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CHAPTER I

INTRODUCTION AND DEFINITIONS

The purpose of this paper 1s to develop several relationships
between integrals of the type fodg, fg]f]dg, fod[gl, fo[dgi, and
b . b . b .
fa[fdglo Chapter II shows that if fafdg exists then fa f dg exists.
Chapter III shows the equivalency between the existence of fgfdg and
fo[dg] with the condition of bounded variation on g. Another theorem

b

allows us to relax this condition while going from fafldgl to fodgo

All functions used are from numbers to numberse.
DEFINITION 1,13 The statement that D = (xi)§~0 is a subdivision of

the closed interval (a,b) means that D is a finite subset of (a,;b)
such that a = x , b = x and for each i, X, < Z., .¢
o] n i it 1

DEFINITION-1e2: The statement that D' is a refinement of a subdivision

D of (a,b) means D' is a subdivision of (a,b) and D is a subset of D%,

DEFINITION 1.3: The statement that (1',:.L)§l‘_.1 is an interpolating sequence

for the subdivision (Xi)g— means if O <i g n then x, , < t, < X0

0 i =
DEFINITION l1.4: The statement that f is integrable with respect to g
means that £ and g are functions and there exists a number A such that

if e > O then there is a subdivision D of {a,b) such that if

n . . . . .
Dt = (xi)i:O is a refinement of D and (ti)§=1 is an interpolating

sequence of D! then



121 £(t,)[e(x,)= ez, )] = 4] < e
D!

We denote the number A by fodge We will also denote the numbers
g(xi)- g(xi_1) by dgi and f(ti) by fi when no misunderstanding is likelye

n
The symbol L will be used for YL , As indicated before, (a;b) shall
Dt i=l
Dt
denote the closed interval, containing both a and be

DEFINITION 1.5¢ If f and g are functions such that fodg exists and

. _ n . PO S| .
if D = (Xi):i.:O is a subdivision of (a,b) and D1 = (xp)P=O is a

refinement of D then
(1) Dt denotes the set such that x belongs to Dt if and only if

X =X for some %, in D and for each p in (Xi—vT’Xi)’ f(p) > 0.

(2) D™ denotes the set such that x belongs to D™ if and only if

X =X, for some X, in D and for each p in (Xi“.],Xi), f(p) <O

(3) D denotes the set such D¥ = D = (DT U D),
If O< i < n, then

() j_D1 denotes the set such that x belongs to iD if and only

1

if x is in D, and x. <X < X.eo
1 3] = i

(5) Dedg o denotes the set such that x belongs to Dedg o0

if and only if x = X for sonme x; in D and g(xi)~ g(xi_.]) 2 0o

(6) Dedg <o denotes the set such that (Dedg <o) = D = (Dedg>0)s
When no consideration of the sign of f is needed, Dedg o0 will be
denoted by *D and Dedg<o by =De

DEFINITION 1468 The statement that g is of bounded variation on (a,b)



means that there exists a number M > O such that if D = (Xi)z—o is a

subdivision of (a,b) then T ldgi] < Me¢ If S is the set such that p
D

of (a,b)

m
belongs to S if and only if there is a subdivision (Xq)q~0

m
such that p = 0 ldgql, then the least upper bound of $ is denoted by
g=1

VZg and is said to be the variation of g on (a;b)e
THEOREM 1,7: If fodg exists and e > 0 then there is a subdivision
n m
= 3 ! = ] 2 . T
D (xi)i=o of (a,b) such that if D (XP)P=O is a refinement of
D and (ti)?__1 and (t§)$_1 are interpolating sequences for the suba

divisions D and D', respectively, then [1, pe. 304]

;:'!f(t}g)dgp - ff{P fdgi < e,

Pl
D f(t.)dg, = U £(t1)dg | < e,
D l i i By P p[
i
X
and Li[ * fdg = T £(t8)de ! < e
D X iy P

1wl . D?
i



CHAPTER II

b
THE EXISTENCE OF falfl dg

The first relationship to be considered is that between IZfdg

and lefldg. The following segquence of theorems establish that if
b R b ,
J fdg exists then falfldg exists.
THEOREM 2.1: If fzfdg exists and e >0 then there is a subdivision
. _ n . n
D of (a,b) such that if D1 = (xi)i=o is a refinement of D and (ti)i=1

is an interpolating sequence for D1 then I If(ti)dgil < €

3
D1_

Proof:

