
HIGHLY CONFIGURABLE SOFTWARE DEVELOPMENT -

ANALYSIS OF EXISTING FRAMEWORKS AND DESIGN OF

A GENERIC DEVELOPMENT FRAMEWORK

THESIS

Presented to the Graduate Council

of Texas State University- San Marcos

in Partial Fulfillment

of the Requirements

for the Degree

Master of SCIENCE

by

Narasimhan Kaliyamoorthy, B.Sc

San Marcos, Texas

August2005

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Gregory

Hall for his motivation and guidance. His suggestions and encouragement helped

me throughout the research and writing of this thesis.

I am thankful to Dr. Carol Hazlewood and Professor Wilbon Davis for their

advice and encouragement in writing this thesis. I thank them for reviewing the

manuscript of this thesis and offering suggestions for improvement.

I am very grateful for the love and support of my parents Mr.

Kaliyamoorthy and Mrs. Lakshmi, and my brother Dr. Sathyanarayanan.

Finally, I would like to thank the faculty of the Computer Science

department at Texas State University-San Marcos for their kind support.

This manuscript was submitted on July 25, 2005.

111

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER 1 ... 1

1.1 Introduction .. 1

1.1.1 Explanation of the problem .. 1

1.1.2 Highly configurable software overview .. 2

1.1.3 Organization of the thesis3

CHAPTER2 ... 6

2.1 Highly Configurable Software Development ... 6

2.1.1 Definitions ... 6

2.1.2 Factors that make software highly configurable 9

2.1.3 Using a business rules-centric approach 11

2.1.4 Benefits of the business rules-centric approach 13

2.2 Configuration Specification Standards and Languages 16

2.3 Rule Engines and Rule Execution .. 19

2.4 Maintainability of Rules and Configuration Specifications 21

CHAPTER 3 ... 23

3.1 Analysis of Existing Frameworks ... 23

3.1.1 Analysis criteria for configurable software development

frameworks ... 23

IV

V

3.1.2 Analysis of frameworks and platforms supporting high

configurability .. 26

3.2 Rules and Pattern Analysis on Existing Frameworks40

CHAPTER 4 ... 42

4.1 Methodology of Proposed Generic Framework42

4.1.1 Scope for a generic framework .. .43

4.2 Proposed Design for a Generic Framework45

4.2.1 Rete algorithm and usage .. .49

4.3 Rule Engine Design .. 53

4.4 Parsing Rules - Rete Networks and the Working Memory Model 58

4.4.1 Rule execution and run-time binding .. 59

4.5 Support for Rules Extension and Transformation 60

CHAPTER 5 ... 62

5.1 Results and Analysis ... 62

5.1.1 Case Study 1: Conway's Game of Life .. 63

5.1.2 Case Study 2: Java Pet store Application 74

CHAPTER 6 ... 83

6.1 Conclusions .. 83

6.2 Directions for Future Research ... 85

APPENDIX A ... 88

APPENDIX B ... 90

REFERENCES .. 126

V

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Table 4.1

LIST OF TABLES

Analysis of Gan diva framework . 27

Analysis of SAAFE framework 29

Analysis of MEDAL framework...................................... 31

Analysis of OptimalJ framework . 33

Analysis of J2EE framework . 34

Analysis of Biz Talk framework 35

Analysis of Common Rules framework . 37

Analysis of ILOG BRMS framework . 38

Analysis of Oracle BPEL framework . 39

Example tuple sets .. 51

Vl

Figure 2.1

Figure 2.2

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

LIST OF FIGURES

Conventional vs. Configurable application development 10

High-level architecture for a rules-centric framework 19

SRML document structure .. .47

Example of rules represented in SRML 48

Example Rete network ... 50

Nodes and condition evaluation in a Rete network 51

Rule engine architecture of the generic framework 56

SRML representation of rules for Conway's Game of Life 67

Initial rule configuration of the Conway Game of Life 68

Initial cell configuration of the Conway grid 69

Cell configuration of the Conway grid after 50 generations ... 70

Class mechanism for Rule Factory 71

A configuration different from the rules of the game 72

Cell configuration after 50 generations based on new rules ... 73

SRML representation of rules for Java Petstore Application .. 76

Rules authoring environment for the petstore case study 79

Figure 5.10 Petstore case study - initial rule configuration 80

Figure 5.11 Petstore case study -A new rule configuration 81

Figure 5.12 Petstore case study- behavior with new rule configuration ... 81

Vll

ABSTRACT

HIGHLY CONFIGURABLE SOFTWARE DEVELOPMENT - ANALYSIS OF

EXISTING FRAMEWORKS AND DESIGN OF A GENERIC

DEVELOPMENT FRAMEWORK

by

Narasimhan Kaliyamoorthy

Texas State University-San Marcos

August 2005

SUPERVISING PROFESSOR: GREGORY A. HALL

Business rules represent an organization's codified policies and decision-making

practices and determine how a business operates. Typically, if the business has

automated the business operation or process, the rules are embedded in the

software solution within the application or database code. Separating the busi

ness rules from legacy code is one of the biggest challenges in software mainte

nance.

A rules-centric approach to software development facilitates defining

business rules that are easily and dynamically maintained. In the thesis, a

generic software engineering framework that enables development of highly

configurable software was proposed. This framework will significantly reduce the

Vlll

number of development cycles triggered by the changing software requirements,

during the software maintenance phase. This lightweight framework drives a rule

engine to incorporate dynamic changes and implement specific business logic in

configurable applications. The methodology is based on the rules-centric appr

oach to software development. This research also involves a detailed study and

analysis of the existing software development platforms and frameworks that

support a high level of software configurability.

ix

CHAPTER 1

1.1 Introduction

Whether they are explicit or implied, rules are an inevitable part of doing busi

ness. Business rules represent an organization's codified policies and decision

making practices, and they dictate how applications are structured and operate.

Businesses determine the way information flows through its organizational

processes and the sequence of actions the organization will follow under given

conditions. The set of rules that determine how a business operates are those

that prevent, cause or suggest things to happen in the functions of the business.

1.1.1 Explanation of the problem

To promptly react to changing conditions, businesses must be able to adapt and

implement those changes as rapidly as possible in the set of business rules. Typ

ically, if the business has automated the business operation or process, the rules

are reflected in the implemented software solution in one or more of the following

locations: either within the business application code or in the database code,

implemented as procedures and triggers.

Also, many business rules exist in legacy programs and may have emb-

1

2

edded business rules that are highly intertwined with the application and data

processing logic.

Separating the business rules from legacy code is one of the biggest

challenges in software maintenance. Because the application code contains the

business rules embedded with the control and data processing logic, adapting to

change in software requirements becomes a tedious, time-consuming and costly

exercise.

Moreover, every change in requirements, irrespective of the amount of

change or the impact of the change, requires the application to undergo a comp

lete software development cycle and to be rebuilt.

1.1.2 Highly configurable software overview

Software development frameworks provide the skeleton of the structure and con

trol flow of the implemented applications. Frameworks greatly reduce the size of

the solution space available to the developer. For example, The J2EE framework

manages the life cycle of an application component implemented in Enterprise

Java Beans (EJB) all by itself, thereby relieving the programmer from coding and

maintaining the infrastructure.

This research proposes a generic framework methodology based on the

rules-centric approach to highly configurable software development. This resea

rch is based on a detailed study and analysis of the existing software develop

ment platforms and frameworks that support a high level of software config

urability.

3

The core objective of the adopted rules-centric approach for the generic

framework is making the definition and implementation of business rules logically

and possibly physically separate from the application data and processing logic.

The first step of the rules-centric approach is to define the business rules that

govern an organization. Once represented in a standard structure as a rules

repository, business rules become separate, reusable definitions that can resp

ond to changes in business requirements.

A business rule is a statement that defines or constrains some aspect of

business. It is intended to assert business structure or to control or influence the

behavior of the business. There are many benefits to using a business rules

centric approach to develop applications.

Because business rules are represented in an understandable way, busi

ness people are able to review the rules for accuracy and completeness. When

data is analyzed from business intelligence systems, business people can quickly

associate their conclusions with active business rules.

1.1.3 Organization of the thesis

This thesis is divided into six Chapters with Chapter 1 providing an overview of

the problem and the methodology adopted to address the problem. Chapter 1

also gives an overview of the rules-centric approach to software development

and how highly configurable development can be supported using the proposed

generic framework.

4

Chapter 2 provides definitions for terms and explains concepts used in

development of highly configurable software. The factors and elements that make

software highly configurable and the benefits of a high level of configurability are

discussed. Chapter 2 describes how the rules are represented in a standard for

mat which can be used for execution by conforming rule engines and how chan

ge management is carried through in a business rules-centric approach over the

software maintenance phase.

Chapter 3 analyzes several of the existing frameworks that support devel

opment of highly configurable software. This chapter identifies a set of criteria by

which each framework will be analyzed. Each framework is then analyzed in det

ail with respect to the identified criteria. Chapter 3 also proposes rule transforma

tion methods that can be applied to the existing frameworks to further extend

software configurability provided to a reusable level.

Chapter 4 begins with a discussion on the imperative and declarative pro

gramming paradigms. Since the proposed framework will use a declarative lang

uage to represent the business rules in the rules repository, this chapter identifies

some of the benefits of using a declarative language and discusses the draw

backs associated with imperative programming.

The scope for a generic framework in the rules-centric approach for soft

ware development is discussed. The shortcomings of each framework analyzed

in Chapter 3 and the ways in which the proposed generic framework addresses

them are discussed. In Chapter 4, the methodology adopted for the proposed

generic framework is discussed and, a detailed design is presented. The adopted

5

rule representation format for the generic framework - the Simple Rule Markup

Language (SRML) - and its document structure in the rules repository is

presented. The Rete algorithm is a widely used pattern matching algorithm that

the generic framework uses for matching the assertions on facts with the

conditions present in the rules. Chapter 4 presents a detailed discussion and

examples on how the Rete algorithm was used in the implementation of the rule

engine.

Chapter 4 also presents the design of the rule engine based on the JSR-

94 Java Rule Engine API specification from SUN Microsystems. This chapter

also discusses how the rules in the rules repository are parsed and executed in

the memory model and the execution context that the generic framework

employs. Chapter 5 presents the results of the analysis of the generic framework

by conducting two case studies from contrasting target application domains. The

case studies in effect will demonstrate the capabilities of the generic framework

and how the methodology differs from conventional software development.

Each case study begins by analyzing the implementation based on the

conventional approach. The sections of the application implementation where the

business logic or the functional rules are embedded in code are identified.

The business rules are separated and represented in the SRML document

format and the implementation based on the rules-centric approach using the

proposed generic framework is then discussed for each case study in Chapter 5.

Chapter 6 provides the conclusions of the research and a few directions for

future research.

CHAPTER2

2.1 Highly Configurable Software Development

This chapter provides definitions for terms and explains concepts used in develo

pment of highly configurable software. The factors and elements that make softw

are highly configurable and the benefits of a high level of configurability are disc

ussed. This chapter introduces the business rules-centric approach of software

development, describes what configuration specifications are and what industry

standards and formats are used in representation of the specifications. This cha

pter also describes how the rules are represented in a standard format which can

be used for execution by conforming rule engines and how change-management

is carried through in a business rules-centric approach over the software mainte

nance phase.

2.1.1 Definitions

The policies, procedures and decision-making practices of a business are codifi

ed or represented by business rules. Business rules serve as a basis for the des

ign and structure of the business applications that implement the functional req

uirements.

R Ross (1997) defined business rules as follows:

6

7

"Business rules are a formal expression of knowledge or preference,

guidance system for steering behavior (a transaction) in a desired direction. It is

intended to assert business structure or to control or influence the behavior of the

business."

D. Hay and K. Healy (2000) gave a more simplistic definition:

"A Business Rule is a statement that defines or constrains aspects of a

business."

Business rules are atomic and complete statements that enable new kno

wledge, and enable or disable actions based on previous knowledge. By defining

business rules in a consistent manner, an organization has the opportunity to im

plement the business requirements in its systems in ways that was not possible

in conventional software development where business rules are tied down in co

mpiled code interwoven with data and application logic.

Once represented in a standard structure as a rules repository using form

ats such as the Extensible Markup Language (XML), business rules become sep

arate, reusable definitions that can respond to changes in business require

ments, technical and environmental migrations.

A business rules repository is a centralized store of the business rules to

facilitate change and promote re~se. A business rules server offers dynamic acc

ess to business rules at runtime. Developers or application administrators can di

rectly change multiple rules at a time and have those changes available to all rel

evant business transactions immediately, without recompiling and redeploying

the application.

8

The most basic element of a business rule is the rule language used to ex

press it. The complexity of the language adopted to represent the business rules

can greatly influence the maintainability of the applications developed using the

framework.

Edward J. Barkmeyer, Evan K. Wallace and Ravi Raman (2002) state the

fundamental requirements for a rules language:

"It is necessary for a rules language to support some standard mathemati

cal reasoning systems beyond sets. These requirements arise from two

areas of work: capturing the rules needed to support translation among

measurement values in different units within and across unit systems and

capturing structural differences between representations of the same infor

mation in different schemas when the values themselves are semantically

equivalent. We cannot force the user to explicitly flatten state structures

and nested interrogations and actions into conjunctions of symbols. The

source rules languages must allow these things to be written in a more

natural way. And software can be written to perform the transform to conju

nctions of symbols."

Business rule types. Several classifications for business rules exist depen

ding on the functional domain that the business rules are derived from. Accordi

ng to B. Von Halle (2001), there are four kinds of business rules:

"Constraint rule. A constraint rule is a statement that expresses an

unconditional circumstance that must be true or false. Example: An air

travel request must have a departure airport and a destination airport.

9

Action enabler rule. An action enabler rule is a statement that checks

conditions and upon finding them true initiates some action. Example: If no

flight is found, do not look for accommodation.

Computation rule. A computation rule is a statement that checks a

condition and when the result is true, provides an algorithm to calculate

the value of a term. Example: If more than 2 persons travel together, the

third pays only half price.

Inference rule. An inference rule is a statement that tests conditions and

upon finding them true, establishes the truth of a new fact. Example: A

frequent customer gets a discount of 5 %."

Business rules may contain values or even complete decision trees that

might change during the life span of an application. If business rules are placed

in application code, change becomes a costly exercise, resulting in high mainten

ance and enhancement costs. Centralizing business rules and classifying them

into various types facilitates isolation for change, provides enhanced knowledge

about the dependencies of rules and promotes reuse.

2.1.2 Factors that make software highly configurable

The separation of business rules from the implementation or application code is

the first step towards development of highly configurable software. The next step

is to adopt a consistent approach to isolate the business rules starting from the

requirements elicitation phase of software development. The business rules-

10

centric approach is one such effort towards isolating the rules and application

code in an efficient and interoperable manner.

•••••••••

•••••••••
••••••••• •••••••••

•••••••••
•••••••••

Conventional application

• • • • • • • • • -----+-Business rules
•••••••••
• •••••••• •••••••••
••••••••• • ••••••••

Data and processing

Configurable application

Figure 2.1 Conventional vs. Configurable application development

Any rules-centric approach requires a standard format to represent the

business rules. The representation format should support easy interchange of rul

es between systems as well as providing efficient access to the rule engines that

operate on them and use the business rules to implement the functional require

ments.

Several standards have evolved to support the representation of business

rules in interchangeable and portable formats such as the Rule Markup
C.

Language (RuleML), Simple Rule Markup Language (SRML), Extensible Rule

Markup Language (XRML) and Relational Functional Markup Language (RFML).

The design and development of rule engines specific to the chosen repre

sentation format enables true configurability for the applications developed using

11

the rules-centric approach. The rule engines will dynamically incorporate execu

tion of business rules in a context-sensitive fashion.

2.1.3 Using a business rules-centric approach

A business-rules centric approach to software development frameworks facilita

tes defining business rules that are easily and dynamically maintained. This app

roach isolates the implementation of business rules both logically and physically

from data and application processing code. The first step of the business rules

centric approach is to isolate and define the business rules that govern the needs

of functional requirements of applications. This will allow the application develop

ment organization to gain explicit knowledge of the decision-making process

itself.

The business rules-centric approach includes both a methodology by whi

ch rules of a business are captured, managed and automated as well as a techn

ology for managing the rule automation and change process. It aims to represe

nt business knowledge externally as an active component in the development

architecture.

Relationships between rules are represented as supported by the adopted

structure and language for the business rules. Decisions and inferences are evol

ved by grouping the rules to a point where the outcome can be clearly defined.

B. Von Halle (2001) summarizes the concepts of a rules-centric approach:

"A unique aspect of a business rules system development methodology is

that it divides the systems development approach into separate, but

integrally related tracks representing the workflow/process perspective

which includes the user interactions and processes, but without the rules

in them"

12

Business rules models are evolved by refining the decision-making proc

ess targeted towards a specific set of functional and operational requirements.

These models capture and represent all the facts and logic required to make a

decision in a given business context, allowing reuse of both atomic and complex

rules.

Although several development frameworks exist in support of highly

configurable software development using the business rules-centric approach

with well-defined rules repositories and efficient rule engines, there is not much

support for transformation of business rules from one format to another.

Transformations within a single representation format allows for accommo

dation of changes made to the business rules, whereas transformation between

representation formats will greatly improve interoperability of heterogeneous

systems and make software truly configurable for change in the environments

and portability requirements.

In an attempt to enhance the configurability of software further to a higher

level of reusability, this thesis proposes a rule transformation mechanism which

can be applied as an extension to existing frameworks as well as integrated as

part of a generic framework.

13

2.1.4 Benefits of the business rules-centric approach

The business rules-centric approach ensures that business logic is implemented

in a standard and consistent way, narrowing the communication gap during the

requirements, analysis and design phases of projects. Because of this explicit

knowledge representation, there is little need to restrict change in requirements.

Developers can take an iterative approach to implementation of the

requirements. This results in a shorter time to code and a shorter time to deploy.

Once applications are deployed, changes to business rules are easier to

implement because they reside in a centralized location. Moreover, because

business rules are separated from technical implementation, it becomes much

easier to accommodate changes in requirements.

There are several other benefits in using a business rules-centric

approach for developing highly configurable software:

Reduced application development costs. In traditional application develop

ment, most of the application code exists solely to make the business logic apply

on a specific instance of the implementation. With a rules-centric approach, appli

cation development costs are reduced by maintaining the rules dynamically and

translating them into an implementation in order to adapt to changing require

ments.

R Ross (1997) states the benefits of a rules-centric approach as:

"On the business side, changing business practices are no longer unnece

ssarily disruptive and costly to implement with technology. The separation

of business logic and architecture means that software future proofing is

14

no longer thwarted by subsequent technologies."

S. Bohner (2002) on how change is inevitable in software and how a

business rules-centric approach is beneficial:

"Final requirements seldom exist for software systems since they are

continually being augmented to accommodate changes in user

expectations, operational environment and the like. Configurable software

platforms with business rule models are more flexible to adapt for these

changes. Business people become an active part in system specification

as well as the analysis, design and implementation phases."

