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BOUNDARY REGULARITY FOR STRONGLY DEGENERATE

OPERATORS OF GRUSHIN TYPE

GIUSEPPE DI FAZIO, MARIA STELLA FANCIULLO, PIERO ZAMBONI

Communicated by Giovanni Molica Bisci

Abstract. We prove Harnack inequality and global regularity results for weak
solutions of quasilinear degenerate equations driven by operators of Grushin

type with natural growth. Degeneracy is a power of a strong A∞ weight.

Regularity results are achieved under minimal assumptions on the lower order
coefficients.

1. Introduction

In recent decades regularity for elliptic PDEs became more and more important
both in theoretical and in applied Mathematics. This paper contributes towards
a complete regularity theory concerning solutions of degenerate elliptic equations
under minimal assumptions on the coefficients.

Concerning the study of the regularity properties of solutions of quasilinear el-
liptic equations of the form

divA(x, u,∇u) +B(x, u,∇u) = 0 (1.1)

we recall the classical works [18, 23, 24], where regularity under Lp assumptions
took its final form.

The first paper where non-Lp-conditions appear, is [20], where (1.1) has been
investigated under somewhat simplified structure although the right hand side is
allowed to be a measure in some Morrey space. Following De Giorgi method, as
adapted by Ladyzhenskaya and Ural’tseva in [18] to quasilinear equations, Hölder
continuity of the weak solutions is proved.

Improvements of [20] can be found in [17, 19] where some Lp assumptions are
weakened or replaced by Morrey space assumptions. Equation (1.1) has been inves-
tigated in [25] assuming Stummel-Kato type hypotheses on the lower order coeffi-
cients. This is a kind of generalization of the [1, 4] to quasilinear elliptic equations.

We now turn on degenerate elliptic equations. Many regularity results for weak
solutions of elliptic equations have been generalized to the Carnot Caratheodory
(CC) spaces. In such spaces the metric is generated by sub-unit curves associated to
a system of non-commuting vector fields. In this direction we quote [3, 5, 6, 11, 12],
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where the above mentioned results are obtained in the subelliptic setting through
Morrey and Stummel-Kato type assumptions.

Almost at the same time a parallel investigation has been performed in [13, 8],
where degeneracy of operator is due to a suitable power of a strong A∞. There a
weighted version of Stummel-Kato class has been defined to obtain the continuity
of weak solutions.

Strong A∞ weights have been introduced by David and Semmes in [7] for different
purposes and it has been found useful in several problems related to geometric
measure theory and quasiconformal mappings. In [8, 13] a strong A∞ weighted
Stummel-Kato class has been defined and the continuity of weak solutions has
been obtained.

The first attempt to consider together the two types of degeneracy described
above, has been exploited by Franchi, Gutierrez and Wheeden in [14, 15] where
they proved Harnack inequality for positive weak solutions of equation

div(w(z)∇λu(z)) = 0

where w is a power of a strong A∞ weight and ∇λu = (∇xu(z), λ(x)∇yu(z)). We
remark that equations studied in [14, 15] do not contain lower order terms.

In this article we extend results in [14, 15] to a more general equation. Namely,
in Ω ⊂ RN = Rnx × Rmy , we consider the quasilinear elliptic equation in divergence
form

divA(z, u,∇λu) +B(z, u,∇λu) = 0 (1.2)

where A and B are measurable functions satisfying suitable structure conditions of
the form

|A(z, u, ξ)| ≤ aw(z)[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + b(z)|u|p−1 + e(z)

|B(z, u, ξ)| ≤ b0w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 + b1(z)[|ξx|2

+ λ2(x)|ξy|2]
p−1
2 + d(z)|u|p−1 + f(z)

ξ ·A(z, u, ξ) ≥ w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 − d1(z)|u|p − g(z)

(1.3)

where w = v1− p
N , 1 < p < N , v is a strong A∞ weight and λ is a suitable function

we make precise later.
We briefly describe the content of this paper. In Section 2 we recall the definition

of strong A∞ weight and the related function spaces. In Section 3 we give the
definitions of Stummel-Kato and Morrey classes introduced in [9, 10] (see e.g. [21,
22]) and state Fefferman type inequality which will allows us to control the integral
arising from the coefficients in (1.3). In Section 4, following Trudinger pattern (see
[24]), we obtain Harnack inequality for non negative weak solutions of equation
(1.2) and, as consequence, the regularity of weak solutions. In particular, we prove
continuity results under Stummel-Kato type assumptions, and Hölder continuity
result under Morrey type assumptions. Finally, in Section 5 we use Trudinger
technique to prove Harnack inequality up to the boundary.

2. Strong A∞ weights and function spaces

We denote by z = (x, y) a point in RN , with x ∈ Rn and y ∈ Rm, n + m = N .
We assume that there exists a function λ(x) defined on Rn such that

(H1) λ = λ(x) is a continuous nonnegative function vanishing only at a finite
number of points;
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(H2) λn is a strong A∞ weight (see Definition 2.2);
(H3) λ satisfies an infinite order reverse Hölder inequality, i.e. for any x0 ∈ Rn,

r > 0 we have

−
∫
|x−x0|<r

λ(x)dz ∼ max
|x−x0|<r

λ(x) .

