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BOUNDARY REGULARITY FOR STRONGLY DEGENERATE
OPERATORS OF GRUSHIN TYPE
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Communicated by Giovanni Molica Bisci

ABSTRACT. We prove Harnack inequality and global regularity results for weak
solutions of quasilinear degenerate equations driven by operators of Grushin
type with natural growth. Degeneracy is a power of a strong A weight.
Regularity results are achieved under minimal assumptions on the lower order
coefficients.

1. INTRODUCTION

In recent decades regularity for elliptic PDEs became more and more important
both in theoretical and in applied Mathematics. This paper contributes towards
a complete regularity theory concerning solutions of degenerate elliptic equations
under minimal assumptions on the coefficients.

Concerning the study of the regularity properties of solutions of quasilinear el-
liptic equations of the form

div A(z,u, Vu) + B(z,u, Vu) =0 (1.1)

we recall the classical works [I8], 23], 24], where regularity under LP assumptions
took its final form.

The first paper where non-LP-conditions appear, is [20], where has been
investigated under somewhat simplified structure although the right hand side is
allowed to be a measure in some Morrey space. Following De Giorgi method, as
adapted by Ladyzhenskaya and Ural’tseva in [I8] to quasilinear equations, Holder
continuity of the weak solutions is proved.

Improvements of [20] can be found in [I7], [I9] where some LP assumptions are
weakened or replaced by Morrey space assumptions. Equation has been inves-
tigated in [25] assuming Stummel-Kato type hypotheses on the lower order coeffi-
cients. This is a kind of generalization of the [Il 4] to quasilinear elliptic equations.

We now turn on degenerate elliptic equations. Many regularity results for weak
solutions of elliptic equations have been generalized to the Carnot Caratheodory
(CC) spaces. In such spaces the metric is generated by sub-unit curves associated to
a system of non-commuting vector fields. In this direction we quote [3} 5] [@], [T, 12],
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where the above mentioned results are obtained in the subelliptic setting through
Morrey and Stummel-Kato type assumptions.

Almost at the same time a parallel investigation has been performed in [13] [§],
where degeneracy of operator is due to a suitable power of a strong A,,. There a
weighted version of Stummel-Kato class has been defined to obtain the continuity
of weak solutions.

Strong A, weights have been introduced by David and Semmes in [7] for different
purposes and it has been found useful in several problems related to geometric
measure theory and quasiconformal mappings. In [8, [I3] a strong A weighted
Stummel-Kato class has been defined and the continuity of weak solutions has
been obtained.

The first attempt to consider together the two types of degeneracy described
above, has been exploited by Franchi, Gutierrez and Wheeden in [14] [I5] where
they proved Harnack inequality for positive weak solutions of equation

div(w(z)Vau(z)) =0

where w is a power of a strong A weight and Vyu = (Vyu(z), AMz)Vyu(z)). We
remark that equations studied in [14] [I5] do not contain lower order terms.

In this article we extend results in [I4] [I5] to a more general equation. Namely,
in Q C RN =R” x Ry, we consider the quasilinear elliptic equation in divergence
form

div A(z,u, Vau) + B(z,u, Vau) =0 (1.2)
where A and B are measurable functions satisfying suitable structure conditions of
the form

Az, u,6)| < aw(2)[|&: 2 + N(2)I, 2T + b(2)[ulP ™ + e(2)
|B(z,u,€)| < bow(2)[|Ea|* + X2 (2)[&, 12172 + by (2) [
+22(2)[&,))"T + d(2)ul 7 + £(2)
€ Alz,u,6) > w(2) (&7 + N2 ()&, [P/? — dy () ul” — g(2)

where w = v!"%, 1 < p < N, v is a strong A, weight and X is a suitable function
we make precise later.