Let e > 0. Since fzfdg exists and §-> O then, by Theorem 1.7,

there is a subdivision D of (a,b) such that if D1 = (xi)2~0 is a refine~

ment of D and (ti)§~1 is an interpolating sequence for D1 then
Xi e
z ’fidgi - fx. fdgl <3
D1 i=1
Let D, = (x.)? _ be a refinement of D and (t_)? be an inter=
1 i7i=0 i74=1

polating sequence for D For each ti in D1i, let qi be a number such

10
that qiis in (XiNT’Xi) and if f(ti) > O then f(qi) < O and if f(ti) < 0

then f(qi) > 0» Therefore, for each X in th, f(ti) - f(qi)] > f(ti) s

Now, e = =+

o

12
2



- 2

X, X.
1 po L
> o]t sdg - t(qyae. |+ B |2 e, - SF rag]
Dx i1 e e £
> Elf(t)d - £(q.)d +fxifd u-fxifdl
2 17 %85 41768 ¥ 1 g 208 = /g 108
D1i 1wl 1]
= T |et) - 2(a) *|ae, |
D%
1
i
D.*
1
= 0 |f(t,)de.]
D.+ 1 1
1
Therefore, z If(t,)dg,! < ©e
pt - 1

1

THEOREM 2,2: If fodg exists and e > O then there is a subdivision
n m
- . - y . \
D (xi)i=o of (a,b) such that if D1 (Xp)p=0 is a refinement of D
n ¢y . .
and (ti)i=1 and (tP)p=1 are interpolating sequences for D and DT’
respectively, then

by ]f(ti){dgi - 2 If(t};)l dg | < ee

D¢ U D= 1Dy
Proofs
Let e » O, Since fzfdg exists and §'> Q0 then, by Theorem 1e7;
there is a subdivision D = (Xi)§=o of (ayb) such that if D1 = (X§)§=o

is a refinement of D and (ti)?—1 and (t;)§=1 are interpolating sequences
for D and D1, respectively, then

e
-3 $ =,
z f(ti)dgi ¥ f(tp)dgp <

2
D iDT

m n m
1, = (%! ; '
et D1 (yp)p=o be a refinement of D and (ti)i=1 and (tp)P=T

be interpolating sequences for D and D1, respectively. Hence,

Lje(t,)|dg, = L £(t ) d
|£¢t;)] de, Do) g

D+ U D= i



= I . > o
sl ezl

= I |2(t,)ag, o 2(t1)dg |+ El-f(t )ag; - T -£(t!)de,
D* i 1 iD1

= §+| S ]};:-If(ti)dgi -iZ!D1f(t{))dgpl

< %If(ti)dgi «-;;1 £(t1)de |
€

< 2

< € o

. §
Therefore, T 'lf(ti)]dgi by If(tpﬂ dgp < e

D+ U D= 191

THEOREM 2,3%: If fodg exists and e > O then there is a subdivision

= n § = 1y i i
D= (xi)i=o of (a,b) such that if D1 (xp)p=o is a refinement of D

and for each i, O < i < n, let iM: (yq)é}o denote the subdivision of

(xi_1,xi),such that z is in iM if and only if (1) z is X, 4 OF X;, OT
R s s m 15

2) z is x! or x! where x! is in D,*; and let (z ., and (w

@) p O Fpa1? P 1% (2p)pey 208 (M) oy

be interpolating sequences for D1 and .M, respectively, then

(a) 3]z Z |2z Letx)= stx)_)] |
I M+ U M" qD’l
< e+ | lf(w )l[g(y) 8(yq 1)]!
DE *Mf U M-
(B) = l? lf(Wq)l odgq < e
Dt M*dgzo
(c) 2" b lf(wq)!odg < e
D lM?.dg<o
(D) 2 l Z | £(wq)| «dg < e
D iM"‘odg?_O
(E) T [z (ol vdg | < e
Dt ;M=ede<o
(F) I l z (f(zp)[odg l < e
oot U D
171 i1



Proof:

(A) Let e > O, By Theorem 2,2, since IZfdg exists and e > O

then there is a subdivision D = (x ) of (a,b) such that if

i=0
- ' . m n .
1 (x ) is a refinement of D and (Zp)p=1 and (ti)i=1 are interpolated
sequences for D1 and D, respectively, then