If u : RN → R is a differentiable function a.e. in RN , we put ∇λu(z) =
(∇xu(z), λ(x)∇yu(z)), so that |∇λu|2 = |∇xu|2 + λ2(x)|∇yu|2. We define the
Carnot-Carathéodory metric (C-C metric) ρ in RN with respect to ∇λ in the fol-
lowing way. An absolutely continuous curve γ : [0, T ]→ RN is said to be sub-unit
if for any z = (x, y) ∈ RN ,

〈γ′(t), z〉2 ≤ |x|2 + λ(γ(t))|y|2

for a.e. t ∈ [0, T ]. If z1,z2 ∈ RN we put

ρ(z1, z2) = inf
{
T ≥ 0 : ∃ a sub-unit curve γ : [0, T ]→ RN ,

such that γ(0) = z1 and γ(T ) = z2

}
.

We denote by B = Br = B(z0, r) the C-C metric ball centered at z0 of radius r.
Now we define the Aq and the strong A∞ weights (see [14, 15]).

Definition 2.1. Let q > 1 and let v be a nonnegative locally integrable function
in RN . We say that v is a weight of the Muckenhoupt class Aq if

sup
B

( 1

|B|

∫
B

v(z) dz
)( 1

|B|

∫
B

[v(z)]
−1
q−1 dz

)q−1

≡ C0 < +∞ ,

where the supremum is taken over all Carnot-Carathéodory metric balls B in RN .
The number C0 is called the Aq constant of v.

Definition 2.2. Let v be an Aq weight for some q > 1. If z1, z2 belong to RN , put

δ(z1, z2) = inf
(∫

B

v(z)λ
m
N−1 (z)dz

)1/N

,

where the infimum is taken over the balls B such that z1, z2 ∈ B.
If γ : [0, T ]→ RN is a continuous curve, we define the v-lenght of γ as

l(γ) = lim inf
|σ|→0

p−1∑
i=0

δ(γ(ti+1), γ(ti)) ,

where σ = {t0, . . . , tp} is a partition of [0, T ], and we define a distance d(z1, z2) as
the infimum of the v- lengths of sub-unit curves connecting z1 and z2. If there exist
positive constants c1 and c2 such that

c1δ(z1, z2) ≤ d(z1, z2) ≤ c2δ(z1, z2) ,

we say that v is a strong A∞ weight for the metric ρ.

An example of strong A∞ weight is the function v(z) = ρ(z, z0)α with α ≥ 0 and
z0 ∈ RN (see [15]).

Using strong A∞ weights we define Lebesgue and Sobolev classes.
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Definition 2.3. Let v be a strong A∞ weight and w = v1−p/N , 1 ≤ p < N ,
Ω ⊂ RN . For any u ∈ C∞0 (Ω) we set

‖u‖Lpv(Ω) =
(∫

Ω

|u(z)|p w(z) dz
)1/p

.

We define Lpv(Ω) to be the completion of C∞0 (Ω) with respect to the above norm.
For u ∈ C∞(Ω) we set

‖u‖H1,p
v (Ω) =

(∫
Ω

|u(z)|p w(z) dz
)1/p

+
(∫

Ω

|∇λu(z)|p w(z) dz
)1/p

. (2.1)

We define H1,p
0,v (Ω) to be the completion of C∞0 (Ω) with respect to the norm (2.1)

and H1,p
v (Ω) to be the completion of C∞(Ω) with respect to the same norm.

Now to recall the Sobolev embedding theorem and the representation formula
proved in [15], Theorem I, we need another assumption on strong A∞ weights.

A strong A∞ weight v satisfies the local boundedness condition near the zeros
of λ if the following condition holds

if λ(x1) = 0, then v(x, y) is bounded as x → x1 uniformly in y,
for y in every bounded set.

(2.2)

Theorem 2.4. Let 1 < p < N and v be a strong A∞. If there exists a strong A∞
weight w satisfying (Zλ) such that v1−p/Nw−(N−1)/N belongs to Ap with respect to

the (doubling) measure w(N−1)/Ndz, then there exists a constant q > p such that(
−
∫
B(z0,r)

|g − µ|qv1−p/Ndz
)1/q

≤ Cr
(
−
∫
B(z0,r)

|∇λg|pv1−p/Ndz
)1/p

(2.3)

for any Lipschitz continuous function g, where µ can be chosen to be the v1−p/N -
average of g over B(z0, r).

Remark 2.5. We stress that if we take the weights v = w = ρα(0, z) and the
function λ = |x|σ, (α, σ > 0), the assumptions of Theorem 2.4 are satisfied (see
also [14]).

3. Stummel-Kato type classes

In this Section we recall a representation formula (see [15, Corollary 3.2]) to
define Stummel - Kato type classes.

Theorem 3.1. Let Ω be a bounded domain in RN , v a strong A∞ weight satisfying
(2.2) and u a compactly supported smooth function in a metric ball B = BR ⊂ Ω.
Then there exists c independent of u such that

|u(z)| ≤ c
∫
B

|∇λu(ξ)|v1− 1
N (ξ)k(z, ξ)dξ

for almost all z ∈ B, where

k(z, ξ) =
(∫

Bρ(z,ξ)(z)

v(ζ)λ
m
N−1 (ζ)dζ

) 1−N
N

.

