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POSITIVE SOLUTIONS OF A THREE-POINT
BOUNDARY-VALUE PROBLEM FOR DIFFERENTIAL

EQUATIONS WITH DAMPING AND ACTIVELY BOUNDED
DELAYED FORCING TERM

GEORGE L. KARAKOSTAS

Abstract. We provide sufficient conditions for the existence of positive solu-
tions of a three-point boundary value problem concerning a second order delay

differential equation with damping and forcing term whose the delayed part is
an actively bounded function, a meaning introduced in [19]. By writing the

damping term as a difference of two factors one can extract more information

on the solutions. (For instance, in an application, given in the last section, we
can give the exact value of the norm of the solution).

1. Introduction

This paper is motivated by the work of Henderson [15] where the existence of two
positive solutions of the differential equation x′′+f(x) = 0 satisfying the conditions
x(0) = 0 and x(η) = x(1) is investigated.

To say exactly what we shall do in this paper we need some notation. For any
interval Y of the real line R we shall denote by C(Y ) the Banach space of all
continuous functions x : Y → R furnished with the usual sup-norm ‖ · ‖Y . If,
in addition, the set Y contains the origin, we shall write C0(Y ) for the set of all
ψ ∈ C(Y ) with ψ(0) = 0. In this paper we shall work, mainly, on sets of the form

C+
0 (Y ) := {x ∈ C0(Y ) : x(t) ≥ 0, t ∈ Y }.

Consider the sets I := [0, 1] and J := [−r, 0] for a fixed r ≥ 0.
Our intention is to provide sufficient conditions for the existence of positive

solutions of a three-point boundary value problem concerning the second order
delay differential equation

x′′(t) + p(t)x′(t) +Q(t, x(t)) + f(t, xt) = 0, t ∈ I := [0, 1], (1.1)

x0 = φ, x(η) = x(1), (1.2)

where φ ∈ C+
0 (J), 0 < η < 1 and the delayed part f(t, xt) of the forcing term is

actively bounded function, in a sense introduced in [19]. Our technique is based
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on the fact that the coefficient p(t) of the damping term can be written as the
difference of two (suitable) functions:

p(t) = p1(t)− p2(t).

The advantage of such an approach is that we can vary the functions p1, p2. Then
the conditions imposed as well as the existence range of the solutions also vary
appropriately. A sight of what we mean is seen in the last section, where an
application is presented. On the other hand such a decomposition of the damping
term affects the Green function of the problem. Thus, our first intention is to
construct such a kernel of the integral operator, which plays the most crucial role
in our discussion.

As it is noticed elsewhere (see, e.g. [8, 14]), boundary-value problems associated
with delay differential equations are generated from physics and control theory and
other topics of applied mathematics. In the literature one can find a relatively
great number of works dealing with the existence of solutions of boundary value
problems which are associated not necessary with ordinary differential equations.
For instance, in [1] one can find such problems for difference and integral equations,
in [5] for equations whose the solutions depend on the past and on the future, in
[11] for equations with deviating arguments, etc. Moreover a great deal can be met
in the literature for the case of delay differential equations. We refer, for instance
to [2, 3, 6, 7, 10, 12, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27] and to the references
therein.

Most of the works mentioned above do use of the following important Fixed
Point Theorem of Krasnoselskii.

Theorem 1.1 ([23]). Let B be a Banach space and let K be a cone in B. Assume
that Ω1 and Ω2 are open subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) → K
be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or
‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

We recall that an operator A : X → Y is called completely continuous if it is
continuous and it maps bounded sets into precompact sets. We notice that when
Theorem 1.1 is applied to boundary-value problems for functional differential equa-
tions, usually the most crucial point is to provide suitable conditions on the forcing
delayed term which guarantee the fact that the corresponding integral operator sat-
isfies the two alternatives of Krasnoselskii’s fixed point theorem. As in [19], in this
article, in order to cover the autonomous and nonautonomous cases, the continuous
and discrete delay, as well as the atomic and the nonatomic response, we assume
that the function f is a so called actively bounded function. To be more precise we
shall repeat its definition here.

Definition 1.2 ([19]). We call a function f(·, ·) : I × C+
0 (J) → [0,+∞) actively

bounded, if for each t ∈ I there exist a nonempty closed set Θt ⊆ J and two real
nonnegative functions L0(t; ·, ·) and ω(t; ·, ·), such that

ω(t;m,M) ≤ f(t, ψ) ≤ L0(t;m,M),
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for all t ∈ I and ψ ∈ P (t;m,M), where

P (t;m,M) := {ψ ∈ C+
0 (J) : m ≤ inf

s∈Θt

ψ(s), ‖ψ‖J ≤M}.