Shorter development cycles. Rules-centric frameworks shorten developm

ent cycles by developing business models that closely match the projected imple

mentations of the application. This shortens not only the actual coding time, but

the overall development cycle as well. The increased quality that results from aut

omation shortens the quality assurance phase of the development cycle. Rules

centric systems can also generate more accurate and implementation-specific

user and system documentation which shortens the documentation phase.

David Zygmont (1999) on the benefits of a rules-centric approach:

"Rule-based systems reduce application development costs by isolating

the architecture in metaprograms and having the metaprograms translate

into an implementation. This fixes the cost of architecture independently of

the size or number of applications being developed. The bigger the

application or the more applications there are, the greater the savings in

time and cost. "

15

Easy application migration to new technologies. Advances in technology

turns architectures that are just a few years old obsolete. Organizations frequen

tly discontinue support of older technology and personnel with the skills to maint

ain and enhance older technology are difficult to find. This has become increasin

gly problematic due to the ongoing trend of decreasing product life cycles.

According to David Zygmont (1999), rules-centric systems ease migration:

"Metaprograms and rule-based systems isolate applications from the

technology on which they run and are independent of any specific

architecture, which makes the cost of application migration independent of

the size or number of applications being migrated. A small team of

developers and architects can keep pace with technology change."

A business rules-centric system can be changed easily. A business rules

developer can change one or many rules at a time and have that change availa

ble to all relevant business transactions, depending on target technology. By

focusing on business rules, an analyst can distinguish the absolute dependenci

es in the rules from those that are interesting from a performance or user perspe

ctive.

A business rules system can be delivered quite easily in incremental

pieces. If the first increment includes a solid data foundation, incremental system

releases become the delivery of upgraded or additional rule sets to an existing

infrastructure.

B. Von Halle (2001) on the multiple benefits of the rules-centric approach:

"The ultimate payback of a business rules methodology is two-fold. The

16

first is a system development methodology that enables the discovery of

essential intellectual process flow. The second is a system specifically

designed to enable more spontaneous business change. A business rules

methodology leads to the delivery of a system designed to change its

rules, add new ones and retire old ones. A business rules approach puts

the business back in charge of its destiny."

2.2 Configuration Specification Standards and Languages

There are many reasons why applications may require configuration - incorporat

ing bug fixes and new implementations, accommodating environmental and tech

nological changes, adapting to changing business requirements, internationaliz

ation and localization changes. To incorporate these dynamically changing requi

rements, a rules-centric approach captures refined rules in standard structured

formats in building the business models.

Standards organizations and industry majors hpve evolved several widely

adopted rule representation formats and languages. RuleML and the Simple Rule

Markup Language (SRML) are gaining popularity among rules-centric system de

velopers and are considered to be viable candidates for adoption by the World

Wide Consortium as a technology standard.

Harold Boley, Benjamin Grosof, Michael Sintek, Said Tabet, Gerd Wagner

(2002) about the RuleML design:

"RuleML encompasses a hierarchy of rules, including reaction rules event

condition action rules), transformation rules (functional-equational rules),

derivation rules (implicational-inference rules) and queries (conclusion

less- derivation rules), as well as integrity constraints. "

17

The RuleML hierarchy of general rules branches into the two direct categ

ories of reaction rules and transformation rules. On the next level, transformation

rules specialize to the subcategory of derivation rules. Then, derivation rules

have further sub subcategories, namely facts and queries. Finally, queries speci

alize to integrity constraints.

Gerd Wagner, Grigoris Antoniou, Said Tabet, and Harold Boley (2004) on

RuleML design:

"Given the linguistic richness and the complex dynamics of business dom

ains, it should be clear that any specific mathematical account of rules,

such as classical logic Horn clauses, must be viewed as a limited descript

ive theory that captures just a certain fragment of the entire conceptual sp

ace of rules, and not as the only definitive, normative account. Rather, we

need a pluralistic approach to the heterogeneous conceptual space of rul

es. Therefore, in RuleML, a family of rule languages capturing the most

important types of rules are being defined. While these languages come

with a recommended formal semantics, some of their rule bases may be

marked to have a variant acceptable semantics. This will accommodate

various formalisms based on non-standard logics, supporting temporal,

fuzzy and other forms of reasoning."

CommonRules is a rules-centric framework promoted by IBM and

provides innovative XML interoperability and prioritized conflict handling capab-

18

ilities. CommonRules also helps enable non-programmer business-domain

experts such as marketing managers, to easily modify the executable business

rules incrementally at run-time. CommonRules defines and supports a new XML

rule interchange format for rules, called Business Rules Markup Language

(BRML).

Hoi Chan (2002), the CommonRules project lead on the framework:

"IBM CommonRules is a rule-based framework for developing rule-based

applications with major emphasis on maximum separation of business

logic and data, conflict handling, and interoperability of rules. It provides a

platform that enables the rapid development of rule-based applications

through its situated rule engine via dynamic and real-time connection with

business objects. CommonRules can be integrated with existing

applications at a specific point of interest or it can be used to create

applications composed only of rules."

A typical configuration specification of a software system will consist of the

business rules repository accessible via standard interfaces by the rule engine

and the metadata repository for application parameters including versioning and

deployment specifications. A significant number of rule representation formats

and organization-specific proprietary storage techniques and domain-specific

languages exist.

Several companies such as IBM, Microsoft, ILOG, and Business Rule Sol

utions LLC are promoting rules-centric frameworks built on proprietary technolog

ies and rule representation formats. Because of the diverse technological differe-

19

nee with which these companies operate, their frameworks are tailor-made for

vendor-specific application domains.

In the rules-centric approach for developing highly configurable software,

the lack of standards is becoming a major issue towards developing

interoperable, reusable rules repositories and rule engines.

2.3 Rule Engines and Rule Execution

A rule engine determines how rules will be applied at runtime. All rule engines are

basically pattern-matching search engines, looping through the rules, deciding

which to use next and then repeating the process until some end condition is rea

ched. However, there can be major differences in how patterns are searched for,

and what happens when a rule is used.

User Interface
and Processing

Rules
Management

RULEENGINE -----,---~

Rules
Transformation

Evolved Business Models

Lil □

Rules Repository
(XML Documents,

Database tables, etc.)

Figure 2.2 High-level architecture for a rules-centric framework

20

Rule engines are designed for integrating business processes and support

incorporation of a knowledge base in the implementation and passing messages

between processes. A general purpose rule engine will fit a wide range of proble

ms but might not fit very well for a domain-specific implementation.

The rule engine has an application program interface (API) that is used by

the calling application. Dynamic business rules allow for building of expressions

which are interpreted at run-time by the rule engines. This allows both develop

ers and application administrators to update and modify the business logic in an

application quickly, without recompiling and redeploying the source code.

Several implementations of rule engines exist to cater to varied business

models, technical environments and functional domains. Although no industry ad

opted standard specification for design of rule engines exist, industry majors and

standards organizations are working on standardizing rule engine development

practices.

SUN Microsystems, an industry leader for e-commerce and web based

application technologies has taken initiative by providing a generic library applic

ation programming interface (API) for rule engine development.

The Java Specification Request (JSR-94) is a technology specification for

Java language based rule engines targeting the J2EE and J2SE platforms. The

rule engine for the implementation of a generic rules-centric framework for this

thesis was developed using the JSR 94 specification of the Java Rule Engine

API.

21

2.4 Maintainability of Rules and Configuration Specifications

Since application functionality is distributed across heterogeneous software and

hardware platforms, interoperability issues are very important for impact analysis

and implementation of software changes to accommodate changing requireme

nts.

Because the rules repository is a separate entity from the main application

code, it can be easily updated. This results in a very flexible and responsive arch

itecture for maintenance of the rules repository.

A critical aspect of any rule engine is an API that can be called from other

application components. This lets the rules repository be integrated into an app

lication context in a manner that allows the logic base, the rules repository, to be

updated without requiring updates to the main application code.

Change impact analysis is the biggest challenge in maintenance of app

lications developed using the rules-centric approach. However, by capturing most

of the interoperability dependencies themselves as rules, change management

has been greatly improved.

S. Bohner (2002) lists the basic software change activities and impacts:

"Activities such as understanding software with respect to the change,

implementing the change within the existing system, and retesting the

newly modified system has some element of impact determination. To

understand the software with respect to the change, we must ascertain

parts of the system that will be affected by the change and examine them

for possible further impacts. Without requisite change impact analysis and

22

management mechanisms, software changes during maintenance can

have unpredictable consequences that often delay their implementation".

The next chapter analyses several of the existing frameworks that support

development of highly configurable software. Each considered framework is

analyzed in detail with respect to a set of identified criteria.

CHAPTER3

3.1 Analysis of Existing Frameworks

This chapter analyses several of the existing frameworks that support developm

ent of highly configurable software. A set of criteria based on which each framew

ork is analyzed are identified and explained. Each considered framework is anal

yzed in detail with respect to the identified criteria. A few domain-specific framew

orks and some of the native and proprietary rules and configuration specification

formats are discussed. A research summary on the results of the analysis is pro

vided. Finally, the scope for generalization and standardization of the frameworks

are discussed. The chapter also proposes rule transformation methods that can

be applied to the existing frameworks to further extend software configurability

provided to a reusable level.

3.1.1 Analysis criteria for configurable software development frameworks

A software development framework is a specification or implementation that pro

vides a general solution to some problem or aspect of applications. A toolkit or a

platform is a collection of programming subroutine libraries that can be used to

make development easier.

23

24

To analyze the various aspects of development frameworks, we need to

identify a set of criteria that will consistently evaluate each framework from the st

andpoint of support provided for development of highly configurable software. To

have these criteria as generic as possible and applicable to most of the existing

frameworks, we need to isolate and avoid the criteria that are only specific to an

application or functional domain. The set of identified criteria and their purpose is

given below. Each development framework will be evaluated based on this set of

identified criteria.

Approach used for development. This criterion evaluates the approach

adopted by each framework in development of configurable software. This is an

overall design strategy or paradigm used by the framework in development.

Rules representation and language. This criterion evaluates the rule lang

uage and representation format adopted by the framework. The representation

format adopted can greatly influence the interoperability of the business rules.

Rule engines compatibility and support. Some frameworks have proprie

tary rule specification formats and hence have conforming rule engines that are

closely tied with the framework. This criterion evaluates what rules engine a fra

mework has and with which other rule engines it is compatible.

Interoperability of business rules. This criterion evaluates the support for

interoperability of business rules between applications developed using the fram

ework. Interoperability of business rules will greatly reduce the development time

for new applications that closely match previously developed business rule mod

els using the framework.

25

Maintainability of business rules. This criterion evaluates the maintainabili

ty of the business rules repository developed using the framework. Tightly coupl

ed rules are generally harder to maintain. The nature of how the framework capt

ures the rules and their dependencies influences the maintainability of the rules

when a change in a requirement needs to be accommodated.

Support for business rules transformation within the framework. Once a

rules repository has been developed business models can be evolved based on

specific set of implementation requirements. The ability to redefine the existing

rules by applying certain standard transformations will facilitate reuse for each

new business model development. This criterion evaluates this capability of a

framework.

Support for business rules transformation outside of the framework. Thou

gh frameworks support transformation of rules within the framework's confined

boundaries, there is little or no support for interchangeability or transformation of

rules outside of the frameworks. This criterion evaluates a framework on this

basis.

Support for remote administration of business rules. This criterion evaluat

es the support provided by the frameworks in administration of the business rules

repository on a remote basis.

Support for change impact analysis. During the maintenance phase of

software, change in requirements trigger analysis of the impact of those changes

in the rules repository. This criterion evaluates the support provided by each fra

mework in identifying and reporting the impact of changes.

26

Support for dynamic business rules. While most of the frameworks are

designed to incorporate rules during execution from a static setup, there are fra

meworks which allow for dynamic incorporation of rule changes. This criterion

evaluates a framework on this basis.

3.1.2 Analysis of frameworks and platforms supporting high

configurability

Frameworks typically provide the skeleton of the structure and control flow of the

implemented applications. Frameworks greatly reduce the size of the solution

space available to the developer. For example, the J2EE framework manages

the life cycle of an application component implemented in Enterprise Java Beans

(EJB) all by itself, thereby relieving the programmer from coding and maintaining

the infrastructure.

While most of the frameworks provide necessary support for development

and maintenance of native applications, a detailed evaluation based on the

identified criteria will provide comprehensive analysis on the suitability of each

framework for specific implementation purposes.

The Gandiva software development system. One of the earliest adopters

of the rules-centric framework design approach, Mark C. Little and Stuart M.

Wheater (1996) proposed and designed a framework called the Gandiva

software development system which is a software development framework that

provides support for the construction of C++ software systems.

27

Gandiva supports development of configurable software using the delega

te class mechanism for storing and maintaining control and workflow information

as a separate entity.

Analysis of the Gandiva software development system

Analysis criterion Study/Evaluation

Approach used for development
Design paradigm is rules-centric.
Object oriented analysis approach for rule analysis.

Rules representation and language
Rules were represented as separate classes.
Language used is C++.

Since rules were represented as C++ classes, they
are compatible with any rule engine implemented in

Rule engines compatibility and support C++.
This framework does not provide direct support for any
other rule engines.

Since rules were represented as C++ classes,
interoperability of rules is constrained to the C++

Interoperability of business rules
application domain. Business domains conforming to
the object and data model used by Gandiva can use
the rules repository for use with C++
applications and rule engines.

The class structure of C++ allows for easy and

Maintainability of business rules
efficient management of the business rules in the
repository. Rule maintenance can just be the usage of
the correct accessors of the object model.

Support for business rules transformation None
within the framework

S4pport for business rules transformation None
outside of the framework

Support for remote administration of
None

business rules

Support for change impact analysis None

Support for dynamic business rules None

Table 3.1 Analysis of Gandiva framework

This framework utilized object oriented design principles to separate the

business rules from the application code. This modest framework cannot be eval-

28

uated completely because criteria that have been identified pertain to current

standards and technologies. However, the generic design of the system will allow

for partial evaluation.

A core part of this framework is that the binding between interface and

implementation is configurable. Applications are written only in terms of interfac

es, and although an application can request a specific implementation to be

bound to an interface, it occurs in a way that allows this request to be changed

without modifying the application.

Later, in 1998, Mark C. Little and Stuart M. Wheater migrated the Gandiva

system to Java, enabling greater portability and dynamic rule management cap

abilities.

"Gandiva provides a set of classes to support the construction and use of

interface and implementation classes. The classes are responsible for

storing and retrieving the configuration information required by an

application, and the inventory, which is responsible for managing

repositories of implementation classes and returning new instances to the

application." Mark C. Little and Stuart M. Wheater (1998).

The Scalable and Agile Architecture for EBusiness (SAAFE) framework.

SAAFE is a rules-centric software development framework that allows compone

nts to be dynamically replaced in an executing system. Thus components can be

from multiple sources and the most suitable for the current requirements can be

selected and used. This reconfiguration can occur on a per execution basis,

29

thereby allowing the business process to be defined and optimized for each indi

vidual transaction.

A software system built in the SAAFE environment is described by a soft

ware template. This template provides sufficient information for the SAAFE rule

engine to identify the required components and insert them into the executing

application.

Analysis of SAAFE framework

Analysis criterion Study/Evaluation

Approach used for development
Rules-centric approach,
Component-based model development.

Rules representation and language
Software Template Language (STL) and the XML
Pipeline Language.

XML Pipeline documents conforming to the
Rule engines compatibility and support XML Schema provided by SAAFE are compatible with

rule engines.

Rules defined purely with STL are not interoperable
Interoperability of business rules while XML Pipelines act as an indirect way to share

the rules with the outside world.

Maintainability of business rules Highly maintainable.

Support for business rules transformation
Rule transformations are supported by the framework

within the framework
to a limited extent through the transformation engine
built into SAAFE.

Support for business rules transformation
None outside of the framework

Support for remote administration of None
business rules

Support for change impact analysis None

Support for dynamic business rules None

Table 3.2 Analysis of SAAFE framework

This template models a business process as closely as possible with defi-

nition of rules. SAAFE uses Software Template Language {STL) which is based

30

on the XML Pipeline Definition Language to describe and represent software

templates.

A pipeline document describes the processing relationships between XML

resources, specifying the inputs and outputs to XML processes and a pipeline.

"The SAAFE project follows the principle of simplicity and describes a ser

ies of interactions between components in terms of the data they share.

Components in the SAAFE system carry out a single task on one or more

XML input documents. The schema of these documents must be one of a
'

number of supported schemas. The SAAFE engine is capable of transfor

ming between compatible schemas automatically." Ross Gardler, Nikolay

Mehandjiev (2003).

MEDAL (UML Ggneric Mogel Tr§.nsformer tooD and CASE tool extensions

for model-driven software engineering. Standardization efforts in the modeling

domain by the Object Management Group (OMG) have resulted in platforms and

tools that support configurable software development and integration.

MEDAL is a model-driven software engineering and modeling platform

that extensively uses standards such as the Unified Modeling Language (UML),

the Meta Object Facility (MOF) and the XML Metadata Interchange.

Development using MEDAL covers the system, the application domain,

and the requirements or the business rules from different viewpoints and levels of

abstraction.

"MEDAL's component architecture handles dynamic class loading,

manages the component instance life cycle, and provides a component

lookup service. There is a clear separation between component

specification, and component implementation" Nicolas Guelfi, Benoit

Ries, Paul Sterges (2003).

Analysis of the MEDAL framework

Analysis criterion Study/Evaluation

Approach used for development Rules-centric, Object oriented.

Rules representation and language Proprietary model template definitions

Rule engines compatibility and support Only native rule engine

Interoperability of business rules No interoperability support

Maintainability of business rules Highly maintainable

Support for business rules transformation
Supports high level of rule transformations

within the framework

Support for business rules transformation
None

outside of the framework

Support for remote administration of
None

business rules

Support for change impact analysis Limited support

Support for dynamic business rules None

Table 3.3 Analysis of MEDAL framework

31

MEDAL uses a native rule and transformation language for the business

rules, represented as model template definitions, which define the rules as well

as the primitive transformations.

"MEDAL's transformation language consists of the following parts:

The transformation sequencing rules, which define compound transformat

ions as sequences of transformations that may either be primitive or com

pound transformations. The model template application definitions, which

define, how to apply the primitive transformation in a context. The param-

32

eter definitions, which define the parameters that the compound transfor

mation accepts." Nicolas.et al, (2003).

MEDAL supports maintenance and transformation of the business rules

without having to know the details of how they are defined. Once the user has

provided the parameter values, the transformations can be applied any number

of times. The parameterized approach used by MEDAL's model template langua

ge is only suitable when one structural model is to be transformed into another

structural model. Another limitation is that transformations can only add or modify

elements but not remove them.

Compuware Corporation Optima/J. OptimalJ is a rules-centric software

development framework for applications targeted for the J2EE platform. OptimalJ

implements the Object Management Group (OMG) Model Driven Architecture

(MDA), offering companies enormous flexibility through vendor- and language

independent interoperability. OptimalJ supports rapid application change and on

going maintenance. OptimalJ uses a rule engine that supports pattern analysis

and dynamic rule invocation.

"OptimalJ identifies rule patterns which facilitate reuse, leveraging pre

defined designs, structure and code, and capture specific knowledge about the

architectures, platforms and technologies to help create reusable code and ability

to redefine business rules for reuse throughout the application." Compuware

OptimalJ (2004).