We briefly describe the content of this paper. In Section 2 we recall the definition
of strong A, weight and the related function spaces. In Section 3 we give the
definitions of Stummel-Kato and Morrey classes introduced in [9, [10] (see e.g. [21]
22]) and state Fefferman type inequality which will allows us to control the integral
arising from the coefficients in . In Section 4, following Trudinger pattern (see
[24]), we obtain Harnack inequality for non negative weak solutions of equation
(1.2) and, as consequence, the regularity of weak solutions. In particular, we prove
continuity results under Stummel-Kato type assumptions, and Hoélder continuity
result under Morrey type assumptions. Finally, in Section 5 we use Trudinger
technique to prove Harnack inequality up to the boundary.

(1.3)

2. STRONG A,, WEIGHTS AND FUNCTION SPACES
We denote by z = (z,%) a point in RY, with x € R” and y € R™, n+m = N.
We assume that there exists a function A(z) defined on R™ such that

(H1) A = A(x) is a continuous nonnegative function vanishing only at a finite
number of points;
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(H2) A" is a strong A, weight (see Definition [2.2));
(H3) X satisfies an infinite order reverse Holder inequality, i.e. for any zyp € R,
r > 0 we have

][ Mz)dz ~ max A(z).
|z—xo|<r

|lz—xo|<r

If u: RY — R is a differentiable function a.e. in RY, we put Vyu(z) =
(Veu(2), N(z)Vyu(z)), so that |Vyul? = |Vuul? + X2 (z)|V,ul?. We define the
Carnot-Carathéodory metric (C-C metric) p in RV with respect to V in the fol-
lowing way. An absolutely continuous curve « : [0, 7] — R is said to be sub-unit
if for any z = (z,y) € RV,

(V' (t),2)? < J2* + A(v (1)) |y]?
for a.e. t € [0,T). If 21,22 € RY we put
p(z1,22) = inf{T >0 : 3 a sub-unit curve v : [0,T] — RY,
such that v(0) = 2z and v(T) = 22}.

We denote by B = B, = B(zp,r) the C-C metric ball centered at zy of radius r.
Now we define the A, and the strong A, weights (see [I4, [15]).

Definition 2.1. Let ¢ > 1 and let v be a nonnegative locally integrable function
in RY. We say that v is a weight of the Muckenhoupt class A, if

sgp <ﬁ /B v(2) dz) (ﬁa /B[v(z)]q_fll dz)qi1 =Cy < 40,

where the supremum is taken over all Carnot-Carathéodory metric balls B in RV .
The number Cj is called the A, constant of v.

Definition 2.2. Let v be an A, weight for some ¢ > 1. If z1, 22 belong to RY, put

0(21,29) = inf (/Bv(z))\Nw—ll (z)dz)l/N,

where the infimum is taken over the balls B such that 21,25 € B.
If v : [0,T] — R¥ is a continuous curve, we define the v-lenght of v as

p—1
l(’)/) = lim inf 6(7(tz+1>7 V(tz)) >
|o|—0 -
where o = {tg,...,t,} is a partition of [0,T], and we define a distance d(z1, z2) as

the infimum of the v- lengths of sub-unit curves connecting z; and z,. If there exist
positive constants ¢; and cy such that

c16(21, 22) < d(21, 22) < €20(21, 22)
we say that v is a strong A, weight for the metric p.

An example of strong A, weight is the function v(z) = p(z, 29)* with a > 0 and
20 € RY (see [15]).
Using strong A, weights we define Lebesgue and Sobolev classes.
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Definition 2.3. Let v be a strong A weight and w = v' /N, 1 < p < N,
Q C RY. For any u € C§°(Q) we set

lull e o) = (/Q [u(2)|P w(z) dz)l/p.

We define L2(2) to be the completion of C§°(€2) with respect to the above norm.
For u € C*(£2) we set

lull g2o(q) = (/Q\u(z)|pw(z) dz)l/z’+ (/wa(z)‘p w(z) dz)l/P. 2.1)

We define Héf(ﬂ) to be the completion of C§°(€2) with respect to the norm (2.1
and H!?(Q) to be the completion of C*°(Q) with respect to the same norm.