Now we give the definition of Stummel-Kato and Morrey classes.
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Definition 3.2. Let V be a locally integrable function in Ω, r > 0, and p ∈]1, N [.

Let v be a strong A∞ weight. We set w(z ) ≡ v1− p
N (z ) and

φ(V ; r) ≡ sup
z∈Ω

(∫
B(z,r)

k(z, ξ)v(ξ)
(∫

Ω

|V (ζ)|k(ζ, ξ)w(ζ)dζ
) 1
p−1

dξ
)p−1

.

We say that V belongs to the class S̃v(Ω) if φ(V ; r) is just a bounded function in
a neighborhood of the origin.

If, moreover limr→0 φ(V ; r) = 0 then we say that V belongs to the Stummel-Kato
class Sv(Ω).

If there exists ρ > 0 such that∫ ρ

0

φ(V ; t)

t
dt < +∞ ,

then we say that the function V belongs to the class S′v(Ω).
If there exist c and σ > 0 such that φ(V ; r) ≤ crσ then we say that the function

V belongs to the Morrey class L1,σ
v (Ω).

Remark 3.3. If v(z) = 1, λ(x) = 1 and p = 2 the previous definitions give back the
classical Stummel-Kato class (see [1]) and Morrey space L1,n−2+σ for some σ > 0.

Now we state a Fefferman type inequality related to Stummel-Kato classes and
its corollary.

Theorem 3.4. Let v be a strong A∞ weight satisfying (Zλ) and 1 < p < N . If V

belongs to the class S̃v(Ω), then there exists a constant c such that ∀u ∈ C∞0 (Ω)(∫
B

|V (z)||u(z)|p w(z) dz
)1/p

≤ cφ1/p(V ; 2R)
(∫

B

|∇λu(z)|pw dz
)1/p

,

where w(z ) ≡ v1− p
N (z) and R is the radius of a metric ball B, containing the

support of u.

For a proof of the above theorem, see [9, Theorem 2.3].

Corollary 3.5. Let 1 < p < N and v be a strong A∞ weight satisfying (2.2). Let
V belongs to the class Sv(Ω). For any ε > 0, there exists K(ε) such that∫

B

|V (z)||u(z)|pw(z) dz ≤ ε
∫
B

|∇λu(z)|pw(z) dz +K(ε)

∫
B

|u(z)|pw(z) dz ,

for all u ∈ C∞0 (Ω), where w(z) = v(z)1− p
N ,

K(ε) ∼ σ[
φ−1

(
V ; ε

)]N+p

and φ−1 denotes the inverse function of φ.

For a proof of the above colollary, see [9, Corollary 2.1].

4. Harnack inequality

In this section we prove a weak Harnack inequality for non negative weak solu-
tions of the equation

divA(z, u,∇λu) +B(z, u,∇λu) = 0 . (4.1)

First wee recall what we mean by weak solution of (4.1).
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Definition 4.1. A function u ∈ H1,p
v (Ω) is a local weak subsolution (supersolution)

of equation (4.1) in Ω if∫
Ω

A(z, u(z),∇λu(z)) · ∇ϕdz −
∫

Ω

B(z, u(z),∇λu(z))ϕdz ≤ 0 (≥ 0) (4.2)

for every non negative ϕ ∈ H1,p
0,v (Ω). A function u is a weak solution if it is both

super and sub solution.

We require the functions A(z, u, ξ) and B(z, u, ξ) to be measurable functions
satisfying the following structural conditions

|A(z, u, ξ)| ≤ aw(z)[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + b(z)|u|p−1 + e(z)

|B(z, u, ξ)| ≤ b0w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 + b1(z)[|ξx|2

+ λ2(x)|ξy|2]
p−1
2 + d(z)|u|p−1 + f(z)

ξ ·A(z, u, ξ) ≥ w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 − d1(z)|u|p − g(z) .

(4.3)

where 1 < p < N , w = v1− p
N and v is a strong A∞ weight.

We show that locally bounded weak solutions satisfy a Harnack inequality and, as
a consequence, some regularity properties. We shall make the following assumptions
on the lower order terms to ensure the continuity of local weak solutions:

a, b0 ∈ R,
( b
w

) p
p−1

,
(b1
w

)p
,
d

w
,
d1

w
,
( e
w

) p
p−1

,
f

w
,
g

w
∈ S′v(Ω) . (4.4)

Theorem 4.2. Let u be a non negative weak supersolution of equation (4.1) in
Ω satisfying (4.3) and (4.4). Let Br be a ball such that B3r b Ω and let M be a
constant such that u ≤M in B3r. Then there exists c depending on n, M , a, b0, p
and the weight v such that

w−1(B2r)

∫
B2r

uwdz ≤ c
{

inf
Br
u+ h(r)

}
where

h(r) =
[
φ
(( e
w

) p
p−1 ; r

)
+ φ

( g
w

; r
)]1/p

+
[
φ
( f
w

; r
)] 1

p−1

.