2o, asy - Blecz)l e, | <
D* U D" 101

Let D, = (x')m be a refinement of Ds For each x, in D, let
1 P p=0 i

M be defined as in hypothesis of theorem and let M = U iMe Thus, M
i=1

is a refinement of D and D1 is a refinement of M, Also, for each i,

let (wq)zf1 be an interpolating sequence for iM° Hence,

o >zlww)wg~21ﬂzn@i

mF U M= q 1
=z « |+ | . |
Dt U D= Dt M+ U _ M=
> Z | T ]f(wy)dg = I z |£(z )] dg
]ﬁl Mh g Mat O MF U M= D [
i i i i q 1
> =2 | & |£(wy) de + 5| = 2 £z )l ag
D—"'I.M"‘U.M% ql Bi'l.WU.M"- D p pl
i i i i q 1
Therefore,
e + T| 3 f(w)dgl l 5 |£(z)| e
AR M-~Oll ptl M+ U M- D, P Pl

(B) Let e-» 0, Since I:fdg exists and §-> 0 then, by Theorem

147, there is a subdivision D, = (Xi):—o such that if A = (x1)°

is a refinement of D, and A, = (w )r is a refinement of A, and
2 2 q’/q=0 1

(z)°

o) p=1 and (tq)'z:1 are interpolating sequences for A, and Aa,

1



respectively, then

L |f(z )dg. =T £(t )d s,
5 (P)gp A(q)gq<3
1 p2

Since fodg exists and -‘?— > O then there is a subdivision D, of (a,b)

3 3

suck that if D, = (x')" _ is a refinement of D, and (z_)" . is an
1 p p=0 3 p p=1

interpolating sequence for D1 then

e
L fezae | < %

-
D;

n m
= = ° = v i
Let D= D2UD5 (xi)i=o Let D1 (Xp)p=0 be a refinement

of D and for each Xi in D, let iM be defined as in hypothesis and

n

M= U M, Let M, be the refinement of D such that x belongs to M,

i=1 1

if and only if x is in D or there is an xi in D such that x is in iMi,

K
- L4 e i = . .l i
iM or iM& dg <o For each i, let iM1 (y3)3=0 o Notice that M

. . R ' s
is a reflnepent of M For each yj in iNH,let Zj be in (yj_1,yj).

1.

' S e
Thus, T lf(zj)dgjl < z and E]f(wq)dgq < %o
Mk ME
Therefore,
5|5 lregllety )= sty )]
pt j_IVH-odg 20
- z] T f(w,)dg
= iM+-dg >0
= ¥ I f d + L L f d - £
D* i = ot 1 DL
< & T f(w,)de + 2 |ew dag |
= q q
od + a’ Pq
D j_Mi U M¥edg >0 M
< & I f(wglasgqg + L » f(z%)dgj - I X f(zgj)dgj +
+ . m
pt MY edggz o UM DM i

<3
3



< X l PH f(wq)dgq -2 f(zs)dgjl + f(z')dg + %
ot 1 (MEU, M+.dg>o iM1i M1
- 1 e =2
< Zi' S f(wq)dgq f(zj)dgjl + 3 + 3
1
2
< I . + - ©
1
e 2 e
< 3 F 3
= [
Thus, i lf(wq)I[g(y )-8y ] < e
Dt M+-dg>o

By similar argument, parts C, D and E are also true. Using these
results, the following establishes part F as the main conclusion of
the theorem.

(F) For each of the previous parts, A, B, C, D and E, let the

arbitrary positive number be g-. Since IZfdg exists and % > 0 then
. PP _ n ; '
there is a subdivision D= (Xi)i=0 such that if D1 (x )p=o a
refinement of D and M = U (s M), as defined in hypothesis, is a
i=1

refinement of D then parts A, B, C, D and E are true,

Let D, = (x')m be a refinement of D and (z )m be an inter-
1 0 p’ p=1

P p=
polating sequence for D1. For each iM’ let wq be in (yq 1,yq) for

h i .
eac yq in iM Hence,

2|2 |2z as |
-~ P P
Dt 1D¥UiD1
:)3|>3 E!f(Z)Idg[
o+ - Y b
ot iM U.M D1 |
e
< 2 & 2’ T |£(wg)| dg



10

s E+o3 I, Lt dgg| + 3 letug)] dgq|
k' 4 MFedeg 20 it MFedg< o
|5 2wyl dgql + oD |eug) dgql
D 1 M=edg >0 D M°= dg <o
e =] [=] e e
< 5F 5T 5T 5 T3
- eg
Thus, z | | £(zp)| de l < e
PR

Finally, with the preceding theorems we can establish the
following result.

