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Dissipative quasi-geostrophic equations with

Lp data ∗

Jiahong Wu

Abstract

We seek solutions of the initial value problem for the 2D dissipative
quasi-geostrophic (QG) equation with Lp initial data. The 2D dissipative
QG equation is a two dimensional model of the 3D incompressible Navier-
Stokes equations. We prove global existence and uniqueness of regular
solutions for the dissipative QG equation with sub-critical powers. For the
QG equation with critical or super-critical powers, we establish explicit
global Lp bounds for its solutions and conclude that any possible finite
time singularity must occur in the first order derivative.

1 Introduction

We study in this paper the 2D dissipative quasi-geostrophic (QG) equation

∂tθ + u · ∇θ + κ(−∆)αθ = f, x ∈ R2, t > 0, (1.1)

where κ > 0 is the diffusivity coefficient, α ∈ [0, 1] is a fractional power, and
u = (u1, u2) is the velocity field determined from θ by a stream function ψ via
the auxiliary relations

u = (u1, u2) =
(
− ∂ψ

∂x2
,
∂ψ

∂x1

)
and (−∆)1/2ψ = −θ. (1.2)

A fractional power of the Laplacian (−∆)β is defined by

̂(−∆)βf(ξ) = (2π |ξ|)2β f̂(ξ),

where f̂ denotes the Fourier transform of f . One may consult the book of Stein
[6, p.117] for more details. For notational convenience, we will denote (−∆)1/2

by Λ. The relation in (1.2) can then be identified with

u =
(
∂x2Λ−1θ, −∂x1Λ−1θ

)
= (−R2θ, R1θ),
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where R1 and R2 are the Riesz transforms [6, p.57].
Equation (1.1) is the dissipative version of the inviscid QG equation derived

by reducing the general QG models describing atmospheric and oceanic fluid
flow under special circumstances of physical interest ([4],[1]). Physically, the
scalar θ represents the potential temperature, u is the fluid velocity and ψ can
be identified with the pressure. Mathematically, the 2D QG equation serves
as a lower dimensional model of the 3D Navier-Stokes equations because of the
striking similarity between the behavior of its solution and that of the potentially
singular solutions of the 3D hydrodynamic equations.

Our aim of this paper is to establish global existence and uniqueness results
for the initial-value problem (IVP) for the QG equation (1.1) with the initial
condition

θ(x, 0) = θ0(x), x ∈ R2. (1.3)

We seek solutions of the IVP (1.1) and (1.3) in Lq([0, T ];Lp) for initial data
θ0 ∈ Lr(R2). The notation Lr is standard while Lq([0, T ];Lp) stands for the
space of functions f of x and t satisfying

‖f‖Lq([0,T ];Lp) =
(∫ T

0

( ∫
R2
|f(x, t)|pdx

)q/p
dt
)1/q

<∞.

We distinguish between two cases: α > 1/2 (the “sub-critical” case) and α ≤ 1/2
(the “critical” or “ super-critical” case). In the α > 1/2 case, we establish that
the IVP (1.1) and (1.3) has a unique global (in time) and regular solution in
Lq([0, T ];Lp). Precise statements are presented in Section 3. It is not clear in
the α ≤ 1

2 case whether regular solutions develop finite time singularities. But
We show in Section 4 that any singularity must occur in the first derivative if
there is a singularity. This is achieved by obtaining explicit Lp bounds for all
high order derivatives of any function solving the IVP (1.1) and (1.3).

In preparation, we provide in Section 2 properties of the solution operator
for the linear QG equation and show its boundedness when acting on Lp spaces.

2 The solution operator for the linear equation

Consider the solution operator for the linear QG equation

∂tθ + κΛ2αθ = 0, x ∈ R2, t > 0,

where κ > 0, Λ denotes (−∆)1/2 and α ∈ [0, 1]. For a given initial data θ0, the
solution of this equation is given by

θ = Gα(t) θ0 = e−κΛ2αt θ0,

where Gα(t) ≡ e−κΛ2αt is a convolution operator with its kernel gα being defined
through the Fourier transform

ĝα(ξ, t) = e−κ|ξ|
2αt.
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The kernel gα possesses similar properties as the heat kernel does. For
example, for α ∈ [0, 1] and t > 0, gα(x, t) is a nonnegative and non-increasing
radial function, and satisfies the dilation relation

gα(x, t) = t−1/αgα(xt−1/(2α), 1). (2.1)

Furthermore, the operators Gα and ∇Gα are bounded on Lp. To prove this
fact, we need the following lemma.

