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Abstract: Fire incidents are responsible for severe damage and thousands of deaths every year
all over the world. Extreme temperatures, low visibility, toxic gases, and unknown locations of
victims create difficulties and delays in rescue operations, escalating the risk of injury or death.
It is time-critical to detect the victims trapped inside the burning sites for facilitating the rescue
operations. This research work presents an audio-based automated system for victim detection
in fire emergencies, investigating two machine learning (ML) methods: support vector machines
(SVM) and long short-term memory (LSTM). The performance of these two ML techniques has been
evaluated based on a variety of performance metrics. Our analyses show that both ML methods
provide superior scream detection performance, with SVM slightly overperforming LSTM. Because
of its lower complexity, SVM is a better candidate for real-time implementation in our autonomous
embedded system vehicle (AESV).
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1. Introduction

Structure fires are a common type of incident all over the world. A National Fire
Protection Association (NFPA) report says that a fire department in the United States
responds to a fire somewhere in the nation every 24 s [1]. Structure fires include fires in
eating and drinking places, other entertainment venues, houses of worship, and other
places where people congregate, including offices, factories, and various other locations.
These fire incidents are responsible for severe damages, thousands of deaths, and injuries.
According to the U.S. Fire Administration, the fire departments responded to 1,291,500 fire
incidents in 2019. These fires caused USD 14.8 billion of damage, an increase of 74.5% from
2010 and 3704 deaths, 24.1% more than the number of deaths in 2010 [2]. Sadly, the trend in
death is going up every year. Evacuating victims from the fire scene is a highly challenging
task. The firefighters need to deal with extreme temperatures and low visibility, making it
even more challenging to look for victims. Moreover, harmful pollutants such as carbon
dioxide and carbon monoxide from burning make the air unsafe for breathing.

As the first responders at a burning site, the firefighters’ main task is to evacuate
victims from the site to safety. The danger level associated with this task is extremely high.
Data shows that hundreds of firefighters have lost their lives on duty [3]. Therefore, it
is imperative to guide the firefighters with appropriate information that will help them
effectively carry out the evacuation process considering the safety of both the victims
and firefighters. Autonomous data collection during fire emergencies also saves valuable
time by using intelligent firefighting techniques shown in [4,5]. Researchers continually
improve the firefighting technique with the latest technologies where Artificial Intelligence
(AI) comes into play [6–8]. Other research is ongoing on firefighting robots [4,9] and
on improving the quality of sensors and firefighting equipment [10,11]. The research
work in [12] deals with the design of an autonomous embedded system vehicle (AESV)
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equipped with various sensors, including LiDAR, GPS, and Infrared (IR) camera, which
can navigate autonomously into the burning sites, collect sensory data, and then transmit
this information to the firefighters in the base station. The research work in [13] presented
a deep learning model that can identify victims from IR images in burning sites. However,
IR images cannot identify victims trapped inside a confined place. Additionally, a victim’s
presence cannot be determined from IR images if a particular portion of the body structure
is not visible. Since human nature is to scream and shout for help in such emergencies,
these audio sources can be used alongside victim detection approach using IR images,
which can play a vital role in detecting the victim in fire emergencies. The work in [14]
developed a sound identification model for firefighting mobile robots. However, the work
did not take the high noise level associated with a burning site into consideration.

In this work, a design approach has been developed to increase the efficiency of
firefighters’ role in a rescue operation by detecting victims in burning sites autonomously
through the detection of screams using machine learning (ML) techniques. We aim to
efficiently develop a scream detection model in burning sites to work on a computational
platform such as the AESV unit. We have developed a custom dataset considering the high
noise level in a burning site. We present the performance analysis of two ML architectures
with dominant audio features for the robust detection of screams in a fire scenario. The
detection model with the highest performance metric will be deployed on the single-
board computing platform NVIDIA Jetson Nano [15], the core of the AESV, for real-time
implementation. The proposed design in this work provides the firefighters with guidance
before they get into the burning structure to develop an effective rescue plan and thereby
spend less time in a hazardous environment.

Figure 1 shows the overview scope of the presented work and the parameters consid-
ered for audio feature extraction and ML classification. The design approach is to train
and test the ML techniques of the support vector machine (SVM) and the long short-term
memory as classifiers of screams and other possible noises heard during a fire. The audio
features consist of a temporal (zero-crossing rate and root-mean-square energy) and spec-
tral (mel-frequency cepstral coefficients and spectral centroid) values that will help to train
ML models in the detection of scream vocal signatures. The autonomous unit (AESV) has
a microphone to capture all encountered audio sounds and is programmed to transmit
binary indication of scream/no-scream results to the base station computer integrated to a
fire truck. The paper’s discussion considers the audio pre-processing and feature extraction
for the development and test of the ML classifiers.
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audio sounds on an embedded autonomous system.

2. Background

This section discusses the background of autonomous vehicle design and related
research work in the field of scream detection.
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2.1. AESV Background

Firefighting techniques are changing over time with the advancement of different
sensors for detecting fire and environmental conditions and with the use of artificial intelli-
gence (AI) for smart rescue planning [16,17]. However, despite the extensive advancement
of firefighting, several issues remain to be addressed.

As the first responders in fire emergencies, firefighters are subject to health and
safety risks in their job. Rescuing victims from the burning sites becomes quite difficult
due to the extreme temperatures, low visibility, the roar of flames, and the presence of
harmful air pollutants such as carbon monoxide (CO) and carbon dioxide (CO2) [18].
These factors increase the risk of cardiac problems among firefighters. Smart firefighting
concepts involving various sensors, communication means, and other fire protection and
alarm systems pave the way for more intelligent and safer ways to fight fires. An initial
development concept of an autonomous embedded system vehicle (AESV) design enabling
firefighters to monitor and analyze environmental conditions remotely and produce a
2D-LiDAR map of individual rooms is described in [12].

