density of any operator locally equal to such a
model case will have the same behavior at infinity in the Cesàro sense.

Let us start with a constant-coefficient elliptic operator H defined on the
whole space Rn. Then H admits a unique self-adjoint extension (which we
also denote as H), given as follows. Let p = σ(H) be the symbol of H (i.e.,
H = p(−i∂)). Then the spectral function is given by

E(x, y;λ) =
1

(2π)n

∫
p(ξ)<λ

ei(x−y)·ξ dξ, (51)

so that the spectral density can be written as

e(x, y;λ) =
1

(2π)n

〈
ei(x−y)·ξ, δ(p(ξ)− λ)

〉
. (52)

For the definition of δ(f(x)) see [20, 4].
To obtain the behavior of e(x, y;λ) as λ → ∞ in the Cesàro or in the

distributional sense, we should consider the parametric behavior of e(x, y;σλ)
as σ → ∞. Setting ε = 1/σ and evaluating at a test function φ(λ), one is led
to the function

Φ(ε) = 〈e(x, y;λ), φ(ελ)〉λ . (53)

But in view of (52) we obtain

Φ(ε) =
1

(2π)n

〈
ei(x−y)·ξ, φ(εp(ξ))

〉
ξ
. (54)

When x 6= y are fixed, ei(x−y)·ξ is distributionally small as a function of ξ.
This also holds distributionally in (x, y). Thus the expansion of (54) follows
from the following lemma.

Lemma 4.1. Let f ∈ K′(Rn), so that it satisfies the moment asymptotic
expansion

f(λx) ∼
∑

k∈Rn

(−1)|k| µk D
kδ(x)

k! λ|k|+n
as λ→∞, (55)

where µk = 〈f(x), xk〉 , k ∈ Rn, are the moments. Then if p is an elliptic
polynomial and φ ∈ K,

〈f(x), φ(εp(x))〉 ∼
∞∑

m=0

〈f(x), p(x)m〉φ(m)(0)εm

m!
as ε→ 0. (56)

Proof: The proof consists in showing that the Taylor expansion in ε,

φ (εp(x)) =
N∑

m=0

φ(m)(0) p(x)mεm

m!
+O(εN+1), (57)
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not only holds pointwise but actually holds in the topology of K(Rn). But the
remainder in this Taylor approximation is

RN (x, ε) =
φ(N+1)(θp(x)) p(x)N+1εN+1

(N + 1)!
, (58)

for some θ ∈ (0, ε). Since φ ∈ K, there exists q ∈ R such that φ(j)(x) = O(|x|q−j)
as x→∞. If p has degree m it follows that

|RN (x, ε)| ≤ M max {1, |x|mq} εN+1

(N + 1)!
(59)

for some constant M , and the convergence of the Taylor expansion in the topol-
ogy of the space K follows. ♦

Thus, applying (56) with f(x) = ei(x−y)·ξ for x 6= y or distributionally in
(x, y), we obtain

Φ(ε) ∼ 1
(2π)n

∞∑
k=0

〈ei(x−y)·ξ, p(ξ)k〉φ(k)(0)εk

k!
,

or

Φ(ε) ∼
∞∑

k=0

Hkδ(x− y)φ(k)(0)εk

k!
. (60)

Therefore,

e(x, y;λσ) ∼
∞∑

k=0

(−1)kHkδ(x− y) δ(k)(λ)
k!σk+1

as σ →∞, (61)

in accordance with the general result.
Observe also that if H1 is any operator corresponding to the same differential

expression, considered in some open setM with some boundary conditions, then
its spectral density e1(x, y;λ) satisfies

e1(x, y;λ) =
1

(2π)n

〈
ei(x−y)·ξ, δ(p(ξ)− λ)

〉
+ o(λ∞) (C) as λ→∞. (62)

Example. Let M be a region in Rn and let H be any self-adjoint ex-
tension of the negative Laplacian −∆ obtained by imposing suitable boundary
conditions on M. Let eM(x, y;λ) be the spectral density. Then

eM(x, y;λ) =
1

(2π)n
〈δ(|ξ|2 − λ), ei(x−y)·ξ〉+ o(λ−∞) (C). (63)

We now use the one-variable formula

δ(f(x)) =
δ(x− x0)
|f ′(x0)|

,
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valid if f has a single zero at x0, and pass to polar coordinates ξ = rω, where
r = |ξ|, ω = (ω1, . . . , ωn) satisfies |ω| = 1, and dξ = rn−1 dr dσ(ω), to obtain

1
(2π)n

〈δ(|ξ|2 − λ), ei(x−y)·ξ〉

=
1

(2π)n

∫
|ω|=1

∫ ∞

0

〈δ(r2 − λ), eir(x−y)·ω〉rn−1 dr dσ(ω)

=
λn/2−1

2(2π)n

∫
|ω|=1

eiλ1/2(x−y)·ω dσ(ω)

=
λn/2−1

2(2π)n

∫
|ω|=1

eiλ1/2ω1|x−y| dσ(ω)

=
λn/2−1

2(2π)n

2π(n−1)/2

Γ(n−1
2 )

∫ 1

−1

eiλ1/2u|x−y|(1− u2)
n−3

2 du

=
λn/4−1/2Jn/2−1(λ1/2|x− y|)

2n/2+1πn/2|x− y|n/2−1
,

where Jp(x) is the Bessel function of order p. Therefore

eM(x, y;λ) =
λn/4−1/2Jn/2−1(λ1/2|x− y|)

2n/2+1πn/2|x− y|n/2−1
+ o(λ−∞) (C) as λ→∞, (64)

uniformly over compacts of M×M. ♦
Our second model is an ordinary differential operator H with variable co-

efficients, as treated in [13, 14, 15]. There are two major simplifications in
this one-dimensional case. First, the Weyl–Titchmarsh–Kodaira theory [38, 30]
expresses the spectral density as

e(x, y;λ) dλ =
1∑

j,k=0

ψλj(x) dµjk(λ)ψλk(y) , (65)

where dµjk are certain Stieltjes measures supported on the spectrum of H, and
ψλj are the classical solutions of Hψ − λψ with the basic data