Let Θt(f) be the smallest set of the form Θt. In [19] it was shown that the class
of the actively bounded functions is closed under summation and multiplication.
Also, several examples of such functions were given.

2. Formulation of the BVP

The basic theory of delay differential equations is exhibited in several places of
the literature. Especially we refer to the classical books [7, 13]. For any continuous
function y defined on the interval [−r, 1] and any t ∈ [0, 1] =: I, the symbol yt
(appeared, also, in (1.2)) is used to denote the element of Cr defined by

yt(s) = y(t+ s), s ∈ J.

Our purpose is to establish sufficient conditions for the existence of positive
solutions of the boundary value problem (1.1)-(1.2). Here we want to make clear
what makes the difference between the ordinary and the delay case and in particular
what is going to be proved for the delay boundary value problem.

(We find it convenient to repeat some comments made, also, in [19].) It is well
known that in the ordinary case, namely, when r = 0, (thus (1.1) is an ordinary
differential equation), we look for conditions which guarantee the truth of the fol-
lowing fact: There is a solution x of the (ordinary differential equation) (1.1) with
x(0) = 0 and satisfying condition (1.2). It follows that uniqueness of such a solution
means that there is exactly one function with these properties.

But in the (nontrivial) delay case the problem is quite different. Indeed, here
we are invited to give our response to the following challenge: Determine a class
S of initial functions with the property that for each φ ∈ S there is a solution x
of (1.1) satisfying condition (1.2). (Notice that some authors use to extend the
situation from the ordinary case by simply assuming that φ(s) = 0, for all s ∈ J ,
see, e.g. [4].) Therefore uniqueness of solutions of the BVP (1.1)-(1.2) presupposes
that there is only one solution with initial value the fixed initial function φ. Any
new initial function from the class S implies new solution of the boundary value
problem (1.1)-(1.2). As we shall see later, in this paper the set S will be a closed
ball in C+

0 (J).
We shall reformulate the problem (1.1)-(1.2) by transforming it into a fixed point

problem. Then the existence of a solution of the latter is guaranteed by Theorem
1.1.

To proceed, fix a φ ∈ C+
0 (J). For each function x ∈ C0(I) we shall denote by

T (·, x;φ) the function defined on [−r, 1] by

T (s, x;φ) :=

{
φ(s), s ∈ J,
x(s), s ∈ I,

It is easy to see that

‖Tt(·, x1;φ)− Tt(·, x2;φ)‖J ≤ ‖x1 − x2‖I , (2.1)

for all t ∈ I and x1, x2 ∈ C0(I). (Recall that for each t ∈ I the symbol Tt(·, x;φ)
denotes the element of C(J) defined by Tt(s, x;φ) := T (t + s, x;φ), s ∈ J.) Thus
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the function
x→ Tt(·, x;φ) : C0(I) → C(J)

is continuous (uniformly with respect to t).
By a solution of the boundary-value problem (1.1)-(1.2) we mean a function x ∈

C0(I) satisfying (1.2) and its second derivative x′′(t) exists for all t ∈ I satisfying
the relation

x′′(t) + p(t)x′(t) + q(t)x(t) + f(t, Tt(·, x;φ)) = 0. (2.2)

Our first basic condition of the problem states as follows:
(H) The functions p, q : I → R are continuous and such that p can be written

in the form
p = p1 − p2,

where p1 is continuous, p2 is positive and differentiable and, moreover, they
satisfy the inequality

Q(t, ξ) + (p′2(t) + p1(t)p2(t))ξ ≥ 0,

for all t ∈ I and ξ ≥ 0.
To simplify our presentation we set

V (u, s, t) := e
R s

u
p1(θ)dθ+

R t
u
p2(θ)dθ,

Y (t) :=
∫ t

0

e
R 1

θ
(p1(u)+p2(u))dudθ,

υi(s) := e−
R 1

s
pi(u)du, i = 1, 2.