THEOREM 2,42 If fzfdg exists then f:lfl dg exists.

Proof:

Let e > O Since fzfdg exists and f;- 0 then, by Theorem 2.1,

. s - k .
there is a subdivision Da.- (Xi)i=o of (a,;b) such that if D = (x )p_O

is a refinement of D2 and (t£)§~1 is an interpolating sequence for D1
e
then b¥ £(t1) 4 < =
DiI (tp) dg | &

1

b
Since fafdg exists and % > 0 then, by Theorem 2.2, there is a subdivi-

. 1 m
- . (et . :
sion D3 (xi)i=O of (a,b) such that if D1 (xp)p=0 is a refinement

1 m
of D, and (t.). and (t? are interpolating sequences for D, and
3 (t ) (£2) 5=t P g seq =

D1, respectively, then

z ]]f(t )| -z If(t')ldg ] < ﬁ-
Dt UD;~ 1P

b
Since fafdg exists and §-> 0 then, by Theorem 2.3, there exists a

o - J . IRy .
subdivision IL._ (Xi)i=o of (a,b) such that if D1 = (Xp)p=o is a



11

refinement of D, and (t;)§*1 is an interpolating sequence for D, then

) 1
e
T3 lf(el -
l D+£;(Dp3| Bl <k
D i7t " iM
iy
— - n - 2 o
Let D = D2 U D3 U D4 = (xi)i=o e Let D1 = (Xp)pzo be a refine

n e . .
ment of D and (ti)i=1 and (tp)p=1 be interpolating sequences for D
and D1, respectively., Thus,

- ]
| B 15(s,)) de, §1]f(tp)|d€pl

< I |lecelas - 3 leceplas|
i™
< I ||f(ti)ldgi - i ]f(t£)|dgpl + I lf(ti)dgi[
D+U D i1 D

+ I} T Yg(en)fa
Dil D J ( P), gP
i1

< 2+ 2oy m|zleple,| + 3| E Iy

b b pt P P 4. DU D~ T

Dii']" D= iv1 " i

e € -

< > + bH f(té)dgp + L
oy

< ?Te + 'Le';
= L=

n

1=0 of

.8ince for each e > O there is a subdivision D = (xi)

)m

. - '
(a,b) such that if D1 (xP p=0

is a refinement of D and (ti)2—1

and (t£)$_1 are interpolating sequences for D and Dl’ respectively,

th - !
en g {f(ti)ldgi g !f(tp)[dgp < e;
1

therefore, jZ[f1dg exists [2, p. 28].



Using this theorem, another relationship can be established
b b
between [ _fdg and Iafdlglo
b . b ..
THEOREM 245: If fafdg exists then fafd!gl.

Proof:
. b . b . .
Since fafdg exists then fagdf exists [2, ps 53] and is

b
f(b)g(b) = £(a)g(a) = fafdg.
Since fngf exists then, by Theorem 2.4, fglgidf exists. Since

b
falgldf exists then IZfdlgl exists,

i2



CHAPTER III

RELATIONSHIPS BETWEEN fzfdg AND IZfidgl

The next relationship to be shown is between the integrals
fodg and fzf[dg[. It has been found that if g is of bounded varia=
tion on (a,b),; then equivalent statements can be made regarding these
integrals., The following theorem allows us to prove an equivalent statee
ment as the next theorem,

THEOREM 3¢1: If g is of bounéed variation on (a,b) and e > O then
there is a subdivision D= (xi)z=0 of (a,b) such that if D1 = (x£)§=o
is a refinement of D then

P H ]dg l + 3.3 ldg I < €ee
-, ¥ o+, ?