Figure 2 refers to the outlook of AESV. The AESV design is based on the integration of
the sensors and cameras using different embedded system boards. The sensor peripherals
process the collected data through a Teensy 3.6 board to transmits the NVIDIA Jetson
Nano board. The Teensy board also controls the pulse width modulation (PWM) signals
for the motor controller and manages the autonomous vehicle. The Jetson Nano is the
central board that supports camera information and runs the Robotic Operating System
(ROS) [19] for data telemetry and navigation. The AESV initial design considerations also
include multi-AESV units that would need to coordinate the autonomous navigation for
data collection, intracommunication between the units, communication to a centralized
server, and back-and-forward functionalities. ROS has become the backbone of the AESV
design since it manages data collection from each sensor, transmits the data and images,
and captures and orchestrates the vehicle’s navigation. The audio-based addition for
the AESV is a machine learning detection model and the ROS communication of the
detection decisions are relayed back to the server. Therefore, developing and implementing
a machine learning model that can be effective under these design parameters is essential.
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Part of the functionality of the AESV design is to use computer vision with machine
learning for high-temperature environments. The thick smoke caused by burning makes it
extremely difficult for firefighters to look for victims with bare eyes. An effort to create a
machine learning model that consists of a convolutional neural network (CNN) architecture
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trained to recognize victims from thermal IR images is presented in [13]. The thermal
images were collected via an infrared (IR) camera mounted on the AESV. The CNN-based
model did an excellent task of detecting and classifying objects into “human”, “pet”, and
“no victims”, with an average accuracy of 94.6%. Despite this superior performance, the
model had a few limitations. Fire spreads rapidly in burning sites, resulting in difficult
situations such as roofs collapsing and power outages. In industrial areas, fire can cause
massive explosions due to explosive materials such as gases and chemicals. All these
can damage the structure, and victims are likely to be trapped in confined places. The
thermal camera attached to the AESV cannot see through thick objects such as walls or
wood. Therefore, the model cannot identify victims trapped inside closed places, leaving
out victims in danger.

The AESV is designed so that it can move spontaneously in the burning sites, avoiding
obstacles. The vehicle is equipped with sensors, a navigation system, and an infrared (IR)
camera. However, the vehicle’s size is small, measuring approximately four to six inches in
height. The height limitation is another drawback for the previously discussed model since
the IR camera can only get the right image when it is at a certain distance from the object.
The model can successfully detect victims only when images of victims are captured from
a range of distances. Hence, if the vehicle moves close to the victim, it will not capture the
required image proportion for the trained model to recognize. The distance factor can raise
the false detection rate by not identifying a victim when it only contains close images of
the victim’s foot or other body parts. This critical drawback results in not identifying the
victims in such situations, thereby leading to the loss of precious lives.

In an attempt to overcome the stated challenges and improve firefighters’ performance
in locating and rescuing victims trapped in burning sites while considering the safety of
firefighters, this research work describes the necessary audio pre-processing, ML classifica-
tion techniques, and analysis to detect the presence of victims from recognizing screams in
fire emergency with AESV. Figure 2 shows a AESV unit that supports the Jetson Nano and
peripheral cameras and sensors.

2.2. Scream Detection Architectures

A scream is a distinctive audio signal that serves the dual purpose of sharpening
our focus in the face of a threat and warning others. Research is ongoing on the effect
of screams for text-independent speaker recognition systems [20]. Many research works
have been conducted on scream detection for surveillance applications in both indoor and
outdoor noisy environments [21–32].

Support vector machines (SVM) have been largely used for the detection of screams.
The authors in [30] focused on detecting screams using SVM as a classifier for real-time
scream detection in a home environment. Their model exhibits a false acceptance rate (FAR)
of 7.66%. In [33], a robust scream-sound detection system is presented for a surveillance
application using a sound-event partitioning (SEP) method and SVM as a classifier. They
reported equal error rates (EER) of 7.24% in detection at a signal-to-noise (SNR) ratio of
−5 dB. A two-stage supervised learning-based method with tunable decision parameters
for each stage has been proposed in [32] to detect screams and cries in urban environments.
This proposed model achieved a detection rate of 93.16% and a FAR of 4.76% at a SNR of
20 dB. SVM has been used in previous research on audio event detection for surveillance
applications where scream is a target class. The paper in [34] proposes a low power SVM
classifier for audio classification. The performance and power consumption of various
acoustic features and SVM kernels have been compared. Results show that the CPU
utilization of polynomial SVMs decreases by 28 times without reducing classification
accuracy. Authors in [35] discussed a classification approach of speech and non-speech
sound where non-speech sounds are further classified into laughs, screams, sneezes, and
snores. Their classification techniques included using multivariate adaptive regression
splines (MARS) and SVM, and they reported highest classification accuracy of 89.91% with
SVM. Research work in [26] proposes a one-class SVM for classifying nine audio events
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(human screams, gunshots, glass breaks, explosions, door slams, dog barks, and phone
rings). Their result shows highest classification accuracy of 92.33%.

In recent years, neural networks have become popular for audio event detection.
A deep neural network (DNN) model is proposed in [25] for the automatic scream and
shouted speech detection within the framework of surveillance systems in the subway
to detect emergencies in the early stage. The paper implemented a deep belief network
(DBN) followed by DNN to classify the audio sources into four classes: ‘Scream’, ‘Shout’,
‘Conversation’, and ‘Noise’. Despite challenges such as a boisterous environment, the
model performed well in scream and shout detection with an error rate of 6.2%. The work
in [23] focuses on abnormal event detection in indoor activities for an automatic intelligent
surveillance system (ISS) by optimizing the Adaboost algorithm. Their proposed algorithm
demonstrated improved performance of the detector compared with the conventional
Adaboost-based detector. In addition to that, their proposed method was shown to be
significantly faster and sufficiently accurate with a minimal false alarm rate compared
with the Gaussian mixture model (GMM)-based method. The paper in [36] proposes a
region-based convolutional recurrent neural network (R-CRNN) for audio event detection
(AED) inspired by Faster-RCNN. The evaluation task was completed on the DCASE’17
dataset for AED with an error rate of 0.18 and an F1-score of 95.5%. In [37], the authors
introduce a rare sound event detection system using a combination of 1D convolutional
neural network and recurrent neural network (RNN) with long short-term memory units
(LSTM). A promising result was reported based on the evaluation of DCASE’17 challenge
with an error rate of 0.13 and an F1-Score of 93.1. Research work in [38] has used the LSTM
network for enhancing audio surveillance and reported a classification accuracy of 90.7%.
A DNN-based transfer learning for acoustic scene classification where scream is a class
has been proposed in [39]. The research work in [40] documented a preliminary study on
scream detection using a Deep Boltzmann machine (DBM) network.