Lemma 2.1 For t > 0, ‖gα(·, t)‖L1 = 1 and for 1 ≤ p <∞

|gα(·, t) ∗ f |p ≤ gα(·, t) ∗ |f |p.

Proof. For any t > 0, ‖gα(·, t)‖L1 = ĝα(0, t) = 1. By Hölder’s inequality,

|gα(·, t) ∗ f |p =
∣∣∣∣∫
R2
g1/q
α (x− y, t) · g1/p

α (x− y, t)f(y)dy
∣∣∣∣p

≤ ‖gα(·, t)‖
p
q

L1

∫
R2
gα(x− y, t)|f(y)|pdy = gα(·, t) ∗ |f |p,

where (1/q) + (1/p) = 1.

Proposition 2.2 Let 1 ≤ p ≤ q ≤ ∞. For any t > 0, the operators Gα(t) and
∇Gα(t) are bounded operators from Lp to Lq. Furthermore, we have for any
f ∈ Lp,

‖Gα(t)f‖Lq ≤ Ct−
1
α ( 1

p−
1
q )‖f‖Lp (2.2)

and
‖∇Gα(t)f‖Lq ≤ Ct−( 1

2α+ 1
α ( 1

p−
1
q ))‖f‖Lp (2.3)

where C is a constant depending on α, p and q only.

Proof. We first prove (2.2). For p = q =∞, we have

‖Gα(t)f‖L∞ ≤ ‖gα(·, t)‖L1‖f‖L∞ = ‖f‖L∞ .

For p = q <∞, we combine Lemma 2.1 and Young’s inequality to obtain

‖Gα(t)f‖pLp = ‖gα(·, t) ∗ f‖pLp ≤
∫
R2
gα(·, t) ∗ |f |pdx

≤ ‖gα(·, t)‖L1‖f‖pLp = ‖f‖pLp

To prove the general case, we first estimate ‖Gα(t)f‖L∞ . Without loss of gen-
erality, we consider Gα(t)f at x = 0.

|(Gα(t)f)(0)|p ≤
∫
R2
gα(|x|, t)|f(x)|pdx =

∫ ∞
0

gα(ρ, t)dr(ρ)

≤
∫ ∞

0

|g′α(ρ, t)|r(ρ)dρ ≤ ‖f‖pLp ·
∫ ∞

0

|g′κ(ρ, t)|dρ (2.4)
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where r(ρ) =
∫
|y|≤ρ |f(y)|pdy and g′α = ∂gα

∂ρ . Using (2.1), one easily sees that
for some constant C ∫ ∞

0

|g′κ(ρ, t)|dρ = C t−1/α

and therefore (2.4) becomes (since x = 0 is not special !)

‖Gα(t)f‖L∞ ≤ C t−
1
pα ‖f‖Lp .

We now estimate ‖Gα(t)f‖Lq in terms of ‖f‖Lp for 1 ≤ p ≤ q <∞.

‖Gα(t)f‖qLq ≤ C‖Gα(t)f‖q−pL∞ ‖Gα(t)f‖pLp ≤ Ct
− 1
pα (q−p)‖f‖q−pLp · ‖f‖

p
Lp .

That is, ‖Gα(t)f‖Lq ≤ Ct−
1
α ( 1

p−
1
q )‖f‖Lp .

Estimate (2.3) can be proved similarly by using the identity

∂xgα(x, t) = t−1/(2α)g̃α(x, t)

where g̃α is another radial function enjoying the same properties as gα does.
The following lemma provides point-wise bounds for ∇ gα.

Lemma 2.3 Let α ∈ (0, 1]. Then for any x ∈ R2 \ {0}, t > 0, j = 1 or 2,

|∂xj gα(x, t)| ≤


C

|x| t
1
α
,

C

|x|2 t
1

2α
,

C
|x|3 t ,

(2.5)

where C is an explicit constant depending on α only.