Proof:

Let e > O, Since g is of bounded variation on (a,b) and % > 0

then there is a subdivision D = (xi);_l_O of (a,b) such that if
Dt = (x')m is a refinement of D then
P p=0

b e
g'ldspl > gldgil > Vg - 3o

m b
- ' . . . ;
Let D (xp)p=o be a refinement of De Since Vag is the least

upper bound of such summations on (a,b) then

b
Vg = g'ldgpl > 0 and Vag - § ]dgil > 03
alsoy ‘Vzg - gwldgp]l~< % and VZg - L Idgﬂl < T



Thus, bH
Dt

it

IA

Therefore,

Qo

Lldg |- 1T ldg,
|2 1880 - Z Jas,) |
b b
E' [dgpl -Vt Ve = g |dgi[|
b
IZ ldg ] -V g! + lvag - § ]dgi”

1o

Vo

5
€ e

|dgp| - g ]dgil’ < e,

Also notice that

Tdg, = L Ddg + L T dg_ .

+p *p+pt P tp -p ®p

Hence Lldg,] = L I ja + L 5 =ld
i +D l ll +D +D'| gpl +D "'D' l gpl
£ % T
+D +Dl

and P HE ] ; dg. .0

+D+D'|g] = +§’ g 2z O
Similarly, T %] > = lds].

-p =pr ® -

Therefore,

< T 3ag | +
+p =Dt

+ [z T [dg l
-D =D

=Edg - n
D'I Pl D

T ¥ lag + [ T ]ag!l - T lag.
2 Bleeg] v [35ldg) - 3 lagyl]

~ Eldsl]

|de, |

14



15
Hence T T jdg | + Z T lag < €.
? +D -pt ' P' =D +D|! pl
THEOREM 3.2: If g is of bounded variation on (a,b) then the following
two statements are equivalent:

(1 jifdg existse
(2) IZfldgl exists,

Proof;

If either integral exists then there is a subdivision (yr)i ©

of (a,b) such that for each r, either f is bounded on (yr_1,yr) or

g is constant on (yr_1,yr)[2, Pe 51]. Thus, fzr fdg =0 or
r=1

J
fyr fldg[ = 0 for each (yr_1,yr) on which f is not bounded. Hence,
r=1

in the following proof we shall consider the case where f is bounded
on. (a,b)e

(2) implies (1)

Let e > 0., Since fzfldg[ exists then f is bounded by some
numbgr M > 1 on each subinterval of (a,b) on which g is not constant.

2

b .
Since [ f|dg| exists and 3

> O then, by Theorem 1.7, there is a sub=

division D, = (xi)i_o of (a,;b) such that if D! = is a refinement

m
]
1 (Xp)p=0

J o ; ' .
of D1 and (ti)i=1 and (tP)P=1 are interpolating sequences for D1 and
D!, respectively, then
e
- 1 s
5 l 2t,) |dgy| - B 261 |ag | I < 2.
D1 iD

Since g is of bounded variation on (a,b) and =~ 50 then there is a

M

is a

k m
e - . ' '
subdivision D2 (xi)i=o of (a,b) suéh that if D (xp)p=o
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refinement of D2 then

z ):|dg] + I z:ldg| <

<]
+p =pt =D +Dt L

_ - n ! = (et)B
Let D = D1 U D2 (xi)i=0 . Let D (xp)p=o be a refinement

of D and (ti)?-_1 and (t£)§_1 be interpolating sequences for D and

DY, respectively. Hence,

£(t,)dg, = 2 £(t1)d
l§ (t,)de, g' (e1) gpl

= { Df, dg 4+ Yfdg, -~ L Ifdg =~ I X f. ag
-D +D i1 =D =Dt b b +D+D' PP
- I Tfdg - ¥ T fdg ‘

< | B2.(-)ag)) - = Tz (-][de )I
l&b (- 1% -p =pt ® s,

+z:fdg,-z:z:fdg|+ 3 2t (-]ag]|)
I+D iI 1l +p 1 PI PI +D =Dt ! '

