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Solutions to nonlinear elliptic equations with a

nonlocal boundary condition ∗

Yuandi Wang

Abstract

We study an elliptic equation and its evolution problem on a bounded
domain with nonlocal boundary conditions. Eigenvalue problems, exis-
tence, and dynamic behavior of solutions for linear and semilinear equa-
tions are investigated. We use the comparison principle and a semigroup
approach.

1 Introduction

In this paper we consider the following nonlinear equation with nonlocal bound-
ary conditions

Lu ≡ −
n∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
) = f(x, u), in Ω

u|∂Ω =
∫

Ω

K(x, y)u(y) dy

(1.1)

and its corresponding evolution problem. Firstly, we consider the eigenproblem
for the special case u|∂Ω = k

∫
Ω
u(y) dy with k a constant. As we know from

the literature [3, 12, 13, 16], the comparison principle may not apply, unless
K(x, y) ≥ 0 and

∫
Ω
K(x, y) dy < 1. However, using special techniques one

can obtain the behavior of solutions when K(x, y) alternates signs [3, 12, 13].
But we wondered how the boundary kernel K(x, y) influences results such as
those on the eigenvalues and on the decay of solutions for evolution equations.
Because these questions are not easy, we expect to have only a partial answer
by considering a simple case. We will find that there are no negative eigenvalues
unless k > 1/|Ω|. Also we will obtain some estimates on the eigenvalues. In
section 3, we prove the existence of solutions for linear problem. In section 4, the
method of quasilinearization is used to prove that monotonic iterative sequences
converge quadratically to the solution of the nonlinear problem. Lastly, we
discuss the long time behavior of solution in Sobolev-Slobodeckii spaces.
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Throughout this paper we assume that Ω ⊂ Rn is a bounded domain with
C2+µ-boundary ∂Ω, aij ∈ C1+µ (i, j = 1, 2, · · · , n) with µ ∈ (0, 1) and that
there exists a positive number α such that

n∑
i,j=1

aij(x)ξiξj ≥ α
n∑
i=1

ξ2
i , ∀ (x, ξ1, · · · , ξn) ∈ Ω× Rn. (1.2)

2 Eigenvalue Problems

Let us consider a special eigenvalue problem for (1.1) with K(x, y) = k a con-
stant.

Lϕ(x) ≡ −
n∑

i,j=1

∂

∂xi
(aij(x)

∂ϕ(x)
∂xj

) = λϕ(x), in Ω

ϕ|∂Ω = k

∫
Ω

ϕ(y) dy.

(2.1)

We expect to obtain some information about the relation between the eigenvalue
λ and the constant k. First integrate over Ω on the first equation of (2.1):

−
∫
∂Ω

n∑
i,j=1

aij
∂ϕ

∂xj
cos(ν, xi) dS = λ

∫
Ω

ϕ(x) dx. (2.2)

Then multiplying by ϕ(x) and integrate again∫
Ω

ϕLϕdx = −
∫
∂Ω

n∑
i,j=1

aij
∂ϕ

∂xj
cos(ν, xi) dS · γ(ϕ) +

∫
Ω

n∑
i,j=1

aij
∂ϕ

∂xi

∂ϕ

∂xj
dx

= λ

∫
Ω

ϕ2(x) dx, (2.3)

where γ is the trace operator γ(ϕ) = ϕ|∂Ω. Combining the above equations with
the boundary condition in (2.1), we have

λ
{∫

Ω

ϕ2 dx− k(
∫

Ω

ϕdx)2
}

=
∫

Ω

n∑
i,j=1

aij
∂ϕ

∂xi

∂ϕ

∂xj
dx ≥ α

∫
Ω

|∇ϕ|2 dx. (2.4)

It follows directly from Jensen’s inequality and (2.4) that if there exists an
eigenvalue λ < 0, then k > 1/|Ω|. Moreover, for f1 and f2 ∈ C(Ω), Cauchy’s
inequality ( ∫

Ω

f1(x)f1(x) dx
)2 ≤ ∫

Ω

f2
1 (x) dx

∫
Ω

f2
2 (x) dx (2.5)

becomes equality if and only if f1(x) = lf2(x), in Ω. Therefore, if λ0 = 0 is an
eigenvalue, then its corresponding eigenfunction is ϕ0 = 1. This implies that
k = 1/|Ω|. On the other hand, if k = 1/|Ω| then 0 is an eigenvalue of (2.1).
Hence, all eigenvalues of (2.1) are positive when k < 1/|Ω|. Thus, we have
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Proposition 2.1 For the linear eigenproblem (2.1) the following holds:

i) 0 is an eigenvalue (with eigenfunction 1) if and only if k = 1/|Ω|

ii) If there exists one eigenvalue λ < 0, then k > 1/|Ω|

iii) If k < 1/|Ω| then all eigenvalues of (2.1) are positive.