Proof. We simplify the structure assumptions by setting uh = u+ h(r). We obtain

|A(z, u, ξ)| ≤ aw(z)[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + b2(z)|uh|p−1

|B(z, u, ξ)| ≤ b0w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 + b1(z)[|ξx|2

+ λ2(x)|ξy|2]
p−1
2 + d2(z)|uh|p−1

ξ ·A(z, u, ξ) ≥ w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 − d3(z)|uh|p

(4.5)

where b2 = b+ h(r)1−pe, d2 = d+ h(r)1−pf , and d3 = d1 + h(r)−pg.
It is easy to check that b2, d2, and d3 satisfy the same assumptions of b, d d1.

We take ϕ = ηpuβhe
−b0uh , β < 0, as test function in (4.2), (see [18]), where

η ∈ C1
0 (B3r), η ≥ 0. We obtain∫

B3r

ηpe−b0uh(b0u
β
h + |β|uβ−1

h )∇λuh ·Adz

− p
∫
B3r

uβhη
p−1e−b0uh∇λη ·Adz +

∫
B3r

ηpuβhe
−b0uhBdz ≤ 0 .
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The previous inequality and the structure assumptions (4.5) yield∫
B3r

e−b0uhηp(b0u
β
h + |β|uβ−1

h )|∇λuh|pwdz

≤
∫
B3r

e−b0uhηp(b0u
β
h + |β|uβ−1

h )(∇λuh ·A+ d3|uh|p)dz

≤ p
∫
B3r

uβhη
p−1e−b0uh∇λη ·Adz −

∫
B3r

ηpuβhe
−b0uhB dz

+

∫
B3r

e−b0uhηp(b0u
β
h + |β|uβ−1

h )d3|uh|p dz

≤ p
∫
B3r

uβhη
p−1e−b0uh∇λη ·Adz

+

∫
B3r

ηpuβhe
−b0uh(b0|∇λuh|pw + b1|∇λuh|p−1 + d2|uh|p−1)dz

+

∫
B3r

e−b0uhηp(b0u
β
h + |β|uβ−1

h )d3|uh|p dz .

By Young inequality and boundedness of uh in B3r we obtain

|β|
∫
B3r

ηpuβ−1
h |∇λuh|pwdz

≤ cp
∫
B3r

uβhη
p−1∇λη ·Adz

+ c

∫
B3r

ηpuβh(b1|∇λuh|p−1 + d2|uh|p−1)dz

+ c

∫
B3r

ηp(b0u
β
h + |β|uβ−1

h )d3|uh|p dz

≤ c
∫
B3r

{
puβhη

p−1|∇λη|(aw|∇λuh|p−1 + b2|uh|p−1)

+ ηpuβhb1|∇λuh|
p−1 + ηpuβ+p−1

h d2

+ ηpb0u
β+p
h d3 + |β|ηpuβ+p−1

h d2

}
dz

≤ c
∫
B3r

{
puβhη

p−1|∇λη|aw|∇λuh|p−1 + puβ+p−1
h ηp−1|∇λη|b2

+ ηpuβhb1|∇λuh|
p−1 + (1 + |β|)ηpuβ+p−1

h d2 + ηpb0u
β+p
h d3

}
dz .

Then

|β|
∫
B3r

ηpuβ−1
h |∇λuh|pwdz

≤ c(b0,M, p)

∫
B3r

{
uβhη

p−1|∇λη|a|∇λuh|p−1w dz

+ εηpuβ−1
h |∇λuh|pw + c(ε)ηp

bp1
wp−1

uβ+p−1
h

+ ηp−1|∇λη|uβ+p−1
h b2 + (1 + |β|)ηpuβ+p−1

h d2 + ηpuβ+p
h d3

}
dz
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≤ c(b0,M, a, p)

∫
B3r

{
uβhη

p−1|∇λη||∇λuh|p−1wdz

+ εηpuβ−1
h |∇λuh|pw + c(ε)ηp

bp1
wp−1

uβ+p−1
h

+ uβ+p−1
h |∇λη|pw + ηpuβ+p−1

h

b
p
p−1

2

w
1
p−1

+ (1 + |β|)ηpuβ+p−1
h d2 + ηpuβ+p−1

h d3

}
dz .

Setting V =
b
p
p−1
2

w
1
p−1

+
bp1

wp−1 + d2 + d3, we obtain∫
B3r

ηpuβ−1
h |∇λuh|pwdz

≤ c(1 + |β|−1)p
∫
B3r

{
|∇λη|puβ+p−1

h w + V ηpuβ+p−1
h

}
dz .

(4.6)

Now we set

U(x) =

{
uqh(x) where pq = p+ β − 1 if β 6= 1− p
log uh(x) ifβ = 1− p

by (4.6) we have∫
B3r

ηp|∇λU|pw dz

≤ c|q|p(1 + |β|−1)p
{∫

B3r

|∇λη|pUpw dz +

∫
B3r

V ηpUp dz
}
, β 6= 1− p ,

(4.7)

while ∫
B3r

ηp|∇λU|pw dz ≤ c
{∫

B3r

|∇λη|pw dz +

∫
B3r

V ηp dz
}

(4.8)

if β = 1− p.
Let us start with the case β = 1− p. By Theorem 3.4 we have∫

B3r

V ηp dz ≤ cφ
(V
w

; diam Ω
)∫

B3r

|∇λη|pw dz ,

and from (4.8), ∫
B3r

ηp|∇λU|pw dz ≤ c
∫
B3r

|∇λη|pw dz .