Proof. Consider the Fourier transform of F (x, t) = xi∂xj gα(x, t):

F̂ (ξ, t) = i
∂

∂ξi
(iξj ĝα(ξ, t)) = (−1)

∂

∂ξi

(
ξj e
−κ|ξ|2αt

)
=

(
−δij + 2κα t ξi ξj |ξ|2α−2

)
e−κ|ξ|

2αt,

where δij is the Kronecker delta. Therefore, for x ∈ R2 and t > 0,

|xi∂xj gα(x, t)| = |F (x, t)| ≤ ‖F̂ (·, t)‖L1 ≤
∫
R2

(1 + 2κα|ξ|2αt)e−κ|ξ|
2αtdξ

= 2π
∫ ∞

0

(1 + 2καρ2αt)e−κρ
2αtρ dρ = C t−1/α.

where C = π
α

∫∞
0

(1 + 2κα r) r
1
α−1 e−κrdr. This proves the first inequality in

(2.5). The next two inequalities can be established in a similar fashion by consid-
ering F (x, t) = xi xk ∂xj gα(x, t) and F (x, t) = xl xi xk ∂xj gα(x, t), respectively,
where the indices i, j, k, l = 1 or 2.
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We will need the Hardy-Littlewood-Sobolev inequality, which we now recall.
It states that the fractional integral

Tf(x) =
∫
R2

f(y)
|x− y|n−γ

dy, 0 < γ < n

is a bounded operator from Lp to Lq if p and q satisfies

1 ≤ p < q <∞, 1
q

+
γ

n
=

1
p
.

One can find the Hardy-Littlewood-Sobolev inequality in [6, p.119].

3 Global existence and uniqueness in
the α > 1/2 case

In this section we consider the IVP for the dissipative QG equation

θt + u · ∇θ + κΛ2αθ = f, (x, t) ∈ R2 × [0,∞),
u = (u1, u2) = (−R2θ, R1θ), (x, t) ∈ R2 × [0,∞), (3.1)

θ(x, 0) = θ0(x), x ∈ R2,

where κ > 0 and α ∈ [0, 1]. Our major result is that the IVP (3.1) with
α > 1/2, θ0 ∈ Lr and f ∈ Lq′([0, T ];Lr1) has a unique global (in time) solution
in Lq([0, T ];Lp) for proper p, q, q′, r and r1. Furthermore, the solution is shown
to be smooth if θ0 and f are sufficiently smooth. Precise statements will be
presented in Theorem 3.4 and Theorem 3.5.

The theorems of this section are proved by the method of integral equations
and the contraction mapping argument. To proceed, we write the QG equation
into the integral form

θ(t) = Gα(t) θ0 +
∫ t

0

Gα(t− τ) (f − u · ∇θ)(τ)dτ, (3.2)

We observe that u · ∇θ = ∇ · (uθ) because ∇ · u = 0. The nonlinear term
can then be alternatively written as

B(u, θ)(t) ≡
∫ t

0

∇Gα(t− τ)(uθ)(τ)dτ.

We will solve (3.2) in Lp([0, T ];Lq) and the following estimates for the operator
B acting on this type of spaces will be used.

Proposition 3.1 Let α > 1/2 and T > 0. Assume that u and θ are in
Lq([0, T ];Lp) with p and q satisfying

p >
2

2α− 1
,

1
p

+
α

q
= α− 1

2
.
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Then the operator B is bounded in Lq([0, T ];Lp) with

‖B(u, θ)‖Lq([0,T ];Lp) ≤ C‖u‖Lq([0,T ];Lp(R2)) · ‖θ‖Lq([0,T ];Lp(R2)).

where C is a constant depending on α, p and q only.

Proof. For p > 2
2α−1 ≥ 2, we obtain after applying (2.3) of Proposition 2.2

‖B(u, θ)‖Lp ≤
∫ t

0

‖∇Gα(t− τ)(u θ)(τ)‖Lpdτ

≤ C

∫ t

0

1

|t− τ |
1

2α+ 1
α ( 2

p−
1
p )
‖u θ(·, τ)‖Lp/2dτ (3.3)

≤ C

∫ t

0

1

|t− τ |
1

2α+ 1
pα

‖u(·, τ)‖Lp ‖θ(·, τ)‖Lpdτ

for some constant C depending on α and p only. For α > 1/2 and p > 2
2α−1 ,

we have

0 <
1

2α
+

1
pα

< 1.