Now to recall the Sobolev embedding theorem and the representation formula
proved in [15], Theorem I, we need another assumption on strong A., weights.

A strong A, weight v satisfies the local boundedness condition near the zeros
of X if the following condition holds

if A(z1) = 0, then v(z,y) is bounded as x — 1 uniformly in y,

for y in every bounded set. (2.2)

Theorem 2.4. Let 1 <p < N and v be a strong As. If there exists a strong As
weight w satisfying (Zy) such that W P/Noy=(N=D/N pelongs to A, with respect to
the (doubling) measure wN=D/Ndz  then there exists a constant q > p such that

(]i(zo,r) |9 - M|qu_p/Ndz> " = CT(]Z;(

for any Lipschitz continuous function g, where p can be chosen to be the v
average of g over B(zp,T).

1/
|ng\pv1_p/Ndz) 3 (2.3)

20,T)

1-p/N _

Remark 2.5. We stress that if we take the weights v = w = p*(0,z) and the
function A = |z]?, (o, o > 0), the assumptions of Theorem are satisfied (see
also [14]).

3. STUMMEL-KATO TYPE CLASSES

In this Section we recall a representation formula (see [I5, Corollary 3.2]) to
define Stummel - Kato type classes.

Theorem 3.1. Let Q be a bounded domain in RN, v a strong As, weight satisfying
(2.2) and u a compactly supported smooth function in a metric ball B = Br C €.
Then there exists ¢ independent of u such that

u(2)] < ¢ /B IV au(€)[ol ¥ (€)h(z, €)de

for almost all z € B, where

1-N

Mg = (f  eoxEoa)

Now we give the definition of Stummel-Kato and Morrey classes.
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Definition 3.2. Let V be a locally integrable function in Q, r > 0, and p €]1, N|.
Let v be a strong A, weight. We set w(z) = v'~ ¥ (z) and

oviny=su ([ GO / VIR u(Odc) ™ de)

z€Q

We say that V belongs to the class S, (€) if ¢(V;7) is just a bounded function in
a neighborhood of the origin.

If, moreover lim,_,o ¢(V;r) = 0 then we say that V belongs to the Stummel-Kato
class S, (Q).

If there exists p > 0 such that

[ < oo
t )
0

then we say that the function V' belongs to the class S (€2).
If there exist ¢ and o > 0 such that ¢(V;r) < ¢r? then we say that the function
V belongs to the Morrey class L7 (€2).

Remark 3.3. If v(z) = 1, A(z) = 1 and p = 2 the previous definitions give back the
classical Stummel-Kato class (see [1]) and Morrey space L1"~2%7 for some o > 0.

Now we state a Fefferman type inequality related to Stummel-Kato classes and
its corollary.

Theorem 3.4. Let v be a strong A weight satisfying (Z)) and 1 <p < N. If V
belongs to the class S,(Y), then there exists a constant ¢ such that Yu € C§°(Q)

1/p

( /B IV (2)||u(z) P w(z) dz)l/p < cptP(V; 2R)( /B \Vw(Z)Ipwdz) ;

where w(z) = v'"¥(2) and R is the radius of a metric ball B, containing the

support of u.
For a proof of the above theorem, see [9] Theorem 2.3].

Corollary 3.5. Let 1 <p < N and v be a strong A weight satisfying (2.2)). Let
V belongs to the class S,(2). For any € > 0, there exists K(g) such that

[ Iv@luerue d: < e [ (9o a+ ke [ o),

for all u € C3°(2), where w(z) = v(2)'~F,
o

[6=1(V:e)] ™

and ¢~ denotes the inverse function of ¢.

K(e) ~

For a proof of the above colollary, see [9, Corollary 2.1].