Let Bh be a ball contained in B2r. Choosing η(x) so that η = 1 in Bh, 0 ≤ η ≤ 1

in B3r \Bh and |∇λη| ≤
3

h
, we obtain

‖∇λU‖Lpv(Bh) ≤ c
w(Bh)1/p

h
.

By Theorem 2.4 and John-Nirenberg lemma [2], there exist two positive constants
p0 and c, such that(

−
∫
B2r

ep0Uw dz
)1/p0(

−
∫
B2r

e−p0Uw dz
)1/p0

≤ c . (4.9)
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Let us consider the family of seminorms

Φ(p, ρ) =
(∫

Bρ

|uh|pw dz
)1/p

, p 6= 0 .

By (4.9) we have

1

w(B2r)1/p0
Φ(p0, 2r) ≤ cw(B2r)

1/p0Φ(−p0, 2r) .

In the case (4.7) by Corollary 3.5 we obtain∫
B3r

|∇λU|pηpw dz ≤ c
{

(|q|p + 1)
(

1 +
1

|β|

)p ∫
B3r

|∇λη|pUpwdz

+
[ 1

φ−1
(
V
w ; |q|−p(1 + 1

|β| )
−p
)]n+p

∫
B3r

ηpUpw dz
}
.

From (2.3), setting k = q/p, we have(∫
B3r

|ηU|kpw dz
)1/k

≤ cw(B)
1
k−1
{

(|q|p + 2)
(

1 +
1

|β|

)p ∫
B3r

|∇λη|pUpw dz

+
[ 1

φ−1
(
V
w ; |q|−p

(
1 + 1

|β|
)−p)]n+p

∫
B3r

ηpUpw dz
}

where c is a positive constant independent of w.
Now we choose the function η. Let r1 and r2 be real numbers such that r ≤ r1 <

r2 ≤ 2r and let the function η be chosen so that η(z) = 1 in Br1 , 0 ≤ η ≤ 1 in Br2 ,
η(z) = 0 outside Br2 , |∇λη| ≤ c

r2−r1 for some fixed constant c. we have(∫
Br1

Ukpw dz
)1/k

≤ cw(B)
1
k−1 1

(r2 − r1)p
(|q|p + 2)

(
1 +

1

|β|

)p
×
[ 1

φ−1
(
V
w ; |q|−p

(
1 + 1

|β|
)−p)]n+p

∫
Br2

Upw dz .

Setting γ = pq = p+ β − 1 and recalling that U(z) = uqh(z), we obtain

Φ(kγ, r1) ≥ c1/γw(B)
1
γ ( 1

k−1)(|q|p + 2)1/γ

×
[ 1

φ−1
(
V
w ; |q|−p

)]n+p
γ 1

(r2 − r1)1/p
Φ(γ, r2) ,

(4.10)

for negative γ. This is the inequality we are going to iterate. If γi = kip0 and
ri = r + r

2i , i = 1, 2, . . . iteration of (4.10) and use of [9, Lemma 2.4] yield

Φ(−∞, r) ≥ c(p, a, φV
w
,diam Ω)ω(Br)

1
p0 Φ(−p0, 2r) .

Therefore by Hölder inequality,

Φ(p′0, 2r) ≤ Φ(p0, 2r)w(Br)
1
p′0
− 1
p0 , p′0 ≤ p0 .

So we obtain
w−1(B2r)Φ(1, 2r) ≤ cΦ(−∞, r)

where c ≡ c(p, a, φV
w
,diam Ω) and the result follows. �

We obtain a weak Harnack inequality for weak subsolutions in a similar way of
Theorem 4.2.
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Theorem 4.3. Let u be a non negative weak subsolution of equation (4.1) in Ω
satisfying (4.3) and (4.4). Let Br be a ball such that B3r b Ω and let M be a
constant such that u ≤M in B3r. Then there exists c depending on n, M , a, b0, p
and the weight v such that

sup
Br

u ≤ c
{
w−1(B2r)

∫
B2r

uwdz + h(r)
}

where

h(r) =
[
φ
(( e
w

) p
p−1 ; 3r

)
+ φ

( g
w

; 3r
)]1/p

+
[
φ
( f
w

; 3r
)] 1

p−1

.

If we take a non negative weak solution, we can put together the two previous
results.

Theorem 4.4. Let u be a non negative weak solution of equation (4.1) in Ω satis-
fying (4.3) and (4.4). Let Br be a ball such that B3r b Ω and let M be a constant
such that u ≤ M in B3r. Then there exists c depending on n, M , a, b0, p and the
weight v such that

sup
Br

u ≤ c
{

inf
Br
u+ h(r)

}
,

where

h(r) =
[
φ
(( e
w

) p
p−1 ; 3r

)
+ φ

( g
w

; 3r
)]1/p

+
[
φ
( f
w

; 3r
)] 1

p−1

.