Applying the Hardy-Littlewood-Sobolev inequality to (3.3) with

1
q

+
1− 1

2α −
1
pα

1
=

2
q
, i.e.,

1
p

+
α

q
= α− 1

2
,

we obtain

‖B(u, θ)‖Lq([0,T ];Lp) ≤ C‖ (‖u(·, t)‖Lp‖θ(·, t)‖Lp) ‖Lq/2([0,T ])

≤ C‖u‖Lq([0,T ];Lp(R2)) · ‖θ‖Lq([0,T ];Lp(R2)).

The next two lemmas detail how Gα behaves when acting on θ0 and f .

Lemma 3.2 Let 1/2 < α ≤ 1, T > 0, and p and q satisfy

p >
2

2α− 1
,

1
p

+
α

q
= α− 1

2
.

Assume that θ0 ∈ Lr(R2) with 2
2α−1 < r ≤ p. Then we have

‖Gα(t)θ0‖Lq([0,T ];Lp) ≤ C T 1− 1
α ( 1

2 + 1
r ) ‖θ0‖Lr ,

where C is a constant depending on α, p, q and r only.
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Proof. By (2.2),

‖Gα(t)θ0‖Lq([0,T ];Lp) =
[ ∫ T

0

‖Gα(t)θ0‖qLpdt
]1/q

≤
[ ∫ T

0

t−
1
α ( 1

r−
1
p )·q‖θ0‖qLr dt

]1/q
= CT 1− 1

α ( 1
2 + 1

r ) ‖θ0‖Lr .

Lemma 3.3 Let 1/2 < α ≤ 1, T > 0, and p and q satisfy

p >
2

2α− 1
,

1
p

+
α

q
= α− 1

2
.

Assume f ∈ Lq′([0, T ];Lr1) with q′ being the conjugate of q (i.e., 1/q’+1/q=1)
and r1 satisfying 2

2α−1 < r1 ≤ p. Then∥∥∥∥∫ t

0

Gα(t− τ)f(τ)dτ
∥∥∥∥
Lq([0,T ];Lp)

≤ CT 1+ 1
q−

1
α

(
1
2 + 1

r1

)
‖f‖Lq′ ([0,T ];Lr1 ),

where C is a constant depending on α, p, q and r1 only.

Proof. The result is a consequence of direct computation. By (2.2) and then
Hölder’s inequality,∥∥∫ t

0

Gα(t− τ)f(τ)dτ
∥∥
Lq([0,T ];Lp)

≤
[ ∫ T

0

(∫ t

0

(t− τ)−
1
α

(
1
r1
− 1
p

)
‖f(·, τ)‖Lr1dτ

)q
dt
]1/q

≤
[ ∫ T

0

∫ t

0

(t− τ)−
1
α

(
1
r1
− 1
p

)
·q
dτ ·

(∫ t

0

‖f(·, τ)‖q
′

Lr1dτ
)q/q′

dt
]1/q

≤ CT
1+ 1

q−
1
α

(
1
2 + 1

r1

)
‖f‖Lq′ ([0,T ];Lr1 ).

Now we state and prove the main theorem.

Theorem 3.4 Let 1/2 < α ≤ 1, T > 0, and p and q satisfy

p >
2

2α− 1
,

1
p

+
α

q
= α− 1

2
.

Assume that θ0 ∈ Lr(R2) with 2
2α−1 < r ≤ p and f ∈ Lq

′
([0, T ];Lr1) with

2
2α−1 < r1 ≤ p, where q′ denotes the conjugate of q (i.e., 1/q’+1/q=1). Then
there exists a constant C such that for any θ0 and f satisfying

T 1− 1
α ( 1

2 + 1
r ) ‖θ0‖Lr + T

1+ 1
q−

1
α

(
1
2 + 1

r1

)
‖f‖Lq′ ([0,T ];Lr1 ) ≤ C,

there exists a unique strong solution θ ∈ Lq([0, T ];Lp) for the IVP (3.1) in the
sense of (3.2).
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Proof. We write the integral equation (3.2) symbolically as θ = Aθ. The
operator A is seen as a mapping of the space E ≡ Lq([0, T ];Lp) into itself. Let

b = T 1− 1
α ( 1

2 + 1
r ) ‖θ0‖Lr + T

1+ 1
q−

1
α

(
1
2 + 1

r1

)
‖f‖Lq′ ([0,T ];Lr1 )

and set R = 2b. Define BR to be the closed ball with radius R centered at the
origin in E. We now show that if b is bounded by an appropriate constant, then
A is a contraction map on BR. Let θ and θ̄ be any two elements of BR. Then
we have