Authors in [24] describe a real-time audio-based video surveillance system that auto-
matically detects anomalous audio events in a public square, such as screams or gunshots,
and localizes the position of the acoustic source in such a way that a video camera is
steered towards the acoustic source. They implemented two GMM classifiers running in
parallel to discriminate between scream and gunshot from noise. GMM is an unsupervised
classification method. The result shows a precision of 93% at a false rejection rate of 5%
when the SNR is 10 dB. Research work in [22,26] has also used GMM for the classification
of a scream under noisy conditions.

2.3. Scream Detection Features

Research work in [20] presents an analysis of discriminant features of a scream from
neutral speech. They found that fundamental frequency and energy distribution are
two primary features of scream, stating that scream has almost double the fundamental
frequency and higher energy distribution at frame level than neutral speech. However,
these prosodic features are susceptible to noise and unsuitable for scream detection under
high-noise conditions [27].

MFCCs are widely used in the field of scream detection [23,25,26,29–32,34,35,40].
Dimension of MFCCs varies with the application. For example, 60 MFCC coefficients have
been used as features in [33] for deep neural network architecture, whereas only the first
12 coefficients have been used in [21] for improved one-class SVM classifier. Research
work in [39] reports that low-frequency components of MFCC play significant roles in the
classification of non-speech human sounds. The first and second derivatives of MFCCs
known as delta and delta-delta have been utilized in the research work in [30,40]. In [33],
a robust scream detection method has been proposed using concatenated MFCCs and
gammatone frequency cepstral coefficients (GFCCs) as features.

Spectral features such as spectral entropy [35], spectral centroid [22,32,35], and spectral
roll-off [22,29,32] have been found to be effective for scream detection. Research work
in [27] describes a low-cost noise-robust scream detection system by using band-limited
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spectral entropy as a feature. They presented a comparative analysis of a conventional
scream detection technique with MFCCs and their proposed technique and reported that
their proposed method outperforms the conventional technique in detecting screams with
equal error rates of 0.3% and 0.8% under noisy conditions at 0 and −5 dB, respectively.

The temporal feature zero crossing rate (ZCR) is also widely used in scream detection
for discriminant performance [21,22,29,32]. In [30], the authors used the continuity of
log-energy combined with MFCCs to detect screams from non-scream audio. Short-term
energy has been used in [22,34]. The papers in [21,34] used LPCC as features along with
MFCCs and other features.

Research work in [41] investigated a spectro-temporal feature representing roughness
as another discriminant feature of a scream. Roughness refers to fluctuations in amplitude
modulation. The authors presented experimental results on a spectro-temporal region
covering 30–150 Hz, which indicates roughness for screams. They showed that this range
is irrelevant for human speech.

3. Methodology

In this section, the development of the ML model for scream detection in burning
sites is discussed. Figure 3 shows the architectural building blocks of the framework for
preparing the model. We discuss below the creation procedure of the custom dataset
used in this application. Raw audio files from the custom dataset goes through an audio
pre-processing block, followed by an audio feature extraction block to extract necessary
features. The feature data will then be split into three sets: ‘Training’, ‘Validation’, and
‘Testing’ set. Lastly, training and testing are performed on the ML classifier to produce
classification. To build an efficient model to classify scream in AESV, we evaluated SVM
and LSTM networks as ML classifiers.
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3.1. Custom Dataset

Due to the unavailability of a dataset focused on audio events appearing in burning
sites, we have developed our own custom dataset by collecting audio samples from multiple
audio-based datasets. We have considered five types of audio event that may appear in
fire scenario. These are the five classes for our dataset labeled as ‘scream’, ‘glass breaking’,
‘background’, ‘alarms’, and ‘conversations’, where ‘scream’ is our class of interest for
this specific application. The ‘scream’ category contains both male and female screams.
Audio samples of scream and glass breaking have been collected from MIVIA audio events
dataset [42]. MIVIA also has another surveillance application: gunshots; however, we
discarded this event in our custom dataset due to less relevance with burning site noises.
Audio samples from background have been collected from CHiME [43]. This event includes
audio recordings of human speakers, television, and household appliances in a domestic
environment. Alarm samples have been collected from open access ‘freesound’ [44] online
dataset, which contains audio recordings of fire alarms, emergency alarms, siren and smoke
detector alarms. Alarms and screams both have high pitch and intensity or loudness;
therefore, we included alarms as a class so that the model learns to differentiate between
these two audio events. Lastly, we have collected human conversation (in telephone,
hallway, office and canteen) audio samples from CHiME and ‘Sound Privacy’ dataset [45].
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The intention behind adding this class was to prevent the ML model operating in the AESV
from mistaking normal conversation from either the firefighters or people outside of the
building for people still trapped inside. These collected samples are clean files with no
added background noise. Table 1 lists the number of collected audio files for each category
and their source. These audio files have different durations ranging from 1 s to 3 s.

Table 1. Custom Dataset Summary.