Now, as a simple consequence of Harnack inequality, we obtain some regularity
results for weak solutions of (4.1). The proof is an immediate consequence of
Harnack inequality so we omit it.

Theorem 4.5. Let u be a locally bounded weak solution of equation (4.1) in Ω
satisfying (4.3) and (4.4). Then u is continuous in Ω.

If we assume more restrictive assumptions on the lower order terms we obtain
the following refinement of the previous one.

Theorem 4.6. Let u be a locally bounded weak solution of equation (4.1) in Ω
satisfying (4.3) and

a, b0 ∈ R,
( b
w

) p
p−1 ,

(b1
w

)p
,
d

w
,
d1

w
,
( e
w

) p
p−1 ,

f

w
,
g

w
∈ L1,σ

v (Ω), σ > 0 .

Then u is locally Hölder continuous in Ω.

5. Boundary Harnack inequality

Our next step is to show a Harnack inequality near the boundary of Ω for weak
supersolutions and subsolutions to the equation

divA(z, u,∇λu) +B(z, u,∇λu) = 0 , (5.1)

with the structural conditions

|A(z, u, ξ)| ≤ aw(z)[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + b(z)|u|p−1 + e(z)

|B(z, u, ξ)| ≤ b0w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 + b1(z)[|ξx|2

+ λ2(x)|ξy|2]
p−1
2 + d(z)|u|p−1 + f(z)

ξ ·A(z, u, ξ) ≥ w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 − d1(z)|u|p − g(z)

(5.2)
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where 1 < p < N , w = v1− p
N and v is a strong A∞ weight and

a, b0 ∈ R,
( b
w

) p
p−1 ,

(b1
w

)p
,
d

w
,
d1

w
,
( e
w

) p
p−1 ,

f

w
,
g

w
∈ S′v(Ω) . (5.3)

Let S be a subset of ∂Ω and u be a function on Ω. We say that u ≤ M on S if
for all ε > 0 there exists a neighborhood N of S such that u(x) ≤ M + ε for a.e.
x ∈ N ∩ Ω. In this way we can define infS u, supS u and oscS u.

Now, let Br be a ball centered at x0 ∈ ∂Ω and u ∈ H1,p
v (Ω ∩B4r, w) we set

ũ(x) =

{
min{u,m} if x ∈ Ω ∩B4r

m if x ∈ Rn \ (Ω ∩B4r)

where m = inf∂Ω∩B4r u. Moreover, we define b = 0, d = 0, d1 = 0, e = 0, f = 0,
g = 0 outside Ω.

Theorem 5.1. Let u ∈ H1,p
v (Ω ∩ B4r) be a weak non negative supersolution of

(5.1) in Ω ∩ B4r. Assume (5.2) and (5.3). Let M be a constant such that u ≤ M
on Ω∩B4r. Then there exists c depending on n, M , a, b0, p and the weight v such
that

w−1(B2r)

∫
B2r

ũ wdz

≤ c
{

inf
Br
ũ+ φ1/p

[( e
w

) p
p−1

; r
]

+ φ
1
p−1

( f
w

; r
)

+ φ1/p
( g
w

; r
)}

.

(5.4)

Proof. Set

h = φ1/p
[( e
w

) p
p−1

; r
]

+ φ
1
p−1

( f
w

; r
)

+ φ1/p
( g
w

; r
)

and ṽ = ũ + h. Let η ∈ C1
0 (B3r) and η ≥ 0. For β < 0 we define ϕ(z) =

ηp[ṽβ − (m+ h)β ]e−|b0|ṽ ∈ H1,p
0,v (B3r). From (5.2), we obtain in the support of ϕ,

|A(z, u,∇λu)| ≤ aw(z)|∇λu|p−1 + b2(z)|ṽ|p−1

|B(z, u,∇λu)| ≤ b0w(z)|∇λu|p + b1(z)|∇λu|p−1 + d2(z)|ṽ|p−1

ξ ·A(z, u,∇λu) ≥ w(z)|∇λu|p − d3(z)|ṽ|p
(5.5)

where b2(z) = b(z) + e(z)
hp−1 , d2(z) = d+ f(z)

hp−1 , and d3(z) = d1(z) + g(z)
hp .

Since, for any 0 < ρ < 3r,

φ
((b2

w

) p
p−1

; ρ
)
≤ φ

(( b
w

) p
p−1

; ρ
)

+
1

hp
φ
(( e

w

) p
p−1

; ρ
)
,

φ
(d2

w
; ρ
)
≤ φ

( d
w

; ρ
)

+
1

hp−1
φ
( f
w

; ρ
)
,

φ
(d3

w
; ρ
)
≤ φ

(d1

w
; ρ
)

+
1

hp
φ
( g
w

; ρ
)

we obtain (b2
w

) p
p−1

,
d2

w
,
d3

w
∈ S′v(B3r).