Specially, we shall denote by υ the value υ2(η). Clearly it holds∫ θ

0

V (u, s, t)du = υ1(s)υ2(t)Y (θ),

for all θ, s, t ∈ I.
Remark. We observe that for all s ≥ η it holds

Y (s)− υY (η) =
∫ s

η

e
R 1

v
(p1(u)+p2(u))dudv + (1− υ)Y (η) > 0. (2.3)

To proceed, we set y(t) := x′(t) and write equation (2.2) in the form

y′(t) + p1(t)y(t)− p2(t)x′(t) +Q(t, x(t)) + f(t, Tt(·, x;φ)) = 0.

Integrate from t (≥ 0) to 1 and get

y(t) = y(1)e
R 1

t
p1(s)ds

+
∫ 1

t

[−p2(u)x′(u) +Q(u, x(u)) + f(u, Tu(·, x;φ))]e
R u

t
p1(s)dsdu,

which leads to

x′(t)− p2(t)x(t) = [x′(1)− p2(1)x(1)]e
R 1

t
p1(s)ds +

∫ 1

t

z(u)e
R u

t
p1(s)dsdu,

where, for simplicity, we have put

z(u) := f(u, Tu(·, x;φ)) +Q(u, x(u)) + [p1(u)p2(u) + p′2(u)]x(u), u ∈ I.
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Thus the solution x satisfies

x(t) = [x′(1)− p2(1)x(1)]υ2(t)Y (t) +
∫ t

0

∫ 1

u

V (u, s, t)z(s) ds du, t ∈ I. (2.4)

In (2.4) we set t = 1 and find

x′(1) =
1

Y (1)

[
x(1)[1 + p2(1)Y (1)]−

∫ 1

0

∫ 1

u

V (u, s, 1)z(s)dsdu
]
.

Substitute this value in (2.4) and obtain

x(t) =
υ2(t)Y (t)
Y (1)

[
x(1)−

∫ 1

0

∫ 1

u

V (u, s, 1)z(s) ds du
]

+
∫ t

0

∫ 1

u

V (u, s, t)z(s) ds du, t ∈ I.
(2.5)

Now take into account that x(η) = x(1). From (2.5) it follows that

x(1) = γ
[
Y (1)

∫ η

0

∫ 1

u

V (u, s, η)z(s)ds du− υY (η)
∫ 1

0

∫ 1

u

V (u, s, 1)z(s)ds du,

where

γ :=
(
Y (1)− υY (η)

)−1

.

Because of (2.3) the constant γ is positive. Substituting this value to (2.5), after
some manipulation, we derive

x(t) = γυ2(t)Y (t)
[ ∫ η

0

∫ 1

u

V (u, s, η)z(s) ds du−
∫ 1

0

∫ 1

u

V (u, s, 1)z(s) ds du
]

+
∫ t

0

∫ 1

u

V (u, s, t)z(s) ds du.

(2.6)

Lemma 2.1. A function x is a solution of the boundary-value problem (1.1)-(1.2)
if and only if it satisfies the operator equation

x = Aφx, (2.7)

where Aφ is the operator

(Aφx)(t) :=
∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds, x ∈ C+
0 (I). (2.8)

Here we have set

F (s, Ts(·, x;φ)) := f(s, Ts(·, x;φ)) +Q(s, x(s)) + [p1(s)p2(s) + p′2(s)]x(s), u ∈ I

and the kernel G(t, s) is defined by

G(t, s) : = γυ1(s)υ2(t)
[
υY (s ∧ η)Y (t)− Y (t)Y (s)

+ Y (1)Y (s ∧ t)− υY (s ∧ t)Y (η)
]
,

where, as usually, α ∧ β := min{α, β}.
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Proof. Assume that x is a solution. Then it satisfies (2.6) and, so, we have

x(t) =
∫ 1

0

∫ 1

u

U(u, s, t)z(s) ds du, (2.9)

where

U(u, s, t) := γυ2(t)Y (t)
[
V (u, s, η)χ[0,η](u)− V (u, s, 1)

]
+ V (u, s, t)χ[0,t](u),

where χ[0,t](·) stands for the characteristic function of the interval [0, t]. We apply
Fubini’s Theorem in the right side of (2.9) and get

x(t) =
∫ 1

0

G(t, s)z(s)ds,

where

G(t, s) :=
∫ s

0

U(u, s, t)du.