‖Aθ −A θ̄‖E =
∥∥∥∫ t

0

Gα(t− τ)(u · ∇θ)dτ −
∫ t

0

Gα(t− τ)(ū · ∇θ̄)dτ
∥∥∥
E
,

where u and ū are determined by θ and θ̄, respectively, through the second
relation in (3.1). Recalling the notation B, we have

‖Aθ −A θ̄‖E =
∥∥B(u− ū, θ) +B(ū, θ − θ̄)

∥∥
E

≤ ‖B(u− ū, θ)‖E + ‖B(ū, θ − θ̄)‖E .

It then follows from applying Proposition 3.1 that

‖Aθ −A θ̄‖E ≤ C‖u− ū‖E‖θ‖E + C‖ū‖E‖θ − θ̄‖E ,

where C is a constant depending on α, p and q only. Since u and ū are Riesz
transforms of θ and θ̄, respectively, the classical Calderon-Zygmund singular
integral estimates imply that

‖u‖E ≤ C‖θ‖E , ‖ū‖E ≤ C‖θ̄‖E .

One can consult the book of Stein [6] for more details on Riesz transforms.
Therefore,

‖Aθ −A θ̄‖E ≤ C(‖θ‖E + ‖θ̄‖E) ‖θ − θ̄‖E ≤ C R ‖θ − θ̄‖E .

We now estimate ‖Aθ‖E . By Lemma 3.2 and Lemma 3.3, the norm of

A 0 = Gα(t)θ0 +
∫ t

0

Gα(t− τ)f(τ)dτ

in E can be bounded by

‖A 0‖E ≤ C T 1− 1
α ( 1

2 + 1
r ) ‖θ0‖Lr + CT

1+ 1
q−

1
α

(
1
2 + 1

r1

)
‖f‖Lq′ ([0,T ];Lr1 ) = b

Therefore,

‖Aθ‖E = ‖Aθ −A 0 +A 0‖E ≤ ‖Aθ −A 0‖E + ‖A 0‖E ≤ C R ‖θ‖E + b.

If 2C b ≤ 1
2 , then C R = 2C b ≤ 1

2 and we have

‖Aθ −A θ̄‖E ≤
1
2
‖θ − θ̄‖E , and ‖Aθ‖E ≤ R.
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It follows from the contraction mapping principle that there exists a unique
θ ∈ E = Lq([0, T ];Lp) solving (3.2). This finishes the proof of Theorem 3.4.

We now show that the solution obtained in the previous theorem is actually
smooth. We introduce a notation. For a non-negative multi-index k = (k1, k2),
we define

Dk =
(
∂

∂x1

)k1
(
∂

∂x2

)k2

.

and |k| = k1 + k2.

Theorem 3.5 Let 1/2 < α ≤ 1, T > 0, and p and q satisfy

p >
2

2α− 1
,

1
p

+
α

q
= α− 1

2
.

Assume that for a non-negative multi-index k

Dk θ0 ∈ Lr(R2) and Dk f ∈ Lq
′
([0, T ];Lr1(R2)), (3.4)

where 2
2α−1 < r ≤ p, 2

2α−1 < r1 ≤ p and q′ denotes the conjugate of q. Then
for any non-negative multi-index j with |j| ≤ |k|

Dj θ ∈ Lq([0, T ];Lp). (3.5)

Furthermore, for each j with 0 ≤ |j| ≤ |k| − 2 and almost every t ∈ [0, T ]

∂tD
j θ ∈ Lp(R2). (3.6)

Proof. The basic tool of establishing (3.5) is still the contraction mapping
argument. We first consider the case |j| = 1. Taking D of (3.2), we obtain

Dθ(t) = Gα(t)(Dθ0) +
∫ t

0

Gα(t− τ)(Df(τ))dτ +B(Du, θ) +B(u,D θ). (3.7)

This integral equation can then be viewed as (Dθ) = Ã(Dθ) and Ã is seen as a
mapping of the space E consisting of functions θ such that

θ ∈ Lq([0, T ];Lp) and Dθ ∈ Lq([0, T ];Lp).