33

Analysis of the OptimalJ framework

Analysis criterion Study/Evaluation

Approach used for development Rules-centric, Object Oriented

Rules representation and language Native format. Unified Modeling Language support.

Rule engines compatibility and support Only native rule engine.

Interoperability of business rules Highly interoperable format.

Maintainability of business rules Highly maintainable.

Support for business rules transformation
None

within the framework

Support for business rules transformation
None

outside of the framework

Support for remote administration of
Limited support.

business rules

Support for change impact analysis None

Support for dynamic business rules None

Table 3.4 Analysis of OptimalJ framework

SUN Java 2 Enterprise Edition (J2EE) Platform. J2EE is a framework and

platform for developing configurable enterprise applications for the web. The

J2EE platform is a collection of related technology specifications that describe re

quired APls and policies universally available for use.

"The portability required by the J2EE specification gives customers the fre

edom to choose technologies both at system construction time and throu

gh the application lifecycle. The combination of specification, reference im

plementation, and compatibility tests provide the consistency necessary

for a portable, open application platform." Mark Johnson (2003).

SUN Microsystems, the provider of Java has made efforts to create a sta

ndardized rule engine API for the Java platform. In November 2003, the Java

Community Process released the final version of the JSR-94 specification. JSR-

34

94 formalizes a basic API for working with rule engines in Java. The flexibility off

ered by the API allows rule engines to support development of continuously ada

ptive systems to changing needs.

Analysis of the J2EE framework

Analysis criterion Study/Evaluation

Approach used for development Rules-centric, Object oriented

Rules representation and language XML

Rule engines compatibility and support
Any Java based rule engine conforming to the JSR 94
specification.

Interoperability of business rules Highly interoperable.

Maintainability of business rules Highly maintainable.

Support for business rules transformation
Limited XSL T support

within the framework

Support for business rules transformation
None

outside of the framework

Support for remote administration of Application servers support high level of remote
business rules administration

Support for change impact analysis None

Support for dynamic business rules Limited support

Table 3.5 Analysis of J2EE framework

Microsoft BizTalk Server. Microsoft BizTalk Server supports the goal of

creating business processes that unite separate applications into a coherent

whole by including a mechanism for specifying business rules and better ways to

manage and monitor applications.

The Business Rule Framework within BizTalk Server represents an innov

ative implementation of the Service Oriented Architecture (SOA) paradigm. Every

individual and combined level of functionality has been designed to be exposed,

35

independent, and loosely coupled XML definitions, thus eliminating the need for

any procedural implementation programming.

Analysis of the Biz Talk Server framework

Analysis criterion Study/Evaluation

Approach used for development Rules-centric, Service Oriented Architecture

Rules representation and language XML

Rule engines compatibility and support Only Microsoft

Interoperability of business rules Limited support

Maintainability of business rules Highly maintainable

Support for business rules transformation
Limited support.

within the framework

Support for business rules transformation
None

outside of the framework

Support for remote administration of
Full support.

business rules

Support for change impact analysis Limited support.

Support for dynamic business rules Limited support.

Table 3.6 Analysis of BizTalk framework

"The BizTalk process requires modeling business procedures, analyzing

data communication formats, mapping formats, and properly configuring

BizTalk Server. When the process flow is followed, BizTalk Server can

solve business application maintenance and information exchange

challenges". Rand Morimoto, Microsoft (2004).

Most modifications to a business process life cycle in BizTalk Server pert

ain to changes in business rules. Because conventional applications embed busi

ness rules in opaque procedural code, the rules cannot easily be accessed or

modified without disrupting running processes.

36

IBM CommonRules Platform and the Rational Unified Process (RUP). The

IBM CommonRules framework uses Java based technologies to provide support

for configurable software development, interoperability, portability and dynamic

rules by way of dynamic linking between any objects instances. Larger applicatio

ns can be constructed by merging small modules of business logic dynamically,

which enables the sharing of business logic between applications.

The framework also completely hides the programming details and expos-

es only the business logic as human language like syntax.

"CommonRules is a rule-based framework for developing rule-based

applications with major emphasis on maximum separation of business

logic and data, conflict handling, and interoperability of rules. It is a pure

Java library, and it provides a platform that enables the rapid development

of rule-based applications through its situated rule engine via dynamic and

real-time connection with business objects. CommonRules can be

integrated with existing applications at a specific point of interest, or it can

be used to create applications composed only of rules. CommonRules

uses a semantically-rich rule language called Courteous Logic Program

(CLP) for rule representation and provides a set of APls for efficient

application integration and data bindings based on the RuleML

specification, in order to enable interoperability of different rules"

Hoi Chan (2002).

37

Analysis of the Common Rules framework

Analysis criterion Study/Evaluation

Approach used for development Rules-centric, Object oriented

Rules representation and language Native - Courteous Logic Program (CLP}

Rule engines compatibility and support Only native

Interoperability of business rules Limited support.

Maintainability of business rules Highly maintainable.

Support for business rules transformation
Limited support.

within the framework

Support for business rules transformation
None

outside of the framework

Support for remote administration of
Limited support. business rules

Support for change impact analysis None

Support for dynamic business rules Limited support.

Table 3.7 Analysis of CommonRules framework

CommonRules extensively uses the Rational Unified Process(RUP),

which is an iterative software design method created by the Rational Software

Corporation, now a division of IBM. It describes how to deploy software effective

ly using commercially proven techniques. RUP enables remote deployment and

maintenance of applications developed using CommonRules. The standards

used are interoperable with several hardware and software platforms.

/LOG Business Rule Management System. ILOG's Business Rule

Management System (BRMS) treats business rules as a corporate asset. Instead

of simply updating rules when conditions change, ILOG BRMS lets business

users manage rules throughout their entire lifecycle. Business rules are express

ed as English-syntax instead of application code.

"With ILOG BRMS, policies and practices are expressed as English-

38

syntax business rules instead of computer code. The same rules are

accessed by every organization in the enterprise, across touch points and

applications. Developers, analysts, managers and administrators use

powerful editing tools to manage, track and change rules. Teams employ

consistent regulations and practices, ensuring prompt compliance.

Business analysts change decision logic themselves, relieving overworked

IT departments. New policies and regulations are implemented quickly

and accurately" Jolif and Tissandier {2004).

Analysis of the /LOG Business Rule Management System framework

Analysis criterion Study/Evaluation

Approach used for development Rules-centric

Rules representation and language Native format

Rule engines compatibility and support Only native rule engine

Interoperability of business rules Highly interoperable

Maintainability of business rules Highly maintainable

Support for business rules transformation
Limited support.

within the framework

Support for business rules transformation
Limited support.

outside of the framework

Support for remote administration of
Full support. business rules

Support for change impact analysis Limited support.

Support for dynamic business rules Full support.

Table 3.8 Analysis of ILOG BRMS framework

Oracle Service Oriented Architecture (SOA) Platform and the BPEL.

Oracle and the Business Process Execution Language {BPEL) is the first and

foremost business orchestration technology. BPEL's major promise is that the

39

creation of abstract and executable schemes can be defined as business

processes and run in any compliant engine. The ability to specify those aspects

of a shared process in a technology-neutral manner is very advantageous.

Analysis of the Oracle SOA Platform and the BPEL

Analysis criterion Study/Evaluation

Approach used for development Rules-centric and SOA

Rules representation and language XML and BPEL

Rule engines compatibility and support Limited support for other rule engines.

Interoperability of business rules Highly interoperable

Maintainability of business rules Highly maintainable

Support for business rules transformation
Full support.

within the framework

Support for business rules transformation
Limited support.

outside of the framework

Support for remote administration of
Limited support.

business rules

Support for change impact analysis Limited support.

Support for dynamic business rules Full support.

Table 3.9 Analysis of Oracle BPEL framework

Because a BPEL instruction set is an XML representation of a process

with a precise language and grammar structure, it provides a readable and

understandable instruction set for documenting a process. Each process is

independently valuable, but when combined with other processes has the

potential to facilitate wholesale efficiencies and provide innovative solutions to

numerous challenging problems.

40

3.2 Rules and Pattern Analysis on Existing Frameworks

Rules-centric frameworks validate the rules that are part of the repository for am

biguity and correctness. The validated rules repository will serve as the basis for

the analysis and decision making process depending on the context in which the

rules are executed.

rules:

B. Von Halle (2001) provides a set of comprehensive criteria to validate

"Criteria against which to validate each rule:

Relevant/justified. Each rule must be essential to the target scope of

analysis.

Atomic. Each rule must represent one thought such that an actor (human

or electronic) can apply the rule in guiding behavior.

Declarative. Each rule must prescribe a decision or computation rather

than dictate a procedure for performing and enforcing the decision or

computation.

Intelligible/precise. The rule's intended audience must understand it such

that the rule is predictable and repeatable in its usage.

Complete. Each rule must possess all intellectual properties necessary for

usage.

Reliable. Each rule must originate from a source authorized to decide that

the rule is as the business desires.

Authentic. As each rule is copied into various forms (natural language,

templates, declarative specifications, executable code), each

41

representation must remain faithful to the original intent of the rule"

Identifying rule patterns is a technique for conducting rules analysis. Using

rule patterns, the quality of the rules repository can be greatly improved. Rules

can be enhanced for completeness by revisiting the rule-enriched business data

model, primarily for missing constraint rules.

Redundant rules within one rule pattern can become obvious and can be

generalized. Overlapping rules, which is a subtle form of possible rule redund

ancy, can be detected if rules are grouped into patterns appropriately.

8. Von Halle (2001) on how the rules-centric approach supports rule

analysis:

"The business rules approach advocates the tremendous amount of

business value in analyzing rules. After all, the rules of the business

represent its decision-making capacity and govern how the business

behaves with respect to its internal people and external partners and

customers. The rules are a strong basis for business process

reengineering as well as the transformation of systems from one

technology to another."

The next chapter presents a discussion on the imperative and declarative

programming paradigms. The methodology adopted for the proposed generic

framework is discussed and a detailed design is presented.

CHAPTER4

4.1 Methodology of Proposed Generic Framework

This chapter begins with a discussion of the imperative and declarative program

ming paradigms. Since the proposed framework will use a declarative language

to represent the business rules in the rules repository, this chapter identifies

some of the benefits of using a declarative language and discusses the drawbac

ks associated with imperative programming- the paradigm that is predominantly

used in software development. This discussion also presents the scope for a

generic framework that is available through the use of a declarative language in a

rules-centric approach to software development.

In Chapter 3, some of the existing frameworks supporting development of

highly configurable software were discussed and evaluated with respect to a set

of identified criteria. The shortcomings of each framework analyzed in Chapter 3

and how the proposed generic framework addresses them are discussed.

The methodology adopted for the proposed generic framework is discus

sed and a detailed design is presented. The adopted rule representation format

for the generic framework - the Simple Rule Markup Language (SRML) and its

document structure in the rules repository is presented.

42

43

The Rete algorithm is a widely used pattern matching algorithm that the

generic framework uses for matching the assertions on facts with the conditions

present in the rules. This chapter presents a detailed discussion and examples

on how the Rete algorithm was used in the implementation of the rule engine.

The design of the rule engine which is based on the JSR-94 Java Rule

Engine API specification from SUN Microsystems is discussed. This chapter also

discusses how the rules in the rules repository are parsed and executed in the

memory model and the execution context that the generic framework employs.

Finally, the support provided by the generic framework for rule extensions

and rule transformations is discussed.

4.1.1 Scope for a generic framework

Imperative programming, as opposed to Declarative programming, is a program

ming paradigm that describes computation in terms of a program state and state

ments that change the program state, with a sequence of commands for the

computer to execute. Imperative programming requires the programs to specify

how things are computed as compared to Declarative programming which requir

es the programs to specify what is to be computed, without dependence on the

implementation of solutions to computations.

Imperative programming and maintenance issues. Maintenance cycles in

imperative programs are typically lengthier because of the complex impact analy

sis required to isolate sections of application code that need to be modified in

order to adapt to changes in requirements. Identification and understanding of

44

the business rules embedded in the application code becomes a tedious and

error-prone process because of the underlying complexity of the implementation

methodology and environment.

Anthony A. Aaby (1996) states the drawbacks of imperative programming

from a software maintenance perspective:

"Imperative constructs jeopardize many of the fundamental techniques for

reasoning about business logic. The embedded logic descriptions are

complex and it is this complexity that provides a strong motivation for

functional and declarative programming as alternatives to the imperative

programming paradigm."

The core maintenance issue with imperative programming is the nature of

the paradigm to bind solutions directly with problems, which deter the clear

separation of business logic from the application code.

Declarative programming and rules-centric development. Declarative

programming is an approach to programming that involves the creation of a set

of conditions that describes a solution space, but leaves the interpretation of the

specific steps needed to arrive at that solution up to an unspecified interpreter.

Declarative programming thus takes a different approach from the

traditional imperative programming which requires the programmer to provide a

list of instructions to execute in a fixed manner and order for specific solutions.

Declarative languages describe relationships between variables in terms of

functions, inference rules or term-rewriting rules. The language executor - an

45

interpreter or compiler - applies a fixed algorithm to these relations to produce a

result.

The language executor in the case of this thesis is the rule engine, which

G

applies a fixed algorithm for rule parsing and execution. Rules and variable relati-

onships are represented in a declarative language highly compatible with the rule

engine- the Simple Rule Markup Language (SRML). SRML supports representat

ion of business rules in an extensible and reusable format.

Existing standards for rule engine development allow software developers

to design rule engines that are compatible with one or more rule specification for

mats. The Java Specification Request (JSR-94) is a specification standard for

rule engines based on the Java language. This specification however, does not

have any native rule representation format and hence is highly interoperable.

Rules represented in several formats from plain XML to standard-based formats

such as SRML can be used with a rule engine developed using the JSR-94

specification.

4.2 Proposed Design for a Generic Framework

The design methodology for the proposed generic framework is based on the

rules-centric approach to software development. The business rules are trans

lated into declarative statements conforming to the SRML standard. The rule sets

are then stored in a rules repository from which the rule engine can access the

rules for dynamic execution.

The generic framework employs the Rete algorithm developed by Dr.

46

Charles L. Forgy of Carnegie Mellon University in 1979. The Rete algorithm is

used in the rule engine implementation for pattern matching of the facts represe

nted in the rules repository with the attributes of the asserted runtime objects.

Design methodology. The design methodology adopted for the generic fra

mework follows the rules-centric approach to software development. The generic

framework does not have any dependence on the rule representation format or

any specific application domain. The rule engine implementation is based on a

standard specification and is interoperable on any Java based software system.

The generic framework uses a rule engine that supports pattern analysis and

dynamic rule invocation. Patterns facilitate reuse of the structure and re-modeling

of the captured business logic and the rules repository. A core part of the frame

work is that the binding between rules and implementation is configurable.

Applications are written only in terms of interfaces to the rules repository and an

application can request a specific set of rules to be executed at run-time based

on the context.

The generic framework places emphasis on maximum separation of busi

ness logic and data or processing logic. The rule engine is a pure java implemen

tation and hence can have dynamic and real-time connection with the rules repo

sitory, allowing for dynamic incorporation of changes to the business rules at

runtime.

Business rules repository and SRML. Business rules are complete

statements that enable new knowledge, enable action or disable action based on

previous knowledge. The Simple Rule Markup Language (SRML) is a XML

47

based standard for representing rules. SRML follows a simple schema for the

rule structure. Typically, a business rule represented in SRML will have the

structure as shown in Figure 4.1.

Rule Set

Rule Name

Conditions

Consequence

Rule Name

Conditions

Consequence

Figure 4.1 SRML document structure

SRML describes a generic rule language consisting of the subset of

language constructs common and useful to the popular rule engine implementati

ons. Because it does not use constructs specific to any proprietary vendor langu

age or engine, rules specified using SRML can easily be translated and executed

on any conforming rule engine, making it useful as a standard for rule exchange

format for Java-based rule engines.

The rule set is the root element of a SRML document which encloses the

list of all rules defined in the document. Rules have a condition section and a

consequence section, with a constraint that the condition section must have at

least one condition. Conditions are composed of test expressions and can be

simple conditions or composite conditions. Simple conditions can be bound to

variables while composite conditions cannot. The consequence section of a rule

consists of actions, which can be variable declarations and assignments, as well

48

as the traditional assert, retract and modify statements of rule languages. Figure

4.2 shows an example of rules represented in SRML.

<rule-set name="Rule Set Example">
<rule name="Rule for not disturbing a person">
<example:condition personName="Narsi'}'

<example:personlsReading/> . . .
<example:personlsSleeping/> Cond1tlon Section

</example:condition>

<example:actions personName="Narsi">}
<example:doNotDisturb/> Consequence Section

</example:actions>
</rule>
<rule name="Rule for talking">
<example:condition personName="Narsi">

<example:personlsAwake/><example:personlsldle/></example:condition
>

<example:actions personName="Narsi"><example:doTalk/>
</example:actions>

</rule> </rule-set name>

Figure 4.2 Example of rules represented in SRML

This rule specifies two conditions that need to be asserted for an action to

be executed. For the action doNotDisturb given in the first rule to be executed,

both the assertions personlsReading and personlsS/eeping must evaluate to be

true. The language provides constructs to specify more assertions and action

scenarios for accommodating complex business rules representations using

logical expressions.

"Over the last few years, rule languages and engines have become

increasingly popular tools for implementing business rule applications where the

business logic (business rules) is very dynamic. These applications support the

definition of business policies by non-technical users in business rule languages

and enable users to personalize their preferences for everything from content to

navigation through easily understandable ways"

Margaret Thorpe and Changhai Ke (2004).

4.2.1 Rete algorithm and usage

49

The Rete algorithm is an efficient pattern matching algorithm for

implementing rules-centric systems'. Implementation of a rules-centric system will

typically require the rule engine to check each rule in the rules repository against

the known facts in the execution context. The rules are executed if necessary

with looping back to the first rule when finished. For even moderate sized

repositories, this approach performs far too slowly.

The Rete algorithm provides the basis for a more efficient implementation

of a rules-centric system. A Rete-based system builds a network of nodes, where

each node except the root corresponds to a pattern occurring in the conditions

section of a rule. The path from the root node to a leaf node defines a complete

conditions set of a rule. Each node has a memory of facts which satisfy that

pattern. As new facts are asserted or modified they propagate along the network.

When a fact or combination of facts causes all of the patterns for a given rule to

be satisfied, a leaf node is reached and the corresponding rule is triggered.

A Rete network can be seen as a graph through which data flows. Data is

specified using tuples which express attributes about objects. For example,

tuples may be used to express a person's name and his car. The tuples in the

Rete network that reach the far end cause the firing of a rule.

A Rete network is comprised of two types of nodes:

50

1-input/1-output nodes. The 1 /1 nodes are constrictive nodes that only

allow matching tuples to flow through. Any tuples that do not match are discarded

by the node.

2-input/1-output nodes. The 2/1 nodes simply connect the output arcs

from two other nodes (either 1 /1 nodes or 2/1 nodes) merging tuples from both

the left and right incoming arcs into a single tuple on the outgoing arc. These

types of nodes also maintain a memory of tuples for matching against future

facts.