The inverse is proved by the inverse way. The proof is complete. �

Next we simplify the form of the kernel G by examining the following cases:
Case 1.1: s ≤ t ≤ η. Then we have

G(t, s) = γυ1(s)υ2(t)
[
υY (s)Y (t)− Y (t)Y (s) + Y (1)Y (s)− υY (s)Y (η)

]
= γυ1(s)υ2(t)Y (s)

[
[Y (1)− Y (t)] + υ[Y (t)− Y (η)]

]
= γυ1(s)υ2(t)Y (s)

[ ∫ 1

t

V (u, 1, 1)du− υ

∫ η

t

V (u, 1, 1)du
]

= γυ1(s)υ2(t)Y (s)
[
(1− υ)

∫ η

t

V (u, 1, 1)du+
∫ 1

η

V (u, 1, 1)du
]
.

Case 1.2: t < s ≤ η. Then we have

G(t, s) = γυ1(s)υ2(t)
[
υY (s)Y (t)− Y (t)Y (s) + Y (1)Y (t)− υY (t)Y (η)

]
= γυ1(s)υ2(t)Y (t)

[
[Y (1)− Y (s)] + υ[Y (s)− Y (η)]

]
= γυ1(s)υ2(t)Y (t)

[ ∫ 1

s

V (u, 1, 1)du− υ

∫ η

s

V (u, 1, 1)du
]

= γυ1(s)υ2(t)Y (t)
[
(1− υ)

∫ η

s

V (u, 1, 1)du+
∫ 1

η

V (u, 1, 1)du
]
.

Case 1.3: t ≤ η < s. Then we have

G(t, s) = γυ1(s)υ2(t)
[
υY (η)Y (t)− Y (t)Y (s) + Y (1)Y (t)− υY (t)Y (η)

]
= γυ1(s)υ2(t)Y (t)

[
Y (1)− Y (s)

]
= γυ1(s)υ2(t)Y (t)

[ ∫ 1

s

V (u, 1, 1)du
]
.
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Case 2.1: s ≤ η < t. Then we have

G(t, s) = γυ1(s)υ2(t)
[
υY (s)Y (t)− Y (t)Y (s) + Y (1)Y (s)− υY (s)Y (η)

]
= γυ1(s)υ2(t)Y (s)

[
[Y (1)− Y (t)] + υ[Y (t)− Y (η)]

]
= γυ1(s)υ2(t)Y (s)

[ ∫ 1

t

V (u, 1, 1)du+ υ

∫ t

η

V (u, 1, 1)du
]
.

Case 2.2: η < s ≤ t. Then we have

G(t, s) = γυ1(s)υ2(t)
[
υY (η)Y (t)− Y (t)Y (s) + Y (1)Y (s)− υY (s)Y (η)

]
= γυ1(s)υ2(t)

[
Y (s)[Y (1)− Y (t)] + υY (η)[Y (t)− Y (s)]

]
= γυ1(s)υ2(t)

[
Y (s)

∫ 1

t

V (u, 1, 1)du+ υY (η)
∫ t

s

V (u, 1, 1)du
]
.

Case 2.3: η < t < s. Then we have

G(t, s) = γυ1(s)υ2(t)
[
υY (η)Y (t)− Y (t)Y (s) + Y (1)Y (t)− υY (t)Y (η)

]
= γυ1(s)υ2(t)Y (t)

[
Y (1)− Y (s)

]
= γυ1(s)υ2(t)Y (t)

∫ 1

s

V (u, 1, 1)du.

3. Main Result

Now we are ready to present our main result of this article.

Theorem 3.1. Suppose that assumption (H) is satisfied and f(t, φ) is an actively
bounded continuous function with Θt(f), t ∈ I being the set-valued function defined
in Definition 1.2. Assume, also, that the functions L0(·;m,M) and ω(·;m,M) are
measurable for all m < M . Finally, assume that there is a δ ∈ [0, 1] and two
(distinct) real numbers ρ1, ρ2 such that

1
ρ1

∫ 1

0

G(s, s)L(s,
µ

Λ
ρ1, ρ1)ds ≤

1
Λ
, (3.1)

1
ρ2

sup
t∈I

∫
S

G(t, s)ω(s,
µ

Λ
ρ2, ρ1 ∨ ρ2)ds ≥ 1, (3.2)

where

L(t,m,M) := sup
0≤ξ≤M

(
Q(t, ξ) + [p′2(t) + p1(t)p2(t)]ξ

)
+ L0(t,m,M).