ψλ0(x0) = 1, ψ′λ0(x0) = 0,
ψλ1(x0) = 0, ψ′λ1(x0) = 1, (66)

at some x0 ∈M. Thus

µ00(λ) = E(x0, x0;λ), µ01(λ) =
∂E

∂y
(x0, x0;λ),

µ10(λ) =
∂E

∂x
(x0, x0;λ), µ11(λ) =

∂2E

∂x∂y
(x0, x0;λ). (67)

Second, the eigenfunctions ψλj can be approximated for large λ quite explicitly
by the phase-integral (WKB) method. (Thirdly, but less essentially, there is no
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loss of generality in considering

H = − d2

dx2
+ V (x), (68)

since the general second-order operator can be reduced to this form by change
of variables.)

In [13] the phase-integral representation of the eigenfunctions was used to
obtain in a direct and elementary way the expansion

dµjk(λ) ∼ 1
π

∞∑
n=0

ρjk
n (x0)ω2δj1δk1−2n dω, (69)

where λ = ω2 and

ρ00
0 = 1, ρ00

1 =
1
2
V, ρ00

2 =
1
8

(−V ′′ + 3V 2), . . . ,

ρ11
0 = 1, ρ11

1 = − 1
2
V, ρ11

2 =
1
8

(V ′′ − 3V 2), . . . , (70)

ρ10
n = ρ01

n =
1
2

d

dx0
(ρ00

n ).

Formula (69) is a rigorous asymptotic expansion when M = R and V is a
C∞ function of compact support. The relevance of (69) in more general cases,
where it is certainly not a literal pointwise asymptotic expansion, was discussed
at length in [13]; the results of the present paper simplify and sharpen that
discussion by showing that the error in (69) is O(λ−∞) in the (C) sense for
any operator locally equivalent to one for which (69) holds pointwise.

5 Pointwise and average expansions

Let f ∈ K′(R). Since the elements of K′(R) are precisely the distributionally
small generalized functions, it follows that f satisfies the moment asymptotic
expansion; that is,

f(λx) ∼
∞∑

j=0

(−1)j µj δ
(j)(x)

j!λj+1
as λ→∞, (71)

where
µj = 〈f(x), xj〉, j ∈ R, (72)

are the moments.
The moment asymptotic expansion allows us to obtain the small-t behavior

of functions G(t) that can be written as

G(t) = 〈f(x), g(tx)〉, (73)
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as long as g ∈ K. Indeed, (71) gives

G(t) =
∞∑

j=0

µj g
(j)(0) tj

j!
as t→ 0. (74)

Naturally, this would be valuable if f(λ) = e(x, y;λ) is the spectral density
of the elliptic differential operator H and G(t, x, y) = 〈e(x, y;λ), g(λt)〉 is an
associated Green kernel.

However, we emphasize that the derivation of (74) holds only when g ∈ K.
What if g /∈ K? A particularly interesting example is the kernel U(t, x, y) =
〈e(x, y;λ), e−iλt〉 that solves the Schrödinger equation

i
∂U

∂t
= HU, t > 0 (75a)

with initial condition
U(0+, x, y) = δ(x− y). (75b)

In this case g(x) = e−ix is smooth, but because of its behavior at infinity, it
does not belong to K. We pointed out in the introduction, however, that (74)
is still valid in some “averaged” sense.

Indeed, we shall now show that formula (73) permits one to define G(t) as
a distribution when instead of asking g ∈ K we assume g to be a tempered
distribution of the space S ′ which has a distributional expansion at the origin.
We then show that (74) holds in an averaged or distributional sense. The fact
that the space of smooth functions K is replaced by the space of tempered
distributions is not casual: the distributions of S ′ are exactly those that have
the behavior at ∞ of the elements of K in the Cesàro or distributional sense.
Indeed, we have

Lemma 5.1 Let g ∈ S ′(R). Then there exists α ∈ R such that

g(n)(λx) = O(λα−n) as λ→∞, (76)

distributionally.

Proof: See [9], where it is shown that (76) is actually a characterization of
the tempered distributions. ♦

Let g ∈ S ′(R) and let α be as in (76). If φ ∈ S(R) then the function Φ
defined by

Φ(x) = 〈g(tx), φ(t)〉 (77)

is smooth in the open set (−∞, 0) ∪ (0,∞) and, because of (76), satisfies

Φ(n)(x) = O(|x|α−n) as |x| → ∞. (78)

It follows that we can define G(t) = 〈f(x), g(tx)〉 as an element of S ′(R) by

〈G(t), φ(t)〉 = 〈f(x),Φ(x)〉, (79)
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whenever f ∈ K′ and 0 /∈ supp f .
When 0 ∈ supp f then (79) cannot be used unless Φ is smooth at the origin.

And in order to have Φ smooth we need to ask the existence of the distributional
values g(n)(0), n = 0, 1, 2, . . ..

Recall that following  Lojasiewicz [31], one says that a distribution h ∈ D′
has the value γ at the point x = x0, written as

h(x0) = γ in D′, (80)

if
lim
ε→0

h(x0 + εx) = γ (81)

distributionally; that is, if for each φ ∈ D

lim
ε→0

〈h(x0 + εx), φ(x)〉 = γ

∫ ∞

−∞
φ(x) dx. (82)

It can be shown that h(x0) = γ in D′ if and only if there exists a primitive hn

of some order n, h(n)
n = h, which is continuous in a neighborhood of x = x0 and

satisfies

hn(x) =
γ(x− x0)n

n!
+ o(|x− x0|n), as x→ x0 . (83)

In our present case, we need to ask the existence of the distributional values
g(n)(0) = an for n ∈ R. We can then say that g(x) has the small-x “averaged”
or distributional expansion

g(x) ∼
∞∑

n=0

an x
n

n!
, as x→ 0, in D′, (84)

in the sense that the parametric expansion

g(εx) ∼
∞∑

n=0

an ε
n xn

n!
, as ε→ 0, (85)

holds, or, equivalently, that

〈g(εx), φ(x)〉 ∼
∞∑

n=0

an

n!