4. HARNACK INEQUALITY

In this section we prove a weak Harnack inequality for non negative weak solu-
tions of the equation

div A(z,u, Vau) + B(z,u, Vau) = 0. (4.1)
First wee recall what we mean by weak solution of (4.1)).
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Definition 4.1. A function u € H}?() is a local weak subsolution (supersolution)

of equation (4.1) in Q if

/ A(z,u(z), Vau(z)) - Vodz — / B(z,u(z),Vau(z))pdz <0 (>0) (4.2)
Q Q

for every non negative ¢ € H&’f (©). A function u is a weak solution if it is both
super and sub solution.

We require the functions A(z,u,§) and B(z,u,£) to be measurable functions
satisfying the following structural conditions

Az, 6)] < aw(2)[|&[2 + N2(@)]€, 121 °F +b()[ulP~ + e(2)
|B(z,u,€)| < bow(2)[|Ex|? + A2 () 1€, [2P/% + by (2) €,
+22(2)|g, T +d(2) P + f(2)
€ Alz,u,€) 2 w()[|Eal + N2(@) &, P2 — di(2)|ul? — g(2).

where 1 <p < N, w=v'"% and v is a strong A, weight.

We show that locally bounded weak solutions satisfy a Harnack inequality and, as
a consequence, some regularity properties. We shall make the following assumptions
on the lower order terms to ensure the continuity of local weak solutions:

atek, (D)7 (LY Ld TS g

w/ Tw w \w w'w
Theorem 4.2. Let u be a non negative weak supersolution of equation (4.1) in
Q satisfying (4.3) and (4.4). Let B, be a ball such that Bz, € Q and let M be a
constant such that uw < M in Bs,.. Then there exists ¢ depending onn, M, a, by, p
and the weight v such that

w™ ' (Bay) /Bw uwdz < cf %fu + h(r)}
where y f )
»_ P =1

0= () o] k]
Proof. We simplify the structure assumptions by setting ujp = u+ h(r). We obtain

Az w,6)| < aw(@)[|&l? + X2 (@)1&,17]"F + ba(2) unl?"

|B(z,u,6)] < bow(2)[|&* + N (@) |67 + bi () 1€

+ X @& + da(2) unf
€ Alz,u,€) = w(2)[|&: 1 + A (@) 16,172 — d () un [P

where by = b+ h(r)!"Pe, do = d + h(r)} 7P f, and d3 = dy + h(r)Pg.
It is easy to check that by, da, and d3 satisfy the same assumptions of b, d d;.
We take o = npuge_bﬂuh, B < 0, as test function in (4.2)), (see [I8]), where
n € C}(Bs,), n > 0. We obtain

/ nPe~boun (boug + \5|u§71)v,\uh - Adz
Bs,

(4.5)

—_ p/ ufnpflefbouh V- Adz + / T]puge*bou’leZ <0.
Bs,. Bs,
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The previous inequality and the structure assumptions (4.5)) yield

/ e_bouh’]]p(b()ug + |ﬁ|u§71)|v)\uh‘pwd2
B3T‘
< / ebon P (b “h + |B|uh (Vaup - A+ ds|up|P)dz
BS7
p 1 7b0uh v)\n Adz — / npugefbouhB dz
Bs,

+

<), "
/

,bouh P (bg uh + |ﬂ|uh )d3|uh|p dz

oo}

3r

p/ “bounyy\p - Adz
Bs,

—|—/ nPu eibouh(bo|vxuh\pw+b1|VAuh|p U do|up P~ dz
Bs,-

/ e~ bounpP (b uh + |,B|uh YYds|up|? dz .
Bsr.
By Young inequality and boundedness of uj in Bs, we obtain
p, B—1 P
81 [l s P
Bs,
< cp/ ugnp71VAn~Adz
B3,
* C/ 1Py (b1 |V up [P0+ dafup [P~ )dz
Bs.-
+ c/ np(bouf + |ﬁ\u§_1)d3|uh|p dz
Bsr