+ | 2 X £ |4
l"D +pt PI gpll

A

Tz, |de. -)'..‘fd|+2f.d.~- T £ |d
RIEALARERRESLN RAEALARE R EST S

i i

+ T ol lla + T ol lla
EMIELN _D+D'l SILEN

+p =pt
- I I T
+ 22Mdg'+ }32M|dg|
+D =D! =D *+pt
it R Bt B
+ M(ZI z]dg| + Z}Eldgl)
+p =p! =D +Dpt
<zl Tl e
=-)]])l . I++}]l . l+-'Le':
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£ - T fld Tf|dg |+ If|d l
-§ 1194l e pld8yl - + p!%p] +p1 p!9y
1 i
+ Elfldg.[- Tf |de | = I f ldg_ |+ Ef|dg]l
i 1 1

e
T

|ae,] - |dg,| -~ T |
R LA ENENT I glflldgll sl

i

w

+ X Zlf”dg] + T >3|f||dg|

=D Dt +p =Dt
sEIf.]dg.[- EEfldg[|+ % B Mg |
pl + & Dt PP -p +pt
1
+ I I Mldg | + 2
*p -pt b
e e
< S + M (3 8]dg|+22|dg])+;
=p *pt =Dt \
e e [=]
— + M —— + —
= 2 Camr ) 4
- € 9
Since for each e > O there is a subdivision D = (x ) of

i=0

m n
. ' = ' . .
(a,b) such that if D (xp)p____O is a refinement of D and (ti)i=1
and (té)?_1 are interpolating sequences for D and D', respectively,

- 1
then g f(ti)dgi g,f(tp)dgp < e,

therefore, fodg exists [2, pe 28],

(1) implies (2)

Let ¢ > O Since fodg exists and g is of bounded variation
b . .
on (a,b) then fadeg exists, where Vg(x) = Vzg for each x in (a,b)

[2, ps 66]. Since f is bounded on (a,b) then there is an M > 1

such that M > |f(x)| for each x in (a,b). Since fodVg exists and



% > 0 then there is a subdivision D,

is a refinement of D, and (ti)i_

1 1

D! then

Since g is of bounded variation on (a,b) and

subdivision D2

X1
5 Vx & = ldgill

of (a,b) such that if D!
T £(t,)dv - fb
Dt il 8L a

of (a,b) such that if D!

18

_ n

(xi)

is an interpolating sequence for

deg <

e
Eo

=

is a
M > O then there is

(xi)?_O is a refinement of

D, then < T .
z pr Finf 2
Let D= D, U D.o Let D' = (x.)? be a refinement of D and
1 2 i%i=0
x.
(ti)z—I be an interpolating sequence for D'. For each i, let V tg
- R
be denoted by Vgio Hence,
£(t,)|de.| - [ogav l
i i a g
D!
b
t - + t - fd
< i'f( Jlas,| ief(ti)Vgi ﬁlf( Ve, I vgl
b
&) - d P + - »
< lg'f(ti)ldgil g'f(ti)Vgil l%vf(ti)Vgi fadeg!
Z - , 2
< D'lf(ti)]dgi| f(ti)vgil + £
- g
= E[f(ti)llVgi - lagg)| + 3
Dt
M|V d + =
< gy < ‘ gill 2
Dt
= M n]|v 4 + =
S RITI
e e
< M ( B ) + 3
= € o

Since fodVg is a number such that if e > O then there is a

subdivision D of (a,b) such that if D!

n
i=0

(xi) is a refinement of

i=0
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D and (ti):_1 is an interpolating sequence for D' then
T £(t b
D'f( i)]dgil - fadeg < €y

therefore, fo]dgl exists, by Definition 1.3.

With further investigation, it has been found that given the

existence of f:f]dg}, the proof of the existence of f:fdg does not

require the condition of bounded variation for g on (a,b)e The followe
ing are two preliminary theorems in preparation for the desired result,

THEOREM 3,33 If fo]dgl exists then jzlfdgl exists,

Proof:

By Theorem 2.4, since IZfIdg] exists then IZ'flldgl exists and
b .
Ia1fdg[ existse
THEOREM 3e4: If f:f'dg[ exists and g is not of bounded variation on

(ay,b) then for each e > O there is a subinterval (c,d) of (a,b) such
that |£(x)] < e for each x in (c,d).
Proof:

Assume the conclusion is false, Therefore, there is an e > 0
such that if (c,d) is any subinterval of (a,b) then there is an x in

(cyd) such that |£(x)] > e. Since fZ]fdg[ exists and e-> O then there
is a subdivision D of (a,b) such that if D' = (xi)2=o is a refinement
of D and (ti);_l_1 is an interpolating sequence for D' then, by Defini-