Proposition 2.2 The linear eigenproblem (2.1) has at most one negative eigen-
value.

Proof. First, we claim that the eigenfunction ϕ(x) corresponding to one negative
eigenvalue λ does not alternate its sign on Ω.

Actually, the positive maximum ϕ(xM ) can not be attained at xM ∈ Ω,
otherwise

0 ≤ Lϕ(xM ) = −
n∑

i,j=1

∂

∂xi
(aij

∂ϕ(xM )
∂xj

) = λϕ(xM ) < 0, (2.6)

this is impossible. So, ϕ(xM ) > 0 can be attained only on the boundary ∂Ω.
Also ϕ(x) can not have a negative minimum, ϕ(xm) < 0, in Ω: It is easy to get
contradiction as the one above. Hence, if ϕ(x) is an eigenfunction with positive
maximum on ∂Ω for a negative eigenvalue λ, then ϕ(x) ≥ 0 for all x ∈ Ω.

Similarly, if ϕ(x) is an eigenfunction with negative minimum on ∂Ω for a
negative eigenvalue λ, then ϕ(x) ≤ 0 for all x ∈ Ω.

For k > 1/|Ω|, we suppose that there exist two eigenvalues λ1 < λ2 < 0 and
that ϕ1(x) and ϕ2(x) are the corresponding eigenfunctions, with ϕ1(x) ≥ 0,
ϕ2(x) ≥ 0, satisfying ϕ1|∂Ω = ϕ2|∂Ω. Then the positive maxima for ϕ1(x) and
ϕ2(x) can be attained only on ∂Ω. We claim that ϕ1(x) ≤ ϕ2(x) on Ω. If
it is not true, there is x∗ ∈ Ω such that ϕ1(x∗) > ϕ2(x∗), with x∗ a positive
maximum point for ϕ1 − ϕ2, then

0 ≤ L(ϕ1 − ϕ2)|x∗ = λ1ϕ1(x∗)− λ2ϕ2(x∗).

From λ1 < λ2 < 0, it follows that ϕ1(x∗) ≤ |λ2
λ1
|ϕ2(x∗) < ϕ1(x∗), which is a

contradiction.
The inequality λ1 < λ2 implies ϕ1(x) ≤ ϕ2(x), but

0 = ϕ1|∂Ω − ϕ2|∂Ω = k

∫
Ω

(ϕ1(y)− ϕ2(y)) dy ≤ 0 .

There exists only one possibility: ϕ1(x) = ϕ2(x) on Ω. Therefore, λ1 = λ2. �
Naturally, the next step is to estimate the minimal eigenvalue for (2.1). As

mentioned, if k = 1/|Ω| then the minimal eigenvalue λ = 0. Now we consider
the issue for k < 1/|Ω|.

Proposition 2.3 Let d be the diameter of Ω. Then
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i) λ ≥ 2α
nd2

[
1 + |Ω|

1−k|Ω| (k −
1
dn )
]

for k ≤ 0

ii) λ ≥ 2α
nd2

[
1− |Ω|

1−k|Ω| (k + 1
dn )
]

for 0 < k < 1/|Ω|.

Proof. Let ϕ(x) be an eigenfunction for the minimal eigenvalue λ. Let D be
the cube in Rn with edges of length d containing Ω. Extend ϕ into D with
γ(ϕ) = k

∫
Ω
ϕ(y) dy, denote the extension by

ϕ̃(x) =
{
ϕ(x), in Ω
k
∫

Ω
ϕdx, in D − Ω. (2.7)

Define Φ =
∫

Ω
ϕdx, obviously,∫

D

ϕ̃2 dx =
∫

Ω

ϕ2 dx+ k2Φ2|D − Ω|.

Applying Poincaré’s inequality in the cube D, we have∫
Ω

ϕ2 dx+ k2Φ2|D − Ω| ≤ 1
dn

(kΦ|D − Ω|+ Φ)2 +
nd2

2

∫
Ω

|∇ϕ|2 dx.

From the elliptic hypothesis (1.2) and (2.4),

λ
nd2

2α
[ ∫

Ω

ϕ2 dx− kΦ2
]
≥
∫

Ω

ϕ2 dx+ k2Φ2|D − Ω| − Φ2(k|D − Ω|+ 1)2

dn
.