The norm in E is given by

‖θ‖E = ‖θ‖Lq([0,T ];Lp) + ‖Dθ‖Lq([0,T ];Lp).

For θ0 and f satisfying (3.4), the first two terms are bounded in E. The two
nonlinear terms acting on E have similar bounds as stated in Proposition 3.1. As
in the proof of Theorem 3.4, we can then show that Ã is a contraction mapping
of E into itself. Therefore Ã has a fixed point in E. The uniqueness result of
Theorem 3.4 indicates that this θ is just the original θ. Thus we have shown
that Dθ ∈ Lq([0, T ];Lp). The proof of (3.5) for |j| = 2, 3, · · · , |k| is similar and
we thus omit details.
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We now prove (3.6) and start with the case |j| = 0. Because θ satisfies

∂tθ = f − u · ∇θ − κΛ2αθ,

it suffices to show that the terms on the right are in Lp for almost every t. Since
for almost every t

f ∈ Lr1 , Df ∈ Lr1 , u ∈ Lp, Du ∈ Lp, Dθ ∈ Lp, D2θ ∈ Lp,

we obtain by applying the Gagliardo-Nirenberg inequality

‖f(·, t)‖Lp ≤ C‖f(·, t)‖1−σLr1 ‖Df(·, t)‖σLr1 , σ =
2
r1
− 2
p
.

‖(u · ∇θ)(·, t)‖Lp ≤ C‖u(·, t)‖L2p ‖Dθ(·, t)‖L2p

≤ C‖u(·, t)‖1−εLp ‖Du(·, t)‖εLp ‖Dθ(·, t)‖1−εLp ‖D
2θ(·, t)‖εLp ,

where ε = 1/p. Therefore, for almost every t

f(·, t) ∈ Lp, u · ∇ ∈ Lp, and Λ2αθ ∈ Lp

and this in turn implies ∂tθ ∈ Lp. The proof for ∂tDjθ ∈ Lp with |j| > 0 is
similar. This completes the proof of (3.6).

4 Lp bounds in the α ≤ 1/2 case

For α > 1/2, the issue of global existence, uniqueness and regularity concerning
the IVP (3.1) with Lr initial data is resolved in Section 3. Our major interest
of this section is in the α ≤ 1

2 case although all theorems to be presented hold
for any α ∈ [0, 1]. We conclude that any possible finite time singularity must
occur in the first derivative. This is achieved by bounding the Lp norms of all
high order derivatives of θ by the initial Lp norms and a magic quantity.

Lemma 4.1 Let α ∈ [0, 1], p ∈ (1,∞) and k be a nonnegative multi-index.
Then for any sufficiently smooth θ, we have for any t ≥ 0∫

R2
|Dkθ|p−2(x, t) (Dkθ(x, t)) Λ2αDkθ(x, t)dx ≥ 0.

Proof. Let gα(x, s) be the kernel of the solution operator for the linear QG
equation, as defined in the previous section. Then Θ(x, s) ≡ gα(·, s) ∗ (Dkθ)
satisfies the equation

∂sΘ + κΛ2α Θ = 0 (4.1)

and Θ(x, s)→ Dkθ as s→ 0. Multiplying both sides of (4.1) by p|Θ|p−2Θ and
integrate over R2, we obtain

d

ds

∫
R2
|Θ|pdx+ p κ

∫
R2
|Θ|p−2 ΘΛ2α Θdx = 0.
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Integrating the above over [s1, s2] with respect to s, we have∫
R2
|Θ|p(x, s2)dx−

∫
R2
|Θ|p(x, s1)dx = − p κ

∫ s2

s1

∫
R2
|Θ|p−2ΘΛ2α Θdxds, (4.2)

where s1 and s2 are arbitrarily fixed. Applying (2.2) of Proposition 2.2, we have∫
R2
|Θ|p(x, s2)dx = ‖gα(·, s2) ∗ (Dkθ)‖pLp

= ‖gα(·, s2 − s1) ∗ [gα(·, s1) ∗ (Dkθ)]‖pLp

≤ ‖gα(·, s1) ∗ (Dkθ)‖pLp =
∫
R2
|Θ|p(x, s1)dx.