(∫ ∞

−∞
xnφ(x) dx

)
εn, (86)

for each φ ∈ D.
Lemma 5.2. Let g ∈ S ′ be such that the distributional values g(n)(0) =

an , in D′, exist for n ∈ R. Let φ ∈ S and put Φ(x) = 〈g(tx), φ(t)〉. Then Φ ∈ K.

Proof: Indeed, Φ is smooth for x 6= 0, but since the distributional values
g(n)(0) = an exist, it follows that Φ(x) ∼

∑∞
n=0 bnx

n as x → 0, where bn =
(an/n!)

∫∞
−∞ xnφ(x) dx. Thus Φ is also smooth at x = 0. Finally, let α be as in

(76); then Φ(n)(x) = O(|x|α−n) as |x| → ∞. Hence Φ ∈ K. ♦
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Using this lemma we can give the following
Definition. Let f ∈ K′. Let g ∈ S ′ have distributional values g(n)(0),

n ∈ R. Then we can define the tempered distribution

G(t) = 〈f(x), g(tx)〉 (87)

by
〈G(t), φ(t)〉 = 〈f(x),Φ(x)〉, (88)

where
Φ(x) = 〈g(tx), φ(t)〉, (89)

if φ ∈ S.
In general the distribution G(t) is not smooth near the origin, but its distri-

butional behavior can be obtained from the moment asymptotic expansion.
Theorem 5.1. Let f ∈ K′ with moments µn = 〈f(x), xn〉. Let g ∈ S ′

have distributional values g(n)(0) for n ∈ R. Then the tempered distribution
G(t) = 〈f(x), g(tx)〉 has distributional values G(n)(0), n ∈ R, which are given
by G(n)(0) = µng

(n)(0), and G has the distributional expansion

G(t) ∼
∞∑

n=0

µng
(n)(0)tn

n!
, in D′, as t→ 0. (90)

Proof: Let φ ∈ S and let Φ(x) = 〈g(tx), φ(t)〉. Then

〈G(εt), φ(t)〉 = 〈f(x),Φ(εx)〉, (91)

and since Φ(n)(0) = g(n)(0)
∫∞
−∞ tnφ(t) dt, the moment asymptotic expansion

yields

〈G(εt), φ(t)〉 ∼
∞∑

n=0

µn g
(n)(0)
n!

(∫ ∞

−∞
tnφ(t) dt

)
εn as ε→ 0, (92)

and (90) follows. ♦
Before we continue, it is worthwhile to give some examples.
Example. Let g ∈ S ′ be such that the distributional values g(n)(0) ex-

ist for n ∈ R. Since the Fourier transform ĝ(λ) can be written as ĝ(λ) =
λ−1〈eix, g(λ−1x)〉, and since all the moments µn = 〈eix, xn〉 vanish, it follows
that ĝ(ε−1) = O(ε∞) distributionally as ε → 0 and thus ĝ(λ) = O(|λ|−∞) (C)
as |λ| → ∞. Therefore ĝ ∈ K′.

Conversely, if f ∈ K′, then its Fourier transform f̂(t) is equal to F (t) =
〈f(x), eitx〉 for t 6= 0. Thus f̂(t) = F (t) +

∑n
j=0 aj δ

(j)(t) for some constants
a0 , . . . , an. But the distributional values F (n)(0) exist for n ∈ R and are given by
F (n)(0) = in〈f(x), xn〉, and hence F̂ ∈ K′, and it follows that a0 = · · · = an = 0.
In summary, f̂ (n)(0) exists in D′ for each n ∈ R.



EJDE–1999/07 R. Estrada & S. A. Fulling 21

Therefore, a distribution g ∈ S ′ is smooth at the origin in the distributional
sense (that is, the distributional values g(n)(0) exist for n ∈ R) if and only if its
Fourier transform ĝ is distributionally small (i.e., ĝ ∈ K′). ♦

Example. Let ξ ∈ C with |ξ| = 1, ξ 6= 1. Then the distribution f(x) =∑∞
n=−∞ ξnδ(x−n) belongs to K′. All its moments vanish: µk =

∑∞
n=−∞ ξnnk =

0 (C) for k = 0, 1, 2, . . .. It follows that if g ∈ S ′ is distributionally smooth at
the origin, then

∞∑
n=−∞

ξng(nx) = o(x∞) in D′ as x→ 0 . (93)

When ξ = 1,
∑∞

n=−∞ δ(x−n) does not belong to K′ but
∑∞

n=−∞ δ(x−n)−1
does. Thus, if g ∈ S ′ is distributionally smooth at the origin and

∫∞
−∞ g(u) du

is defined, then

∞∑
n=−∞

g(nx) =
(∫ ∞

−∞
g(u) du

)
x−1 + o(x∞) in D′ as x→ 0. (94)

Actually, many number-theoretical expansions considered in [7] and Chapter 5
of [12] will hold in the averaged or distributional sense when applied to distri-
butions. ♦

Many times, supp f ⊆ [0,∞) and one is interested in G(t) = 〈f(x), g(tx)〉
for t > 0 only. In those cases the values of g(x) for x < 0 are irrelevant
and one may assume that supp g ⊆ [0,∞). Since we need to consider Φ(x) =
〈g(tx), φ(t)〉 for x > 0 only, we do not require the existence of the distributional
values g(n)(0); instead, we assume the existence of the one-sided distributional
values g(n)(0+) = an for n ∈ R. This is equivalent to asking g(εx) to have the
asymptotic development

g(εx) ∼
∞∑

n=0

an ε
n xn

+

n!
as ε→ 0+ ; (95)

that is,

〈g(εx), φ(x)〉 ∼
∞∑

n=0

an

n!