Each condition of a rule is merely a pattern for a particular tuple type. The

condition describes the attributes that a tuple must have and acts as a filter. Each

condition is transformed into a 1 /1 node that only allows tuples matching the

specified attributes to pass. An attribute value may be specified as a variable and

implies that the variable must hold the same value in all occurrences. Figure 4.3

is an example representation of a Rete network.

Consider a Rule:

Rule #1: 'For any person who has a truck that is of the same brand name

as that person's friend's car, perform an action'.

This could be expressed with the condition patterns of:

(1) (person name=personName friend=friendName)

(2) (person name= personName truck=brandName)

(3) (person name= friendName car= brandName)

Figure 4.3 Example Rete network

51

Condition pattern (1) models the friend relationship so that the rule only

applies to persons who have friends. The person and friend tokens are variables

that must be consistent across any set of tuples that match this rule. Condition

patterns (2) and (3) serve two roles. The truck and car attributes share the same

brandName variable and serve to identify two people who have a truck and a car

with the same name.

r
type(person)

condition(1) condition(2) condition(3)

l
join(l) ---------.. join(2)

tl tenmna

Figure 4.4 Nodes and condition evaluation in a Rete network

Type Person Friend truck car

tuple set #1

person narsi naveen ford null

person naveen narsi null ford

tuple set#2

person narsi naveen ford null

person naveen narsi null nissan

Table 4.1 Example tuple sets

52

They each contain a name attribute with either the variable person or

friend which ties the last two conditions back to the first two. Figure 4.4 shows

diagrammatically how conditions at each node are evaluated in a Rete network.

If the two tuple sets given in the example (Table 4.1), were asserted

against Rule #1, then tuple set #1 would cause a firing of the rule where tuple set

#2 would not.

In both cases the two tuples would pass node condition(1), as the nodes

simply associate the person and friend variables with the appropriate values from

each tuple.

The join(1) node would allow both tuples to merge and propagate past it in

both the first and second case. Additionally, for both the tuple sets, the tuple with

the person 'narsi' would pass node condition(2) and the tuple with person

'naveen' would pass node condition(3).

The join(2) node is where the two tuple sets differ. In the first set, nodes

condition(2) and condition(3) have each associated the value of 'ford' to the

brandName variable.

In the second set, the two nodes have different values assigned to the

variable. The join(2) node only allows those tuples that have consistent

associations with all variables to pass.

The Rete algorithm is designed to sacrifice memory for increased speed.

In most cases, the speed increase is several orders of magnitude because Rete

performance is theoretically independent of the number of rules in the system.

53

4.3 Rule Engine Design

A rule engine will have to possess adequate knowledge of the structure of a

SRML document on which the parsing algorithms are applied. This structural

information for parsing is available directly from the Document Type Definition

(DTD) specification of the SRML document standard.

A DTD specifies and defines the valid structure of a document format. The

complete DTD specification for an SRML document is available in Appendix A.

The primary functions of a rule engine include parsing the rule sets defined in the

rules repository - an SRML document - binding the rules with the execution cont

ext at runtime and executing the rules within the working memory of the executi

on context. The execution phase involves construction of the Rete network by

adding nodes from the conditions present in the rule set to the network and eval

uating each node as it propagates in the network, until leaf level where the rules

are executed. The working memory of the network is designed to store intermedi

ate values based on the assertions performed as nodes propagate in the Rete

network.

Rule engines and the Java Rule Engine AP/ (JSR-94) specification. The

Java Rule Engine API defines a multi-step protocol for invoking a rule engine,

adding facts to the engine, triggering rules and getting the results back. It is

equivalent to a Java Database Connectivity (JDBC) API for relational database

management systems access. The Java Rule Engine API specification provides

ways to accomplish the goal of vendor independence by allowing developers to

build a rule engine API adapter such that only the adapter will need to be

54

rewritten should an application domain require change in the rule engine

architecture.

SUN Microsystems release statement on the Java Rule Engine API

specification:

"In November, the Java Community approved the final draft of the Java

Rule Engine API specification (JSR-94). This new API gives developers a

standard way to access and execute rules at runtime. As implementations

of this new specification ripen and are brought to the market, programming

teams will be able to pull executive logic out of their applications. Instead

of rushing changes in application behavior through the development cycle

and hoping it comes out correct on the other end, executives will be able

to change the rules, run tests in the staging environment and roll out to

production as often as becomes necessary." Rupp (2005).

The JSR-94 specification is by no means complete, but it gives a unified

front end to client applications for plugging into different rule engines at runtime.

It also supplies a standard way for rule authors and administrators to build and

deploy groups of rules in a runtime environment.

The JSR-94 supports portable rules and rule sets. This means a standard

rules language with standard semantics such as the SRML should be able to

switch between rule engines relatively easily with no changes to rules or the

calling client code. The ability to store rules in a variety of persistent storage

methods such as a Relational Database Management System (RDBMS), a

Lightweight Directory Access Protocol (LDAP) server, an XML database, an

55

Object database or a File system allows migration and interchange of rules from

one format to another to adapt for changes made to the rule engines or the

environment.

Rule engines provide applications the flexibility to continuously adapt to

changing requirements and the ability to spontaneously and appropriately react

to the changes. Rule engines also allow developers to write Java expressions

directly in the XML descriptor for a rule set which are evaluated at run-time by the

rule engine.

The JSR-94 specification also has extensive native support for developm

ent based on the Unified Modeling Language (UML), by allowing rules to be spe

cified in the Object Constraint Language (OCL) and allowing relationships betwe

en objects and other UML artifacts to be constrained by the rule sets.

Rule engine architecture. The rule engine architecture proposed by the

JSR-94 specification is highly scalable and generic. The specification carefully

eliminates any dependence on vendor-specific standards or rule representation

formats. With the JSR-94 specification for Java based rule engine development,

the developer is free to choose any of the rule representation formats that may

be suitable for the target application domain. The API provides the flexibility to

tune the rule engine features according to the needs of the application domain

where it will be used.

Although the JSR-94 specification recommends the Rete algorithm as the

native parsing algorithm for pattern matching in the rules, it is possible to use any

other algorithm that may be more suitable for the adopted rule representation

56

format or target application domain. For example, a rule engine implementation

operating on a rules repository represented using a standard RDBMS table with

rows and columns format may use SQL queries, and other rule parsing techniqu

es applicable to the application domain, instead of building Rete networks and

apply the Rete algorithm for pattern matching.

Rules
Repository

Rule Engine

Rules management Inference engine

Execution context

Assertions Working
Memory

Rule Engine API

Rules authoring environment

Rules
Editor

Test/Debug
Tools

Administrator/ User Interface

External
component

External
application

Figure 4.5 Rule engine architecture of the generic framework

The proposed generic framework uses the Rete algorithm for rule parsing

because of the rich API support as well as its suitability for the SRML document

structure, which is an XML based standard.

57

The rule engine architecture of the generic framework conforming to the

JSR-94 specification (Figure 4.5) consists of the following modules:

Rules repository. The rules repository module manages the storage and

retrieval of rules. The repository is accessible to the rule authoring environment

through the rule engine API.

Rule engine. This module is the implementation of the Rete algorithm and

rule parsing using the Java Rule Engine API.

Execution context module. This represents the runtime environment for

the inference engine's execution. During the inference engine's execution cycle,

an execution context will hold a grouping of objects in the working memory. More

than one execution context can simultaneously exist and share the same rules

set.

Inference engine. This module performs object assertions for rules in the

execution context, based on the facts in the working memory. If a rule executes,

then it adds more facts into the working memory. These facts are then used to

match more rules until the complete Rete network is visited and where no more

rules can be matched with facts from the working memory.

Rules authoring environment. This module is the administrative user

interface with which to define and maintain rules in the rules repository. Most

currently available rule engines include a rules editor to compose rules in high

level rule languages that usually includes an English-like syntax. Testing and

debugging functions let the user build test scenarios to simulate the effect of the

rules in a real environment.

4.4 Parsing Rules - Rete Networks and the Working Memory

Model

58

While it may be simple to create a rule engine that allows specification of busi

ness logic in a format that is suitable for understanding by business analysts as

well as the rule engine efficiently, the pattern matching of the rules in the applica

tion context with the assertions based on facts is still very complex without a

good algorithm.

First, the rule engine must be made aware of its environment, typically thr

ough fact assertion which consists of the program asserting facts into a rule ses

sion or Working Memory.

Working Memory. Whenever a fact is asserted, retracted or modified with

in the context of a rule session, the results of the intermediate assertions have to

be stored and propagated with the nodes in the Rete network.

A Working Memory is a Java rule session that internally maintains and

stores the Rete network in memory whenever a rule set is being evaluated for

execution. In this process, many rules in the rule set may become candidates for

firing, or may have become invalidated.

A simplistic approach is to reevaluate all rules against the entirety of the

working memory. This method is guaranteed to be correct but is also certainly

sub-optimal because any individual fact modification only affects a small number

of conditions in a small number of rules.

However, the Rete algorithm allows the rule engine to maintain a memory

of intermediate results from partial rule matches across time. Reevaluation of

59

each condition is not necessary, as the engine knows which conditions might

possibly change for each fact, and only those must be reevaluated.

4.4.1 Rule execution and run-time binding

The rule engine interacts with a rule engine adapter which acts as an application-
(

specific interface to execute business rules stored in the rules repository. The

rule engine API abstracts the implementation details of rule engine interaction

including initialization, invocation and removal throughout the lifecycle of a rule

without any dependency on the environment or specific implementation stand

ards.

In effect, the rule engine allows the rule administrator to register a set of

rules that will trigger responses when conditions specified in the rules are met.

When the rule engine is passed the set of data for evaluation, it examines the set

of data, finds which conditions are met and fires the rules as appropriate.

The rules are evaluated in an order established by the rule engine with the

data and its current values, which also relieves rule engine developers from hav

ing to deal with the ordering issues. The run-time binding of rules in this manner

with the execution context allows the rule engine to adapt to dynamic changes

made to the rules repository.

60

4.5 Support for Rules Extension and Transformation

Once the business rules are represented in the rules repository, th~ rules are

available for reuse with target applications. Typically, changes in business

requirements will cause the rule definitions to be extended or modified allowing

for the changes to be reflected in the rules repository. Representation formats

such as the SRML allows for easier extension of the rule definitions because of

the nature of the XML document structure.

Although many of the existing frameworks support rule maintenance thro

ugh a rule authoring interface, there is little support for transforming existing rules

in order to reuse the business logic in scenarios that are applicable. The rule

authoring interface provided by the generic framework supports maintenance of

the rules repository as an administrative task including support for rule

transformation.

The importance of the support for transformations is increasingly being felt

in the domains where applications change very often. Tried and tested models

have good business rules repositories for specific target domains. However, to

reuse rules repositories, the rules need to be transformed to the format that is

understandable by applications that operate on them typically in heterogeneous

environments.

The Extensible Stylesheet Language-Transformations (XSL T) is a XML

based standard proposed by the Worldwide Web Consortium (W3C) for

transforming XML documents between various formats. Because of the chosen

rule representation format - SRML, the generic framework proposed in this

61

thesis supports the XSL T language based transformations that can be applied to

the rules in the rules repository.

The next chapter presents the results and analysis of the proposed

framework by using two case studies from different application domains. These

case studies demonstrate the support provided by the proposed generic

framework in highly configurable software development.

CHAPTERS

5.1 Results and Analysis

This Chapter presents the results of the analysis of the generic framework by

conducting two case studies from contrasting target application domains. The

case studies in effect will demonstrate the capabilities of the generic framework

and how the methodology differs from conventional software development. The

maintenance issues and the problems associated with embedded business logic

are pointed out.

Each case study begins by analyzing the implementation based on the

conventional approach. The sections of the application implementation where the

business logic or the functional rules are embedded in code are identified.

Sections of code of this nature are the main source for identification of business

rules in a rules-centric development approach.

The implementation based on the rules-centric approach using the

proposed generic framework is then discussed for each case study. The

business rules are separated and represented in the SRML document format.

The class mechanism of the implementation and how rules are dynamically

retrieved and executed is explained. In effect, this chapter outlines how the rules

centric approach to design can neatly and clearly separate business logic from

62

63

the application and data processing logic and can be maintained as an external

rules repository.

The rules repository will manage the storage and retrieval of the rules

through the rule engine API. The rules authoring interface for each case study is

presented and a discussion of how the rules can be defined and managed

through the interface is presented.

Since the rules authoring interface is a web-based application, rules can

be maintained remotely while the target application can dynamically adapt to

changes made to the rules repository.

5.1.1 Case Study 1 : Conway's Game of Life

This case study is the analysis of an implementation of the popular mathematical

game - Conway's Game of Life. The game was chosen as a candidate for case

study because of the concise and small set of rules the game follows. With this

small rule set, the differences between a conventional development approach

and a rules-centric approach using the generic framework can be better

explained as compared to a complex application example where the emphasis

may be shifted to underlying application complexity rather than the development

approach.

Conway's Game of Life. The Game of Life is not a typical computer game.

It is a 'cell automaton' of the cells in a grid in accordance to the rules of the

game. This game was invented by Cambridge mathematician John Conway and

became widely known when it was mentioned in an article published by Scientific

64

American in 1970.

It consists of a collection of cells in a grid which, based on a few

mathematical rules, can live, die or multiply. Depending on the initial conditions,

the cells form various patterns throughout the course of the game. It has often

been claimed that since 1970 more computer time world-wide has been devoted

to the Game of Life than any other single activity.

Martin Gardner (1970) wrote:

"The game made Conway instantly famous, but it also opened up a whole

new field of mathematical researc~. the field of cellular automata. Because

of Life's analogies with the rise, fall and alterations of a society of living

organisms, it belongs to a growing class of what are called 'simulation

games' - games that resemble real-life processes."

The basic idea of the game is to start with a simple configuration of living

cells which are placed on a 2D grid by various methods. This constitutes the first

generation. Conway's 'genetic laws' for births, deaths and survivals - the four

rules of the game - are then applied to the pattern and the next generation

pattern is placed accordingly.

The rules of the game. The rules of the game are simple and elegant:

Kill the Lonely - Any live cell with less than two neighbors dies of loneliness.

Kill the Overcrowded - Any live cell with more than three neighbors dies of

crowding.

Give Birth - Any dead cell with exactly three neighbors comes to life.

65

Surviving Cells -Any live cell with two or three neighbors lives, unchanged, to the

next generation.

All births and deaths occur simultaneously. Together they constitute a

single generation of the initial configuration. This game is a zero-player game,

meaning that its evolution is determined by its initial state, needing no input from

human players. It runs on a grid of square cells which stretches to infinity in all

directions. Each cell has eight neighbors, which are the cells adjacent to it

(including diagonally). Each cell can be in one of two states: it is either alive or

dead.

The state of the grid evolves in discrete time steps. The states of all of the

cells at one time are taken into account to calculate the states of the cells one

time step later. All of the cells are then updated simultaneously. The transitions

depend only on the number of live neighbors.

Conway chose his rules carefully, after a long period of experimentation,

so that the rules should be such as to make the behavior of the population both

interesting and unpredictable.

Implementation using conventional approach. This case study uses the

implementation of Conway's Game of Life using the conventional approach by

Edwin Martin (2002). In the conventional approach, the Java application provides

the basic graphical user interface with the grid for cell placement. The events for

marking a cell as living or dead are provided and event listeners generate the

layout of the cells in the grid. The interface also provides templates for

generating fixed starting cell patterns for the first generation.

66

The rules of the game are implemented using a standard decision

structure within the application code whenever the even for the next generation

of the cells are initiated. The rules are applied one at a time in the specified order

within the application code.

Identifying business rules. The rules of Conway's Game of Life are

embedded in the application code specifically with the event listener routine

which is responsible for producing the next generation of the cells in the current

grid layout.

This section of code is where the game's 'business rules' are completely

interlinked with the application's event processing, data processing and control

flow logic. This section of code will be the source for identifying the business

rules used for implementing the requirements of the game.

The rules however are not directly understandable from the application

code because of the underlying complexity of the programming language used.

This is one of the core maintenance issues with conventional applications.

Rules representation. For use with the rules-centric development

approach, the rules are separated out and are available in an English-like syntax.

These rules can be represented in the SRML language using the simple

document structure of the standard. Figure 5.1 shows the representation of all

the rules of the game in the SRML format.

<rule-set name="conway">

<rule name="Kill The Overcrowded">

<conway:condition>

67

<conway:cell name="cell"> <conway:

liveNeighborCountGreaterThan>3</conway:liveNeighbor

CountGreaterThan></conway:cell>

</conway:condition>

<conway:actions>

<conway:cell name="cell">

<conway:queueState>dead</conway:queueState>

</conway:cell> </conway:actions>

</rule>

<rule name="Kill The Lonely">

<conway:condition>

<conway:cell name="cell">

<conway:liveNeighborCountLess Than>2

</conway:liveNeighborCountLessThan>

</conway:cell>

</conway:condition> <conway:actions>

<conway:cell name="cell">

<conway:queueState>dead</conway:queueState>

</conway:cell>

</conway:actions>

</rule>

<rule name="Give Birth">

<conway:condition>

<conway:cell name="cell">

<conway:liveNeighborCountEquals>3

</conway:liveNeighborCountEquals>

</conway:cell></conway:condition>

<conway:actions> conway:cell name="cell">

<conway:queueState>live</conway:queueState>

</conway:cell></conway:actions>

</rule>

</rule-set>

Figure 5.1 SRML representation of rules for Conway's Game of Life

68

Implementation using rules-centric approach. The implementation using

the rules-centric approach involves the authoring of the rules represented in the

SRML format in the rules repository. This can be done through the rule authoring

environment provided by the generic framework.

The rule authoring environment for this game allows for modification of the

rules of the game through a web based interface. This environment will allow for

rewriting of the rules represented in the rules repository as SRML documents.

The web based interface is shown in Figure 5.2. The screen shows the initial

configuration of the rules of the game.

http:f~_demofoo,w,ay."'1>

Case Study 1 : Conway• Game of Life

POPU.ATE.D CELLS

Rule 1 Each cell with~· ~ neighbors I DIES v I
Rule 2 Each cell with > ~ : ~ neighbors I DIES __3j

Rule 3 Each cell with ~ : ~ OR

Each cell with ~ · ~ neighbors [iMs 3

Rule 4 Each cell with I == v j. ~ neighbors I LNES v I
Changes Saved!

I Submit I ! R.esel)

11 - t!

Thesis Highly Configurable Software Development

Generic Fraf716WOri,.- Rule Engine fmp!emf,nt.ation using JaV!I Rule £nqin6 API (JSR-04 Specification)

!l!!...B!!!!!
For• apace that la 'populated':

• Each cell with one or 110 neigllbo,s dies. as if lly loneliness.
• E1n :h ceH wit111 four or more nelpbo,w din, w if by ove,populatlon.
• Elldl cell with two or three nelghbonJ 111111VM1L

For a space that ia 'empty' or 'unpopulated"

• Each C1!H wilh three nei9hboni becomes pop11leted.