That is, the left hand side of (4.2) is not positive. Therefore∫ s2

s1

∫
R2
|Θ|p−2ΘΛ2α Θdxds ≥ 0.

The arbitrariness of s1 and s2 then implies that for any s > 0,∫
R2
|Θ|p−2(x, s) Θ(x, s) Λ2α Θ(x, s)dxds ≥ 0. (4.3)

Letting s→ 0 and recalling the definition of Θ, we obtain for any t ≥ 0∫
R2
|Dkθ|p−2(x, t) (Dkθ(x, t)) Λ2αDkθ(x, t)dx ≥ 0.

One consequence of the previous lemma is that the Lp-norm (p ∈ (1,∞])
of any solution θ of the IVP (3.1) is uniformly bounded by the Lp norm of the
initial data. Thus finite-time singularity is only possible in the derivatives of θ.
The following result was shown in [5] and we now briefly describe it.

Theorem 4.2 Let α ∈ [0, 1] and p ∈ (1,∞]. Then any solution θ of the IVP
(3.1) satisfies for t ≥ 0

‖θ(·, t)‖Lp(R2) ≤ ‖θ‖Lp(R2).

A sketch of the proof for this theorem is given in [2].
We now state and prove our main theorem, in which we establish estimates

to bound the Lp norms of derivatives of any solution θ of the IVP (3.1) in terms
of ∇u (u is related to θ through the second relation in (3.1)). Roughly speaking,
this means that no finite time singularity in high-order derivatives is possible if
∇u does not become infinite first. The role of the forcing term f is not crucial,
so we set it equal to zero for the sake of clear presentation.

Theorem 4.3 Let α ∈ [0, 1]. Assume that θ is a solution of the IVP (3.1).
Then for any p ∈ (1,∞] and a multi-index k with |k| ≥ 1,

‖Dkθ(·, t)‖Lp ≤ ‖Dkθ0‖Lp · e
∫ t
0 ‖∇u(·,τ)‖L∞dτ (4.4)

holds for any t ≥ 0, where u is determined by θ through the second relation in
(3.1).



12 Dissipative quasi-geostrophic equations EJDE–2001/56

Proof. We start with the case |k| = 1. For p ∈ (0,∞), we take D of the first
equation in (3.1), multiply by p |Dθ|p−2Dθ and then integrate over R2 to obtain

d

dt

∫
R2
|Dθ|pdx+ p κ

∫
R2
|Dθ|p−2Dθ · Λ2α(Dθ) dx

= −p
∫
R2
|Dθ|p−2Dθ ·D(u · ∇θ)dx (4.5)

The right hand side actually consists of two terms

−p
∫
R2
|Dθ|p−2Dθ ·Du · ∇θdx and − p

∫
R2
|Dθ|p−2Dθ · u · ∇(Dθ)dx,

but one of them is zero∫
R2
|Dθ|p−2Dθ · u · ∇(Dθ)dx =

∫
R2
u · ∇ (|Dθ|p) dx = 0

because ∇ · u = 0. Therefore, (4.5) becomes

d

dt

∫
R2
|Dθ|pdx+ p κ

∫
R2
|Dθ|p−2Dθ · Λ2α(Dθ) dx

= −p
∫
R2
|Dθ|p−2Dθ ·Du · ∇θdx,

which in turn implies that

d

dt

∫
R2
|Dθ|pdx+ p κ

∫
R2
|Dθ|p−2Dθ · Λ2α(Dθ) dx ≤ p‖∇u(·, t)‖L∞

∫
R2
|Dθ|pdx.

By Lemma 4.1, the second term on the left hand side is nonnegative. So

d

dt

∫
R2
|Dθ|pdx ≤ p ‖∇u(·, t)‖L∞

∫
R2
|Dθ|pdx.

Gronwall’s inequality then implies (4.4). Once we have the bound (4.4) for any
p < ∞, we can then take the limit of (4.4) as p → ∞ to establish (4.4) for
p =∞.

The inequality (4.4) for general k can be proved by induction. One needs
the Calderon-Zygmund inequality for Riesz transforms

‖Dju(·, t)‖Lp ≤ C‖Djθ(·, t)‖Lp , p ∈ (1,∞), |j| ≤ |k|.
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