S := {s ∈ [0, 1] : s+ θ ∈ [δ, 1], θ ∈ Θs(f)},

Λ := max{e
R η
0 p2(v)dv, e

R 1
η
p2(v)dv}. (3.3)

µ := min
{ Y (1)− Y (η)
Y (1)− υY (η)

,
Y (δ)
Y (1)

υ2(0),
Y (η)
Y (1)

υ
}
. (3.4)

Then, for any φ ∈ C+
r (0) with ‖φ‖ ≤ ρ1, there is a positive solution of the boundary-

value problem (1.1)-(1.2) having norm in the interval with ends the numbers ρ1, ρ2.
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Proof. First we shall obtain some properties of the kernel G of the operator Aφ. In
Case 1.1 we have

G(t, s)
G(s, s)

=
υ2(t)

[
(1− υ)

∫ η
t
V (u, 1, 1)du+

∫ 1

η
V (u, 1, 1)du

]
υ2(s)

[
(1− υ)

∫ η
s
V (u, 1, 1)du+

∫ 1

η
V (u, 1, 1)du

]
≤ e

R t
s
p2(v)dv ≤ e

R η
0 p2(v)dv ≤ Λ,

(3.5)

where Λ is given by (3.3). Also in this case we get

G(t, s)
G(s, s)

≥
∫ 1

η
V (u, 1, 1)du

(1− υ)
∫ η
0
V (u, 1, 1)du+

∫ 1

η
V (u, 1, 1)du

=
Y (1)− Y (η)
Y (1)− υY (η)

≥ µ.

(3.6)

In Cases 1.2, 1.3 and 2.3 we get

G(t, s)
G(s, s)

=
υ2(t)Y (t)
υ2(s)Y (s)

≤ e−
R s

t
p2(v)dv ≤ 1 ≤ Λ. (3.7)

If, in addition, we have δ ≤ t, then it follows that

G(t, s)
G(s, s)

=
υ2(t)Y (t)
υ2(s)Y (s)

= e−
R s

t
p2(v)dv

Y (t)
Y (s)

≥ e−
R s

t
p2(v)dv

Y (δ)
Y (1)

≥ µ. (3.8)

In Case 2.1 it holds

G(t, s)
G(s, s)

=
υ2(t)

[ ∫ 1

t
V (u, 1, 1)du+ υ

∫ t
η
V (u, 1, 1)du

]
υ2(s)

[ ∫ 1

s
V (u, 1, 1)du+ υ

∫ s
η
V (u, 1, 1)du

]
≤ υ−1e

R t
s
p2(v)dv ≤ e

R η
0 p2(v)dv ≤ Λ.

(3.9)

Also, we get

G(t, s)
G(s, s)

≥ υe
R t

s
p2(v)dv ≥ υ ≥ µ. (3.10)

Finally, in Case 2.2 we have

G(t, s)
G(s, s)

=
υ2(t)

[
Y (s)

∫ 1

t
V (u, 1, 1)du+ υY (η)

∫ t
s
V (u, 1, 1)du

]
υ2(s)

[
Y (s)

∫ 1

s
V (u, 1, 1)du

]
≤ e

R t
s
p2(v)dv

Y (s)
∫ 1

t
V (u, 1, 1)du+ υY (s)

∫ t
s
V (u, 1, 1)du

Y (s)
∫ 1

s
V (u, 1, 1)du

≤ e
R 1

η
p2(v)dv ≤ Λ,

(3.11)
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and moreover

G(t, s)
G(s, s)

=
υ2(t)

[
Y (s)

∫ 1

t
V (u, 1, 1)du+ υY (η)

∫ t
s
V (u, 1, 1)du

]
υ2(s)

[
Y (s)

∫ 1

s
V (u, 1, 1)du

]
≥ e

R t
s
p2(v)dv

υY (η)
∫ 1

s
V (u, 1, 1)du

Y (s)
∫ 1

s
V (u, 1, 1)du

≥ υ
Y (η)
Y (1)

≥ µ.

(3.12)

From (3.5), (3.7), (3.9) and (3.11) we see that for all s, t ∈ I,

G(t, s) ≤ ΛG(s, s), (3.13)

where (recall that) Λ is the constant defined in (3.3). Also from (3.6), (3.8), (3.10)
and (3.12) we see that for all t ∈ [δ, 1] and s ∈ [0, 1] it holds

G(t, s) ≥ µG(s, s), (3.14)

where µ is defined in (3.4).
Now define the set

K := {x ∈ C+
0 (I) : x(t) ≥ µ

Λ
‖x‖, t ∈ [δ, 1]}

and observe that it is a cone in the space C0(I).
Consider a initial function φ ∈ C+

r (0) with ‖φ‖J ≤ ρ1, where ρ1 satisfies (3.1)
and (3.2).