Let
∫

Ω
ϕ2 dx = 1, take note of Φ2 = (

∫
Ω
ϕdx)2 < |Ω|, Since ϕ(x) is not constant

for k 6= 1/|Ω| (see Proposition 2.1), then Φ2 ∈ [0, |Ω|). By the assumption
k < 1/|Ω|,

λ ≥ 2α
nd2(1− kΦ2)

[
1 + Φ2(k2|D − Ω| − (k|D − Ω|+ 1)2

dn
)
]

=
2α
nd2

+
2αΦ2

nd2(1− kΦ2)
(k + k2|D − Ω| − k2|D − Ω|2 + 2k|D − Ω|+ 1

dn
)

≥ 2α
nd2

+
2αΦ2

nd2(1− kΦ2)
(k − 2k|D − Ω|+ 1

dn
), (2.8)

in the last inequality above, the relation |D − Ω| ≤ |D| = dn is used. It is not
difficult to get that the nonnegative function h(t) = t

1−kt reach its maximum
|Ω|

1−k|Ω| at t = |Ω| (for t ∈ [0, |Ω|]).
Hence, if 0 ≤ k < 1/|Ω|, then

λ ≥ 2α
nd2
− 2α
nd2

|Ω|
1− k|Ω|

(k +
1
dn

). (2.9)

If k < 0, then

λ ≥ 2α
nd2

+
2α
nd2

|Ω|
1− k|Ω|

(k − 1
dn

). (2.10)
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The assertion are proved. �

Because the domain is smooth, |Ω|/dn < 1. Certainly, (2.10) deduces λ > 0
for k < 0. On the other hand, the estimate (2.8) is more accurate than (2.9),
one can obtain easily from (2.8) that λ > 0 provided with k < 1/(2|Ω|). Now
we see a special example in one-dimension:

−φ′′ = ρφ, x ∈ (−π, π); φ(−π) = φ(π) = k

∫ π

−π
φ(x) dx. (2.11)

For this problem, the relationship between k and ρ is as follows: If ρ < 0,
then k = 1

2

√
−ρ coth(π

√
−ρ); if ρ = 0, then k = 1/(2π); and if ρ > 0 and

not the square of an integer, then k = 1
2

√
ρ cot(π

√
ρ). See Figure 1, where the

eigenvalues correspond to the values k for which the graph crosses the horizontal
axis.

6

-
−2 −1 0 1 2 3 4 5 6 7 ρ

k

Figure 1: k as a function of ρ for problem (2.11)

3 Linear Problems

We investigate the linear problem before using the monotonic iteration method
for nonlinear equations. Throughout this sections we assume that k < 1/|Ω|.
To get the existence of solutions for the linear problem

(L+ c)u ≡ −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u = F (x), in Ω

u|∂Ω = k

∫
Ω

u(y) dy,

(3.1)

we discuss the Dirichlet problem

(L+ c)U +
k c(x)

1− k|Ω|

∫
Ω

U(x) dx = F (x), in Ω

U |∂Ω = 0.
(3.2)

Lemma 3.1 For F (x), c(x) ∈ Cµ(Ω) and c(x) ≥ 0, the linear problem (3.2)
admits a unique solution u ∈ C2+µ.
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Proof. From the theory on elliptic equations [5], we know that (3.2) has a unique
solution when k = 0, i.e. the operator L + c has a compact inverse operator
(L + c)−1. According to Riesz-Schauder theory [17], if 0 is not an eigenvalues
for the eigenproblem

(L+ c)ϕ+
k c(x)

1− k|Ω|

∫
Ω

ϕ(x) dx = λϕ, in Ω

ϕ|∂Ω = 0,
(3.3)

then (3.2) has a unique solution. Now we show that 0 is an eigenvalue of (3.3).
Otherwise, the problem

(L+ c)ϕ+
k c(x)

1− k|Ω|

∫
Ω

ϕ(x) dx = 0, in Ω

ϕ|∂Ω = 0
(3.4)

has a solution ϕ(x) 6≡ 0 (lϕ is also a solution for all l ∈ R). From the maximum
principle,

∫
Ω
ϕ(x) dx 6= 0. Denote ϕ0 = ϕ/

∫
Ω
ϕ(x) dx. Then the Dirichlet

problem

(L+ c)ϕ0(x) = − k c(x)
1− k|Ω|

, ϕ0|∂Ω = 0

has a unique solution ϕ0(x) for any c(x) ≥ 0 and k. The maximal principle
for nonhomogeneous equations [5, chpater 3] shows that there is a constant C,
independent of the nonhomogeneous term − k c(x)

1−k|Ω| , such that

sup
Ω
ϕ0(x) ≤ sup

∂Ω
ϕ0(x) +

C

α
sup

Ω

∥∥ −k c(x)
1− k|Ω|

∥∥ =
∥∥ Ck

α(1− k|Ω|)
∥∥ sup

Ω
c(x) k→0−→ 0.

But
∫

Ω
ϕ0(x) dx = 1 for all k < 1/|Ω| and c ≥ 0, this contradicts the above

inequality. Therefore, there is no eigenfunction ϕ 6≡ 0 and 0 is not the eigenvalue
of (3.3). It follows that (3.2) has a unique solution U ∈ C2+µ. �

In the above proof, we observe that the mapping k̃(ϕ) ≡ k c(x)
1−k|Ω|

∫
Ω
ϕ(x) dx

with the domain and the range Cµ(Ω), is linear and bounded.
The proof consists of finding an H1

0 (Ω)-solution, then to strengthening the
regularity by estimates and Sobolev inequalities.