< c/B {pufn”—1|vwl(aw\vwh|P—1  bofunPY)
.
+ n”ﬁbl\vwhwﬂ + npu§+pf1d2
+ npb0u§+pd3 + |B|npu§+p—1d2}dz
< c/B {pugnp—1|V,\n|aw|V/\uh‘p—1 +pu§+p_1np_1|vw|b2
ar
FrP b Ve P (L 8Dy 4 b7
Then

8 [l Vsl wds
Bs,

< C(b07M7p)/

(i~ IV anlalVoun P~ dz
B37‘

bp
+enPup, [V aunlPw + c(e)n” wpl — Ly

+ np_l\V,\ﬂ\uerp_lbg + (1+18)n ufﬂ) Yy + n”ui”d;;}dz
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{uﬁn”fl IVan| |V aun|P ™ wdz

S C(b()vaa’ap)/
Bs,
b, B-1 p p Y sip1
+enPu), " [Vaup|Pw + c(e)n pvems L3
72T
_ 1 b3
+u§+p 1|v>\77|pw+77pu§+p ' 2#

wr-1
+ (14 |B\)npuf+p71dg + npuﬁﬂfldg}dz.

_p
—1
Setting V = by — + wi—il + dy + d3, we obtain

wp—1
/ npu571|V>\uh\pwdz
Bar (4.6)

<c(l+ \5|_1)p/ {|V,\77|pu£+p71w + Vnpufﬂ’*l}dz.
B,

Now we set

_{u%(x)wherepqu—kﬂ—l ifB#£A1—p

log up, () if8=1-p
by (4.6) we have
/ NP |VaUPwdz
Par (4.7)
<car+ sy { [ Vapwwds [ vipwra), sz1-p,
Bs. Bs.
while
/ NP |VAUPwdz < c{/ |VA77|pwdz—|—/ VP dz} (4.8)
Bsr. Bsr Bsr.
if g=1-—p.

Let us start with the case 3 = 1 — p. By Theorem [3.4] we have

\%4
/ VnPdz < C(b(—;diamQ) / IVan|Pwdz,
Bs, w

Bs,

and from (4.8)),
/ NP |VaUPwdz < c/ [Van|Pwdz.
B,

B,
Let By, be a ball contained in Bs,.. Choosing n(x) so that n=11in By, 0<n <1

3
in By, \ By, and |Vyn| < 7 we obtain
w(Bh)l/P
—

By Theorem and John-Nirenberg lemma [2], there exist two positive constants
po and ¢, such that

(fBQT ePoUqy dz) Hro (]i% e PoUy dz) o <c. (4.9)

IVAUll e,y < c
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Let us consider the family of seminorms

2.0 = ( [ ubwdz) . p£0.

P

By (4.9) we have

! 1/p
Wq’(l)o,?r) < cw(Ba, )P0 ®(—pg, 2r) .
In the case (4.7) by Corollary (3.5 we obtain

1
/ IVAUPRPwdz < c{(|q\1’ +1) (1 + —)p/ |V an|PUPwdz
Bas,- |B| Bs,-

+[ 1 }Hp/ PUPwd }
nPUPwdz ¢ .

¢~ (a3 lal =P (L + ) 7) Ba,

From (2.3)), setting k = ¢/p, we have

1/k ! 1
(/ |nU|*Pw dz) < cw(B)?_l{(|q|p +2) (1 + —)p/ |VanPUPw dz
B37‘ |/6| B

3r

1 n+
+ [¢_1(Z;|q|_p(1+é)—lﬂ)} p/BST nPIUPde}

where c is a positive constant independent of w.
Now we choose the function 7. Let r; and 75 be real numbers such that r < r; <
ro < 2r and let the function 1 be chosen so that (z) =1in B,,, 0 <n <1in B,,,

n(z) = 0 outside B,,, [Vn| < ;-5 for some fixed constant c. we have

v t 1\?
UrPw dz cewBE 1 — Y a1+ L
(oo <ottt e )
1 -
x |: 1(V 1\—P ] P/ UPwdz.
6~ (Lslgl P (1+ ) ") .
Setting v = pg = p+ 8 — 1 and recalling that U(z) = uZ(z), we obtain
@(ky.m) = 0B ED (g + 21
1 w1 (4.10)
i}
|:¢_1(%;‘Q|_p) ('I"Q 7T1)1/p (,Y)TQ),

for negative . This is the inequality we are going to iterate. If v; = k’py and
ri =1+ 57,4=1,2,... iteration of (4.10) and use of [J, Lemma 2.4] yield