Audio Type Collected From Clean Files Noise-Added Files

Scream MIVIA 342 3078
Glass Breaking MIVIA 339 3051

Background Sound CHiME 340 3060
Alarms Freesound 340 3060

Conversation CHiME, SoundPrivacy 322 2898
Total 1683 15,147

To mimic the actual fire scene, we have added complex background noise (burning
sounds, fire sounds, siren, telephone ringing) with the clean dataset to create a noise-added
dataset. These noise files have been added to the clean signal files at nine different signal-
to-noise ratio (SNR) levels (−10 dB, −5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, 25 dB, 30 dB).
Here, SNR corresponds to the ratio between the power of clean file versus the power of
the noise file. Higher value of SNR corresponds to cleaner audio signal and lower SNR
corresponds to noisier audio signal. The approach of varying SNR levels also covers the
aspect of audio events occurring at various distances. Audio file with higher SNR appears
as the source that is closer to the recording device, whereas audio file with lower SNR
appears as the source that is farther from the recording device. We included different SNR
conditions to develop a model that is robust to noise.

To create the noise-added file, we first randomly chose a background noise file and
chopped it equal to the length of the clean file. Then, the power is calculated for both clean
and noise file. From this power values, scale factor in signal is calculated for the desired
SNR (in dB) level using Equation (1).

Scale factor, k =

√
PCLEAN
PNOISE

·10
−SNR

10 (1)

Here, PCLEAN and PNOISE refers to power of clean and noise signals, respectively. The
noise is then superimposed to the clean file using Equation (2).

Noise added signal = Clean signal + k. Noise signal (2)

All the files from the clean dataset have been added with background noise with nine
levels of SNR. The noise addition was done in MATLAB. Table 1 shows the final counts of
noise added samples for each class.

Figure 4 shows the spectrograms of three audio samples from the ‘scream’ class in our
custom dataset. The left spectrogram corresponds to a clean scream file (SNR 30 dB). The
middle and right spectrograms represent the noise-added scream file at SNR of 5 dB and
−10 dB, respectively. As can be seen from Figure 4, the spectral information is corrupted
noticeably at 5 dB and even more so at −10 dB, especially at higher frequencies, making
the scream detection task challenging under low SNR conditions.
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3.2. Data Visualization with t-SNE Analysis

The t-distributed stochastic neighbor embedding (t-SNE) is an unsupervised, non-
linear technique mainly used for high-dimensional data visualization [46]. The t-SNE
algorithm optimizes a similarity measure between instances in the high and low dimen-
sional space. Our input data is high dimensional data having sixteen dimensions. To
visualize how the data samples are clustered in the custom dataset, we applied t-SNE to
our dataset. To generate this plot, we selected two components for 2-dimensional plotting,
the perplexity of 50 and a learning rate of 100.

Figure 5 refers to the t-SNE plot using parameter settings mentioned above. Five
different clusters can be seen in the plot. These clusters refer to the five classes of our
dataset. The classes are labeled as ‘scream’ as zero, ‘glass breaking’ as one, ‘background’
as two, ‘alarms’ as three, and ‘conversation’ as four. The clusters are separated from each
other, apart from the edge samples. For instance, some of the ‘glass-breaking’ samples
overlap with ‘scream’ samples shown in red color. In high-noise or low SNR conditions,
high levels of noise make the scream and glass breaking signals sound somewhat similar.
Similar observations can be made for ‘scream’ and ‘alarm’ audio samples. Interestingly, the
‘scream’ audio samples do not overlap with conversation and ‘background’ samples.
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3.3. Audio Feature Extraction

Extracting features from audio files play a crucial role in the classification process. For
the proposed research, the goal is to develop a custom set of dominant features that are
able to separate classes reliably.

Feature extraction process from raw audio files include windowing with appropri-
ate frame size, applying short-term Fourier transform, employing appropriate overlap
and window function to squeeze as much data as possible, thus reducing the spectral
leakage [47]. We have used a sampling frequency of 16 KHz, a frame size of 512 sam-
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ples (32 ms), and a 50% overlap (256 samples or 16 ms) between frames. A total of 16
features were extracted per 32 ms frame duration. The Python library ‘Librosa’ [48] was
used to extract these features and store it in a comma-separated (.csv) file for use in the
further classification process. The following section discusses different features used in
this research work.

• Mel-frequency cepstral coefficients (MFCCs): MFCCs have been widely used in pre-
vious research on scream detection [49]. These features have received immense
popularity for their relevance to human auditory perception. MFCCs are short-term
spectral-based features [50]. We find that the first 13 coefficients are the most important
ones for scream detection. These coefficients are calculated for each frame.

• Zero crossing rate (ZCR): ZCR represents the number of times in each frame the
signal’s amplitude passes through a value of zero [51]. Usually, screams tend to have
lower ZCR than speech and noise signals due to higher amplitude over zero for a
longer duration of time; therefore, we have selected this important feature.

• Spectral centroid (SC): This measures the shape of the spectrum. The higher values
in spectral centroid correspond to brighter sound [52]. Usually, screams tend to have
high SC due to the presence of high energy over background noise and human speech.

• Root-mean-square energy (RMSE): RMSE is the square root of the mean of total energy
calculated from each audio file. This feature is computed using Equation (3) for every
512 samples with an overlap of 256 samples as using Equation (3) where xi is the
amplitude of ith sample.

RMSE =

√√√√ 1
512

512

∑
i=1

x2
i , (3)

We also looked into two important features of scream, ‘pitch’ and ‘loudness’. However,
the library function we used for feature extraction is unable to extract pitch and loudness
correctly for low SNR conditions (−10 dB, −5 dB, 0 dB). Therefore, we decided not to use
these features in our feature set. Table 2 shows the feature description and their number
for our proposed model.

Table 2. Features Summary.