Take u = U + k
1−k|Ω|

∫
Ω
U dx with U being the solution (3.2), then

(L+ c)u = (L+ c)
(
U +

k

1− k|Ω|

∫
Ω

U dx
)

= F (x),

and

u|∂Ω =
k

1− k|Ω|

∫
Ω

U dx =
k(1− k|Ω|) + k2|Ω|

1− k|Ω|

∫
Ω

U dx

= k

∫
Ω

Udx+
k2|Ω|

1− k|Ω|

∫
Ω

U dx

= k

∫
Ω

(
U +

k

1− k|Ω|

∫
Ω

U dx
)
dx = k

∫
Ω

udx.
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Theorem 3.2 For c > 0 and F (x) ∈ Cµ, the linear nonlocal boundary problem
(3.1) admits a unique solution u ∈ C2+µ.

Proof. We prove only the uniqueness. If there are two solutions, then the
problem

Lu+ cu = 0, for x ∈ Ω; u|∂Ω = k

∫
Ω

u(x)dx

has nonzero solution. This is not possible for c(x) > 0 and u(x) being constant
on ∂Ω. �

From the above discussion, one can see that when k → 0, the solution of
(3.1) approaches U0, the solution of

(L+ c)u ≡ −
n∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
) + c(x)u = F (x), in Ω

u|∂Ω = 0.

(3.5)

More generally, if k = K(x, y) is smooth enough on Ω × Ω, then the so-
lution of the corresponding linear problem with boundary condition u|∂Ω =∫

Ω
K(x, y)u(y)dx approaches the solution of (3.5) when ε ≡ maxΩ×Ω |K(x, y)| →

0. We assume that K ∈ C1+µ(Ω)× C(Ω) satisfies

K(x, y) ≥ 0,
∫

Ω

K(x, y) dy < 1, for x ∈ ∂Ω, y ∈ Ω. (3.6)

Now we give a comparison and an existence result.

Lemma 3.3 Let K(x, y) satisfy (3.6), and u ∈ C2(Ω) ∩ C(Ω) satisfy

Lu+ cu ≤ 0, for x ∈ Ω; u|∂Ω ≤
∫

Ω

K(x, y)u(y)dx,

with c(x) ≥ 0. Then u(x) ≤ 0 for all x ∈ Ω.

Lemma 3.4 Let K(x, y) satisfy (3.6), C ∈ Cµ(Ω), and c(x) ≥ 0, then the
linear problem

Lu+ cu = F (x), for x ∈ Ω; u|∂Ω ≤
∫

Ω

K(x, y)u(y)dx

has a unique solution u ∈ C2+µ(Ω) for all F ∈ Cµ(Ω).

Proof. The assertion in Lemma 3.3 can be proved using a method similar to the
one in [12, Lemma 3.1]. The existence is deduced from [12, Theorem 3.3]. �
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4 Nonlinear Problems

We use the method of upper and lower solutions to discuss the existence of
solutions for nonlinear problem (1.1). In this section, we assume that K(x, y)
satisfies (3.6).

A pair of a lower solution u(x) and an upper solution u(x) in C2(Ω)∩C(Ω)
of (1.1) is defined as

Lu ≤ f(x, u), u|∂Ω ≤
∫

Ω

K(x, y)u(y) dy; (4.1)

Lu ≥ f(x, u), u|∂Ω ≥
∫

Ω

K(x, y)u(y) dy. (4.2)

We construct two iteration sequences {un} and {un} starting with u = u0 and
u = u0 as follows

Lun + cun = cun−1 + f(x, un−1), un|∂Ω =
∫

Ω

K(x, y)un(y) dy; (4.3)

Lun + cun = cun−1 + f(x, un−1), un|∂Ω =
∫

Ω

K(x, y)un(y) dy. (4.4)

Though the construction of iteration sequences are not the same as that in [12],
the convergence can be proved by an analogous argument.

Theorem 4.1 If there exists one ordered pair of a lower and an upper solution
u and u, u ≤ u, and there is a constant c > 0 such that

f(x, u)− f(x, v) ≥ −c(u− v), for u ≥ v, and u, v ∈ [u, u],

where u ∈ [u, u] means u(x) ≤ u(x) ≤ u(x), for all x ∈ Ω. Then the problem
(1.1) has solutions us and us satisfying u(x) ≤ us ≤ us ≤ u(x).