Since u is a supersolution of (5.1) we have∫
B3r

ηpe−|b0|ṽ{|β|vβ−1 + b0[ṽβ − (m+ h)β ]}A(z, u,∇λu) · ∇λu dz

+

∫
B3r

B(z, u,∇λu)ϕdz
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≤ p
∫
B3r

ηp−1A(z, u,∇λu) · ∇λη[ṽβ − (m+ h)β ]e−|b0|ṽdz

Using (5.5) we obtain∫
B3r

(w|∇λu|pd3ṽ
p)ηpe−|b0|ṽ{|β|ṽβ−1 + b0[ṽβ − (m+ h)β ]}dz

≤ p
∫
B3r

(aw|∇λu|p−1 + b0ṽ
p−1)ηp−1|∇λη|[ṽβ − (m+ h)β ]e−|b0|ṽdz

+

∫
B3r

(b0w|∇λu|p + b1|∇λu|p−1 + d2ṽ
p−1)ηp[ṽβ − (m+ h)β ]e−|b0|ṽdz

from which∫
B3r

|β||∇λu|pηpe−|b0|ṽ ṽβ−1w dx

≤ |β|
∫
B3r

d3η
pṽp+β−1e−|b0|ṽdz + b0

∫
B3r

d3η
pṽp[vβ − (m+ h)β ]e−|b0|ṽ

+ p

∫
B3r

aηp−1|∇λη||∇λu|p−1[ṽβ − (m+ h)β ]e−|b0|ṽwdz

+ p

∫
B3r

b2ṽ
p−1ηp−1|∇λη|[ṽβ − (m+ h)β ]e−|b0|ṽdz

+

∫
B3r

b1η
p|∇λu|p−1[ṽβ − (m+ h)β ]e−|b0|ṽdz

+

∫
B3r

d2ṽ
p−1ηp[ṽβ − (m+ h)β ]e−|b0|ṽdz .

Then ∫
B3r

|β||∇λu|pηpṽβ−1w dx

≤ c|β|
∫
B3r

d3η
pṽp+β−1dz + c

∫
B3r

d3η
pṽp[ṽβ − (m+ h)β ]

+ c

∫
B3r

aηp−1|∇λη||∇λu|p−1[ṽβ − (m+ h)β ]wdz

+ c

∫
B3r

b2ṽ
p−1ηp−1|∇λη|[ṽβ − (m+ h)β ]dz

+ c

∫
B3r

b1η
p|∇λu|p−1[ṽβ − (m+ h)β ]dz

+ c

∫
B3r

d2ṽ
p−1ηp[ṽβ − (m+ h)β ]dz .

Since ṽβ − (m+ h)β ≤ ṽβ the proof follows as in the proof of Theorem 4.2. �

In a similar way, let Br be a ball centered at x0 ∈ ∂Ω and u ∈ H1,p
v (Ω ∩ B4r),

we set

u(x) =

{
max{u,M} if x ∈ Ω ∩B4r

M if x ∈ Rn \ (Ω ∩B4r)

where M = sup∂Ω∩B4r
u.
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Theorem 5.2. Let u ∈ H1,p
v (Ω∩B4r) be a weak non negative subsolution of (5.1)

in Ω ∩ B4r. Assume (5.2) and (5.3). Let M be a constant such that u ≤ M on
Ω ∩ B4r. Then there exists c depending on n, M , a, b0, p and the weight v such
that

sup
Br

u ≤ c
{
w−1(B2r)

∫
B2r

uw dz + φ1/p
[( e
w

) p
p−1 ; r

]
+ φ

1
p−1

( f
w

; r
)

+ φ1/p
( g
w

; r
)}

.

To obtain regularity up to the boundary of the domain we need some geometric
assumptions.

Definition 5.3. Let Ω be a domain in RN and z0 ∈ ∂Ω. Let v be a strong A∞
weight and w = v1− p

N , 1 < p < N . We say that w satisfies the condition Av at z0

if there exist positive constants R0 and A such that

w(Br(z0) \ Ω)

w(Br(z0))
≥ A, 0 < r < R0 .

We say that Ω satisfies the condition Av if it satisfies the condition at any point.

In the case v = 1 the Av condition gives back the outer sphere condition. Using
the geometric assumption Av we give an estimate for the oscillation of solutions
near the boundary.

Theorem 5.4. Let Ω be a bounded open set satisfying the Av condition at z0 ∈ ∂Ω.
Let u be a locally bounded weak solution of equation (5.1) in Ω satisfying (5.2) and
(5.3). Then there exists R0 > 0 such that for any ball Br(z0), with 0 < r < R0 and
µ ∈ (0, 1) we have

oscBr∩Ω u ≤ c
[( r
R0

)α
oscBR0

∩Ω u+ oscB
rµR

1−µ
0
∩∂Ω u+ h(rµR1−µ

0 )
]
,

where c and α are positive constants and h is an infinitesimal function.

Proof. For ρ > 0 set M(ρ) = supBρ∩Ω u and m(ρ) = infBρ∩Ω u, with Bρ = Bρ(z0).

Let 0 < r ≤ R0/4 the function M(4r)− u is solution of

div Ã(z, u,∇λu) = B̃(z, u,∇λu) ,

where

Ã(z, u, ξ) = A(z,M(4r)− u,−ξ),

B̃(z, u, ξ) = B(z,M(4r)− u,−ξ) .