Feature Type Feature Number of Features

Temporal Zero Crossing Rate 1
Root-Mean-Square Energy 1

Spectral Mel-Frequency Cepstral Coefficients 13
Spectral Centroid 1

Total 16

3.4. Training and Test Data Split

After extracting the features, the dataset was separated into three sets: training, val-
idation, and testing. The training dataset was used to train the models, as summarized
in Table 3. The model hyperparameter tuning was completed on the validation set to
detect and avoid overfitting the data. The testing dataset was used only after the model
is completely ready with the hyperparameter tuning to reduce the possibility of leaking
knowledge about the test set and affecting evaluation metrics on generalization perfor-
mance. We used 60% of data for training and 10% for validation—10,603 samples. The rest,
30% of the data, were used for testing—4545 samples. These sets are further standardized
before feeding to the classifier. Standardization is the process of putting different variables
on the same scale.
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Table 3. Dataset split into training, validation, and test set.

Class Samples Training (60%) Validation
(10%) Test (30%)

Scream 3078 1938 216 924
Glass breaking 3051 1922 214 915

Background 3060 1928 214 918
Alarms 3060 1928 214 918

Conversation 2898 1825 203 870
Total 15,147 9542 1061 4545

3.5. Classifier

Extracted features from the training set are then fed to the classifier to classify the audio
source into classes ‘scream’, ‘glass breaking’, ‘alarms’, ‘conversation’, and ‘background.’
According to previous research on scream detection, machine learning and deep learning
architectures have proven efficient. We examined support vector machines (SVM) and long
short-term memory (LSTM) performance for our scream classification model. SVM was
selected based on the previous research discussed in Section 2.3 and review paper in [49],
which suggests SVM has outperformed neural networks in scream detection. Additionally,
SVM is a much simpler model which makes it suitable for implementation on AESV [34].
Since this application deals with audio files, the implementation of the LSTM network
is a good fit for their excellent performance of time series recurrent classification. The
research work presented in [53] shows that the LSTM network has outperformed DNN
and convolutional neural networks (CNN) in scream detection in noisy environments.
This is similar to our case since fire emergency scenes tend to be extremely noisy. We
performed experimentation and evaluation of these two classifiers to achieve high scream
classification accuracy.

3.5.1. Support Vector Machine

Support vector machine (SVM) is a supervised machine learning technique based
on statistical learning theory, introduced by Cortes and Vapnik in 1995 [54]. The primary
mechanism of SVM is to look for a hyperplane in an N-dimensional space to classify
data points distinctly. A hyperplane is a decision boundary to optimize a plane with
the maximum margin between data points from classes called support vectors. The
previous research work on scream detection using SVM report high detection rate in noisy
environments. SVM can typically be extended to multi-class classification [55]; thus, it
is a suitable classifier for our multi-class problem. This classifier also efficiently handles
non-linear data by applying different types of kernels as linear, polynomial, radial basis
function (RBF), and sigmoid kernel.

To feed the SVM model, all the extracted features per frame except for ZCR was further
averaged over the entire audio file. The average value of highest 10% ZCR over each audio
was calculated. This resulted in an input shape of (15,147, 16) for SVM classification. This
step is required to reduce the number of features to avoid overfitting. For this work, we
have used the built-in SVM model from ‘scikit-learn’ library [56] of Python. We have
conducted several experiments to determine optimized hyperparameters values for the
SVM classifier. The hyperparameters are:

• Kernel type: ‘linear’, ‘rbf’, ‘polynomial’, and ‘sigmoid.’
• Regularization parameter (C): For large values of C, the optimization will choose a

smaller-margin hyperplane. Conversely, a particularly small value of C will cause
the optimizer to look for a larger margin separating the hyperplane, even if that
hyperplane misclassifies more points [57].

• Degree: Degrees of the polynomial kernel.
• Gamma (γ): This is the kernel coefficient. For a higher gamma value, SVM tries to

exactly fit the training data set [57].
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The result and analysis section documents the best result and configuration of the
SVM classifier for scream classification in burning structures.

3.5.2. Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) networks are a recurrent neural network (RNN),
which is efficient in learning order dependence in sequence prediction problems. To
address the vanishing gradient problems of some RNN, the LSTM network was introduced
to address this issue of RNN [58]. LSTM cells are compiled of multiple gates: input gate (i),
forget gate (f ), output gate (o). The functionalities of these gates are as follows: forget gate
suppresses irrelevant information while letting applicable information pass through, input
gate takes part in updating the cell state, and output gates update the value of hidden units.

We have implemented the built-in LSTM network from the ‘Keras’ [59] library as-
sociated with TensorFlow [60]. Unlike SVM, LSTM requires feeding the features from
one sequence of events to the next sequence. Therefore, no averaging function has been
applied to the extracted features. Since our audio data had different audio durations, we
calculated the median number of frames for all the audio files in the custom dataset by
setting a sampling rate of 16 kHz, frame length of 32 ms, and hop length (that is, overlap)
of 16 ms in order to make all the audio files to same length. The median number of frames
was calculated to be 110, which becomes the time-step for our dataset. The audio files
were clipped at 110 frames if they were longer, and zero padding was used as in [61] for
the audio files shorter than 110 frames. The next step was to extract sixteen features for
each time-step as a sequence of the data. The LSTM unit requires a three-dimensional
input to process in the shape of the batch size, time steps, and the number of features. To
develop the best-fitted model for the LSTM, we performed experimentation changing the
hyperparameters as follows:

• The number of hidden layers;
• The number of input units (neurons) for each layer;
• Activation function;
• Optimizer;
• Learning rate;
• Batch size;
• Dropout;
• Loss Function.

We documented the best settings from these experiments in the results and analysis
section of LSTM.

3.6. Performance Metrics

We evaluated the performance of the classifiers discussed in the previous section based
on the following metrics. The best model is one that provides higher overall accuracy rates,
with minimal misclassifications, and that is stable, or convergent, through the training and
validation processes. The k-fold technique was applied to the SVM model to optimize the
hyperparameters to achieve highest rates in training and testing [57].