Proof. According to the definition of iteration sequences {un} and {un} in (4.3)
and (4.4), we get

L(u1 − u0) + c(u1 − u0) ≥ 0, (u1 − u0)|∂Ω ≥
∫

Ω

K(x, y)(u1 − u0)(y) dy.

From Lemma 3.3, it follows that u1 ≥ u0. Similarly

L(u2 − u1) + c(u2 − u1) = c(u1 − u0) + f(x, u1)− f(x, u0) ≥ 0,

(u2 − u1)|∂Ω ≥
∫

Ω

K(x, y)(u2 − u1)(y) dy.

As in the discussion above, one can prove that the sequence {un} is monotone
nondecreasing, the sequence {un} is monotone non-increasing. and

L(u1 − u1) + c(u1 − u1) = c(u1 − u0) + f(x, u0)− f(x, u0) ≥ 0,

(u1 − u1)|∂Ω ≥
∫

Ω

K(x, y)(u1 − u1)(y) dy.
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Then, u1 ≥ u1, generally,

u = u0 ≤ u1 ≤ · · · ≤ un ≤ un ≤ · · · ≤ u1 = u0,

it follows that {un} and {un} converge, respectively, to some limits us and us,
and satisfy the relation us ≤ us. A regularity argument shows that us and us
are solutions of (1.1) [11], the details are omitted here. �

In fact, us and us are the minimal and the maximal solution in [u, u], it
is easy to obtain that us ≤ u ≤ us if (1.1) has another solution u ∈ [u, u].
Certainly, us and us may be equal, for example, when f(x, u) is monotone
non-increasing on u, us = us [12].

Furthermore, assume that

H1: f(x, u) = F (x, u) +G(x, u) and that Fu, Gu, Fuu, Guu exist, are continu-
ous, and Fuu ≥ 0, Guu ≤ 0 on Ω× R.

Employing the quasilinearization idea in [7], we have

Theorem 4.2 Under assumption H1, if there exist one pair of ordered lower
and upper solutions u and u for the problem (1.1), and there is a positive con-
stant c such that

Fu(x, u) +Gu(x, u) ≤ −c < 0.

Then there exist monotone sequences {un}, {un} ∈ C2+µ(Ω) such that un →
u← un, u is the unique solution of (1.1) satisfying u ≤ u ≤ u, and the conver-
gence is quadratic.

Proof. The hypotheses Fuu ≥ 0 and Guu ≤ 0, yield inequalities

F (x, u)− F (x, v) ≥ Fu(x, v)(u− v),
G(x, u)−G(x, v) ≥ Gu(x, u)(u− v),

for u ≥ v. (4.5)

We construct new iterative sequences {un} and {un}, starting with u0 = u and
u0 = u, by linear equations

Lun = F (x, un−1) +G(x, un−1) + (Fu(x, un−1) +Gu(x, un−1))(un − un−1),
Lun = F (x, un−1) +G(x, un−1) + (Fu(x, un−1) +Gu(x, un−1))(un − un−1);

un|∂Ω =
∫

Ω

K(x, y)un dx, un|∂Ω =
∫

Ω

K(x, y)un dx.

(4.6)
It is obvious that

Fu(x, un) +Gu(x, un) ≤ −c < 0 for u ≤ un−1, un−1 ≤ u; (4.7)

(n = 1, 2, · · · , ). As we know, for η ∈ C2(Ω) with u ≤ η ≤ u, the function
h(x) = F (x, η) + G(x, η) − Fu(x, η)η − Gu(x, η)η belongs to Cµ(Ω) [7]. Hence
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the linear problems (4.6) have unique solutions {un} and {un} in C2+µ(Ω).
Also,

L(u1 − u0) ≥ (Fu(x, u0) +Gu(x, u0))(u1 − u0),

(u1 − u0)|∂Ω ≥ k
∫

Ω

(u1 − u0) dx.

Taking notice of (4.7), Lemma 3.3 yields u0 ≤ u1.
A similar argument gives u1 ≤ u0. We show next that u1 ≤ u0 on Ω. Using

the inequalities in (4.5), we get

L(u0 − u1)
≥ F (x, u0) +G(x, u0)− F (x, u0)−G(x, u0)
−(Fu(x, u0) +Gu(x, u0))(u1 − u0)

≥ (Fu(x, u0) +Gu(x, u0))(u0 − u0)− (Fu(x, u0) +Gu(x, u0))(u1 − u0)
≥ (Fu(x, u0) +Gu(x, u0))(u0 − u1) + (Gu(x, u0)−Gu(x, u0)(u1 − u0)
≥ (Fu(x, u0) +Gu(x, u0))(u0 − u1).