®(—o00,7) > c(p,a,pv,diam Q)w(BT)%(I)(—pO, 2r).
Therefore by Holder inequality,
(I)(p£)72r) < @(p072r)w(Br)%_PO ) p() SpO
So we obtain
w1 (By,)®(1,2r) < c®(—o00,7)
where ¢ = ¢(p, a, pv ,diam Q) and the result follows. O

We obtain a weak Harnack inequality for weak subsolutions in a similar way of
Theorem [£.2
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Theorem 4.3. Let u be a non negative weak subsolution of equation in Q)
satisfying and , Let B, be a ball such that Bs, € Q and let M be a
constant such that u < M in Bs,.. Then there exists ¢ depending onn, M, a, by, p
and the weight v such that

supu < c{w—l(BQT)/ uwdz + h(r)}
B, Bay
where )
_p_ 1/p =T
ar) = [o((5)7T53r) +o( Li3r)] "+ [¢(i;3r)} "
w w w

If we take a non negative weak solution, we can put together the two previous

results.

Theorem 4.4. Let u be a non negative weak solution of equation in 1 satis-
fying (4.3) and . Let B, be a ball such that Bs, € ) and let M be a constant
such that uw < M in Bs,.. Then there exists ¢ depending on n, M, a, by, p and the
weight v such that

supu < ¢f i]Iglfu—Fh(’l”)},

r

where )
e._p_ 1/p P
ar) = [o((5)7T53r) +o(Liar)] "+ {(ﬁ(i;&“)} “.
w w w
Now, as a simple consequence of Harnack inequality, we obtain some regularity
results for weak solutions of (4.1). The proof is an immediate consequence of
Harnack inequality so we omit it.

Theorem 4.5. Let u be a locally bounded weak solution of equation (4.1)) in Q
satisfying (4.3) and (4.4]). Then u is continuous in €.

If we assume more restrictive assumptions on the lower order terms we obtain
the following refinement of the previous one.

Theorem 4.6. Let u be a locally bounded weak solution of equation (4.1)) in Q
satisfying (4.3)) and

byzz b

wb R, (2)7T( L h (E)%,g,%ew(m, c>0.

w’ Tw w Mw
Then w is locally Hélder continuous in €.

5. BOUNDARY HARNACK INEQUALITY

Our next step is to show a Harnack inequality near the boundary of € for weak
supersolutions and subsolutions to the equation

div A(z,u, Vau) + B(z,u, Vau) =0, (5.1)
with the structural conditions
(2,1, )] < aw(2)[|€l? + N2 (@)[& )T + b(2)|ulP ™ + e(2)
|B(z,u,€)| < bow(2)[|€x* + N(@)[€, P12 + ba (2)[[&:
+ X (@) T + ()l + £ (2)
€ Alz,u,6) 2 w(@)[|&]* + N2 (@)[€, P12 — di(2)|ul” — g(=)
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1-% and v is a strong A weight and

b1 p d d1 [ f g ,
N T T N CE)

Let S be a subset of 92 and u be a function on €. VVe say that u < M on S if
for all € > 0 there exists a neighborhood N of S such that u(x) < M + € for a.e.
x € NNQ. In this way we can define infg u, supg v and oscg u.

Now, let B, be a ball centered at zq € 9Q and u € H}P(Q2 N By, w) we set
() = {min{u,m} if £ € QN By,

where 1 <p < N, w=w

b._»_
abo € R, ()7 (

m if x € R™\ (2N By,)

where m = infponp,, u. Moreover, we define b=0,d=0,d; =0,e=0, f =0,
g = 0 outside €.