Let Aφ be the corresponding operator defined by (2.8). Because of Lemma 2.1
it is enough to show that the operator Aφ has a fixed point. To this end we let
x ∈ K. Then we have (Aφx)(0) = 0 and from (3.13) we get

‖Aφx‖I = sup
t∈I

∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds

≤ Λ
∫ 1

0

G(s, s)F (s, Ts(·, x;φ))ds.

(3.15)

From (H) and the definition of f we have F (s, Ts(·, x;φ)) ≥ 0, for all s ∈ I and
therefore (Aφx)(t) ≥ 0 for all t ∈ I. Let t ∈ [δ, 1]; from (3.14) and (3.15) we get

(Aφx)(t) =
∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds

≥ µ

∫ 1

0

G(s, s)F (s, Ts(·, x;φ))ds ≥ µ

Λ
‖Aφx‖I .

(3.16)

Relation (3.16) guarantees that the operator Aφ maps the cone K into itself. Fur-
thermore from (2.1) and the first argument in Definition 1.2 we conclude that the
function y → F (·, T·(·, y;φ)) is continuous and it maps bounded sets into bounded
sets; thus the operator Aφ is completely continuous.

Next take any x ∈ K. By definition, for any s ∈ S we have s+ θ ∈ [δ, 1] ⊆ I, for
all θ ∈ Θs(f). Thus it holds

Ts(θ, x;φ) = x(s+ θ) ≥ µ

Λ
‖x‖I . (3.17)
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Let x ∈ K with ‖x‖I = ρ1. Taking it into account together with the choice of ‖φ‖J ,
we have ‖Ts(·, x;φ)‖J ≤ ρ1. Thus, because of (3.13), Definition 1.2 and (3.1) for
all t ∈ I we have

‖Aφx‖I = sup
t∈I

∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds

≤ Λ
∫ 1

0

G(s, s)F (s, Ts(·, x;φ))ds

≤ Λ
∫ 1

0

G(s, s)L(s,
µ

Λ
ρ1, ρ1)ds ≤ ρ1 = ‖x‖I .

(3.18)

Also, let x ∈ K, with ‖x‖I = ρ2. Then we derive

‖Ts(·;x, φ)‖J ≤ ρ,

where, recall that, ρ := ρ1 ∨ ρ2. Consequently, because of (H), Definition 1.2 and
(3.2), we get

‖Aφx‖I = sup
t∈I

∫ 1

0

G(t, s)F (s, Ts(·, x;φ))ds

≥ sup
t∈I

∫
S

G(t, s)F (s, Ts(·, x;φ))ds

≥ sup
t∈I

∫
S

G(t, s)ω(s;
µ

η
‖x‖I , ρ)ds ≥ ‖x‖I .

(3.19)

Finally, define Ω1 and Ω2 to be the open balls with radius ρ1 ∧ ρ2 and ρ1 ∨ ρ2

respectively. The previous arguments together with (3.18) and (3.19) permit us to
apply Theorem 1.1 to get the result. �

4. An Application

In this section we show that our technique (namely, to write the damping term
as the difference of two factors), helps a lot to obtain more information on the
existence of the solutions. We show that given any ρ > 0 there exist solutions
having norm equal to ρ. Consider the delay differential equation

x′′(t) + te−x(t−
1
2 ) exp1000x( t

2 ) = 0, t ∈ [0, 1], (4.1)

associated with the conditions

x0 = φ, x(
1
2
) = x(1). (4.2)

Here we have η = 1
2 , r = 1

2 (thus J = [− 1
2 , 0]), Q(t, ξ) := 0 and p(t) := 0. Let c be

a positive parameter and write p(t) = c− c. First observe that the function

f(t, ψ) := te−ψ(− 1
2 ) exp1000ψ(− t

2 )

is actively bounded with

Θt(f) := {−1
2
,− t

2
},

ω(t;m,M) := te−M exp1000m,

L0(t,m,M) := te−m exp1000M .

Hence
L(t,m,M) := c2M + te−m exp1000M .



EJDE-2006/98 POSITIVE SOLUTIONS 11

Choose δ = 1
10 , thus we obtain S = [35 , 1].