The condition Guu ≤ 0 is used for the last inequality. Lemma 3.3 implies
u1 ≤ u0. Similarly one can get that u0 ≤ u1. Also, since that Fu(x, u) and
Gu(x, u) are nondecreasing and non-increasing in u respectively, from (4.5) we
arrive at

L(u2 − u1)
= F (x, u1) +G(x, u1)− F (x, u0) +G(x, u0)

+(Fu(x, u1) +Gu(x, u1))(u2 − u1)− (Fu(x, u0) +Gu(x, u0))(u1 − u0)
≥ (Fu(x, u1) +Gu(x, u1))(u1 − u0)− (Fu(x, u0) +Gu(x, u0))(u1 − u0)

+(Fu(x, u1) +Gu(x, u1))(u2 − u1)
≥ (Fu(x, u1) +Gu(x, u1))(u2 − u1).

It then follows by Lemma 3.3 that u1 ≤ u2 on Ω. And u2 ≤ u1 can be obtained
similarly. In the same way, we get

L(u1 − u1) = F (x, u0) +G(x, u0) + (Fu(x, u0) +Gu(x, u0))(u1 − u0)
−F (x, u0)−G(x, u0)− (Fu(x, u0) +Gu(x, u0))(u1 − u0)

≥ (Fu(x, u0) +Gu(x, u0))(u0 − u0)
+(Fu(x, u0) +Gu(x, u0))(u1 − u0 − u1 + u0)

≥ (Fu(x, u0) +Gu(x, u0))(u1 − u1).

Hence, u1 ≤ u1. From a similar argument, we can show u2 ≤ u2. By the above
process, step by step, we have

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ un ≤ · · · ≤ u2 ≤ u1 ≤ u0.
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The convergence for {un} and {un}, and regularity for the limits can be proved
by a similar process to [7] or [11], we omit the details. The uniqueness of
the solution follows from the assumption (4.2). Hence, we obtain that {un}
and {un} converge, nondecreasing and nonincreasing respectively, to the unique
solution u ∈ C2+µ(Ω) between u and u.

To prove the quadratic convergence of {un} and {un}, we define Pn = u−un,
and Qn = un − u, then

LPn = F (x, u) +G(x, u)− [F (x, un−1) +G(x, un−1)
+(Fu(x, un) +Gu(x, un)(un − un−1)]

≤ [Fu(x, u)− Fu(x, un−1)]Pn−1 + [Gu(x, un−1)−Gu(x, un+1)]Pn−1

+[Fu(x, un−1) +Gu(x, un−1)]Pn
= Fuu(x, ξ)P 2

n−1 +Guu(x, ζ)(un−1 − un−1)Pn−1

+[Fu(x, un−1) +Gu(x, un−1)]Pn,

where un−1 ≤ ξ ≤ u, un−1 ≤ ζ ≤ un−1. Because

Fuu(x, ξ)P 2
n−1 +Guu(x, ζ)(un−1 − un−1)Pn−1

≤ Fuu(x, ξ)P 2
n−1 −Guu(x, ζ)(Pn−1 +Qn−1)Pn−1

≤ δ1(P 2
n−1 + Pn−1Qn−1) ≤ 3δ1

2
(P 2
n−1 +Q2

n−1)

where δ1 = max{|Guu(x, u)| : x ∈ Ω, u ≤ u ≤ u}. Take δ = 3δ1/2, then

LPn − [Fu(x, un−1) +Gu(x, un−1)]Pn ≤ δ(P 2
n−1 +Q2

n−1).

Hence

LPn + cPn ≤ δ(P 2
n−1 +Q2

n−1).

On the other hand, φ(x) ≡ δ[maxΩ P
2
n−1 + maxΩQ

2
n−1]/c satisfies

L(φ− Pn) + c(φ− Pn) ≥ cφ(x)− δ(P 2
n−1 +Q2

n−1) ≥ 0

(φ(x)− Pn(x))|∂Ω ≥
∫

Ω

K(x, y)(φ(y)− Pn(y)) dy.

By Lemma 3.3, we have φ(x) ≥ Pn(x), that is

0 ≤ u− un = Pn ≤
δ

c
[max

Ω
P 2
n−1 + max

Ω
Q2
n−1]. (4.8)

A similar estimate for Qn can be obtained. Therefore, the assertion is proved.
�
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5 Parabolic Equations

In this section we study the large time behavior of solutions for the evolution
equation

ut + (L+ c)u ≡ ut −
n∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
) + c(x)u = f(x, u), in Ω× (0, T ],

u|∂Ω =
∫

Ω

K(x, y)u(y, t) dy.

u(x, 0) = u0(x), onΩ.
(5.1)

The authors of [3, 4, 12, 13] have obtained some results. Here, we use semigroup
methods to discuss the decay of solutions. We should also mention the work of
Triggiani [15], Lasiecka [8, 9], and Amann [2].