• Accuracy: The accuracy metric measures how well the model performed when pre-
dicting samples from the dataset. This is computed using the following formula:

Acc. (%) =
Number o f correct predictions on data samples

Total number o f data samples
× 100

• Precision and recall: These factors give an insight of how well the model is performing
when classifying individual classes. Precision quantifies the proportion of correctly
positive identification and is calculated by

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
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Recall measures the proportion of actual positives identified correctly. Recall is calcu-
lated by

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)

• F1 score: The F1 score can be interpreted as a weighted average of the precision and
recall and is computed with

F1 = 2 × Precision × Recall
Precision + Recall

• Confusion matrix (CM): CM is a two-dimensional array of numbers where one axis
represents the true labels of the classes, and the other axis represents the predicted
labels by the classifier. This array or matrix shows the numbers of correctly predicted
samples and the incorrect ones for each of the classes separately.

• Accuracy curve: This metric is popular among the deep neural network architectures.
This represents the accuracy plot as a function of the number of iteration (epoch). This
is a good measure to detect over-fitting and under-fitting issues. The under-fitting
problem occurs when a model has a high bias, meaning that the features are unable to
find a relationship with the target classes. Over-fitting problem occurs when the model
performs extremely well on the training data but performs poorly on the unseen data
(in this case validation/test data).

• Loss curve: Loss curve serves the same purpose as accuracy curve, where loss during
the training and validation is plotted as a function of the number of iterations. The cat-
egorical cross-entropy loss is a loss function used in multiclass classification problems,
which calculates the cross-entropy loss between the class labels and the predictions.

• Receiver operating characteristic (ROC) Curve: This is a highly useful tool when
predicting the probability of a binary outcome. It plots the false positive rate (x-axis)
versus the true positive rate (y-axis) for several candidate threshold values between
0.0 and 1.0. Since this problem is a multi-class problem and our focus is to classify
screams, we used the One-versus-Rest (OvR) approach and considered ‘scream’ as
one class and the rest of the classes combined as another class. The area under the
curve (AUC) can be used as a summary of the model effectiveness.

• K-fold cross-validation score: When the same samples are repeatedly fed to the
networks, the model tends to overfit the data. K-fold cross-validation technique is
used to avoid overfitting. It divides the whole training set into k-folds where k-1 folds
are used for training, and the remaining fold is used for validation. The model is
trained and validated a total of k-times, each using a different fold for the validation
and training set. The final score is then calculated by averaging the resulting k-scores.
We have used a k = 10 folds on the 70% dataset (combined training and validation set),
where 9 folds were used for training and the remaining fold was used for validation.

4. Results and Discussion

The performance analysis of SVM, LSTM is presented in this section. Additionally,
the effect of varying SNR level on the performance matrices are further investigated for
both models.

4.1. Analysis of SVM

We performed experiments to evaluate the classification performance of SVM on the
custom dataset. The SVM model was trained on the training set. The model was fed with
sixteen extracted features from each of the audio files of the dataset. These features per
audio file are: thirteen MFCC coefficients, one spectral centroid, and one RMSE, and one
ZCR. This gives an input dimension of (10,605 × 16) for training the classifier. Validation of
the model was performed in the validation set of data. We performed multiple experiments
by varying the hyperparameters. This step is required to compute the best hyperplane that
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separates the classes. The selection process was done in a way so that the model neither
underfits nor overfits. After investigating, the best setting in terms of the best results for
the SVM classifier have been observed with the following specifications: kernel type of
RBF; regularization parameter (C) of 1; γ of 0.1; and iteration of 500 times.

After updating these parameters, the model was finally tested on the test set. Table 4
shows the results obtained from the SVM model. Starting with the dataset of a total of
15,147 audio files, the model was trained and validated with 70% data and tested with
30% data. The 70% percent data was split with 60% for training and 10% for validation.
The accuracies obtained indicate a high percentage of classification convergence during
training and validation and high accuracy performance of 97% under test, with 144 of 4545
(3.16%) misclassified samples (audio files). The recall value implies the model has correctly
predicted the classes 97% of the time.

Table 4. Performance Metrics of SVM.

Result Summary

Data samples in custom dataset 15,147
Training set:Validation set:Test set 60%:10%:30%

Training accuracy 98%
Validation accuracy 97%

Test accuracy 97%
Recall 0.97

Misclassified samples 134 out of 4545

Table 5 shows the results of the ‘scream’ target compared with the other targets
in precision, recall, and F1 scores. The observation of individual targets’ performances
shows high comparative accuracies for ‘scream’. The model is able to predict 98% screams
accurately which is indicated by high recall value for ‘scream’ class. To verify the result,
we have employed k-fold cross-validation technique. The number of k folds has been set
to 10. The combined training and validation set was divided into 10-folds, where 9-folds
were used for training and 1-fold for validating. The average of k-fold scores for SVM was
found to be 97%, which is consistent with our result from the previous section.

Table 5. Performance Metrics of SVM.

Class Precision Recall F1-Score

scream 0.96 0.98 0.97
glass breaking 0.98 0.97 0.97

background 0.98 0.98 0.98
alarms 0.96 0.96 0.96

conversation 0.98 0.96 0.97
accuracy 0.97

The confusion matrix in Figure 6 exhibits exceptional results with only 134 mis-
classified samples out of 4545 samples. Twenty scream files are misclassified as glass
breaking, and only one scream file is misclassified as an alarm. Since the audio files contain
excessive background noise at lower SNR levels (−10 dB, −5 dB, 0 dB), the model is likely
to confuse scream with glass breaking at these noise levels. It can also be noticed that the
SVM model does not confuse scream class with background and conversation classes. The
SVM shows another characteristic of the classes having edge-cases misclassifications with
just another class in the dataset. It is expected for ‘scream’ to be misclassified with ‘glass’.
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Figure 6. Confusion Matrix for the SVM classifier.