I TrialRun I

Main Menu

Thesis: Highly Contigumble Soflware Developmenl Java Rufe Engine lmp(emenlalion - JSR-!14 - Ve,6ion 1.0

Figure 5.2 Initial rule configuration of the Conway Game of Life

The environment employs the Java rule engine API to store the rules in

the rules repository accessible by the rule engine for retrieval and execution. To

69

execute the rules in the application's execution context, application code that is

free of any business logic incorporation is used as a 'skeleton' which specifies

only the control flow and the event processing logic of the application.

The main graphical interface for the game was developed using the Java

Abstract Window Toolkit (AWT) API. The interface will provide options to form an

initial configuration of the grid. Next and subsequent generations are evolved by

a timer based operation that applies the rules of the game to the cell

configuration in the grid. Figure 5.3 shows the application screen running with an

initial configuration of cells.

Case Study 1 : Conways Game of Life

POP<LATED CELLS

M @ Go

The&s. H,ghif Configureble Software Development

Generic Fra~- Rule Enqme lmplemenlation using Java Rule Engine API (JSR-94 SP9Cificatioo)

The Rules

For a space that Is 'populated':

• Each cell with one or no neighbors dies, as If by loneliness.
• Each call wldt four or mara 1111lghlloas dies, as If by overpopul1111on.
• heh cell with CWV or three neighbo111 suNives.

For a space that 11 'empty' or 'unpopulated'

• Each cell with three neighbors becomes populated.

Rule 1 Each cell with ~ : ~ neighbors I DIES v I Tri!!I Run

Rule ' (fol!W,,y's Ga,Hf Of I ifr r. i - p<:]

ation - JSR-94 - Ver6ioo 1.0

start

Figure 5.3 Initial cell configuration of the Conway grid

70

Figure 5.4 shows the cell configuration after 50 generations. This

configuration was evolved from the initial configuration of cells shown in Figure

5.3. The rules of the game applied after every generation is based on the current

cell configuration of the grid.

Case Study 1: Conway'• Game of life

POIU..ATED CELLS

The= Highly Con!,gu,ab!e Soflware Developmenl

Generic Frame,,,ork- Rule Engine Implementation using Java Rule Engine AP/ {JSR-94 Spec,Yication)

The Rules

For a space that Is 'populated':

• Each ceH with ooe or no nelghbom dies, as if by loneliness.
• Eadi caH with four or _,e uighllers dies, as if by 0111upo1Julation.
• Eacll cell wl1h two or thrH nel1hllo1Ssurvlvel.

For a space that 11 'empty' or 'unpopulated'

• Each cell wl1h 1hree nelghltad becomes po,alwd.

Rule 1 Each cell with~. (I]] neighbors I DIES "' i Trial Run

Rule • C u11wdy' t v o1111 Uf I ,tc r:;7 - 18)

11 conw.-s 6-0f lJa

llliol'I - JSR-94 - Version 1.0

_ •_Genar __ allon_ ,___Start _ __.] t a-

Figure 5.4 Cell configuration of the Conway grid after 50 generations

The Java class mechanism allows for abstracting the rule engine API

interactions. The SRML rule document serves as the input for a class

implementation of a 'Rule Factory' which provides the rules at run-time for

71

invocation at the object's execution context. Figure 5.5 shows the partial

implementation of this class. The full implementati_on is available in Appendix A.

public class RuleBaseFactory {

}

//Instantiate a new rule set object

private static RuleBaseFactory ourlnstance = new RuleBaseFactory();

private static final String DEFAULT _RULE_FILE = "conway.java.srml";

private RuleBase ruleBase;

/IGet the Rule Execution Context

public static RuleBaseFactory getlnstance() {

return ourlnstance; }

private RuleBaseFactory() {

try {

/IGet the SRML file name from the rules repository

String conwaySRMLFile = System.getProperty(

"conway.java.srml ");

if (conwaySRMLFile == null) {

System.err.println("Rule file system property not

specified. using

}

}

default:"+ DEFAULT_DRL_FILE);

conwaySRMLFile = DEFAULT_RULE_FILE;

System.out.println("loading drl file: " + conwaySRMLFile);

URL resource = CellGrid.class.getResource(conwaySRMLFile);

/ICreate the working memory for the execution context

ruleBase = RuleBaseLoader.loadFromUrl(resource);

catch (Exception e) {

throw new RuntimeException("Unable To Initialise RuleBaseFactory:\n".

+

e.getMessage()); } }

public static RuleBase getRuleBase() {

return ourlnstance.ruleBase; }

Figure 5.5 Class mechanism for Rule Factory

72

As the configuration of the rules are changed using the rule authoring

interface, the changes are reflected in the rules repository immediately. The next

session of the application will incorporate the new rules from the repository.

Figure 5.6 shows a rule configuration different from the original rules of the

game.

Case Study 1 : Conway's Game of Life

POPUATED CE1LS

Rule 1 Each cell with ~ · ~ neighbors @iES v j

Rula 2 Each cell with [>"3: ~ neighbors [LIVES .,.

Rula 3 Each cell with E:3 : ~ OR

Each cell with ~ : ~ neighbors [LIVES v

IMPOIU..ATED OR EMPTY CB.LS

Rule• Each cell with 1 == "I: ~ neighbors I LIVES .;,

I I - f!I

Thel:iis. Highly Configurable Software Development

Generic Frs"16WOlf1- Rul6 Enqil16 lmplem6ntation using Java Ru/9 Engine AP/ {JSR-~ SfJ«ificationl

TI!!..B!:!!!!
For• space that I• 'populated':

• Each call wtth 011& ar na natgbltors din, as If by lonallnea.
• Each ceh wl1h four or more 11eighbo1S dies, as if by overpepulallun.
• Each call wl1h two or di.-.. nelghltarssuNlvM.

For• space that I• 'empty or 'unpopulated'

• Eich cell wl1h three neighbors becomes populated.

Trial Run

Main Menu

Thesis: Highly Configurable Soflware Developmem Jwa Rule Engine lmplemeriation - JSR.1J4 - Veroion 1.0

Figure 5.6 A configuration different from the rules of the game

Since this configuration alters the original rules of the game, the behavior

of the cells during each generation is changed by the new rule configuration. The

rule engine retrieves the new rules for the repository and asserts the objects from

the working memory against conditions in each rule set.

73

The new rule configuration specifies that a cell will live in the next

generation if it has more than 3 neighbors, This change will result in the increase

of living cells at each generation.

Figure 5.7. shows the cell configuration after 50 generations using the new rules.

Rule 1

Rule 2

Rule 3

Rule4

TheS1s: H1gfl/y Contigureble Soft'N8re Development

Generic FftN(lewotk- Rule Engine lmp/emertetion u-sing Java Rule Engine API (JSR-94 Spec11ic81.ionl

nea.
.----------------, -----------~ rpopulatlon_

start Clear
- JSR-94 - Version 1.0

Figure 5. 7 Cell configuration after 50 generations based on new rules

This case study demonstrated the ability of the generic framework to

adapt for the changes in rules dynamically without the need for recompilation of

the application code. The next case study will demonstrate the dynamic rule

change behavior in more a complex business scenario.

74

5.1.2 Case Study 2: Java Pet store Application

The Java Pet Store Application is a popular J2EE example application in the

J2EE Blue-prints series, created by Sun Microsystems. It models an e-commerce

application where customers can purchase pets online using a Web browser.

The purpose of this application is to demonstrate the capabilities of the J2EE

platform and is written for learning purposes.

Java Pet store Application. This application was chosen as a case study

candidate for this thesis because it represents a more realistic example scenario

for demonstrating how business applications can use the proposed generic

framework to have a clear separation of business logic from application control

and data processing code.

The rules of the order process. The Pet Store example implements the

following rules.

Free Fish Food Sample - Add free fish food sample based on the shopping

cart contents (if it has at least one fish).

Suggest Fish Tank -

Apply Discounts -

Suggest the buyer to buy a fish tank if there are

5 or more Gold fish in the shopping cart.

Apply discounts based on the gross total of the

shopping cart reaching a certain eligible amount.

Free Fish Food Sample. If the user has at least one fish and has not

bought any fish food the application checks if a free sample has already been

given and if not, adds a free fish food sample to the cart.

75

Suggest Fish Tank. If the user has bought at least 5 Gold Fish and does

not already have a Fish Tank, ask the user if they would like a fish tank. If they

do, add one to the cart.

Apply Discounts. The rules currently apply two discounts 5% and 10%.

Both check if the Gross Cost is between certain levels and that the discount has

not already been applied. If the user currently qualifies for a 5% discount and the

system prompts them for a Fish Tank and if it is added, the discount rules are

checked again and if appropriate, the 10% discount rule is applied.

Implementation using conventional approach. The example uses the Java

Swing API to provide a GUI for the order process and the shopping cart. In the

conventional approach, the rules are embedded in the application code and are

applied to the shopping cart whenever the application generates the event for the

order check out.

Implementation using rules-centric approach. To get the integration

between the GUI and the Rules Engine a callback mechanism was used. When

the user clicks the 'Checl<aut' button it calls the callback function, passing it a

reference to the current JFrame and also the list of chosen items. These items

are added to a Shopping Cart object which is then asserted into the Working

Memory.

Identifying business rules . The Pet store application has complex

interrelated rules that are applied to the Order process. The rules can be

identified from the section of code that applies the rules to the shopping cart.

However, separating the rules of the application in this manner is tedious and

76

error prone, which is a problem faced when legacy applications following

conventional development approach are considered for migration into a rules

centric development approach. For this case study, since we have the rules in a

English-like syntax already, we can represent them in the SRML format (Figure

5.8).

Rules representation

<rule-set name="PetStore Rules">

<I-- Initiate the shopping cart -->

<rule name="Explode Cart">

</rule>

<parameter identifier="cart">

<class>petstore.ShoppingCart</class>

</parameter>

<condition>

cart.getState("Exploded"} == false

</condition>

<consequence>

cart.setState("Exploded" ,true}

</consequence>

<I-- Free Fish Food sample - when buying a Gold Fish, If

haven't already bought Fish Food and Don't already

have a Fish Food Sample -->

<rule name="Free Fish Food Sample">

<parameter identifier="cart">

<class>petstore.ShoppingCart</class>

</parameter>

<parameter identifier="item">

<class>Cartltem</class>

</parameter>

<condition>

cart.getltems("Fish Food Sample" }.size(} == 0

</condition>

<condition>

cart.getltems("Fish Food" }.size(} == O

</rule>

</condition>

<condition>

item.getName(}.equals("Gold Fish")</condition>

<consequence>

cart.addltem(new Cartltem(

"Fish Food Sample", 0.00)) </consequence>

<I-- Suggest a tank if we have bought more than 5 gold

fish and dont already have one -->

<rule name="Suggest Tank">

<parameter identifier="cart">

<class>petstore.ShoppingCart</class>

</parameter>

<condition>

cart.getState("Suggested Fish Tank")== false

</condition>

<condition>

cart.getltems("Gold Fish").size(} >= 5

</condition>

<condition>

cart.getltems("Fish Tank").size(}== 0

</condition>

<consequence>

cart.setState("Suggested Fish Tank", true)

</consequence>

</rule>

<I-- Give 5% discount if gross cost is more than 20.00 -->

<rule name="Apply 5% Discount">

<parameter identifier="cart">

<class>petstore.ShoppingCart</class>

</parameter>

<condition>

cart.getGrossCost(} >= 10.00</condition>

<condition>cart.getGrossCost(} &It; 19.9</condition>

<condition>cart.getDiscount(} &It; 0.05</condition>

<consequence>

cart.setDiscount(0.05)

77

</consequence>

</rule>

<1--Give 10% discount if gross cost is more than 20.00 -->

<rule name="Apply 10% Discount">

</rule>

</rule-set>

<parameter identifier="cart">

<class>petstore.ShoppingCart</class>

</parameter>

<condition> cart.getGrossCost() >= 20.00

</condition>

<condition>cart.getDiscount() &It; 0.10

</condition>

<consequence>cart.setDiscount(0.1 0)

</consequence>

Figure 5.8 SRML representation of rules for Java Petstore Application

78

The rule authoring interface for this case study is shown in Figure 5.9. The

initial rule configuration is set to be the same as the business rules used in the

conventional approach.

The application implements the rules defined through the rules authoring

environment. Figure 5.10 shows the running application with the shopping cart

contents based on user purchase.

The rules will be applied to the shopping cart contents when the check out

process is initiated by clicking the check out button. The run-time environment

provided by the rule engine will execute the rules retrieved from the rules

repository.

Case Sftldy 2: Petsto,. an:t.r Management

Rule 1 If the cart [0 Contains 0 Does not Contain] fish food

Rule 1 : Add fr" fish food sample

If the shopping cart does not contain Fidl feod
AND

If tba llhopping cart do• net contain frea fish
food sample

ANO
If the shopping cart contains (at lead 1) Gold fish

THEN
Add free fish faod sample

Rule 2: Suggest fish tank

If not already SU9gested lish tank
AND

If the shopping cart contains 5 or more Golcl fish
AND

If the mopping cart does net aln,edy contain
lahtank

THEN
Suggest fish tank 111111 Adel fllh tank to cart (If
accepted)

if the c.irt [0 Contains 0 Does not Contain] free fish food sample

if the c.irt [0 Contains O Does not Contain] Gold fish

Then ADD FREE FISH FOOD SAMPLE

Rule 2 If suggested fish lank I O Yes 0 No I

If cart conta ins ~ ~ Gold fish

If the cart [0 Contains 0 Does not Contain] fish tank

Then SUGGEST FISH TANK

Rule 3 If cart tolal Lil I 10.00 v I AND ~ ~ AND discount applied ~ J 5% YI

Then APPLY DISCOUNT . 5% .,. j

If cart total [2__~,1] I 20.00 v] AND discount applied ~ 10% v ~

Than APPLY DISCOUNT I 10¼ ., I

Rule 3: Apply discounts

5% tlilcount

79

If the cost of the Nl!ms In 1lle sllllflplng cart II
greaCBr than $10.111

ANO
If the COit of the items In 111• shoppitag cart Is
leeer 1hen S211JIO

AND
If the tatal -,plied discuunt is IIISlllllr than O.o5

THEN
Apply 5% dlsceutlt to 111• cart

11)% discount

lftbe COit of the items in 1lle shopping cart is
greater than S20.00

ANO
If al1eadJ a,,lled di9cuunt is ,_, th811 D.10

THEN
Apply 10% dlKINnt to tile cart

Trial Run

Main Menu

Figure 5.9 Rules authoring environment for the petstore case study

According to the initial rule configuration, the application adds the free fish

food sample to the shopping cart based on the number of Gold fish purchased.

Figure 5.11 shows a rule configuration that is different from the initial

configuration. This rule set will be saved through the rules authoring environment

and the application behavior will be studied based on the new rules.

l'l'I ~lull' Ut•111u r:-rs1~
List Table

[Gold fllh 5.0 Name Price

1
Fishlri25.D Gold Fish 5.0

Gold Fish 5.0 Fishfood2.0
Gold Fish

- - 5.() -
Gold Fish ro -
Gold Fish 5.0
Gold Fish 5 0

I

'

-

80

Til63ls. H1gh1/ Conf1gur11b/e SoflW9re Dwelopmenl

Generic FramtNiOlf,. - Rule Engine Implementation IJSinq Java Rule Engine API (JSR-94 Specification)

Rule 1 : Add free ft1h food 11mplt

If 1he sllopplng cart dMa not centaln FIIII faod
AND

If the shopping cart does not a,nCaia free fi9h
food sample

AND
If the shGpping cart contain& Cat least 1) Gold filll

THEN
Add frM 1lsh f11o41111111ple

Rule 2: Suggfft ftth tank

If not 1lrndy aug9nted flllh tank
AND

Rule 3: Apply discounts

~

lfa■ cnt of Iha lt■ms in the llhopping cart is
gruter 111an 518.00

AND
lftie CHt effhe Items In 1he 9'1opplng can Is
i-r ltlan $20.00

AND
If ffle total .,.lied discount is lffl1581' than 0.05

THEN
Apply 5% diacount to 111• cart

10'1. dlecount

-- ·-

I Cllecll«u I~
ShoppingCart: ..:

Gold Fish 5.0
Gold Fish 5 0
Gold Fish 5 0
Gold Fish 5 0
Gold Fish 5.0
Gold Fish 5.0
Fish Food Sample o.o

gross total=30.0
discounted lolal=27 .0

-;-

Rule 2 If suggested fish tank [0 Yes @ No)

If cart contains UI 3:3] Gold fish

If the cart [0 Contains @ Does not Conta in I fish tank

Then SUGGEST FISH TANK

~

lf1he lltapplng cart contains 5 or more Gold ftlll
AND

If 1he sllopping cart does not alrnady contain
fish tank

TltEN
SuggNt fish tank and Add fidl tank to cart (If
accep18d)

od sample

Rule 3 If cart total ~ @ o ~ AND ~ [20.00 ...] AND discount applied ~ [5% " 1

Then APPLY DISCOUNT I 5% v I

If tie cnt or lhe Items In 1he 9'1applng C8ft Is
greater than Slll.DI

AND
If already app)ied discoum la 1-r than 0.10

lHEN
Apply 111'11, discount to the cart

Trial Run

Main Menu

Figure 5.1 O Petstore case study - initial rule configuration

The new rules will be retreived by the rule engine from the rules repository

and the run-time environment provided by the rule engine will execute the rules

retrieved from the rules repository.

Rule 1 If the cart [0 Contains O Does not Contain I fish rood

if the cart [0 Contains O Does not Contain I free fish food sample

if the cart [0 Contains 0 Does not Contain I Gold fish

Then ADD FREE FISH FOOD SAMPLE

Rule 2 If suggested fish tank I O Yes 0 No I

If cart contains ~ [[3 Gold fish

If the cart [0 Contains O Does not Contain I fish tank

Then SUGGEST FISH TANK

81

Trial Run

Main Menu

Rule 3 If cart total ~ j J0.00 .., I AND ~ I 20.00 v I AND discount applied ~ j 5% .., I
Then APPLY DISCOUNT j 5% .., I

If cart total ~ I 20.00 v I AND discount applied ~ I 10% v I
Then APPLY DISCOUNT I 10% "' I

Th&Sls: Highly Configurable Sott..-are Development Jaw Rule EngiM Implementation - JSR.fU • VerSK>ll 1. 0

Figure 5.11 Petstore case study - A new rule configuration

Figure 5.12 shows how the changes to the order process are reflected in

the next application restart.

Case Study 2 : Petstore Order Management

Rule 1 If the cert O Contains @ Does not Contain) fish food

if the cart O Contains @ Does not Contain J free fish 1

if the cart @ Contains O Does not Contain J Gold fish

Then ADD FREE FISH FOOD SAMPLE

=====~===~~~-~--~"']

Thesis· Highly Conf1g

Generic Framework - Rule Engine Implementation using JBVB Rule Enqir.