Moreover Ã and B̃ satisfy

|Ã(z, u, ξ)| ≤ aw(z)[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + b|u|p−1 + e,

|B̃(z, u, ξ)| ≤ b0[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + b1[|ξx|2 + λ2(x)|ξy|2]p/2

+ d|u|p−1 + f,

ξ · Ã(z, u, ξ) ≥ w(z)[|ξx|2 + λ2(x)|ξy|2]p/2 − d1|u|p − g ,
where

b(z) = 2pb(z), d(z) = 2pd(z), d1(z) = 2pd1(z),

e(z) = 2pb(z)M(4r)p−1 + e(z), f(z) = 2pd(z)M(4r)p−1 + f(z),
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g(z) = 2pd1(z)M(4r)p−1 + g(z),( b
w

)p/p−1

,
( d
w

)
,
(d1

w

)
,
( e
w

)p/p−1

,
f

w
,
g

w
∈ S′v(Ω) .

Then by (5.4) and condition Av, we have

M(4r)−M ≤ w(B2r \ Ω)

Aw(B2r)
[M(4r)−M ]

=
1

Aw(B2r)

∫
B2r\Ω

[M(4r)−M ]w dx

≤ 1

Aw(B2r)

∫
B2r\Ω

[ ˜M(4r)− u]w dx

≤ c[ inf
Br∩Ω

(M(4r)− u) + h(r)]

≤ c[M(4r)−M(r) + h(r)] .

(5.6)

where M = supB4r∩∂Ω u, m = infB4r∩∂Ω u and

h(r) = φ1/p
[( e
w

) p
p−1 ; r

]
+ φ

1
p−1
( f
w

; r
)

+ φ1/p
( g
w

; r
)
.

In a similar way, for u−m(4r),

m−m(4r) ≤ c[m(r)−m(4r) + h(r)] . (5.7)

From (5.6) and (5.7) we obtain, for θ < 1

M(r)−m(r) ≤ θ[M(4r)−m(4r)] +M −m+ ch(r) ,

from which applying [24, Lemma 8.23] (see also [16]) we obtain the result. �

As consequences of the previous Theorem we obtain the following corollary.

Corollary 5.5. Let Ω be a bounded open set satisfying condition Av in every x0 ∈
∂Ω. Let u be a locally bounded weak solution of equation (5.1) in Ω satisfying (5.2)
and (5.3). Let u = ϕ on ∂Ω. If ϕ is continuous in ∂Ω then u is continuous in Ω.

Now we refine our assumptions on lower order terms. If we assume the coefficients
in a suitable Morrey space we obtain Hölder continuity of the solution.

Corollary 5.6. Let Ω be a bounded open set satisfying the Av condition in every
z0 ∈ ∂Ω. Let u be a locally bounded weak solution of equation (5.1) in Ω satisfying
(5.2) and

a, b0 ∈ R,
( b
w

) p
p−1 ,

(b1
w

)p
,
d

w
,
d1

w
,
( e
w

) p
p−1 ,

f

w
,
g

w
∈ L1,p−ε

v (Ω) , (5.8)

with 0 < ε < p. Let u = ϕ on ∂Ω. If ϕ is Hölder continuous in ∂Ω, then u is
Hölder continuous in Ω.
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type operators, Commun. PDE 19 (1994), 523–604.
[16] D. Gilbarg, N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Springer-

Verlag, Berlin, 1983.

[17] G. M. Lieberman; Sharp form of estimates for subsolutions and supersolutions of quasilinear
elliptic equations involving measures, Comm. PDE 18 (1993), 1191–1212.

[18] O. A. Ladyzhenskaya, N. N. Ural’tseva; Linear and quasilinear elliptic equations, Academic

Press, New York-London, 1968 xviii+495 pp.
[19] J. M. Rakotoson; Quasilinear equations and Spaces of Campanato-Morrey type, Comm.

P.D.E. 16 (1991), 1155–1182.
[20] J. M. Rakotoson, W. P. Ziemer; Local behavior of solutions of quasilinear elliptic equations

with general structure, Trans. AMS 319 (1990), 747–764.
[21] Y. Sawano, G. Di Fazio, D. Hakim; Morrey Spaces: Introduction and Applications to Integral

Operators and PDE’s, Volume I, Taylor and Francis,2020.

[22] Y. Sawano, G. Di Fazio, D. Hakim; Morrey Spaces: Introduction and Applications to Integral

Operators and PDE’s, Volume II , Taylor and Francis, 2020.
[23] J. Serrin; Local behaviour of solutions of quasilinear equations, Acta Math., 111 (1964),

247–302.
[24] N. S. Trudinger; On Harnack type inequalities and their application to quasilinear elliptic

equations, CPAM XX (1967), 721–747.

[25] P. Zamboni; The Harnack inequality for quasilinear elliptic equations under minimal as-

sumptions, Manuscripta Math. 102 (2000), 311–323.



16 G. DI FAZIO, M. S. FANCIULLO, P. ZAMBONI EJDE-2022/65

Giuseppe Di Fazio

Dipartimento di Matematica e Informatica, Università di Catania, Viale A. Doria 6,
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