(∫ ∞

0

xnφ(x) dx
)
εn as ε→ 0+ (96)

for φ ∈ S. We shall use the notation

g(x) ∼
∞∑

n=0

anx
n

n!
in D′ as x→ 0+ (97)

in such a case.
Lemma 5.3. Let g ∈ S ′ with supp g ⊆ [0,∞) and let g(n)(0+) = an exist

in D′ for n ∈ R. Let φ ∈ S and put Φ(x) = 〈g(tx), φ(t)〉 for x > 0. Then Φ
admits extensions Φ̃ to R with Φ̃ ∈ K(R).
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Proof: It suffices to show that Φ is smooth up to the origin from the right
and that it satisfies estimates of the form Φ(j)(x) = O(|x|α−n) as |x| → ∞. But
the first statement follows because g(n)(0+) exists for all n ∈ R, while the latter
is true because of (76). ♦

From this lemma it follows that when f ∈ K′, supp f ⊆ [0,∞), supp g ⊆
[0,∞), and the distributional values g(n)(0+) exist for n ∈ R, then G(t) =
〈f(x), g(tx)〉 can be defined as a tempered distribution with support contained
in [0,∞) by

〈G(t), φ(t)〉 = 〈f(x), Φ̃(x)〉, (98)

where Φ̃ is any extension of Φ(x) = 〈g(tx), φ(t)〉, x > 0, such that Φ̃ ∈ K.
Theorem 5.2. Let f ∈ K′ with supp f ⊆ [0,∞) and moments µn =

〈f(x), xn〉. Let g ∈ S ′ with supp g ⊆ [0,∞) have distributional one-sided values
g(n)(0+) for n ∈ R. Then the tempered distribution G(t) = 〈f(t), g(tx)〉 defined
by (98) has distributional one-sided values G(n)(0+), n ∈ R, which are given by
G(n)(0+) = µn g

(n)(0+), and G has the distributional expansion

G(t) ∼
∞∑

n=0

µn g
(n)(0+) tn

n!
in D′ as t→ 0+. (99)

Proof: Quite similar to the proof of Theorem 5.1 . ♦

6 Expansion of Green kernels I: Local expan-
sions

In this section we shall consider the small-t behavior of Green kernels of the type
G(t;x, y) = 〈e(x, y;λ), g(λt)〉 for some g ∈ S ′. Here e(x, y;λ) is the spectral
density kernel corresponding to a positive elliptic operator H that acts on the
smooth manifold M.

Our results can be formulated in a general framework. So, let H be a positive
self-adjoint operator on the domain X of the Hilbert space H. Let X∞ be the
common domain of Hn, n ∈ R, and let eλ be the associated spectral density.
Let g ∈ S ′ with supp g ⊆ [0,∞) such that the one-sided distributional values
an = g(n)(0+) exist for n ∈ R. Then we can define

G(t) = g(tH), t > 0, (100)

that is,
G(t) = 〈eλ, g(tλ)〉, t > 0 . (101)

Hence. G can be considered as an operator-valued distribution in the space
S ′(R, L(X∞,H)). The behavior of G(t) as t → 0+ can be obtained from the
moment asymptotic expansion (27) for eλ. The expansion of G(t) as t → 0+

will be a distributional or “averaged” expansion, in general, but when g has
the behavior of the elements of K at ∞ it becomes a pointwise expansion. In
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particular, if g is smooth in [0,∞), the expansion is pointwise or not depending
on the behavior of g at infinity.

Theorem 6.1. Let H be a positive self-adjoint operator on the domain X
of the Hilbert space H. Let X∞ be the intersection of the domains of Hn for
n ∈ R. Let g ∈ S ′ with supp g ⊆ [0,∞) be such that the distributional one-sided
values

g(n)(0+) = an in D′ (102)

exist for n ∈ R. Let G(t) = g(tH), an element of S ′(R, L(X∞,H)) with support
contained in [0,∞). Then G(t) admits the distributional expansion in L(X∞,H),

G(t) ∼
∞∑

n=0

anH
ntn

n!
, as t→ 0+, in D′, (103)

so that the distributional one-sided values G(n)(0+) exist and are given by

G(n)(0+) = anH
n in D′. (104)

When g admits an extension that belongs to K, (103) is an ordinary pointwise
expansion while the G(n)(0+) exist as ordinary one-sided values.

Proof: Follows immediately from Theorem 5.2. ♦
When H is a positive elliptic differential operator acting on the manifold M,

then Theorem 6.1 gives the small-t expansion of Green kernels. Let e(x, y;λ)
be the spectral density kernel and let

G(t, x, y) = 〈e(x, y;λ), g(tλ)〉, t > 0, (105)

be the Green function kernel corresponding to the operator G(t) = g(tH). Then
G belongs to S ′(R)⊗̂D′(M×M), has spectrum in [0,∞), and as t→ 0+ admits
the distributional expansion

G(t, x, y) ∼
∞∑

n=0

anH
nδ(x− y) tn

n!
, as t→ 0+, in D′; (106)

that is,

G(εt, x, y) ∼
∞∑

n=0

anH
nδ(x− y) εn tn+

n!
as ε→ 0+, (107)

in D′(M×M). Also, the distributional one-sided values
∂n

∂tn
G(0+, x, y) exist

for n ∈ R and are given by

∂n

∂tn
G(0+, x, y) = anH

nδ(x− y) in D′. (108)

If g admits extension to K, then (106) and (108) are valid in the ordinary
pointwise sense with respect to t (and distributionally in (x, y)).
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Pointwise expansions in (x, y) follow when x 6= y. Indeed, if U and V are
open subsets of M with U ∩ V = ∅, then G belongs to S ′(R)⊗̂E(U × V ) and as
t→ 0+ we have the distributional expansion

G(t, x, y) = o(t∞), in D′, as t→ 0+, (109)

in E(U × V ), and in particular pointwise on x ∈ U and y ∈ V . The expansion
becomes pointwise in t when g admits an extension to K.

