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On Critical Points of p Harmonic Functions in
the Plane *

John L. Lewis

Abstract

We show that if u is a p harmonic function, 1 < p < oo, in the unit
disk and equal to a polynomial P of positive degree on the boundary of
this disk, then Vu has at most deg P — 1 zeros in the unit disk.

In this note we prove the following theorem.

Theorem 1 Given p,1 < p < 00, let u be a real valued weak solution to
V- (|VulP?Vu) =0 *)

in D = {(z1,72) : 22 + 23 < 1} C R? with u = P on 8 D where P is a real
polynomial in x1,x2 of degree m > 1. Then Vu has at most m — 1 zeros in D
counted according to multiplicity.

In (*), V- denotes the divergence operator while Vu denotes the gradient
of u. The above theorem answers a question in the affirmative first posed by D.
Khavinson in connection with determining the extremal functions for certain
linear functionals in the Bergman space of p th power integrable analytic func-
tions on D; 1 < p < co. We note that the differential operator in (*) is often
called the p Laplacian and it is well known (see [GT]) that solutions to this
equation are infinitely differentiable (in fact real analytic) at each point where
Vu # 0 while (*) is degenerate elliptic at each point where Vu = 0. The above
theorem appears to be the first of its kind to establish independent of p and
the structure constants for the p Laplacian, a bound (m - 1) for the number of
points in D where (*) degenerates. Because of this independence we conjecture
that our theorem also remains true for p = oo and the so called co Laplacian
(see [BBM] or [J] for definitions). Finally we remark that in [Al] a result, in
the same spirit as ours, is obtained for smooth linear equations whose matrix
of coefficients has determinant one.
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Proof of main theorem.
Consider the strong solutions, v = v(-, €, p), to
V- ((e+|Vo*)E Vo) =0 **)

in D, with v = P on dD. We note that (**) implies

2
Lv=(p—2) Z Vg,V Uy + (€4 [VV[?) Av =0 (0)
jk=1

at each point of D. Here A denotes the Laplacian. From (0) and elliptic theory it
follows that v(-, €) is unique and infinitely differentiable in the closed unit disk
(v € C®(D)). Indeed this statement follows easily from Schauder’s theorem
(see [GT], ch 6) and induction once C** regularity of v in D is established (
for C1@ regularity of v see [L]).

Next we introduce complex notation. Let z = x1 + iz2, ¢ = v/—1, and put
9: = 2(921 — 192,), 92 = (9o, + i9,). as usual and note from (0) as in [GT,
ch 11, section 2] or [IM], that if f(z) = f(z,€,p) = v.(2), then f is quasiregular
in D with k = |1 — 2/p|. That is f is a sense preserving mapping of D and

Ifzl < 1 —=2/pllf| 1)

at each point of D. From the factorization theorem for quasiregular mappings
(see [A, ch V] ) we find that f = g o h where g is analytic in h(D) and h is
a QC mapping of R? onto itself (i.e. a quasiregular homeomorphism of R?).
Using this factorization, the argument principle for analytic functions, and C!
smoothness of f in D, it follows that we can calculate the number of zeros of
f counted according to multiplicity inside a contour I' C D with f # 0 on T’
(i.e the number of zeros of g counted according to multiplicity inside h(T')) by

lculatin,
calculating (2m)_1/wdt @)
T

where log f denotes a continuous branch of the logarithm of f on I' and we
assume z = z(t) is a piecewise smooth parametrization of I' . Now we can write
Z1, %2 in terms of z, Z in the usual way and thus regard P as a function of z, z.
If z = €%, 0 real, we note first that Z = z~! and second that

Py(z) =izP, — iZP;

is identically equal to a rational function of degree at most 2m on 0D. To
construct I' let z; = e j=1,2,...n be the distinct zeros of ‘?3—1; on 0D. From
our note we have n < 2m. For small § > 0 let D(z;,d) = {z : |z — z;| < ¢}
for 1 < j < n. Then for § small enough, clearly 0D \ U, D(z;,0) consists of
n closed arcs, say U’ v, oriented counterclockwise, as seen from the origin.

1=
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Let C; be the arc of dD(z;,d) that lies inside the unit circle for 1 < j < n
oriented counterclockwise as seen from the origin. We put I' = (UC;) U (Ury;).
and shall show that the integral in (2) is < m — 1. To this end, let v € {v;}
and note that if z = e?, then Py = 2 Re (izv,). Since Py does not change sign
on 7 it follows that the image of v under zf = zv, lies inside a halfplane whose
boundary contains 0. Thus a continuous argument of z f can change by at most
m on v and so

<
U

'Re [(m’)1/7d1°g[z(zf(z(t))] dt” <1/2. (3)

Next we consider Cj, € {C;}. Recall that v € C>(D). If v,(2) # 0 then

clearly
e dlog[z(t) f(2(1))]
(271'2) 1 /Ck T dt

as 6 — 0. Otherwise, let [ > 1 be the largest positive integer such that all
homogeneous Taylor polynomials of v — v(zx) about z; of degree less than [ are
identically 0 and let @ be the homogeneous Taylor polynomial of degree [ about
zy, corresponding to v — v(zy). Using (0) and continuity of the derivatives of v
in D we see that for 2 € D N D(zy,9)

—0 (4)

0=Lo(z) = O(]z — 2] ™*) + e AQ(2) (5)

as z — zx, Now AQ is either a homogeneous polynomial of degree [ —2 or AQ =
0. Dividing (5) by |z — 2¢|'~2 and taking a limit as z — zj, we conclude that the
second possibility must occur. Thus @ is harmonic and so Q = Re [e(z — z;)!]
for some complex c¢. From this fact we conclude first that for a continuous
branch of log f on C}, we have

log(izf(2)) = log[izQ,(2)] + o(1), as § — 0 for z € C},

where the o(1) term is independent of z € C. Second we conclude

(2mi) ! /C k L (B (6)

as § — 0. Since the integral in (2) must be a nonnegative integer we see from
(3) and (6) that for ¢ sufficiently small

(2mi) ! /F 7d1°g[§f(tm dt < m—1 1)

since there are at most 2m members of {~y;} and the argument of z changes by
27 as we go around I'.

Finally, v,v, considered as functions of € converge uniformly on compact
subsets of D to u,u,, for a fixed p as ¢ — 0. These facts follow from the
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uniqueness of u as a solution to the p Laplacian and C*® regularity of u,v
(with constants independent of €). Moreover from (1) it follows that wu, is
quasiregular in D with k = |1 —2/p| (again see [IM] for these facts). From these
observations, (7), and another winding number argument we find that if v, # 0
on {z : |z| = r} for some r,0 < r < 1, then u, has at most m — 1 zeros in
{z :|z| < r}. Hence our theorem is true. O
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