Let W s
p (Ω) be the standard Sobolev-Slobodeckii spaces for s ∈ R+, p > 1,

1/p+ 1/p′ = 1, and

W 2β
p,γ ≡

{
W 2β
p , for 2β ∈ [0, 1/p),

(W−2β
p′ )′, for 2β ∈ [−2, 0] \ {−2 + 1/p,−1 + 1/p}

where X ′ is the duality space of X with respect to the duality pairing which is
obtained naturally from

∫
Ω
v(x)u(x) dx, v ∈ Lp′ , u ∈ Lp. Hence W 2β

p,γ is a closed
linear subspace of W 2β

p . And the boundary space is defined as

∂W 2β
p ≡W 2β−1/p

p (∂Ω), for 2β ∈ [0, 1/p).

Denote K(u) =
∫

Ω
K(x, y)u(y, t)dy and F(u) = f(x, u), a W 2β

p -weak solution
on J of (5.1) is defined as one function u ∈ C(J,W 2β

p ) satisfying the initial data
u(x, 0) = u0, where J is one perfect subinterval of R+ containing 0, such that∫ t

0

∫
Ω

{
− φ̇u+

n∑
i,j=1

aij
∂u

∂xj

∂φ

∂xi
+ cuφdx+

∫
∂Ω

n∑
i,j=1

aij
∂φ

∂xi
K(u) cos(ν, xi)dS

}
dt

=
∫ t

0

∫
Ω

φF(u)dx dt+
∫

Ω

φ(0)u0dx

for every t ∈ J \{0} and every φ ∈ C([0, t],W 2(1−β)
p′,γ )∩C1([0, t],W−2β

p′,γ ) satisfying
φ(t) = 0.

The above definition of solution of (5.1) is meaningful. By using Green’s
formula, if u ∈ C(J,W 2

p ) ∩ C1(J, Lp) satisfies (5.1) (pointwise in t) then u is a
solution of (5.1) on J . Let H(X) be the infinitesimal generator of a strongly
continuous analytic semigroup {e−tA; t ≥ 0} on a Banach space X. Let σ(A)
be the spectrum of A.

Lemma 5.1 ([2, Lemma 4.1]) Put A0 = (L + c)|W 2
p,γ ≡ {u ∈ W 2

p ; γu = 0}.
Then
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1) A0 ∈ L(W 2
p,γ , Lp) with compact resolvent belongs to H(Lp), where L(X,Y )

is defined as the bounded linear operators from Banach spaces X to Y .

2) There exists a unique Aβ−1 ∈ H((W 2(1−β)
p′ )′) ∩ L(W 2β

p,γ , (W
2(1−β)
p′ )′) with

compact resolvent, so that Aα−1 is the (W 2(1−α)
p′ )′-realization of Aβ−1,

i.e. D(Aα−1) ≡ {y ∈ (W 2α
p′ )′ ∩D(Aβ−1); Aα−1y ∈ (W 2α

p′ )′}, for α ≥ β.

3) There exist σ ∈ R and Rβ ∈ L(∂W 2β
p ,W 2β

p,γ), β ∈ [0, 1/p), so that Rα =
Rβ |∂W 2α

p for α ≥ β and∫
Ω

v(σ +Aβ−1)Rβudx =
∫
∂Ω

n∑
i,j=1

aij
∂φ

∂xi
γu cos(ν, xi)dS,

for (v, u) ∈W 2(1−β)
p′,γ ×W 2β

p,γ .

4) Let Uβ be a nonempty open subset of W 2β
p,γ , F ∈ C(Uβ , (W

2(1−β)
p′ )′) and

u0 ∈ Uβ. Then u is a solution of (5.1) on J if and only if u is a solution
on J of the evolution equation

u̇+ (Aβ−1 − (σ +Aβ−1)RβK)u = F(u), t ∈ J, u(0) = u0. (5.2)

5) Eα−1 is imbedded densely into (Eβ−1, Eβ)θ for α− β > θ > 0.

6) σ(Aβ−1) = σ(A0) for β ∈ [0, 1/p] and the geometric eigenspaces, ker(λ +
Aβ−1), and the algebraic eigenspaces, ∪k≥1 ker(λ + Aβ−1)k, are indepen-
dent of β for λ ∈ σ(Aβ−1) = σ(A0).

In fact, for the linear elliptic problem

Aβ−1u = f1, γu = ψ, (5.3)

there exists one σ ∈ R and Rβ such that the problem (5.3) has solution if and
only if the equation

Aβ−1u = f1 + (σ +Aβ−1)Rβψ (5.4)

has solution [1]. So, we can treat the linear nonlocal problem

Aβ−1u = f1, γu = Ku, (5.5)

as
(Aβ−1 − (σ +Aβ−1)RβK)u = f1. (5.6)

i.e. by a solution u of (5.5) we mean a W 2β
p,γ-solution of (5.6). The existence of a

solution for (5.5) is changed into the existence for a new operator equation (5.6).
Of course, this is a generalization of the discussion in section 3. Particularly,
when σ = 0, the problem (5.6) becomes

(Aβ−1 −Aβ−1RβK)u = Aβ−1(I −RβK)u = f1, (5.7)
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in which I is the identity operator. We make an observation on (5.7), if 1 does
not belong to the eigenvalue set of RβK and Aβ−1(I−RβK) is invertible, then
(5.7) has a unique solution in W 2β

p,γ . This is consistent with the discussion in
the section 2 when Ku = k

∫
Ω
udx.