For generating the ROC curve, we have used the One-versus-Rest (OvR) approach.
The focus of this research work is to detect victims in fire scenarios from their scream;
therefore, we use ‘scream’ as one class and all the other classes combined as another class
‘rest’ to generate the ROC curve. The dotted blue line in the plot represents ‘perfect chance’.
In other words, if the ROC curve follows the diagonal blue line, it has a 50–50% chance of
getting detected as either class (‘scream’ or ‘rest’). The ROC curve represented by yellow
line in Figure 7a looks closer to the top left corner indicating good performance with an
Area Under Curve (AUC) of 0.86. Figure 7b represents a plot of SVM accuracies over the
number of iterations. The accuracy keeps increasing with the increase in epochs. It can also
be seen that after around 280 epochs, all the accuracies become saturated with a value close
to 96%. From the above discussion, we can conclude that the SVM classifier is doing an
excellent task in detecting screams in a burning site.
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Figure 7. (a) ROC curve of scream with OvR; (b) accuracy plot over iteration.

Lastly, Figure 8 shows the most contributing features of this classification process.
Figure was obtained by using the permutation importance of the features. After the model
has been fitted, the permutation importance is calculated from the intercept and coefficient
values of the predictors (features) [62]. The higher the value of importance, the most
contribution the feature makes on the classification. The purpose of this importance is to
verify and select the contributing features to reduce computation. The following figure
was obtained using ‘sklearn.inspection’ library. It can be observed that all the features are
contributing to classification; however, MFCC coefficient 4, MFCC coefficient 8, MFCC
coefficient 6, and RMSE stand out with the highest importance. Figure 8 clearly indicates
that the specific choice of features can provide high accuracy classification rates for all



Appl. Sci. 2021, 11, 8425 15 of 22

targeted sounds for this specific application, likely leading to a computationally more
efficient solution.
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4.2. Analysis of LSTM

Experimentation was performed to evaluate the classification performance of the
LSTM model on the custom dataset. The model was trained on the training data trans-
formed in a three-dimensional array (batch size, time steps, features). We calculated the
median time steps for this custom dataset to be 110 frames by setting the sampling rate at
16 kHz, frame length of 512 samples (32 ms), and 50% overlap (256 samples or 16 ms)—the
input size of (110, 16), where sixteen represents the number of features. We set the data split
ratios to be 60%, 10%, and 30%, respectively, for training, validation, and testing. Several
experiments were performed by changing the number of LSTM layers, and we obtained
the best result with two LSTM layers. Figure 9 shows the multi-layered LSTM architecture
model that was used for classification. The hyperparameters of the LSTM were tuned with
the validation set with the configuration set to the batch size of 24, a learning rate of 0.1,
the activation function of ‘tanh’, ‘Adam’ optimizer; input units for both LSTM layer to be
sixteen, and loss function of ‘categorical_crossentropy’.
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Table 6 reports the overall accuracy indicated for the LSTM model is 95%, 2% lower
than the SVM model. LSTM samples files with the ‘alarm’ audio sound presented more
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misclassification and having the lowest rate scores that mirrors the same recall performance
from the ‘conversation’ target.

Table 6. Performance metrics of LSTM network.

Result Summary

Data samples in custom dataset 15,147
Training set:Validation set:Test set 60%:10%:30%

Training accuracy 97%
Validation accuracy 95%

Test accuracy 95%
Recall 0.96

Misclassified samples 199 out of 4545

We can conclude that the model performs well with test accuracy of 95%. Table 7
shows the results of the ‘scream’ target compared with the other targets in precision, recall,
and F1 scores. The observation of individual targets’ performances shows high comparative
accuracies with ‘scream’, but it does present more variation of results than the SVM model.
Our class of interest ‘scream’ shows a recall value of 0.95, 3% lower than SVM classifier.
These performance metrics are close to the once we observed in the case of the SVM.

Table 7. Performance metrices of individual class for LSTM.

Class Precision Recall F1-Score

scream 0.96 0.95 0.96
glass breaking 0.95 0.97 0.96

background 0.96 0.99 0.97
alarms 0.94 0.93 0.94

conversation 0.97 0.93 0.95
accuracy 0.96

The confusion matrix in Figure 10 reveals that 199 samples have been misclassified
out of 4545 samples, where 40 scream files are misclassified as glass breaking, and only two
scream files are misclassified as alarms. SVM outperforms LSTM by a minimal margin of
55 misclassified samples. Furthermore, similar to the SVM, the LSTM provided a stable
model with minimal misclassifications and symmetrical misclassifications of edge cases
presented during the test phase.
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We investigated the accuracy and loss curves to check if the model faces any overfitting
or underfitting issues. The accuracy curve in Figure 11a looks a good fit indicating no issues
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with overfitting or underfitting. However, when we looked into the loss curve shown in
Figure 11b, we found that the loss in the validation curve started to increase and make the
model unstable. We added a dropout layer [63] of 50% in both LSTM layers to resolve this
issue, keeping all the other parameters the same to regularize the training and validation
weight updates. This approach resolved our overfitting issue, and the curves indicated a
convergence of high accuracy and minimal loss.
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4.3. Effect of Varying SNR Levels

To develop a noise robust model for detecting victim from scream, we have created
a dataset with nine different level of SNR varying from −10 dB to 30 dB. The analysis
section for SVM and LSTM portrayed the result of combined dataset which includes all
the SNR level. In this section we discuss the effect of individual SNR level on both SVM
and LSTM model for this custom dataset. For this purpose, we have separated the dataset
into different level of SNRs which gave us nine segments of the dataset. Both SVM and
LSTM model were then trained with individual segments. The hyperparameters and
data split for the models were kept same as the best models discussed in the previous
section. Tables 8 and 9 provides an insight of how different SNR levels are affecting the
classification process. The ‘misclassified sample’ columns in the tables refers to the number
of incorrectly predicted samples in the test set of a total 504 samples from five classes. The
‘misclassified scream’ columns represent the number of misclassified samples on the test
set out of 101 scream samples.