Theorem 5.1. Let u € HIP(Q N By,) be a weak non negative supersolution of
(.1) in QN Byy. Assume (5.2) and (5.3). Let M be a constant such that u < M
on 2N By,.. Then there exists ¢ depending onn, M, a, by, p and the weight v such

that
~1(By,) /B% twdz
<efigrar o [(5) o] womn (Lor) e (8in))

Proof. Set

— Al/p Ei pli 1/p( 9.

h=ot [ ()] w e (i) v o (i)

and = @+ h. Let n € C}(Bs,;) and n > 0. For 8 < 0 we define ¢(z) =
NP5 — (m + h)PBleIbol? ¢ Hé’f(Bgr). From (j5.2), we obtain in the support of ¢,

|A(z,u, Vau)| < aw(2)|VaulP~ + by(z)|oP

|B(2,u, Vau)| < bow(2)|VaulP + b1 (2)|VaulP ™' + do(2)|5P~* (5.5)
- A(z,u, Vau) 2 w(z)[Vaul” — ds(2)[0]P

(5.4)

where by (z) = b(2) + ,f,ﬁi)l, dy(2) =d+ ,{p(f)l, and d3(z) = dy(2) + g,gi).
Since, for any 0 < p < 3r,

p

o((2) ) <ol((3) )+ el(5) ).
o(%n) <o(o0) + ro(Lin)
¢(% E ¢(;?P) +am0(Lin)

Since w is a supersolution of (5.1)) we have

we obtain

/ nPe ol 810P=1 1 bo[68 — (m + RYP]}A(2, u, V) - Vauda

Bs

+ B(z,u, Vau)pdz
B37‘
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p—1 4 ~B B1,—1bold
<p 7 (z,u, Vau) - Van[o” — (m + h)"e dz
Bs,

Using (5.5) we obtain

/ (0] V xulPds )P e 10017 {81551 + bo [P — (m + h)P]}d=

3r
< P/ (aw|Vu|P~t + boa? V)P~ | Van|[6° — (m + h)Pe~ %017 dz
Bs,
" / (bow|Vaul? + b [ VaulP ™! + dot? )P [67 — (m + h)Ple™ P17 d
Bs,
from which

/ 1BIIV PP e P75y de
B3,

SIS danP PP eIz 4 b /B dynP 0P [o” — (m + h)Pe” 1Pl
37 3r

“”/ an” [V an|[Vaul?~ [ = (m + h)Ple” P Pwdz
Bs,
b [ bt e+ Pl
Bs-
+/ b |VaulP o — (m o+ h)PJe 107
Bs
b [ e by,
B3r
Then
[ 1819 sups o de
Bs,
<dpl | dgnPort Tz C/ g [67 — (m + h)”]
BST‘ BST
e [ ap Tl Va5 ~ )P
B3T‘
+ C/ bzﬁp_lnp—1|v>\n|[66 _ (m + h)ﬂ]dz
B3T‘
" C/ b |VaulP~ [07 — (m + h)P]dz
BSr
+ c/ do®P 1P (0P — (m + h)P)dz.
B,

Since 97 — (m + h)? < ©” the proof follows as in the proof of Theorem O

In a similar way, let B, be a ball centered at xo € 9Q and u € H}P(Q N By,.),
we set
() = {max{u,M} if x € QN By,
M if z € R"\ (2N By,)

where M = supyqnp,, U-
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Theorem 5.2. Let u € HYP(QN By,.) be a weak non negative subsolution of (5.1))
in QN Byy. Assume (5.2)) and (5.3). Let M be a constant such that u < M on
QN By.. Then there exists ¢ depending on n, M, a, by, p and the weight v such
that

supu < c{w_l(BQT) / awdz + ¢1/p [(%) ppj;rj|
B

BT‘ 2r

o (L) w8}

To obtain regularity up to the boundary of the domain we need some geometric
assumptions.