The asymptotic behavior of a solution to the evolution equation (5.2) can
be investigated through the study of properties of Aβ−1, K and F . This idea
appeared in [6, 14, 9]. Let us ∈ Uβ satisfy

(Aβ−1 − (σ +Aβ−1RβK)us = F(us),

i.e. us is an equilibrium point, and suppose that:

(H2) F(u) = f(x, u) is locally Lipschitzian in u on Uβ and

f(x, u) = f(x, u0) +B(u− u0) + g(x, u− u0) (5.8)

where B is a bounded linear map from W 2β
p,γ to Lp and ‖g(x, v)‖Lp =

o(‖v‖W 2β
p,γ

) as ‖v‖W 2β
p,γ
→ 0, uniformly in x ∈ Ω.

Theorem 5.2 Let F be as in (H2) and us be an equilibrium point. If Aβ−1 −
(σ+Aβ−1RβK) ∈ H((W 2(1−β)

p′ )′) and the spectrum σ(A0−(σ+A0R0K)−B) ⊂
{Reλ > λ0} for some λ0 > 0, then there exist ρ > 0, M > 1 such that if
‖u0 − us‖W 2β

p,γ
≤ ρ/2M then a unique solution of (5.2) exists and satisfies

‖u(x, t)− us(x)‖W 2β
p,γ
≤ 2Me−λ0t‖u0 − us‖W 2β

p,γ
, for t ≥ 0. (5.9)

Proof. Denote Āβ−1 = Aβ−1−(σ+Aβ−1RβK)−B. By using semigroup theories
and Lemma 5.1, there exists one semigroup {e−Āβ−1t} such that

u(x, t) = e−Āβ−1tu0 +
∫ t

0

e−Āβ−1(t−τ)F(u(x, τ)) dτ ; (5.10)

u(x, t)− us = e−Āβ−1t(u0 − us) +
∫ t

0

e−Āβ−1(t−τ)g(x, u(x, τ)) dτ (5.11)

and there exists λ ∈ (λ0,Reσ(Āβ−1)), M ≥ 1 such that for t > 0 and v ∈W 2β
p,γ ,

‖e−Āβ−1t‖ ≤Me−λt‖v‖W 2β
p,γ
, ‖e−Āβ−1tv‖W 2β

p,γ
≤Mt−2βe−λt‖v‖Lp ,

One can choose δ > 0 and ρ > 0 small so that

Mδ

∫ +∞

0

τ−2βe−(λ−λ0)τ dτ <
1
2

(5.12)

and
‖g(x, v)‖Lp ≤ δ‖v‖W 2β

p,γ
for ‖v‖W 2β

p,γ
≤ ρ . (5.13)
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Take u0 with ‖u0 − us‖W 2β
p,γ
≤ ρ/2M , then the local solution for (5.10) exists

and satisfies ‖u(x, t)− us‖W 2β
p,γ
≤ ρ for t ∈ J . On the other hand, from (5.11),

‖u− us‖W 2β
p,γ

≤ Me−λt‖u0 − us‖W 2β
p,γ

+
∫ t

0

‖e−Āβ−1(t−τ)g(x, u(x, τ))‖W 2β
p,γ
dτ

≤ Me−λt‖u0 − us‖W 2β
p,γ

+ δM

∫ t

0

(t− τ)−2βe−λ(t−τ)‖u− us‖W 2β
p,γ
dτ

≤ ρ

(
1
2

+ δM

∫ t

0

(t− τ)−2βe−λ(t−τ) dτ

)
< ρ .

In the last inequality above, (5.10) and (5.11) are used. Moreover,

eλ0t‖u(x, t)− us(x)‖W 2β
p,γ

≤ M‖u0 − us‖W 2β
p,γ

+ δM

∫ t

0

(t− τ)−2βe−(λ−λ0)(t−τ)eλ0τ‖u− us‖W 2β
p,γ
dτ

≤ M‖u0 − us‖W 2β
p,γ

+
1
2

sup
0≤τ≤t

{
eλ0τ‖u(x, τ)− us(x)‖W 2β

p,γ

}
.

Hence, ‖u(x, τ)− us(x)‖W 2β
p,γ
≤ 2Me−λ0t‖u0 − us‖W 2β

p,γ
. �
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