In the sequel all constants involved in our conditions are given as expressions of
the parameter c. So, first we obtain

υ1(t; c) = υ2(t; c) = e−c(1−t), υ(c) = e−
c
2 ,

Y (t; c) =
ec(2−t)

c
sinh(ct),

γ(c) =
ce−c

sinh(c)− sinh( c2 )
.

Also we obtain

Λ(c) = e
c
2 ,

µ(c) = min
{ e

−c
2 sinh( c2 )

sinh(c)− sinh( c2 )
, e−( 11c

10 ) sinh( c10 )
sinh(c)

,
sinh( c2 )
sinh(c)

}
.

We can see that for all c > 0,

µ(c) =
e−

c
4 sinh( c4 )
sinh(c)

.

Next we compute G(s, s) for s ∈ I: If s ≤ 1
2 , then

G(s, s) =
(sinh(cs))2

c(sinh(c)− sinh( c2 ))
[1 + ec(

3
4−s) sinh(

c

4
)] +

sinh(cs)
c

,

while, if s ≥ 1
2 , then

G(s, s) =
cosh(c)− cosh(2cs− c)
2c(sinh(c)− sinh( c2 ))

.

Also we obtain

G(
1
2
, s) =

sinh( c2 ) sinh(c− cs)
c(sinh(c)− sinh( c2 ))

.

Now we seek for the existence of positive reals ρ1, ρ2 satisfying (3.1), namely,

ρ1

sinh(c)− sinh( c2 )

[1
2

sinh(
c

4
)[c sinh(

3c
4

)− 2 sinh(
c

2
) sinh(

c

4
)]− 2e−c

]
+

exp1000ρ1

8c2(sinh(c)− sinh( c2 ))

[
c sinh(

c

4
) sinh(

3c
4

) + 2 sinh(c)

+ sinh(
c

2
)− 3(1 + c2)

2c
cosh(c)

+
1
2c

]
exp

(−e−( 8c
5 ) sinh( c10 )

sinh(c)
ρ1

)
≤ ρ1e

− c
2

(4.3)

and (3.2). The latter becomes∫
S

G(
1
2
, s)ω(s,

µ(c)
Λ(c)

ρ2, ρ1 ∨ ρ2)ds ≥ ρ2,
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which takes the form
sinh( c2 )

c(sinh(c)− sinh( c2 )

( 3
5c

cosh(
2c
5

) +
1
c2

sinh(
2c
5

)− 1
c

)
exp(−1100cρ2

sinh(c/10)
sinh(c)

) ≥ ρ2e
ρ1∨ρ2 .

(4.4)

Let us restrict our discussion to the case

ρ1 < ρ2. (4.5)

By the use of a graphing calculator, we can take a view of the set of pairs (ρ1, ρ2)
satisfying the implicit algebraic inequalities (4.3), (4.4) and (4.5). We find out that
there are two points c1 and c2 (approximately equal to 0.1 and 1.66527, respectively)
such that for all c ∈ [c1, c2] inequalities (4.3), (4.4) are satisfied by all ρ1, ρ2 > 0.

We shall show the following result.

Theorem 4.1. Let ρ2 > 0 and any (initial) function φ ∈ C+
0 (J) with ‖φ‖J ≤ ρ2.

Then there is a solution x of the problem (4.1)- (4.2) such that ‖x‖I = ρ2.

Proof. Consider a c ∈ (c1, c2] and a (strictly) increasing sequence of positive reals
Rn converging to ρ2. By the previous arguments it follows that ρ2 > Rn satisfies
(4.4) and Rn satisfies (4.3). By Theorem 3.1 there is a solution xn of (4.1) such
that xn(s) = φ(s), for all s ∈ [− 1

2 , 0],

xn(
1
2
) = x(1) (4.6)

and
Rn ≤ ‖xn‖I ≤ ρ2, (4.7)

for all n. From (4.6) it follows that there is a tn ∈ [ 12 , 1] such that x′n(tn) = 0 and
hence from (4.1) by integration we get

x′n(t) = −
∫ t

tn

se−xn(s− 1
2 )e1000xn( s

2 )ds. (4.8)

This shows that (x′n) is bounded. Also, from (4.1) we see that (x′′n) is bounded.
Applying Arzela-Ascoli theorem twice it follows that there is a subsequence (xkn

)
converging (in the C1 sense) to some differentiable function x satisfying the integral
equation (4.8). It is easy to see that x is a solution of the original problem, and
because of (4.7), it satisfies ‖x‖I = ρ2. The proof is complete. �
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