From Tables 8 and 9, it is clear that both of the models depict high recall and lower
misclassification for high SNR. In contrast to this, the performance of the models degrades
for the lower SNR as the background noise gets prominent. At −10 dB SNR, SVM can accu-
rately predict 91% of scream with only 9 misclassified scream samples out of 101 samples.
However, for LSTM the performance goes down drastically with the decrease in SNR. The
model can only predict 66% of scream correctly which is quite low compared with SVM.

Table 8. Effect of different SNR on SVM model.

SNR Recall Recall (Scream) Total
Misclassified

Scream
Misclassified

30 dB 0.99 1 5 0
25 dB 0.99 0.98 2 2
20 dB 0.98 0.96 9 4
15 dB 0.98 0.99 8 1
10 dB 0.99 0.99 5 1
5 dB 0.96 0.96 17 4
0 dB 0.96 0.96 17 4
−5 dB 0.94 0.91 26 9
−10 dB 0.93 0.91 35 9
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Table 9. Effect of different SNR on LSTM model.

SNR Recall Recall (Scream) Total
Misclassified

Scream
Misclassified

30 dB 0.98 1 10 0
25 dB 0.99 1 4 0
20 dB 0.98 0.95 9 5
15 dB 0.97 1 17 0
10 dB 0.95 0.98 25 2
5 dB 0.95 0.93 27 7
0 dB 0.91 0.89 44 11
−5 dB 0.93 0.87 37 13
−10 dB 0.86 0.66 69 34

4.4. Performance Comparison

In terms of accuracy, both SVM and LSTM models have almost similar accuracies.
SVM outperforms LSTM when it comes to correctly predicted classes as well as correctly
predicted scream. Figure 12 shows SVM has a better performance recorded with a 98%
correctly predicted scream which is 3% higher than LSTM. Since, our target is to detect
victim in burning sites, 3% can make a huge impact on victim search process. This resulted
in a smaller number of misclassified samples for SVM compared with LSTM. Additionally,
it requires a higher training time than SVM’s due to the complexity of the network. It
is evident from the previous discussion that SVM is more stable in noisy environment.
However, the metrics do provide how the model might perform with an actual microphone
attached to the Jetson Nano embedded system. Overall, the SVM is considered due to its
higher accurate prediction of scream, performance stability in low SNR and computational
efficiency required when running on autonomous embedded systems.
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We further compared our result with previous research works based on scream de-
tection in Table 10. From the comparison, it can be seen that, both of our models have
higher scream detection rate than most of the previous works. The scream detection rate
is the highest in this referred work [27] which they have achieved by using band-limited
spectral entropy as feature extraction. The models performed with 99% accuracy at −5 dB
condition. Our proposed SVM model has achieved 98% accuracy which combines SNR
levels varying from −10 dB to 30 dB. At the −10 dB condition, the model is able to detect
91% scream accurately. However, the performance of LSTM model degrades drastically
when the SNR condition is low. The research work in [14] is focused on fire emergency
situations as well, where they have achieved 85.7% overall accuracy. Our result shows the
highest accuracy when it comes to scream detection in burning sites.
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Table 10. Comparing the result with previous research work in scream detection.

Authors Architecture Accuracy

Valenzise, G. et al. [29] GMM 93%
Huang, W et al. [30] SVM 92%
Laffitte, P. et al. [25] DNN 93.2%

Lim, H. et al. [37] LSTM 93.1%
Baum, E. et al. [14] Feed forward neural network 85.7%

Hayasaka, N. et al. [27] GMM 99%
Sharma, A. et al. [32] SVM 93.16%

Fairuz, S. et al. LSTM 95%
Fairuz, S. et al. SVM 98%

5. Conclusions

A structure fire is a critical global issue that causes severe damage and thousands of
casualties every year. Hazards such as toxic gasses, extreme temperatures, and victims’
unknown locations make the rescue operation challenging and placing firefighters’ safety at
stake. Firefighting techniques are continually evolving due to technological advancements.
Unfortunately, the number of deaths per year shows an increasing trend, which is alarming.
It is vital to provide firefighters with information about the victim’s presence to increase the
efficiency of their rescue effort. Human nature tends to scream out of fear in emergencies.
Therefore, screams can be used to detect victims in burning sites.

This research aims to detect victims trapped in fire emergencies from their screams,
using a machine learning model and an autonomous vehicle that can travel around the fire
location. The development of the ML model involves multiple stages, including custom
dataset building, audio pre-processing, feature selection and extraction, and finally, ML-
based classification. We implemented two models (SVM, LSTM) in the classifier’s role
and evaluated their performance for scream detection. Our further goal is to implement a
computationally efficient model.

We have reported promising results with both models, with SVM slightly overper-
forming the LSTM network with 98% accurately predicted scream. Moreover, the effect
of SNR has a lower impact on SVM. Additionally, computational time of SVM was much
shorter than for LSTM. These factors make the SVM model be a better model for real-time
implementation on an embedded computational platform. We are in the process of imple-
menting the SVM model in real-time application on the Jetson Nano platform. Currently,
the autonomous vehicle AESV does not have a microphone attached. Therefore, we intend
to attach a microphone for collecting audio data samples and test the model running in
Jetson Nano on these samples. The system will incorporate ROS to communicate and
transfer AESV classification decisions to the base station if the system detects a scream.

In this paper, we documented the results obtained from a balanced dataset. However,
screams are less common audio events to occur in real situations. We will investigate
this further to make the proposed model work in an unbalanced dataset. In future work,
research is warranted on the localization of victims using a microphone array and applying
the time difference of arrival (TDOA) technique [64]. If appropriately implemented, this
solution can play an essential role in the rescue operation, saving valuable time and
contributing to physical safety for the firefighters.
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