. b
tion 103, §|l f(ti)dgil - falfdgl < € o

Since g is not of bounded variation on (a,b) and 1 + %,f2|fdg| > 0

then there is a refinement D' = (x,); , of D such that
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% lag,| > 1+ L fblfng.
ot i g 'a

From our assumption, there exists an interpolating sequence for DY,

n
(ti)i=1’ such that for each (xi~1,xi), lf(ti)[ > e+ Hence,

b
i'lfidgil - Ialfdgll < e

N

b
and §'|fidgi[ < e +* falfdg!o
Thus,
e + fb]fdgl > I |f.dg.|
a i™i
DI
> Te |dg,]
Dt
= e 5 ldgl
D'

b
> e(1+ & I, 12dg] )

b
e + fa[fdgl .
Therefore, ,
e + fZIfdg] > e + fZlfdgl.

This is a contradiction, Thus, the assumption is false and the
theorem is true.

THEOREM 3%.5: If f:fldgl exists then IZfdg exists,

Proofs

b
Let e > 0. Since Iaf|dg| exists then, by Theorem 3,3, fZ]fdgl

exists., Since f2|fdg| exists and % > 0 then, by Theorem 1,7, there

. e n . m
is a subdivision D1 = (zl)1=O of (a,b) such that if D, = (xi)i=o
. . k

-— ] 3 1
is a refinement of D,y D3 = (XP)P=0 is a refinement of Da and
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(ti)?=1 and (t£)§=1 are interpolating sequences for D2 and 93,

respectively, then
% ||2t,)ae,] - = ls(tae || < £.
i’7%1 g < 6
D2 iD

Let A be the set such that z1 belongs to A if and only if zl

is in D1 and g is of bounded variation on (z1_1,z1). Since for each

Z
z. in A, [ 1 f|dg|exists and g is of bounded variation on (z, .,;3.)
1 21_1 111

zZ
then, by Theorem 3.2, le fdg exists. Since for each z. in A,

11 1

V4
[1 tdg exists and E;'eﬂ>° then, by Theorem 1.7, there is a subdivision
11

k J
- 1 ; (- Y1 ; :
Al = (cr) =0 of (zl—l’zl) such that if A1 = (cp)p=o is a refinement

i . . '
of A1 and (tp)p=1 is an interpolating sequence for Al then

T °p ra =
f(tp)dgp - fc? £ gl < =

9 -
Al p-1
and £ |[°T g4 % £(t )d < =
c g -l' p gp 6n .
Al rel A
rl
For each zq in D1 which is not A, let Al be the set such that x belongs

to A, if and only if x = z

1 1°

n o m
= - [ 4 = t 3 -
Let D D] U (1E1A1 ) (xi)i=0 and D (xp)P_c be a refine

ment of D¢ Thus, D and D' are refinements of D1 such that D? is a

refinement of De Let (ti)g_1 and (té)?w be interpolating sequences

1
for D and D', respectively,

Let C be the set such that x belongs to C if and only if x is
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in D and there is a 2z, in A such that z, , < X < 2. Let C!' be the

set such that X belongs to CY if and only if x is in D' and there is

an X, in D such that x5 is in C and X< X S Epe Let B be the set
D = C and B' be the set D' =~ CY, Therefore, for each x, in B, g is

not of bounded variation on (xi ,xi). For each X, in B, since g is

-1

) X.
not of bounded variation on (xi_1,xi), fxl f|ldg| exists and
|

e . .
6n(ld8il T3 > 0 then, by Theorem 3.4, there is a subinterval (c,d)i

. e
of (Xi~1’xi) such that for each x in (c,d)i, If(x)l < 6n(|dgi| T

For each Xi in B, let qi be in (c,d)i. Hence,

lz 2(t,)dg, - g'f(tl'))dg l

< ]gf(ti)dgi - g'f(t:;))dgpl + ]Z:S'f(ti)dgil ¥ g' f(Fé)ng'
< |D f,dg, =~ flfdg l)]flfdg-}“_.fdgl
l -4 c Fi £ ct? P
+ I ° + °
T TR
X
< Elf.dg. -flfdgl+)3fifdg -Efdgl
= ol R ¢! Fimi Lo r R
+ T . + .
s - ezl o+ |
& i
= zzlfidgi—f fdgl |f1fdg- D 1 dg
1=1 ol -—1 C'
- A = A1
1
+ z| . l + z:l . |
n e n e
i —— + o = N ° + °
S g 6 1=1 ©® BI l l
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= 2+ 2 glfidgil + g'lfpdgpl