These expansions depend only on the local behavior of the differential op-
erator. Let H1 and H2 be two differential operators that coincide on the open
subset U of M. Let e1(x, y, λ), e2(x, y, λ) be the corresponding spectral densi-
ties and G1(t, x, y) and G2(t, x, y) the corresponding kernels for the operators
g(tH1) and g(tH2), respectively. Then

G1(t, x, y) = G2(t, x, y) + o(t∞), in D′, as t→ 0+, (110)

in E(U ×U); and when g admits an extension that belongs to K this also holds
pointwise in t.

Let us consider some illustrations.
Example. Let K(t, x, y) = 〈e(x, y;λ), e−λt〉 be the heat kernel, correspond-

ing to the operator K(t) = e−tH , so that

∂K

∂t
= −HK, t > 0, (111)

and
K(0+, x, y) = δ(x− y). (112)

In this case g(t) = χ(t)e−t admits extensions in K. Thus the expansions

K(t, x, y) ∼
∞∑

n=0

(−1)nHnδ(x− y) tn

n!
as t→ 0+ (113)

in the space D′(M×M), and

K(t, x, y) = o(t∞) as t→ 0+, with x 6= y, (114)

hold pointwise in t. ♦
Example. Let U(t, x, y) = 〈e(x, y;λ), e−iλt〉 be the Schrödinger kernel,

corresponding to U(t) = e−itH , so that

i
∂U

∂t
= HU, t > 0 (115)

and
U(0+, x, y) = δ(x− y). (116)

Here the function e−it belongs to S ′ but not to K. Therefore, the expansions

U(t, x, y) ∼
∞∑

n=0

(−i)nHnδ(x− y) tn

n!
, as t→ 0+, in D′, (117)



EJDE–1999/07 R. Estrada & S. A. Fulling 25

and
U(t, x, y) = o(t∞), in D′, as t→ 0+ with x 6= y, (118)

are distributional or “averaged” in t.
Consider, for instance, U(t, x, y) = (4πt)−n/2ei|x−y|2/4t, corresponding to the

case when H is the negative Laplacian, −∆, acting on M = Rn. If x 6= y are
fixed, U(t, x, y) oscillates as t→ 0+, but (118) holds in the distributional sense.
(This also follows from the results of [9], because lim

s→∞
eias = 0 (C) if a 6= 0.)

Notice that it also follows that if U1 is the Schrödinger kernel associated
to −∆ in any open subset M of Rn with boundary conditions that make the
operator positive and self-adjoint, then

U1(t, x, y) = (4πt)−n/2ei|x−y|2/4t + o(t∞), in D′, as t→ 0+, (119)

uniformly and strongly on compacts of M. In particular,

U1(t, x, x) = (4πt)−n/2 + o(t∞), in D′, as t→ 0+, (120)

uniformly and strongly on compacts of M. (We reiterate that this holds in the
interior of M only.) ♦

Apart from (120) we have had little to say in this section about the much-
studied diagonal expansions of the heat and Schrödinger kernels. See, however,
[10], where the methods of this paper are applied in that arena.

7 Expansion of Green kernels II: Global expan-
sions

When considering a second-order differential operator on a one-dimensional
manifold, the variable λ of the spectral density e(x, y;λ) is often replaced by
the variable ω defined by ω2 = λ. For instance, the asymptotic behavior of
ωn = λ

1/2
n , the square root of the nth eigenvalue, has a more convenient form

than that for λn in the case of regular Sturm–Liouville equations. But, does
this change of variable have any effect on the expansion of the associated Green
kernels?

Consider, for instance, the behavior of the kernel

e(x, y;λ) =
2
π

∞∑
n=1

sinnx sinny δ(λ− n2), (121)

which we studied before. Let ω2 = λ, and consider the kernel ẽ(x, y;ω) given
by

ẽ(x, y;ω) = 2ω e(x, y;ω2) =
2
π

∞∑
n=1

sinnx sinny δ(ω − n). (122)
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The behavior of ẽ(x, y;ω) at infinity can be obtained by studying the parametric
behavior, i.e., ẽ(x, y;σω) as σ → ∞. Letting ε = 1/σ, we are led to consider
the development of

2
π

∞∑
n=1

sinnx sinny φ(εn) = 〈ẽ(x, y;ω), φ(εω)〉ω (123)

as ε → 0+. The even moments of ẽ coincide with those of e of half the order;
i.e.,

〈ẽ(x, y;ω), ω2k〉 = δ(2k)(x− y). (124)

But we also have to consider odd-order moments, such as

J(x, y) = 〈ẽ(x, y;ω), ω〉 =
2
π

∞∑
n=1

n sinnx sinny. (125)

The operator corresponding to J is not the derivative d/dx, but rather (d/dx)Q,
where Q is a Hilbert transform. Thus, J is not a local operator: in general
suppJ(φ) is not contained in suppφ. Thus, the expansion

ẽ(x, y;σω) ∼ δ(x− y)δ(ω)
σ

− J(x, y)δ′(ω)
σ2

+
δ′′(x− y)δ′′(ω)

2σ3
− · · · (126)

has a nonlocal character: The expansion of 〈ẽ(x, y;σω), f(y)〉 as σ → ∞ may
have nonzero contributions outside of supp f .

The change of variable ω2 = λ, which seems so innocent, has introduced
a new phenomenon into the expansion of the spectral density: the appearance
of nonlocal terms. This will also apply to the expansion of the corresponding
Green kernels. Consider the expansion of the cylinder kernel (A9b)

T (t, x, y) =
t

π((x− y)2 + t2)
. (127)

We have

t

π((x− y)2 + t2)
∼ δ(x−y)+

t

π(x− y)2
− δ′′(x− y)t2

2
+

t3

π(x− y)3
+ · · · (128)

as t → 0+, which is a nonlocal expansion because the odd-order terms are
nonlocal. In particular, the expansion does not vanish when x 6= y.