1'1•1 ~11111• lh •111u r~_ 1 ,:-g__Jf8}1
List

~ Fish5.0
FishT-25.0
Fish food 2.D

T-
Oold F is h
Oo ld Fi s h
Gold Fi s h

Name I Price
15 .0
15 .0
15 .0

plyc

the it
$10.0

the It
20.00

b pllec:

i«:ount

1----------'l~ Check==out=~~ll~ -=~et=:'l ______ ~~•th• It
ShopplngC art: ~ $20.0

Oold Fish 5 .0
Gold Fi s h 5 .0
O old Fish 5 .0

gross tota l= 1 5 .0
discounte d tota l=1 5 .0

plied

lacout

Figure 5.12 Petstore case study - Application behavior with new rule configuration

82

This Chapter showed how business rules are separated and represented

in the SRML document format and the implementation based on the rules-centric

approach using the proposed generic framework is performed. The next chapter

provides the conclusions on the research and a few directions for future

research.

CHAPTERS

6.1 Conclusions

This study has shown how the rules-centric approach for software development

can be highly beneficial and why a high level of software configuration support is

required. It is essential that technology be developed for effectively navigating

change in requirements to software over time. This research addresses this

concern by proposing a generic framework that follows a rules-centric approach

and is highly interoperable because of the adopted standards and methodology

the design was based on.

The proposed framework allows applications constructed to cope with

many different types of changes in the requirements. The features of the

proposed generic framework that facilitate a high level of software configurability

have been explained in detail.

Static business rules lead to inflexible implementations within the

application, which can lead to problems when business rules change. The

proposed generic approach ensures that business logic is implemented in a

standard way, narrowing the communication gap during the requirements,

analysis and design phases of projects.

83

84

Interaction and development stages Qetween these phases can be more

flexible and there is little need to freeze requirements. This means that project

teams can take an iterative approach to development. The result is a shorter time

to code and a shorter time to deploy.

Once applications are deployed, changes to business rules are easier to

implement because they reside in a centralized location. Moreover, because

business rules are separated from technical implementation, it becomes much

easier to accommodate technology innovations such as service oriented

architectures.

The benefits of the rules-centric approach are realized fully when business

rules are maintained and monitored apart from the rest of the system by

centralizing business rules in a repository and providing access to them

dynamically.

Dynamic business rules let end users deal with changes in business rules

at deployment time without recompiling and redeploying the application, which is

one of the primary objectives for a rules-centric development framework. This

allows both developers and application administrators to update and modify the

business logic in an application quickly, without regenerating, recompiling and

redeploying the source code.

To realize this vision, an organization must build its systems with tools that

are powerful enough to capture their business rules, publish them to a

centralized repository, automate the rules in a consistent manner, easily maintain

85

the rules to accommodate business change, and provide business people with

the ability to monitor the execution of those rules.

This requires a platform with powerful new functionality - the kind of

functionality that is proposed in the generic framework and more.

Finally the capabilities of the proposed framework in support of

construction of highly configurable software development was demonstrated

using two contrasting case studies from a simple game example to a complex

real-life business application scenario.

6.2 Directions for Future Research

Software change is more and more influenced by middleware and Commercial

Off-The-Shelf (COTS) components. Since software functionality is routinely

distributed across heterogeneous software and hardware platforms, complex int

eroperability issues necessarily govern any analysis of software changes. For

example, when a custom software component is replaced by a COTS comp

onent, the internal complexity of the component is replaced by a focus on

interface and interoperability complexities. Web services in today's distributed

applications provide an excellent research platform to explore these shifts in

complexity.

Though rules-centric software development platforms are beginning to

address these expanding problems with features and power to develop highly

configurable and adaptive software, there is still a long way to go in realizing the

86

dream of true configurability in various application domains including the e

commerce and the web applications scenarios.

New standards and features such as in the Java platform offer further

possibilities for configuration support. JDK 1.1 introduced classes to support

reflection and introspection, making it possible to query the capabilities of a class

at run-time and determine, for example, what methods it provides, what

parameters they take, and what exceptions they raise.

Using this reflection API an application can use code it had no prior

knowledge of simply by invoking the class and its methods through their names.

Implementations need not conform to interfaces to be able to use them. In

addition, JDK 1.1 introduced the concept of object serialization: the complete

state of an object, including any objects it refers to, can be written to an output

stream, and this stream can be used to recreate that object at a later time.

Therefore, once an application has been configured, the configuration

could be 'frozen' using this mechanism, and automatically recreated later, without

a need for the original object name. Innovations like these have led to the

development of standard specifications that can serve as a reference point for

implementing Java based rule engines, such as the JSR-94 specification which

was used in this research.

Having all business rules in one place provides a holistic view of a

business process and further leverages the power of rule management. A true

business logic management repository should provide a centralized storage of a

full range of business logic regardless of the execution environment.

87

The repository should have the ability to translate and distribute rules to

other environments for execution and avoid the maintenance costs due to

duplication of business rules in parallel locations, such as the same data

validation rule used in web, telephone and email interfaces.

By extending the analysis and research to this growing area, we can

enable software engineers, architects, and project managers to make better

decisions about software changes, preserve the software quality, and increase

the life of systems while lowering the total costs over their operational life.

APPENDIX A

DTD Specification for an SRML Document

<!-- SRML (Simple Rule Markup Language) OTO-->

<?xml version="1.0" encoding="IS0-8859-1"?>

<!ELEMENT ruleset (rule*)><!ATTLIST ruleset

name NMTOKEN #IMPLIED>

<!ELEMENT rule (priority?, conditionPart, actionPart) >

<!ATTLIST rule name NMTOKEN #REQUIRED>

<!ELEMENT priority (%expression;)>

<!ELEMENT conditionPart (%condition;)+>

<!ELEMENT actionPart (%action;)* >

<!ENTITY% condition "(simpleCondition I notCondition)">

<!ENTITY % action "(assignment I bind I assert I assertobj

I modify I retract)">

<!ELEMENT simpleCondItIon (%expression;)*>

<!A TTLIST simpleCondition

className CDATA #REQUIRED

objectVariable NMTOKEN #IMPLIED>

<!ELEMENT notCondition (%expression;)*>

<!A TTLIST notCondition

className CDATA #REQUIRED>

<!ELEMENT assert (assignment I bind)* >

<!ATTLIST assert className CDATA#REQUIRED>

88

<!ELEMENT assertobj (%expression;}>

<!ELEMENT retract (variable}>

<!ELEMENT modify (variable, (assignment I bind)+)>

<!ENTITY % expression

"(%assignable; I constant I unaryExp I binaryExp I naryExp)">

<!ELEMENT unaryExp (%expression;}>

<!ATTLIST unaryExp operator (plus I minus I not) #REQUIRED>

<!ELEMENT binaryExp (%expression;,%expression;}>

<!A TTLIST binaryExp

operator (eq I neq I It I lte I gt I gte) #REQUIRED>

<!ELEMENT naryExp (%expression;)+>

<!ATTLIST naryExp operator (add I subtract I multiply I divide I

remainder I and I or) #REQUIRED>

<!ELEMENT assignment (%assignable;, %expression;)>

<!ELEMENT bind (%expression;)>

<!ATTLIST bind name NMTOKEN #REQUIRED>,

<!ELEMENT constant EMPTY>

<!A TTLIST constant

type (string I boolean I byte I short I char I long

I int I float I double I null) #REQUIRED

value CDATA #REQUIRED>

<!ENTITY % assignable "(variable I field}">

<!ELEMENT variable EMPTY>

<!A TTLIST variable

name NMTOKEN #REQUIRED>

<!ELEMENT field (%expression;)?>

<!ATTLIST field name NMTOKEN #REQUIRED>

89

APPENDIX B

//***

//Case Study 1 - Conway's Game of Life
//***

//*******
//Class- ConwayPattern
//*******

package org.thesis.examples.conway.patterns;

public class Border implements ConwayPattern
{

private boolean[] [] grid= {{true, true, true, true, true, true, true,
true, true, true, true, true, true, true,
true, true, true, true, true, true, true,
true, true, true, true, true, true, true,

public boolean[][] getPattern()
{

return grid;

/**
* @return the name of this pattern
*I

public String getPatternName()
{

return "Border";
}

public String toString()
{

return getPatternName();

//*******
//Class- Cell
//*******

package org.thesis.examples.conway;

import java.util.HashSet;
import java.util.Iterator;

90

true, true, true, true, true, true,
true, true, true, true, true, true,
true}};

import java.util.Set;

public class Cell
{

private Set neighbors

private CellState state

private CellState queuedState

/**

new HashSet();

CellState.DEAD;

null;

* @return the number of neighbors that this cell has
* @see #getNumberOfLiveNeighbors()
*I

public int getNumberOfNeighboringCells()
{

return neighbors.size();
}

I**
* @return the number of live neighbors that this cell has
* @see #getNumberOfNeighboringCells()
*I

public int getNumberOfLiveNeighbors()
{

int numberOfLiveNeighbors = O;
Iterator it= neighbors.iterator();
Cell cell =,null;
while (it.hasNext())
{

cell= (Cell) it.next();
if (cell.getCellState() == CellState.LIVE)
{

numberOfLiveNeighbors++;

}
return numberOfLiveNeighbors;

/**
* ads a new neighbor to this neighbor
*
* @param neighbor
* new neighbor
*/

public void addNeighbor(Cell neighbor)
{

neighbors.add(neighbor);
neighbor.neighbors.add(this);

91

/**
* tell this cell to queue its next live state. 'this is the state that this
* cell will be in after the cell is transitioned (after the next
*iteration). This transition state is necessary because of the 2 phase
* process involved in evolution.

*
* @param nextLiveState
* this cell's next live state
* @see CellState
* @see #getCellState()

* @see #transitionState()
*I

public void queueNextCellState(CellState nextLiveState)
{

if (nextLiveState I= state)
{

queuedState = nextLiveState;
}

/**
* Transitions this cell to its next state of evolution
*
* @return <code>true</code> if the state changed, otherwise false
* @see #queueNextCellState(CellState)
*I

public boolean transitionState()
{

boolean stateChanged = false;
if (queuedState !=null)
{

}

state= queuedState;
queuedState = null;
stateChanged = true;

return stateChanged;

I**
* @return this cell's current life state
* @see #queueNextCellState(org.thesis.examples.conway.CellState)
* @see CellState
*/

public CellState getCellState()
{

return state;

/**
* Sets this cells state
*
* @param newState
* new state for this cell
* @see CellState
*/

public void setCellState(CellState newState)
{

state= newState;

//*******
//Class- CellGrid
//*******

package org.thesis.examples.conway;

import org.thesis.RuleBase;
import org.thesis.WorkingMemory;
import org.thesis.examples.conway.patterns.ConwayPattern;
import org.thesis.examples.conway.rules.RuleBaseFactory;

92

public class CellGrid
{

private final Cell[] [] cells;

/**
* Constructs a CellGrid
*
* ®param rows
* number of rows in the grid
* ®param columns
* number of columns in the grid
*/

public CellGrid(int rows,
int columns)

/**

cells= new Cell[rows] [columns];

// populate the
// cell up with
for (int row

array of Cells and hook each
its neighbors ...
O; row< rows; row++)

{
for
{

int column O; column< columns; column++)

Cell newCell = new Cell();
cells[row] [column] = newCell;
if (row > O)
{

}

// neighbor to the north
newCell.addNeighbor(cells[row - l] [column]);
if (column<= (columns - 2))
{

// neighbor to the northeast
newCell.addNeighbor(cells[row - l] [column+ 1)) ;

if (column > 0
{

// neighbor to the west
newCell.addNeighbor(cells[row] [column - 1)) ;
if(row>O)
{

// neighbor to the northwest
newCell. addNeighbor (cells [row - 1] [column - 1)) ;

* ®param row
* row of the requested cell
* ®param column
* column of the requested cell
* @return the cell at the specified coordinates
* @see Cell
*I

public Cell getCellAt(int row,
int column)

return cells[row] [column];

93

I**
* @return the number of rows in this grid
* @see #getNumberOfColumns()
*I

public int getNumberOfRows()
{

return cells.length;

/**
* @return the number of columns in this grid
* @see #getNumberOfRows()
*I

public int getNumberOfColumns()
{

return cells[0] .length;

/**
* Moves this grid to its next generation
*
* @return <code>true</code> if the state changed, otherwise false
* @see #transitionState()
*I

public boolean nextGeneration()
{

boolean didStateChange = false;
try
{

RuleBase ruleBase = RuleBaseFactory.getRuleBase() ;
WorkingMemory workingMemory = ruleBase.newWorkingMemory() ;
// for (Cell[] roWOfCells : cells) {
Cell[] rowOfCells = null;
Cell cell null;
for (inti= 0; i < cells.length; i++
{

}

rowOfCells = cells[i];
for (int j = 0; j < rowOfCells.length; j++
{

cell= rowOfCells[j];
workingMemory.assertObject(cell);

workingMemory.fireAllRules();
didStateChange = transitionState();

catch (Exception e)
{

e.printStackTrace() ;

return didStateChange;

/**
* @return the number of cells in the grid that are alive
* @see CellState
*I

public int getNumberOfLiveCells()
{

int number= 0;
Cell[] rowOfCells
Cell cell= null;

null;

94

for (inti= O; i < cells.length; i++
{

roWOfCells = cells[i];
// for (Cell cell : roWOfCells) {
for (int j = O; j < roWOfCells.length; j++
{

cell= rowOfCells[j];
if (cell.getCellState(
{

number++;

return number;

CellState.LIVE)

I**
* kills all cells in the grid
*/

public void killAll()
{

Cell[] rowOfCells = null;
Cell cell null;
for (inti= 0; i < cells.length; i++
{

roWOfCells = cells[i];
// for (Cell cell : rowOfCells) {
for (int j = 0; j < rowOfCells.length; j++
{

cell= rowOfCells[j];
cell.setCellState(CellState.DEAD);

/**
* Transitions this grid to its next state of evolution

*
* @return <code>true</code> if the state changed, otherwise false
* @see #nextGeneration()
*I

public boolean transitionState()
{

boolean stateChanged = false;
Cell[] roWOfCells = null;
Cell cell null;
for (inti= 0; i < cells.length; i++
{

rowOfCells = cells[i];
// for (Cell cell : roWOfCells)
for (int j = 0; j < roWOfCells.length; j++
{

cell= roWOfCells[j];
stateChanged I= cell.transitionState() ;

return stateChanged;

/**
* Populates the grid with a <code>ConwayPattern</code>
*
* ®param pattern

95

* pattern to populate the grid with
* @see ConwayPattern
*I

public void setPattern(ConwayPattern pattern)
{

boolean[][] gridData = pattern.getPattern();
int gridWidth = gridData[0] .length;
int gridHeight = gridData.length;

int columnOffset 0;
int rowOffset = 0;

if (gridWidth > getNumberOfColumns(
{

gridWidth = getNumberOfColumns() ;
}
else
{

columnOffset (getNumberOfColumns() - gridWidth) / 2;

if (gridHeight > getNumberOfRows()
{

gridHeight = getNumberOfRows() ;

else
{

rowOffset (getNumberOfRows() - gridHeight) / 2;
}

killAll () ;
for (int column= 0; column< gridWidth; column++
{

for int row= 0; row< gridHeight; row++)
{

if (gridData [row] [column]
{

Cell cell= getCellAt(row+ rowOffset,
column+ columnOffset);

cell.setCellState(CellState.LIVE);

//*******
//Class- CellGridCanvas
//*******

package org.thesis.examples.conway.ui;

import javax.swing.*;

import org.thesis.examples.conway.Cell;
import org.thesis.examples.conway.CellGrid;
import org.thesis.examples.conway.CellState;

import java.awt.*;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.MouseMotionAdapter;

96

97

public class CellGridCanvas extends Canvas
{

private Image offScreenimage;
private Image backgroundimage;
private final int cellSize;
private final CellGrid cellGrid;
private final Image liveCellimage = new Imageicon(

CellGridCanvas.class.getResource(11 liveCellimage.gif 11)) .getimage() ;

private static final Color BACKGROUND COLOR
private static final Color GRID COLOR

Color.gray;
BACKGROUND_COLOR.brighter();

/**
* Constructs a CellGridCanvas.

*
* @param cellGrid
* the GoL cellgrid
*I

public CellGridCanvas(CellGrid cellGrid)
{

this.cellGrid
this.cellSize

cellGrid;
liveCellimage.getWidth(this);

setBackground(GRID_COLOR);

addMouseListener(new MouseAdapter() {
/**

}) ;

* Invoked when a mouse button has been pressed on a component.
*I

public void mousePressed(MouseEvent e)
{

toggleCellAt(e.getX() ,
e.getY()) ;

addMouseMotionListener(new MouseMotionAdapter() {

public void mouseDragged(MouseEvent e)
{

) ;

Cell cell= getCellAtPoint(e.getX(),
e.getY()) ;

if cell !=null)
{

cell.setCellState(CellState.LIVE);
repaint();

private void toggleCellAt(int x,
int y)

Cell cell getCellAtPoint(x,
y) ;

if cell !=null)
{

if (cell.getCellState() == CellState.LIVE
{

cell.setCellState(CellState.DEAD);

else
{

cell.setCellState(CellState.LIVE);
}
repaint() ;

private Cell getCellAtPoint(int x,
int y)

Cell cell= null;

int column= x / cellSize;
int row= y / cellSize;
final int numberOfColumns = cellGrid.getNumberOfColumns() ;
final int numberOfRows = cellGrid.getNumberOfRows();

if (column>= 0 && column< numberOfColumns && row>= O && row<
numberOfRows)

{
cell cellGrid.getCellAt(row,

column);

return cell;

/**
* Use double buffering.
*
* @see java.awt.Component#update(java.awt.Graphics)
*I

public void update(Graphics g)
{

Dimension d = getSize();
if ((offScreenimage == null)
{

offScreenimage = createimage(d.width,
d.height);

}
paint(offScreenimage.getGraphics());
g.drawimage(offScreenimage,

0,
0,
null);

/**
* Draw this generation.
*
* @see java.awt.Component#paint(java.awt.Graphics)
*I

public void paint(Graphics g)
{

// Draw grid on background image, which is faster
final int numberOfColumns = cellGrid.getNumberOfColumns();
final int numberOfRows = cellGrid.getNumberOfRows();
if (backgroundimage ==null)
{

Dimension d = getSize();
backgroundimage = createimage(d.width,

d.height);

98

) ;

1,

}

Graphics backgroundimageGraphics = backgroundimage.getGraphics() ;
// draw background (MSIE doesn't do that)
backgroundimageGraphics.setColor(getBackground()) ;
backgroundimageGraphics.fillRect(0,

0,
d.width,
d.height);

backgroundimageGraphics.setColor(BACKGROUND COLOR);
backgroundimageGraphics.fillRect(0,

o,
cellSize * numberOfColumns - 1,
cellSize * numberOfRows - 1);

backgroundimageGraphics.setColor(GRID COLOR);
for (int x = l; x < numberOfColumns; x++)
{

}

backgroundimageGraphics.drawLine(x * cellSize - 1,
0,
x * cellSize - 1,
cellSize * numberOfRows - 1

for (int y = l; y < numberOfRows; y++)
{

backgroundimageGraphics.drawLine(o,
y * cellSize ~ 1,
cellSize * numberOfColumns -

y * cellSize - 1);

g.drawimage(backgroundimage,
0,
0,
null);

// draw populated cells
for (int row= 0; row< numberOfRows; row++)
{

for int column= 0; column< numberOfColumns; column++)
{

Cell cell= cellGrid.getCellAt(row,
column);

if cell.getCellState() == CellState.LIVE
{

g.drawimage(liveCellimage,
column* cellSize,
row* cellSize,
this);

/**
* This is the preferred size.
*
* @see java.awt.Component#getPreferredSize()
*/

public Dimension getPreferredSize()
{

final int numberOfColumns = cellGrid.getNumberOfColumns() ;
final int numberOfRows = cellGrid.getNumberOfRows() ;
return new Dimension(cellSize * numberOfColumns,

99

cellSize * numberOfRows);

/**
* This is the minimum size (size of one cell).