= 5 2 | £(t)ag,] + gtlf(tp)dgpl

= % + glf(ti)dgi| - g lf(qi)dgil
EAESSCARER JECHUAIENS- | 2¢a, )08, |

< % + g l]f(ti)dgi] - If(qi)dgill

. |12(a)as,| gllfcté>dgpl[ 2z l2a)] | g,

i
< % + % + % + 2 g 5n(ldgir e | a, |
< 5o ov2ctrz g

s Se + £(1)

= € o
n

Since for each e > O there is a subdivision D = (Xi)1~0

of
m n
. - . .
(ayb) such that if D (xp)p=o is a refinement of D and (ti)i=1

and (té)m_] are interpolating sequences for D and D', respectively,

- 2
then Ig £(t,)de, g'f<tp)dsp| < e,

therefore, fodg exists [2, p. 28],
b b , b .
THEOREM 3.6: If [ fdg and [,]tdg| both exist then faf(dg] exists,

Proof:

g

m > O then, by Theorem 1.7,

Let e > O. Since fZ[fdg] exists and

= (x1)"

. R _ k .
there is a subdivision D2 = (xi)i=o of (a,b) such that if D1 ) p=0
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is a refinement of D, and (ti)l_:__1 and (té)g—l are interpolating

2

sequences for D. and D1, respectively, then

2

e

g IESALEA R g If(té)dgpll < 2.
2 i1

Since fodg exists and E > O then, by Theorem 2,1, there is a subdi-

vision D, of (a,b) such that if D, = (x')"

5 1 p?p=0 is a refinement of D3

and (t£)§_1 is an interpolating sequence for D1 then
e

ft' -

|2tepdae| < 3

.|.
by

Since f:fdg exists and % > O then, by Theorem 2.3, there is a subdi=-

vision D, of (a,b) such that if D, = (xé)g=o is a refinement of D,

and (t;ig_1 is an interpolating sequence for D1 then
2|z |2(tprae ]l
o o uay

= = n = 1y i -
Let D D2 U D3 U D4 (Xi)i=0 s Let D1 (xp)p=O be a refine

ment of D and (ti)§—1 and (t£)§_1 be interpolating sequences for D
and D1, respectively, Hence, N

Z f(t,)]|ds, - 4 f(t1)]a
[D BIETH : (tp)] g |

< §+ l[f(ti)lldgil - g [f(té)lldgpw

i

D_| -|£(t)] | agy| - g -|f(t§)|]dgp|} + gil f(ti)dgil



e
< = ||ty - z |f ! + Dol |2 g8
p+ U D= DE i1
< % | . | + 2+ 5 |2
= L p _P
D+ U D= U Dt pt 307 U 4D
+ 3 E £ dg l
pt 1D1
< I ° + =3 + £ + I £ dg
D I l L L Df l Pl
e e e
| < vzt
- e < ,

Since for each e > O there is a subdivision D = (xi)g_o of

(a,b) such that if D, = (x')" _ is a refinement of D and (t")"
+0) 1 ( p)p=0 ( P)P=1

and (’ci);._l_1 are interpolating sequences for D, and D, respectively,

1

then IE £(t;)|dg,| = z f(t£)|dgp|| < e,
1

therefore, szldgl exists [2, pe 28]e~
The questions of reciprocity of the relationships between several
. . b . b

of the integrals arise. If fa{fldg exists then fafdg does not necese-

sarily exist. For example, if f is the function defined as follows:

f(x) =1, if x is a rational number

£(x) =1, if x is an irrational number

and g(x) = x, for each x in (a,b), then fg]r[dg exists but fodg does
. b . b b
not exist; fagdlfl exists but fagdf does not; and falfdgl exists but
fbfldgl does note
a

If fodg exists then foldgi does not necessarily exist. For
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example, if f and g are functions such that f(x) =1 for each number

2
X and g(x) = X sin % for each number x # 0 and g(0) = 0, then féfdg

2
exists but fofldgl does note
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