Why? Why do the results of the previous section fail? The operator corre-
sponding to (127) is e−tH1/2

, where H = −d2/dx2 on R. Thus, we arrive at the
same question: How does the change λ 7→ λ1/2 = ω affect our results? How-
ever, the answer is now clearer: H1/2 is a nonlocal pseudodifferential operator,
and J(x, y) is simply its kernel. The nonlocality of the odd-order moments just
reflects the fact that the basic operator H1/2 is not local.

The behavior of summability after changes of variables was already studied
at the beginning of the century by Hardy [24, 26] and is the central theme in
[17].
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When using the distributional approach, we can see that the change ω =
λ1/2, and similar ones, do not introduce problems at infinity. Rather, the point
is that the change introduces a new structure at the origin.

Let f ∈ D′ have supp f ⊆ (0,∞). Then f(ω2) is a well-defined distribution,
given by

〈f(ω2), φ(ω)〉 = 1
2 〈f(λ), λ−1/2φ(λ1/2)〉. (129)

When 0 ∈ supp f , however, there is no canonical way to define f(ω2). That
there are no problems at infinity follows from the results of [9].

Lemma 7.1. Let f be in D′(R) with supp f ⊆ (0,∞). Then f is distribu-
tionally small at infinity if and only if f(ω2) is.

Proof: The generalized function f is distributionally small at infinity if and
only if it belongs to K′. Thus it suffices to see that f(λ) belongs to K′ if and
only if f(ω2) does, and, by duality, it suffices to see that if suppφ ⊆ (0,∞)
then φ(ω) belongs to K if and only if λ−1/2φ(λ1/2) does. ♦

Therefore, if e(x, y;λ) is the spectral density kernel corresponding to a pos-
itive self-adjoint operator H, then e(x, y;ω2) is also distributionally small as a
function of ω, both distributionally and pointwise on x 6= y. However, as we
have seen, the corresponding moment expansion for e(x, y;ω2) will contain extra
terms. These arise as a special case of a general theorem that extends the con-
clusions of Sections 5 and 6 to the situation where the function or distribution
g does not have a Taylor expansion at the origin.

The spaces A{φn} associated to an asymptotic sequence are discussed in
Refs. [11, 12]. In particular, if αn is a sequence with <e αn ↗ ∞, then the
space K{xαn} consists of those smooth functions φ defined on (0,∞) that have
the behavior of the space K at infinity but at the origin can be developed in a
strong expansion

φ(x) ∼ a1x
α1 + a2x

α2 + a3x
α3 + · · · as x→ 0+. (130)

The point is that the αn need not be nonnegative integers.
The functionals δj ∈ K′{xαn} given by

〈δj(x), φ(x)〉 = aj (131)

play the role of the traditional delta functions. Each f ∈ K′{xαn} admits a
generalized moment asymptotic expansion,

f(λx) ∼
∞∑

j=1

µ(αj)δj(x)
λαj+1

as λ→∞, (132)

where µ(αj) = 〈f(x), xαj 〉 are the moments. Therefore, if g ∈ K{xαn} then the
expansion of G(t) = 〈f(x), g(tx)〉 can be obtained from (132) as

G(t) ∼
∞∑

j=1

µ(αj) ajt
αj as t→ 0+, (133)
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where aj = 〈δj(x), g(x)〉. But following the ideas of Section 5 we can define
G(t) = 〈f(x), g(tx)〉 when g is a distribution of S ′ with supp g ⊆ [0,∞), whose
behavior at the origin is of the form

g(εx) ∼
∞∑

j=1

aj ε
αj x

αj

+ as ε→ 0+, (134a)

a fact that we express by saying that

g(x) ∼
∞∑

j=1

aj x
αj , distributionally, as x→ 0+. (134b)

Then G(t) will have the same expansion (133), but in the average or distribu-
tional sense. A corresponding result for operators also holds.

Theorem 7.1. Let H be a positive self-adjoint operator on the domain X
of the Hilbert space H. Let X∞ be the intersection of the domains of Hn for
n ∈ R. Let g ∈ S ′ with supp g ⊆ [0,∞) have a distributional expansion of the
type g(x) ∼

∑∞
j=1 aj x

αj as x→ 0+, where <e αn ↗∞. Then G(t) = g(tH) can
be defined as an element of S ′(R, L(X∞,H)) with support contained in [0,∞),
and G(t) admits the distributional expansion

G(t) ∼
∞∑

j=1

aj H
αj tαj , as t→ 0+, in D′. (135)

When g belongs to K{xαn}, (135) becomes a pointwise expansion. ♦
Therefore, we may generalize our previous discussion as follows: If H is a

differential operator, then the expansion of the Green function of g(tH) is local
or global depending on whether the expansion (134) of g at the origin is of the
Taylor-series type or not.

Example. The small-t expansion of the cylinder function T (t, x, y) de-
scribed in (A3) is given by

T (t, x, y) ∼
∞∑

n=0

(−1)nH
n/2
x (δ(x− y)) tn

n!
as t→ 0+. (136)

The expansion is pointwise in t and distributional in (x, y). The expansion is
also pointwise in t for x 6= y, but we do not get T (t, x, y) = o(t∞) because the
odd terms in the expansion do not vanish for x 6= y. This type of behavior is
typical of harmonic functions near boundaries. ♦

We may look at the locality problem from a different perspective. Suppose
H1 and H2 are two different self-adjoint extensions of the same differential
operator on a subset U of M. Then the two cylinder kernels T1(t, x, y) and
T2(t, x, y) have different expansions as t → 0+ even if (x, y) ∈ U × U . The
same is true of the associated Wightman functions. In both cases the small-t
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expansion of the Green kernel reflects some global properties of the operators
H1 and H2. Since the cylinder and Wightman functions are constructed from
the operators H1/2

1 and H1/2
2 , one may ask if this nonlocal character can already

be observed in the spectral densities e
H

1/2
j

(x, y;λ), j = 1, 2. Interestingly, the
nonlocal character cannot be seen in the Cesàro behavior, since according to
Theorem 7.2 below we have

e
H

1/2
1

(x, y;λ) = e
H

1/2
2

(x, y;λ) + o(λ−∞) (C) as λ→∞ , (137)

for (x, y) ∈ U × U . Instead, the nonlocal character of the small-t expansion
of the Green kernels is explained by the difference in the moments. (Recall
Theorem 2.1 and the formula (14).)