Definition 5.3. Let Q be a domain in RY and zy € 0. Let v be a strong A
weight and w = v1= %, 1 < p < N. We say that w satisfies the condition A, at zo
if there exist positive constants Ry and A such that

w(Br(20) \ )
w(Br(z0))
We say that Q satisfies the condition A, if it satisfies the condition at any point.

> A, 0<r<Ry.

In the case v = 1 the A, condition gives back the outer sphere condition. Using
the geometric assumption A, we give an estimate for the oscillation of solutions
near the boundary.

Theorem 5.4. Let Q) be a bounded open set satisfying the A, condition at zg € OS2.
Let u be a locally bounded weak solution of equation in Q satisfying and
(5.3). Then there exists Ry > 0 such that for any ball B,.(z), with 0 < r < Rg and
€ (0,1) we have

T N« - 1—
0sCB,NQ U < CUF) 0SCBp, MO U + 0SCB |, 1 ,Non U + h(r“RO M)] 7
0 0

where ¢ and a are positive constants and h is an infinitesimal function.

Proof. For p > 0 set M(p) = supp nqu and m(p) = infp,nq u, with B, = By (20).
Let 0 < r < Ry/4 the function M (4r) — u is solution of

div A(z,@, VaT) = B(z,7, V\T),

where

Moreover A and B satisfy
A(2,5,8)] < aw(2)[|E,1* + A2 (@)[E, 1)) T +Dbaf~! +e,
1B(2,,8)| < bollE, 12 + A2(@)[E, 11T + billE, | + A2 ()€, 12172
+daPt + 7,
€ A(z,1,8) > w(2)[E, 2 + N(@)[E, [P/ - dijul” — 7,

where

b(z) = 2Pb(2), d(z) =2Pd(z), di(z)=2Pd(2),
e(z) = 2°b(z) M (4r)P "t +e(2),  f(z) = 2Pd(z)M (4r)"~ ! + f(2),
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g(z) = 2Pdy (2) M (47)P ™" + g(2),

G @G D ese.

Then by (5.4) and condition A,, we have

w(B r \ Q)
M(4r) — M < 7Aw2( B [M (47) — M]
1
= Tu(B) /BQT\Q[M(ZLT) — M|wdx

1 —— (5.6)
< 7Aw(BQT) /BZT\Q[M(ZLT) — ulw dx

< B%(M(M) —u) + h(r)]
< c[M(4r) — M(r) + Rh(r)].

where M = supp, ~aq U, m = infp, naqu and

h(r) = ¢1/p[(5)f51;r] + o7 (
In a similar way, for u — m(4r),
m —m(dr) < cfm(r) — m(dr) + h(r)] . (5.7)
From and we obtain, for § < 1
M(r) — m(r) < 0[M(4r) — m(4r)] + M — m + ch(r),

from which applying [24] Lemma 8.23] (see also [16]) we obtain the result. O

As consequences of the previous Theorem we obtain the following corollary.

Corollary 5.5. Let Q be a bounded open set satisfying condition A, in every xg €
0. Let u be a locally bounded weak solution of equation (5.1)) in Q satisfying (5.2)
and (5.3). Let u = ¢ on Q. If ¢ is continuous in OX) then wu is continuous in ).

Now we refine our assumptions on lower order terms. If we assume the coefficients
in a suitable Morrey space we obtain Holder continuity of the solution.

Corollary 5.6. Let Q be a bounded open set satisfying the A, condition in every
20 € 0. Let u be a locally bounded weak solution of equation (5.1)) in Q satisfying
(5.2) and

SN

aber, (D)7 Oy Lh (G L) 6y

w’ Tw w Nw w’ w
with 0 < € < p. Let u = ¢ on Q. If ¢ 1s Holder continuous in OS2, then u is
Hélder continuous in Q.
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