* * @see java.awt.Component#getMinimumSize()
*I

public Dimension getMinimumSize()
{

return new Dimension(cellSize,
cellSize) ;

//*******
//Class- CellState
//*******

package org.thesis.examples.conway;

public class CellState
{

public static final CellState LIVE
public static final CellState DEAD

private final String name;

private CellState(String name)
{

this.name= name;

public String toString()
{

return "CellState: "+ name;

//*******
//Class- ConwayApplicationProperties
//*******

package org.thesis.examples.conway;

import java.util.ResourceBundle;

public class ConwayApplicationProperties
{

new CellState("LIVE");
new CellState("DEAD");

private static ConwayApplicationProperties ourinstance new
ConwayApplicationProperties();

public static ConwayApplicationProperties getinstance()
{

return ourinstance;

100

private final ResourceBundle resources;

private ConwayApplicationProperties()
{

resources= ResourceBundle.getBundle("conway");

public static String getProperty(String propertyName)
{

return ourinstance.resources.getString(propertyName);
}

//*******
//Class- ConwayConditionFactory
//*******

package org.thesis.examples.conway.rules.dsl;

import org.thesis.examples.conway.Cell;
import erg.thesis.rule.Declaration;
import org.thesis.rule.InvalidRuleException;
import erg.thesis.rule.Rule;
import org.thesis.semantics.base.ClassObjectType;
import org.thesis.smf.ConditionFactory;
import org.thesis.smf.Configuration;
import org.thesis.smf.FactoryException;
import org.thesis.spi.Condition;
import org.thesis.spi.RuleBaseContext;

import java.util.ArrayList;
import java.util.List;

public class ConwayConditionFactory
implements
ConditionFactory

public Condition[] newCondition(Rule rule,
RuleBaseContext context,
final Configuration config) throws

FactoryException
{

Configuration[] configurations= config.getChildren();
List conditions= new ArrayList();
final String cellName = config.getAttribute("cellName");
final Declaration cellDeclaration = getDeclaration(rule,

Cell.class,
cellName) ;

for (inti= O; i < configurations.length; i++
{

Configuration childConfigl = null;
childConfigl = configurations[i];

if (childConf igl . getName () . equals ("cel lI sAli ve"))
{

conditions.add(new IsCellAliveCondition(
cellDeclaration));

101

} else if (childConfigl.getName().equals("cellisDead"))
{

conditions.add(new IsCellDeadCondition(
cellDeclaration)) ;

} else if (childConfigl.getName() .equals(
"cellisOverCrowded"))

{
conditions.add(new OvercrowdedCondition(

cellDeclaration)) ;
else if (childConfigl.getName() .equals(11 cellisLonely11

conditions.add(new LonelyCondition(cellDeclaration
} ;

} else if (childConfigl.getName() .equals(
"cellisRipeForBirth")

{
conditions.add(new RipeForBirthCondition(

cellDeclaration)) ;

return (Condition[]) conditions.toArray(new
Condition[conditions.size()]);

}

private Declaration getDeclaration(Rule rule,
Class clazz,
String identifier) throws

FactoryException
{

Declaration declaration= rule.getParameterDeclaration(identifier);
if (declaration== null)
{

ClassObjectType type
try

new ClassObjectType(clazz);

{
declaration rule.addParameterDeclaration(identifier,

type) ;

catch (InvalidRuleException e}
{

102

final FactoryException factoryException
"Error occurred establishing parameter.");

factoryException.initCause(e);

new FactoryException(

throw factoryException;

}
return declaration;

//*******
//Class- ConwayConsequenceFactory
//*******

package org.thesis.examples.conway.rules.dsl;

import org.thesis.examples.conway.Cell;
import erg.thesis.rule.Declaration;
import org.thesis.rule.InvalidRuleException;

import erg.thesis.rule.Rule;
import org.thesis.semantics.base.ClassObjectType;
import org.thesis.smf.Configuration;
import org.thesis.smf.ConsequenceFactory;
import org.thesis.smf.FactoryException;
import org.thesis.spi.Consequence;
import org.thesis.spi.RuleBaseContext;

public class ConwayConsequenceFactory
implements
ConsequenceFactory

public Consequence newConsequence(Rule rule,
RuleBaseContext context,
Configuration config) throws

FactoryException
{

Configuration childConfig = null;
Configuration[] configurations= config.getChildren();
Consequence consequence= null;
final String cellName = config.getAttribute("cellName");
final Declaration cellDeclaration = getDeclaration(rule,

Cell.class,
cellName) ;

for (inti= O; i < configurations.length; i++
{

childConfig = configurations[i];

if (childConfig.getName() .equals(11 giveBirthT0Cel1 11))

{
consequence= new GiveBirthConsequence(cellDeclaration);

else if (childConfig.getName().equals("killCell"))

consequence= new KillCellConsequence(cellDeclaration);

return consequence;

private Declaration getDeclaration(Rule rule,
Class clazz,
String identifier) throws

FactoryException
{

Declaration declaration= rule.getParameterDeclaration(identifier);
if (declaration== null)
{

ClassObjectType type
try

new ClassObjectType(clazz);

{
declaration rule.addParameterDeclaration(identifier,

type) ;

catch (InvalidRuleException e)
{

103

final FactoryException factoryException
"Error occurred establishing parameter.");

factoryException.initCause(e);

new FactoryException(

throw factoryException;

return declaration;

//*******
//Class- ConwayGUI
//*******

package org.thesis.examples.conway.ui;

import com.jgoodies.forms.builder.PanelBuilder;
import com.jgoodies.forms.factories.ButtonBarFactory;
import com.jgoodies.forms.layout.CellConstraints;
import com.jgoodies.forms.layout.FormLayout;
import foxtrot.Job;
import foxtrot.Worker;

import javax.swing.*;
import javax.swing.border.Border;
import javax.swing.border.EtchedBorder;

import org.thesis.examples.conway.CellGrid;
import org.thesis.examples.conway.ConwayApplicationProperties;
import org.thesis.examples.conway.patterns.ConwayPattern;

import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.StringTokenizer;

public class ConwayGUI extends JPanel
{

private final JButton nextGenerationButton;
private final JButton startStopButton;
private final JButton clearButton;
private final JComboBox patternSelector new JComboBox(
private final Timer timer;

public ConwayGUI()
{

super(new BorderLayout());

) ;

final String nextGenerationLabel
ConwayApplicationProperties.getProperty("next.generation.label");

nextGenerationButton = new JButton(nextGenerationLabel);
final String startLabel = ConwayApplicationProperties.getProperty(

"start.label");
startStopButton = new JButton(startLabel);
final String clearLabel = ConwayApplicationProperties.getProperty(

"clear.label") ;
clearButton = new JButton(clearLabel);
final CellGrid grid= new CellGrid(30,

30) ;
final CellGridCanvas canvas= new CellGridCanvas(grid);
JPanel panel= new JPanel(new BorderLayout());
panel.add(BorderLayout.CENTER,

canvas) ;
Border etchedBorder = BorderFactory.createEtchedBorder(

EtchedBorder.LOWERED);
Border outerBlankBorder = BorderFactory.createEmptyBorder(5,

5,

104

Border innerBlankBorder

5,
5) ;

BorderFactory.createEmptyBorder(5,
5,
5,
5) ;

Border border= BorderFactory.createCompoundBorder(
BorderFactory.createCompoundBorder(outerBlankBorder,

etchedBorder) ,

105

innerBlankBorder);
panel.setBorder(border);
add(BorderLayout.CENTER,

panel) ;
add(BorderLayout.EAST,

createControlPanel());
nextGenerationButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)
{

}) ;

Worker.post(new Job() {
public Object run()
{

grid.nextGeneration();
return null;

}) ;
canvas.repaint();

clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e)
{

}) ;

Worker.post(new Job() {
public Object run()
{

grid.killAll();
return null;

}) ;
canvas.repaint() ;

ActionListener timerAction = new ActionListener() {
public void actionPerformed(ActionEvent ae)
{

} ;

Worker.post(new Job()
public Object run()
{

if (!grid.nextGeneration())
{

stopTimer();
}
return null;

}) ;

canvas.repaint();

timer= new Timer(500,
timerAction) ;

startStopButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e)

if { timer.isRunning{))
{

stopTimer{);
}
else
{

startTimer{);

) ;

populatePatternSelector() ;

patternSelector.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e)
{

ConwayPattern pattern= (ConwayPattern)
patternSelector.getSelecteditem();

}
}) ;

if {pattern!= null
{

grid.setPattern(pattern);
canvas.repaint() ;

patternSelector.setSelectedindex(-1);

private void populatePatternSelector()
{

String patternClassNames = ConwayApplicationProperties.getProperty(
"conway.pattern.classnames");

StringTokenizer tokenizer = new StringTokenizer(patternClassNames);

String className = null;
while (tokenizer.hasMoreTokens())
{

className = tokenizer.nextToken() .trim() ;
try
{

Class clazz = Class.forName(className);
if (ConwayPattern.class.isAssignableFrom(
{

clazz))

patternSelector.additem(clazz.newinstance()) ;
}
else
{

System.err.println("Invalid pattern class name: "+
className);

catch (Exception e)
{

System.err.println("An error occurred populating patterns: "
) ;

e.printStackTrace() ;

private void startTimer{)

106

final String stopLabel = ConwayApplicationProperties.getProperty(
"stop.label") ;

startStopButton.setText(stopLabel);
nextGenerationButton.setEnabled(false);
clearButton.setEnabled(false);
patternSelector.setEnabled(false);
timer.start();

private void stopTimer()
{

timer. stop () ;
final String startLabel = ConwayApplicationProperties.getProperty(

"start.label");
startStopButton.setText(startLabel);
nextGenerationButton.setEnabled(true);
clearButton.setEnabled(true);
patternSelector.setEnabled(true);

private JPanel createControlPanel()
{

FormLayout layout= new FormLayout("pref, 3dlu, pref, 3dlu:grow",
"pref, lSdlu, pref, lSdlu, pref,

3dlu:grow, pref") ;
PanelBuilder builder= new PanelBuilder(layout);
CellConstraints cc= new CellConstraints() ;

107

String title= ConwayApplicationProperties.getProperty("app.title");
builder.addLabel(title,

cc.xywh(1,
1,
layout.getColumnCount() ,
1)) ;

String info= ConwayApplicationProperties.getProperty(
"app.description") ;

builder.addLabel(info,
cc.xywh(1,

3,
layout.getColumnCount() ,
1)) ;

final String patternLabel = ConwayApplicationProperties.getProperty(
"pattern.label") ;

builder.addLabel(patternLabel,
cc.xy(1,

5)) ;

builder.add(patternSelector,
cc.xy(3,

5)) ;
JPanel buttonPanel = ButtonBarFactory.buildLeftAlignedBar(

nextGenerationButton,

startStopButton,

) ;
builder.add(buttonPanel,

cc.xywh(1,
7,
layout.getColumnCount(),

clearButton

1)) ;

Border etchedBorder = BorderFactory.createEtchedBorder(
EtchedBorder.LOWERED);

Border outerBlankBorder = BorderFactory.createEmptyBorder(5,
5,
5,
5) ;

Border innerBlankBorder = BorderFactory.createEmptyBorder(5,
5,
5,
5) ;

Border border= BorderFactory.createCompoundBorder(
BorderFactory.createCompoundBorder(outerBlankBorder,

etchedBorder) ,

108

innerBlankBorder);
builder.setBorder(border);
return builder.getPanel();

public static void main(String[] args)
{

if (args.length != 1)
{

System. out. println ("Usage: " + ConwayGUI. class. getName () + 11 [drl
file] II) ;

return;
}
System.out.println("Using drl: 11 + args[0]) ;

System. setProperty("conway .drl. file",
args [0]) ;

final String appTitle = ConwayApplicationProperties.getProperty(
11 app.title 11) ;

JFrame f = new JFrame(appTitle);
f.setResizable(false);
f.setDefaultCloseOperation(JFrame.EXIT_ON CLOSE);
f.getContentPane() .add(BorderLayout.CENTER,

new ConwayGUI());
f .pack() ;
f.setVisible(true);

//*******
//Class- ConwayPattern
//*******

package org.thesis.examples.conway.patterns;

import java.io.Serializable;

public interface ConwayPattern
extends
Serializable

/**
* This method should return a 2 dimensional array of boolean that

represent

* a conway grid, with <code>true</code> values in the positions where
* cells are alive

* * @return array representing a conway grid
*/

public boolean[] [] getPattern () ;

/**
* @return the name of this pattern
*I

public String getPatternName();

//*******
//Class- GiveBirthConsequence
//*******

package org.thesis.examples.conway.rules.dsl;

import org.thesis.spi.Consequence;
import org.thesis.spi.Tuple;
import erg.thesis.rule.Declaration;
import org.thesis.examples.conway.Cell;
import org.thesis.examples.conway.CellState;

public class GiveBirthConsequence implements Consequence
{

private final Declaration cellDeclaration;

public GiveBirthConsequence(Declaration cellDeclaration)
{

this.cellDeclaration = cellDeclaration;

/**
* Execute the consequence for the supplied matching <code>Tuple</code>.

*
* @param tuple
* The matching tuple.
*I

public void invoke(Tuple tuple)
{

Cell cell= (Cell) tuple.get(cellDeclaration);
cell.queueNextCellState(CellState.LIVE);

//*******
//Class- IsCellAliveCondition
//*******

package org.thesis.examples.conway.rules.dsl;

import org.thesis.examples.conway.Cell;
import org.thesis.examples.conway.CellState;
import erg.thesis.rule.Declaration;
import org.thesis.spi.Tuple;
import org.thesis.spi.Condition;

109

public class IsCellAliveCondition implements Condition
{

protected final Declaration cellDeclaration;

public IsCellAliveCondition(Declaration cellDeclaration
{

this.cellDeclaration = cellDeclaration;

I**
* Determine if the supplied <code>Tuple</code> is allowed by this
* condition.

*
* ®param tuple
* The <code>Tuple</code> to test.
*
* @return <Code>true</code> if the <Code>Tuple</code> passes this
* condition, else <code>false</code>.

*
*/

public boolean isAllowed(Tuple tuple)
{

Cell cell= (Cell) tuple.get(cellDeclaration);
return cell.getCellState() == CellState.LIVE;

/**
* Retrieve the array of <code>Declaration</code> s required by this
* condition to perform its duties.
*
* @return The array of <code>Declarations</code> expected on incoming
* <code>Tuples</code>.
*/

public Declaration[] getRequiredTupleMembers()
{

return new Declaration[J{cellDeclaration};

//*******
//Class- IsCellDeadCondition
//*******

package org.thesis.examples.conway.rules.dsl;

import org.thesis.examples.conway.Cell;
import org.thesis.examples.conway.CellState;
import erg.thesis.rule.Declaration;
import org.thesis.spi.Tuple;
import org.thesis.spi.Condition;

public class IsCellDeadCondition implements Condition
{

protected final Declaration cellDeclaration;

public IsCellDeadCondition(Declaration cellDeclaration)
{

this.cellDeclaration = cellDeclaration;

/**

110

}

* Determine if the supplied <code>Tuple</code> is allowed by this
* condition.

*
* ®param tuple
* The <code>Tuple</code> to test.
*
* @return <code>true</code> if the <code>Tuple</code> passes this
* condition, else <code>false</code>.
*
*I

public boolean isAllowed(Tuple tuple)
{

Cell cell= (Cell) tuple.get(cellDeclaration);
return cell.getCellState() == CellState.DEAD;

/**
* Retrieve the array of <code>Declaration</code> s required by this
* condition to perform its duties.
*
* @return The array of <code>Declarations</code> expected on incoming
* <code>Tuples</code>.
*/

public Declaration[] getRequiredTupleMembers()
{

return new Declaration[] {cellDeclaration};

//*******
//Class- KillCellConsequence
//*******

package org.thesis.examples.conway.rules.dsl;

import org.thesis.spi.Consequence;
import org.thesis.spi.Tuple;
import erg.thesis.rule.Declaration;
import org.thesis.examples.conway.Cell;
import org.thesis.examples.conway.CellState;

public class KillCellConsequence implements Consequence
{

private final Declaration cellDeclaration;

public KillCellConsequence(Declaration cellDeclaration)
{

this.cellDeclaration = cellDeclaration;
}

/**
* Execute the consequence for the supplied matching <code>Tuple</code>.