We finish by giving a result that justifies (137) and also has an interest of
its own.

Theorem 7.2. Let H1 and H2 be two pseudodifferential operators acting
on the manifold M, with spectral densities ej(x, y;λ) for j = 1, 2. Let U be an
open set of M and suppose that H1 −H2 is a smoothing operator in U . Then

e1(x, y;λ) = e2(x, y;λ) + o(λ−∞) (C) as λ→∞, (138)

in the topology of the space E(U × U) and, in particular, pointwise on (x, y) ∈
U × U .

Proof: If φ ∈ D(R), then φ(H1) − φ(H2) is a smoothing operator, thus
〈e1(x, y;λ)− e2(x, y;λ), f(x)g(y)〉 is a well-defined element of D′(R) given by

〈〈e1(x, y;λ)− e2(x, y;λ), f(x)g(y)〉, φ(λ)〉 = 〈(φ(H1)− φ(H2))f, g〉. (139)

In general this generalized function is not a distributionally small function of λ,
but if supp f ⊂ U and supp g ⊂ U then all the moments

〈〈e1(x, y;λ)− e2(x, y;λ), f(x)g(y)〉, λn〉 = 〈(Hn
1 −Hn

2 )f, g〉 (140)

exist because H1 −H2 is smoothing in U . Therefore,

〈e1(x, y;λ)− e2(x, y;λ), f(x)g(y)〉

belongs to K′(R); that is, it is a distributionally small function. Hence,

〈e1(x, y;λ)− e2(x, y;λ), f(x)g(y)〉 = o(λ−∞) (C) as λ→∞ (141)

for each f, g ∈ E ′(U), and (138) follows by duality. ♦

Acknowledgments. We thank I. G. Avramidi for helpful comments.



30 Distributional asymptotic expansions EJDE–1999/07

Appendix: The simplest one-dimensional exam-
ples

Let H be a positive, self-adjoint, second-order linear differential operator on
scalar functions, on a manifold or region M. We are concerned with distribu-
tions of the type G(t, x, y) (t ∈ R, x ∈ M, y ∈ M) that are integral kernels of
parametrized operator-valued functions of H. In particular:

(1) The heat kernel, K(t, x, y), represents the operator e−tH , which solves
the heat equation

− ∂Ψ
∂t

= HΨ, lim
t↓0

Ψ(t, x) = f(x), (A1)

for (t, x) ∈ (0,∞)×M, by Ψ(t, x) = e−tHf(x).
(2) The Schrödinger propagator, U(t, x, y), is the kernel of e−itH , which

solves the Schrödinger equation

i
∂Ψ
∂t

= HΨ, lim
t→0

Ψ(t, x) = f(x), (A2)

for (t, x) ∈ R×M, by Ψ(t, x) = e−itHf(x).
(3) Let T (t, x, y) be the integral kernel of the operator e−t

√
H , which solves

the elliptic equation

− ∂2Ψ
∂t2

+HΨ = 0, lim
t↓0

Ψ(t, x) = f(x), lim
t→+∞

Ψ(t, x) = 0, (A3)

in the infinite half-cylinder (0,∞)×M, by Ψ(t, x) = e−t
√

Hf(x). We shall call
this the cylinder kernel of H. It may also be regarded as the heat kernel of the
first-order pseudodifferential operator

√
H.

(4) The Wightman function, W (t, x, y), is the kernel of (2
√
H)−1e−it

√
H .

This operator solves the wave equation

− ∂2Ψ
∂t2

= HΨ (A4)

with the nonlocal initial data

lim
t↓0

Ψ(t, x) = (2
√
H)−1f(x), lim

t↓0

∂Ψ
∂t

(t, x) = − i

2
f(x). (A5)

The significance of W is that it is the two-point vacuum expectation value of
a quantized scalar field satisfying the time-independent, linear field equation
(A4):

W (t, x, y) = 〈0|φ(t, x)φ(0, y)|0〉

(e.g., [16], Chapters 3–5).
These four kernels are rather diverse in their asymptotic behavior as t ap-

proaches 0 and also in the convergence properties of their spectral expansions.



EJDE–1999/07 R. Estrada & S. A. Fulling 31

Most of the relevant mathematical phenomena that distinguish them can be
demonstrated already in the simplest case,

H = − ∂2

∂x2
(A6)

with M either R or a bounded interval (0, π). (For other one-dimensional M
see [17].) We record here the spectral expansion (Fourier transform or series) of
each kernel and also its actual functional value (closed form or image sum).

Case M = R
Heat kernel:

K(t, x, y) =
1

2π

∫ ∞

−∞
eik(x−y)e−k2t dk. (A7a)

K(t, x, y) = (4πt)−1/2e−(x−y)2/4t. (A7b)

Schrödinger propagator:

U(t, x, y) =
1

2π

∫ ∞

−∞
eik(x−y)e−ik2t dk. (A8a)

U(t, x, y) = e−i(sgn t)π/4 (4πt)−1/2ei(x−y)2/4t. (A8b)

Cylinder kernel:

T (t, x, y) =
1

2π

∫ ∞

−∞
eik(x−y)e−|k|t dk. (A9a)

T (t, x, y) =
t

π

1
(x− y)2 + t2

. (A9b)

Wightman function:

W (t, x, y) =
1

4π

∫ ∞

−∞
eik(x−y) e

−i|k|t

|k|
dk. (A10)