*
* @param tuple
* The matching tuple.
*/

public void invoke(Tuple tuple)
{

Cell cell= (Cell) tuple.get(cellDeclaration);
cell.queueNextCellState(CellState.DEAD);

111

//*******
//Class- LonelyCondition
//*******

package org.thesis.examples.conway.rules.dsl;

import org.thesis.examples.conway.Cell;
import erg.thesis.rule.Declaration;
import org.thesis.spi.Tuple;
import org.thesis.spi.Condition;

public class LonelyCondition implements Condition
{

protected final Declaration cellDeclaration;

public LonelyCondition(Declaration cellDeclaration)
{

this.cellDeclaration = cellDeclaration;

/**
* Determine if the supplied <Code>Tuple</code> is allowed by this
* condition.
*
* @param tuple
* The <code>Tuple</code> to test.
*
* @return <code>true</code> if the <code>Tuple</code> passes this
* condition, else <code>false</code>.
*
*/

public boolean isAllowed(Tuple tuple)
{

Cell cell= (Cell) tuple.get(cellDeclaration);
int numberOfLiveNeighborsCellHas = cell.getNumberOfLiveNeighbors();
boolean isAllowed = (numberOfLiveNeighborsCellHas < 2);
return isAllowed;

/**
* Retrieve the array of <code>Declaration</code> s required by this
* condition to perform its duties.
*
* @return The array of <code>Declarations</code> expected on incoming
* <code>Tuples</code>.
*/

public Declaration[] getRequiredTupleMembers()
{

return new Declaration[]{cellDeclaration};

//*******
//Class- OvercrowdedCondition
//*******

112

package org.thesis.examples.conway.rules.dsl;

import org.thesis.examples.conway.Cell;
import erg.thesis.rule.Declaration;
import org.thesis.spi.Condition;
import org.thesis.spi.Tuple;

public class OvercrowdedCondition implements Condition
{

protected final Declaration cellDeclaration;

public OvercrowdedCondition(Declaration cellDeclaration)
{

this.cellDeclaration = cellDeclaration;

/**
* Determine if the supplied <code>Tuple</code> is allowed by this
* condition.
*
* ®param tuple
* The <code>Tuple</code> to test.
*
* @return <code>true</code> if the <code>Tuple</code> passes this
* condition, else <code>false</code>.
*
*I

public boolean isAllowed(Tuple tuple)
{

Cell cell= (Cell) tuple.get(cellDeclaration);
int numberOfLiveNeighborsCellHas = cell.getNumberOfLiveNeighbors();
boolean isAllowed = (numberOfLiveNeighborsCellHas > 3);
return isAllowed;

/**
* Retrieve the array of <code>Declaration</code> s required by this
* condition to perform its duties.
*
* @return The array of <code>Declarations</code> expected on incoming
* <code>Tuples</code>.
*/

public Declaration[] getRequiredTupleMembers()
{

return new Declaration[]{cellDeclaration};

//*******
//Class- RipeForBirthCondition
//*******

package org.thesis.examples.conway.rules.dsl;

import org.thesis.examples.conway.Cell;
import erg.thesis.rule.Declaration;
import org.thesis.spi.Tuple;
import org.thesis.spi.Condition;

public class RipeForBirthCondition implements Condition
{

protected final Declaration cellDeclaration;

113

public RipeForBirthCondition(Declaration cellDeclaration)
{

this.cellDeclaration = cellDeclaration;

/**
* Determine if the supplied <code>Tuple</code> is allowed by this
* condition.
*
* ®param tuple
* The <code>Tuple</code> to test.
*
* @return <Code>true</code> if the <code>Tuple</code> passes this
* condition, else <code>false</code>.
*
*I

public boolean isAllowed(Tuple tuple)
{

Cell cell= (Cell) tuple.get(cellDeclaration);
int numberOfLiveNeighborsCellHas = cell.getNumberOfLiveNeighbors();
boolean isAllowed = (numberOfLiveNeighborsCellHas == 3);
return isAllowed;

/**
* Retrieve the array of <code>Declaration</code> s required by this
* condition to perform its duties.
*
* @return The array of <code>Declarations</code> expected on incoming
* <Code>Tuples</code>.
*I

public Declaration[] getRequiredTupleMembers()
{

return new Declaration[] {cellDeclaration};
}

//*******
//Class- RuleBaseFactory
//*******

package org.thesis.examples.conway.rules;

import org.thesis.RuleBase;
import org.thesis.examples.conway.CellGrid;
import org.thesis.io.RuleBaseLoader;

import java.net.URL;

public class RuleBaseFactory
{

private static RuleBaseFactory ourinstance
private static final String DEFAULT DRL FILE

private RuleBase ruleBase;

public static RuleBaseFactory getinstance()
{

return ourinstance;

= new RuleBaseFactory() ;
"conway. java.drl";

114

private RuleBaseFactory()
{

try
{

String conwayDrlFile = System.getProperty("conway.drl.file") ;
if (conwayDrlFile ==null)
{

System.err.println("conway.drl.file system property not
specified. using default: II+ DEFAULT_DRL_FILE);

}

conwayDrlFile = DEFAULT_DRL_FILE;

System.out.println("loading drl file: "+ conwayDrlFile);
URL resource= CellGrid.class.getResource(conwayDrlFile);
ruleBase = RuleBaseLoader.loadFromUrl(resource);

catch (Exception e)
{

throw new RuntimeException("Unable To Initialise
RuleBaseFactory:\n" + e.getMessage()) ;

}

public static RuleBase getRuleBase()
{

return ourinstance.ruleBase;

//*******
//Case Study 2 - PetStore Application
//*******

//*******
//Class- PetStore
//*******

package org.thesis.examples.petstore;

import java.net.URL;
import java.util.Vector;

import org.thesis.RuleBase;
import org.thesis.io.RuleBaseLoader;

public class PetStore
{

public static void main(String[J args)
{

if (args.length != 1)
{

System.out.println("Usage: "+ PetStore.class.getName(
+ " [drl file] ") ;

return;

System.out.println("Using drl: "+ args[O]) ;

115

try
{

URL url = PetStore.class.getResource(args[O]) ;
RuleBase ruleBase = RuleBaseLoader.loadFromUrl(url);

Vector stock= new Vector(};
stock.add(new Cartitem("Gold Fish", 5) };
stock.add(new Cartitem("Fish Tank", 25)) ;
stock.add(new Cartitem("Fish Food", 2)) ;

//The callback is responsible for populating working memory and
// fireing all rules
PetStoreUI ui = new PetStoreUI(stock,

116

new CheckoutCallback(ruleBase));
ui.createAndShowGUI();

}
catch (Exception e)
{

e.printStackTrace() ;

//*******
//Class- PetStoreUI
//*******

package org.thesis.examples.petstore;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.util.ArrayList;
import java.util.List;
import java.util.Vector;

import javax.swing.AbstractButton;
import javax.swing.BorderFactory;
import javax.swing.BoxLayout;
import Javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JList;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JSplitPane;
import javax.swing.JTable;
import javax.swing.JTextArea;
import javax.swing.ListSelectionModel;
import javax.swing.ScrollPaneConstants;
import javax.swing.table.AbstractTableModel;
import javax.swing.table.DefaultTableCellRenderer;
import javax.swing.table.TableColumnModel;

public class PetStoreUI extends JPanel
{

private JTextArea

private TableModel

output;

tableModel;

117

private CheckoutCallback callback;

/**
* Build UI using specified items and using the given callback to pass the
* items and jframe reference to the DRL application
*
* ®param listData
* ®param callback
*I

public PetStoreUI(Vector items, CheckoutCallback callback)
{

super(new BorderLayout()) ;
this.callback= callback;

//Create main vertical split panel
JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
add(splitPane, BorderLayout.CENTER);

//create top half of split panel and add to parent
JPanel topHalf = new JPanel() ;
topHalf.setLayout(new BoxLayout(topHalf, BoxLayout.X_AXIS));
topHalf.setBorder(BorderFactory.createEmptyBorder(5, 5, 0, 5)) ;
topHalf.setMinimumSize(new Dimension(400, 50)) ;
topHalf.setPreferredSize(new Dimension(450, 250)) ;
splitPane.add(topHalf);

//create bottom top half of split panel and add to parent
JPanel bottomHalf = new JPanel(new BorderLayout());
bottomHalf.setMinimumSize(new Dimension(400, 50));
bottomHalf.setPreferredSize(new Dimension(450, 300));
splitPane.add(bottomHalf);

//Container that list container that shows available store items
JPanel listContainer = new JPanel(new GridLayout(1, 1)) ;
listContainer.setBorder(BorderFactory.createTitledBorder("List")) ;
topHalf.add(listContainer);

//Create JList for items, add to scroll pane and then add to parent
// container
JList list= new JList(items);
ListSelectionModel listSelectionModel list.getSelectionModel() ;
listSelectionModel

.setSelectionMode(
ListSelectionModel.SINGLE SELECTION);

) ;

//handler adds item to shopping cart
list.addMouseListener(new ListSelectionHandler()) ;
JScrollPane listPane = new JScrollPane(list);
listContainer.add(listPane);

JPanel tableContainer = new JPanel(new GridLayout(1, 1));
tableContainer.setBorder(BorderFactory.createTitledBorder("Table"

topHalf.add(tableContainer);

//Container that displays table showing items in cart
tableModel = new TableModel();
JTable table= new JTable(tableModel);
//handler removes item to shopping cart
table.addMouseListener(new TableSelectionHandler());
ListSelectionModel tableSelectionModel =~table.getSelectionModel();
tableSelectionModel

118

.setSelectionMode(
ListSelectionModel.SINGLE_SELECTION);

) ;

TableColumnModel tableColumnModel = table.getColumnModel();
//notice we have a custom renderer for each column as both columns
// point to the same underlying object
tableColumnModel.getColumn(0) .setCellRenderer(new NameRenderer());
tableColumnModel.getColumn(1) .setCellRenderer(new PriceRenderer()

tableColumnModel.getColumn(1) .setMaxWidth(50);

JScrollPane tablePane = new JScrollPane(table);
tablePane.setPreferredSize(new Dimension(150, 100));
tableContainer.add(tablePane);

//Create panel for checkout button and add to bottomHalf parent
JPanel checkoutPane = new JPanel();
JButton button= new JButton("Checkout");
button.setVerticalTextPosition(AbstractButton.CENTER);
button.setHorizontalTextPosition(AbstractButton.LEADING);
//attach handler to assert items into working memory
button.addMouseListener(new CheckoutButtonHandler());
button.setActionCommand("checkout") ;
checkoutPane.add(button);
bottomHalf.add(checkoutPane, BorderLayout.NORTH);

button = new JButton("Reset") ;
button.setVerticalTextPosition(AbstractButton.CENTER);
button.setHorizontalTextPosition(AbstractButton.TRAILING);
//attach handler to assert items into working memory
button.addMouseListener(new ResetButtonHandler()) ;
button.setActionCommand("reset");
checkoutPane.add(button);
bottomHalf.add(checkoutPane, BorderLayout.NORTH);

//Create output area, imbed in scroll area an add to bottomHalf parent
//Scope is at instance level ·so it can be easily referenced from other
// methods
output= new JTextArea(1, 10);
output.setEditable(false);
JScrollPane outputPane = new JScrollPane(

output,

ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
bottomHalf.add(outputPane, BorderLayout.CENTER);

/**
* Create and show the GUI
*
*I

public void createAndShowGUI()
{

//Create and set up the window.
JFrame frame= new JFrame("Pet Store Demo") ;
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

setOpague(true);
frame.setContentPane(this);

//Display the window.
frame.pack() ;

frame.setVisible(true);

/**
* Adds the selected item to the table
*I

private class ListSelectionHandler extends MouseAdapter
{

public void mouseReleased(MouseEvent e)
{

JList jlist = (JList) e.getSource() ;
tableModel.additem((Cartitem) jlist.getSelectedValue()) ;

/**
* Removes the selected item from the table
*/

private class TableSelectionHandler extends MouseAdapter
{

/**

public void mouseReleased(MouseEvent e)
{

JTable jtable = (JTable) e.getSource() ;
TableModel tableModel = (TableModel) jtable.getModel() ;
tableModel.removeitem(jtable.getSelectedRow());

* Calls the referenced callback, passing a the jrame and selected items.
*
*I

private class CheckoutButtonHandler extends MouseAdapter
{

public void mouseReleased(MouseEvent e)
{

JButton button= (JButton) e.getComponent() ;
try
{

output
.append(callback

.checkout(
(JFrame) button

.getTopLevelAncestor(),
tableModel.getitems()));

catch (org.thesis.FactException fe)
{

fe.printStackTrace();

/**
* Resets the shopping cart, allowing the user to begin again.
*
*I

private class ResetButtonHandler extends MouseAdapter
{

public void mouseReleased(MouseEvent e)
{

JButton button= (JButton) e.getComponent() ;

119

/**

output.setText(null);
tableModel.clear() ;
System.out.println("------Reset------");

* Used to render the name column in the table
*I

private class NameRenderer extends DefaultTableCellRenderer
{

I**

public NameRenderer()
{

super() ;

public void setValue(Object object)
{

Cartitem item= (Cartitem) object;
setText(item.getName());

* Used to render the price column in the table
*I

private class PriceRenderer extends DefaultTableCellRenderer
{

public PriceRenderer()
{

super() ;

public void setValue(Object object)
{

Cartitem item= (Cartitem) object;
setText(Double.toString(item.getCost())) ;

I**

120

* This is the table model used to represent the users shopping cart While
* we have two colums, both columns point to the same object. We user a
* different renderer to display the different information abou the object

* name and price.
*/

private class TableModel extends AbstractTableModel
{

private String[) columnNames = {"Name", "Price"};

private ArrayList items;

public TableModel()
{

super() ;
items= new ArrayList() ;

public int getColumnCount()
{

return columnNames.length;

public int getRowCount()
{

return items.size();

public String getColumnName(int col)
{

return columnNames[col];

public Object getValueAt(int row, int col)
{

return items.get(row);

public Class getColumnClass(int c)
{

return Cartitem.class;

public void additem(Cartitem item)
{

items.add(item);
fireTableRowsinserted(items.size(), items.size());

public void removeitem(int row)
{

items.remove(row);
fireTableRowsDeleted(row, row);

public List getitems()
{

return items;

public void clear()
{

//*******

int lastRow = items.size() ;
items.clear() ;
fireTableRowsDeleted(0, lastRow);

//Class- ShoppingCart
//*******

package org.thesis.examples.petstore;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

public class ShoppingCart

121

{
private List items;

private double discount;

private Map states;

private static String newline System.getProperty("line.separator");

public ShoppingCart()
{

states= new HashMap() ;
this.items= new ArrayList() ;
this.discount= O;

public boolean getState(String state)
{

if (states.containsKey(state))
{

return ((Boolean) states.get(state)) .booleanValue();
}
else
{

return false;
}

public void setState(String state, boolean value)
{

states.put(state, new Boolean(value));

public void setDiscount(double discount)
{

this.discount= discount;

public double getDiscount()
{

return this.discount;

public void additem(Cartitem item)
{

this.items.add(item);
}

public List getitems()
{

return this.items;

public List getitems(String name)
{

ArrayList matching= new ArrayList();

Iterator itemiter
Cartitem eachitem

getitems() .iterator();
null;

while (itemiter.hasNext(
{

eachitem = (Cartitem itemiter.next();

122

if (eachitem.getName() .equals(name))
{

matching.add(eachitem);
}

return matching;

public double getGrossCost()
{

Iterator itemiter
Cartitem eachitem

double cost= 0.00;

getitems() .iterator() ;
null;

while (itemiter.hasNext(
{

eachitem = (Cartitem itemiter.next() ;

cost+= eachitem.getCost() ;

return cost;

public double getDiscountedCost()
{

double cost= getGrossCost();
double discount= getDiscount();

double discountedCost =cost* (1 - discount);

return discountedCost;

public String toString()
{

StringBuffer buf = new StringBuffer() ;

buf.append(11 ShoppingCart: 11 +newline);

Iterator itemiter = getitems() .iterator();

while (itemiter.hasNext())
{

buf.append(11 \t" + itemiter.next() +newline);

buf.append("gross total="+ getGrossCost() +newline);
buf.append("discounted total="+ getDiscountedCost() +newline);

return buf.toString();

//*******
//Class- Cartitem
//*******

123

package org.thesis.examples.petstore;

public class Cartitem
{

private String name;

private double cost;

public Cartitem(String name, double cost)
{

this.name
this.cost

name;
cost;

public String getName()
{

return this.name;

public double getCost()
{

return this.cost;

public String toString()
{

return name+ 11 11 + this.cost;

//*******
//Class- CheckoutCallback
//*******

package org.thesis.examples.petstore;

import java.util.List;

import javax.swing.JFrame;

import org.thesis.FactException;
import org.thesis.RuleBase;
import org.thesis.WorkingMemory;

public class CheckoutCallback
{

RuleBase ruleBase;

public CheckoutCallback(RuleBase
{

this.ruleBase = ruleBase;
}

/**

ruleBase)

* Populate the cart and assert into working memory Pass Jframe reference
* for user interaction
*
* @param frame
* @param items

124

* @return cart.toString{);
*I

125

public String checkout{JFrame frame, List items) throws FactException
{

ShoppingCart cart= new ShoppingCart();

//Iterate through list and add to cart
for (inti= O; i < items.size(); i++
{

cart.additem{ { Cartitem) items.get(i));

//add the JFrame to the ApplicationData to allow for user interaction
WorkingMemory workingMemory = ruleBase.newWorkingMemory();
workingMemory.setApplicationData{ "frame", frame);
workingMemory.assertObject(cart);
workingMemory.fireAllRules{) ;

//returns the state of the cart
return cart.toString{);

REFERENCES

R. Ross. The Business Rule Book: Classifying, Defining, and Modeling Rules,

2nd Ed., Database Research Group,1997.

D. Hay and K. Healy. Defining business rules - what are they really, GUIDE

Business Rule Report.

http://www.businessrulesgroup.org/first_paper/br01 c1 .htm, 2000.

Edward J. Barkmeyer, Evan K. Wallace and Ravi Raman. NIST "Position Paper"

for the W3C Workshop on Rule Languages for Interoperability, 2002.

B. Von Halle. Business Rules Applied: Building Better Systems using the

Business Rules Approach, Wiley, 2001.

David Zygmont. New Automation Solution - Significant Advantage in

Development of Enterprise Applications, Wiley, 1999.

Hoi Chan. CommonRules

http://www.alphaworks.ibm.com/tech/commonrules

2004.

126

S. Bohner. Extending Software Change Impact Analysis into COTS

Components, IEEE/NASA Software Engineering Workshop, December

2002.

Harold Boley, Benjamin Grosof, Michael Sintek, Said Tabet, Gerd Wagner.

RuleML Design, 2002.

http://www.ruleml.org/indesign.html

127

Harold Boley, Said Tabet, Gerd Wagner. Design Rationale of RuleML: A Markup

Language for Semantic Web Rules, 2001.

Jae Kyu Lee and Mye M. Sohn. The extensible Rule Markup Language,

Communications of the ACM, Volume 46, Issue 5, pp. 59-64,. May 2003.

Gerd Wagner, Grigoris Antoniou, Said Tabet, and Harold Boley. The Abstract

Syntax of RuleML - Towards a General Web Rule Language Framework.

Proceedings of the IEEE/WIC/ACM International Conference on Web

Intelligence, 2004.

Mark C. Little and Stuart M. Wheater. Building Configurable Applications in Java,

Proceedings of the 4th IEEE International Conference on Configurable

Distributed Systems, May 1998.

Mark C. Little and Stuart M. Wheater. The Design and Implementation of a

Framework for Configurable Software, 3rd International Conference on

Configurable Distributed Systems, 1996.

Ross Gardler, Nikolay Mehandjiev. Scalable and Agile Architectures for

Ebusiness.

http://research.saafe.org, July 31, 2003.

Mark Johnson. J2EE Blueprints group at Sun Microsystems, 2002.

128

Nicolas Guelfi, Benoit Ries, Paul Sterges. Proceedings of the IEEE International

Conference on Software-Science, Technology & Engineering, 2003.

Emmanuel Tissandier, Christophe Jolif. SVG support in /LOG JViews

Component Suite, 2004.

Anthony A. Aaby.

Introduction to Programming Languages, Walla Walla College, 1996.

Margaret Thorpe and Changhai Ke. Simple Rule Markup Language (SRML): A

General XML Rule Representation for Forward-chaining Rules. , ILOG,

S.A, 2004.

N. Alex Rupp. JSR-94 Lead, SUN Microsystems, 2005.

Martin Gardner. "Mathematical Games" column in Scientific American,

October 1970 issue.

Edwin Martin. John Conway's Game of Life - Java based implementation, 2002

http://www.bitstorm.org/gameoflife/

VITA

Narasimhan Kaliyamoorthy was born in Chennai, India. He attended

University of Madras, receiving his degrees in Mathematics and Computer

applications. Upon leaving graduate school, Narasimhan worked for Ramco

Systems, a global vendor for enterprise software products. His duties are to

develop and maintain enterprise resource planning products for global

customers. After 2 years of service, Narasimhan pursued his master's degree in

Software Engineering from Texas State University-San Marcos. He graduated

from the graduate college at Texas State in August 2005.

Starting September 2005, Narasimhan is employed as Software Engineer

at Advanced Micro Devices, a semiconductor manufacturing company in Austin,

Texas.

E-mail: narsi.txstate@gmail.com

This thesis was typed by Narasimhan Kaliyamoorthy.