This integral is divergent at k = 0 and does not make sense even as a distribution
except on a restricted class of test functions. This “infrared” problem, which is
irrelevant to the main issues of the present paper, disappears when one (1) goes
to higher dimension, (2) adds a positive constant (“mass”) to H, or (3) takes
one or more derivatives of W with respect to any of its variables. Therefore, we
do not list an integrated form of (A10). (If we gave one, it would be nonunique
and would grow logarithmically in (x − y)2, thus being useless for forming an
image sum for (A14).) For more information about infrared complications in
simple model quantum field theories, see [19] and references therein.
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Case M = (0, π)

Heat kernel:

K(t, x, y) =
2
π

∞∑
k=1

sin(kx) sin(ky)e−k2t. (A11a)

K(t, x, y) = (4πt)−1/2
∞∑

N=−∞

[
e−(x−y−2Nπ)2/4t − e−(x+y−2Nπ)2/4t

]
. (A11b)

Schrödinger propagator:

U(t, x, y) =
2
π

∞∑
k=1

sin(kx) sin(ky)e−ik2t. (A12a)

U(t, x, y) = e−i(sgn t)π/4 (4πt)−1/2
∞∑

N=−∞

[
ei(x−y−2Nπ)2/4t − ei(x+y−2Nπ)2/4t

]
.

(A12b)

Cylinder kernel:

T (t, x, y) =
2
π

∞∑
k=1

sin(kx) sin(ky)e−kt. (A13a)

T (t, x, y) =
t

π

∞∑
N=−∞

[
1

(x− y − 2Nπ)2 + t2
− 1

(x+ y − 2Nπ)2 + t2

]
. (A13b)

In this case a closed form is obtainable:

T (t, x, y) =
1

2π

[
sinh t

cosh t− cos(x− y)
− sinh t

cosh t− cos(x+ y)

]
. (A13c)

Wightman function:

W (t, x, y) = − 1
π

∞∑
k=1

sin(kx) sin(ky)
e−ikt

k
. (A14a)

This is expressible in the closed form

W (t, x, y) =
1

4π
ln

∣∣∣∣cos t− cos(x+ y)
cos t− cos(x− y)

∣∣∣∣ +
i

4
P (t, x, y), (A14b)

where

P (t, x, y) =


−1 for 2kπ − f(x+ y) < t < 2kπ − |x− y|,
0 for 2kπ − |x− y| < t < 2kπ + |x− y|,
1 for 2kπ + |x− y| < t < 2kπ + f(x+ y),
0 for 2kπ + f(x+ y) < t < 2(k + 1)π − f(x+ y),

(A15)
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for k ∈ Z, with

f(z) =
{
z if 0 ≤ z ≤ π,
2π − z if π ≤ z ≤ 2π.

(A16)

(P is essentially the standard Green function for the Dirichlet problem for the
wave equation — the d’Alembert solution modified by reflections.)

Proof of (A13c): Write (A13a) as

− 1
2π

∞∑
k=1

[
eik(x+y)−kt + e−ik(x+y)−kt − eik(x−y)−kt − e−ik(x−y)−kt

]
.

Evaluate each sum by the geometric series
∞∑

k=1

ekz =
ez

1− ez
. (A17)

Some algebraic reduction yields (A13c). ♦
Proof of (A14b): Start with the well-known dispersion relation

1
x± i0

= P 1
x
∓ πiδ(x), (A18)

where P 1
x is a principal-value distribution, whose antiderivative is ln |x| +

constant. This generalizes easily to:
Lemma A.1. Let F be analytic in a region Ω \ {x1, . . . , xn}, xj ∈ R, where

Ω intersects R on (a, b) and each xj is a simple pole of F with residue αj. Then

F (x− i0) = PF (x) + πi
n∑

j=1

αjδ(x− xj). (A19)

♦
To apply this to (A14b), replace t by ib in (A13a) and (A13c):
∞∑

k=1

sin(kx) sin(ky)e−ikb =
i

4

(
sin b

cos b− cos(x− y)
− sin b

cos b− cos(x+ y)

)
,

for Im b < 0. There are poles at b = 2kπ ± (x − y) with residue i/4 and at
b = 2kπ ± (x+ y) with residue −i/4. Thus for b ∈ R,

∞∑
k=1

sin kx sin ky e−ikb

=
i

4

[
P

(
sin b

cos b− cos(x− y)
− sin b

cos b− cos(x+ y)

)
(A20)

+πi
∞∑

k=−∞

(
δ(b− 2kπ − x+ y) + δ(b− 2kπ + x− y)

−δ(b− 2kπ − x− y)− δ(b− 2kπ + x+ y)
)]

.
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Also, integrating (A13a) and (A13c) and letting t→ 0+, one gets
∞∑

k=1

sin kx sin ky
k

=
1
4

ln
(

1− cos(x+ y)
1− cos(x− y)

)
. (A21)

Therefore, integrating (A20) yields
∞∑

k=1

sin kx sin ky e−ikt

k

= −i
∫ t

0

∞∑
k=1

sin kx sin ky e−ikb db+
∞∑

k=1

sin kx sin ky
k

=
1
4

∫ t

0

P
(

sin b
cos b− cos(x− y)

− sin b
cos b− cos(x+ y)

)
db

+
1
4

ln
(

1− cos(x+ y)
1− cos(x− y)

)
+
πi

4

∫ t

0

∞∑
k=−∞

(
δ(b− 2kπ − x+ y) + δ(b− 2kπ + x− y)

−δ(b− 2kπ − x− y)− δ(b− 2kπ + x+ y)
)
db

=
1
4

ln
∣∣∣∣cos t− cos(x+ y)
cos t− cos(x− y)

∣∣∣∣ +
πi

4
P (t, x, y) ,

which is (A14b). ♦
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Addendum: July 22, 2005.

The two formulas given for the (well known) Green kernel of the time-dependent
free Schródinger equation do not agree with each other nor with the truth.

In equations (119) and (120) and the text paragraph above them, the factor
(4πt)−n/2 should be (4πit)−n/2 with the branch cut for (it)1/2 understood to
be the negative real axis.

In equations (A8b) and (A12b) the factor (4πt)−1/2 should be (4π|t|)−1/2.
These transcription errors in no way affect the conclusions of the paper.


